WO2015151469A1 - 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 - Google Patents
耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 Download PDFInfo
- Publication number
- WO2015151469A1 WO2015151469A1 PCT/JP2015/001726 JP2015001726W WO2015151469A1 WO 2015151469 A1 WO2015151469 A1 WO 2015151469A1 JP 2015001726 W JP2015001726 W JP 2015001726W WO 2015151469 A1 WO2015151469 A1 WO 2015151469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- ferrite
- bainite
- strain aging
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 93
- 239000010959 steel Substances 0.000 title claims abstract description 93
- 230000032683 aging Effects 0.000 title claims abstract description 50
- 239000000463 material Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title abstract description 29
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 51
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims description 44
- 238000005096 rolling process Methods 0.000 claims description 16
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000000576 coating method Methods 0.000 abstract description 14
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 abstract description 12
- 229910000037 hydrogen sulfide Inorganic materials 0.000 abstract description 12
- 238000010438 heat treatment Methods 0.000 description 15
- 238000003466 welding Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000003483 aging Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
- B23K31/027—Making tubes with soldering or welding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/02—Rigid pipes of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/17—Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a steel product for a line pipe having a small material deterioration after coating treatment at 300 ° C. or less, a method for producing the same, and a welded steel pipe, and has excellent HIC resistance in a wet hydrogen sulfide environment of pH 5 or higher, and API 5L X60
- the present invention relates to a steel material for X70 grade line pipe.
- line pipes used for transportation of natural gas and crude oil are required to have high strength in order to improve transportation efficiency by high-pressure operation. Even if large deformation occurs due to ice gouging or ground deformation, a high deformability capable of preventing the occurrence of cracks is required. For example, in pipelines laid on a cold seabed or an earthquake zone where ice gouging occurs, in addition to high uniform elongation, a line pipe having a low yield ratio of 90% or less is required.
- the steel sheet is formed into a cold tube and the butt portion is welded, and then the outer surface of the steel pipe is usually coated from the viewpoint of corrosion protection.
- a strain age hardening phenomenon occurs due to processing strain at the time of pipe making and heating at the time of coating treatment, yield stress increases, and the yield ratio in the steel pipe becomes larger than the yield ratio in the steel plate.
- HIC resistance hydrogen-induced crack resistance
- Patent Document 1 discloses a heat treatment method in which quenching from a two-phase region of ferrite and austenite is performed between quenching and tempering. ing.
- Patent Document 2 discloses that rolling of a steel material is completed at three or more points of Ar, and the subsequent accelerated cooling rate and A method for achieving a low yield ratio by controlling the cooling stop temperature to obtain a two-phase structure of acicular ferrite and martensite is disclosed.
- Patent Documents 3 and 4 include fine precipitates of composite carbide containing Ti and Mo, or composite carbide containing any two or more of Ti, Nb, and V.
- a low-yield-ratio, high-strength, high-toughness steel pipe excellent in strain aging characteristics and a method for producing the same are disclosed.
- Patent Document 5 describes a method for achieving a low yield ratio, high strength, and high uniform elongation excellent in strain aging resistance of API 5L X70 or less without greatly increasing the amount of alloying elements added to steel.
- a method is disclosed in which reheating is performed immediately after cooling to obtain a three-phase structure of bainite, polygonal ferrite, and island martensite (MA).
- Patent Document 6 discloses a method of reducing the hardness difference between ferrite and bainite as a method for obtaining the HIC resistance of a steel material having a two-phase structure of ferrite and bainite having API 5L X65 or more.
- JP-A-55-97425 Japanese Unexamined Patent Publication No. 1-176027 JP 2005-60839 A Japanese Patent Laid-Open No. 2005-60840 JP 2011-74443 A JP 2003-301236 A
- Patent Document 6 has excellent HIC resistance in a wet hydrogen sulfide environment with a pH of 3.3 or higher.
- material design such as cleaning of steel components adapted to a severe sour environment is excessive, and an increase in manufacturing cost is a problem.
- the present invention shows excellent HIC resistance in a wet hydrogen sulfide environment of pH 5 or higher, and has a low yield ratio even after coating treatment at 300 ° C. or lower, for API 5L X60 to X70 grade high deformation capacity line pipes. It aims at providing steel materials, its manufacturing method, and a welded steel pipe.
- the present inventors diligently studied a manufacturing process of an appropriate component composition and a steel material manufacturing method, particularly controlled rolling and accelerated cooling after controlled rolling, and obtained the following knowledge.
- A It is possible to improve the HIC resistance by adding an appropriate amount of Cu and not containing Mo or even if it is contained to 0.01% or less.
- B By setting the accelerated cooling start temperature and the accelerated cooling stop temperature to appropriate temperatures, the metal structure of the steel sheet becomes a two-phase structure of ferrite and bainite or a structure mainly composed of these, and the hardness difference between ferrite and bainite.
- the Vickers hardness is 70 or more, it is possible to reduce the yield ratio before the strain aging treatment and after the strain aging treatment (hereinafter also referred to as “before and after the strain aging treatment”).
- the solid solution C can be reduced by setting the cooling start temperature and the cooling stop temperature in the accelerated cooling to appropriate temperatures, an increase in the yield ratio after the strain aging treatment can be suppressed.
- the present invention has been made by further studying the above findings and is as follows.
- component composition by mass, C: 0.030 to 0.100%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.5%, P: 0.015%
- S 0.002% or less
- Cu 0.20 to 1.00%
- Mo 0.01% or less
- Nb 0.005 to 0.05%
- Ti 0.005 to 0.040%
- Al 0.10% or less
- N 0.007% or less
- the balance is made of Fe and inevitable impurities
- the metal structure is mainly composed of ferrite and bainite, and the area fractions of the ferrite and bainite are the total.
- the hardness difference between the ferrite and the bainite is 70 or more in terms of Vickers hardness, and the uniform elongation before and after the strain aging treatment at a temperature of 300 ° C. or less is 9% or more and Strain-resistant aging characteristics with a yield ratio of 90% or less And high deformability line steel pipe having excellent HIC resistance.
- Ni 0.02 to 0.50%
- Cr 1.00% or less
- V 0.10% or less
- Ca 0.0050% or less
- B Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance according to [1], containing one or more selected from 0.0050% or less.
- a steel having the composition described in [1] or [2] is heated to a temperature of 1000 to 1300 ° C. and hot-rolled at a rolling end temperature of 3 or more points of Ar, and then (Ar 3 -50 ) To (Ar 3 +30) ° C. to a cooling stop temperature of 500 to 650 ° C. at a cooling rate of 5 ° C./s or more.
- the metal structure is mainly composed of ferrite and bainite, and the area fraction of the ferrite and bainite. Is 90% or more in total, the hardness difference between the ferrite and the bainite is 70 or more in terms of Vickers hardness, and the uniform elongation before and after the strain aging treatment at a temperature of 300 ° C.
- the strain aging characteristic in the present invention refers to a characteristic that can suppress an excessive increase in the yield ratio even when heat treatment is performed at a temperature of 300 ° C. or lower.
- the HIC resistance in the present invention refers to a characteristic in which hydrogen-induced cracking does not occur in a wet hydrogen sulfide environment having a pH of 5 or higher.
- high deformability means the characteristic which satisfy
- C 0.030 to 0.100%
- C is an element that contributes to precipitation strengthening as a carbide. If C is less than 0.030%, sufficient strength cannot be secured. When C exceeds 0.100%, deterioration of toughness and weldability and an increase in yield ratio due to strain aging are caused. For this reason, the C content is specified to be 0.030 to 0.100%. Preferably, the C content is 0.05% or more. Preferably, the C content is 0.09% or less.
- Si 0.01 to 0.50% Si is added for deoxidation.
- Si is less than 0.01%, the deoxidation effect is not sufficient.
- Si exceeds 0.50%, deterioration of toughness and weldability is caused.
- the Si content is specified to be 0.01 to 0.50%. More preferably, it is 0.01 to 0.3%.
- Mn 0.5 to 2.5% Mn is added for strength and toughness. If Mn is less than 0.5%, the effect is not sufficient. For this reason, the Mn content is 0.5% or more, preferably 1.2% or more, and more preferably 1.5% or more from the viewpoint of lowering the yield ratio due to MA generation. If Mn exceeds 2.5%, toughness and weldability deteriorate. For this reason, Mn content is prescribed
- P 0.015% or less
- P is an inevitable impurity element that deteriorates weldability and HIC resistance.
- the upper limit of the P content is specified to be 0.015% or less. More preferably, it is 0.010% or less.
- S 0.002% or less S generally becomes MnS inclusions in steel and deteriorates the HIC resistance. For this reason, the smaller the S, the better. Since there is no problem if S is 0.002% or less, the upper limit of the S content is specified to be 0.002%. More preferably, it is 0.0015% or less.
- Cu 0.20 to 1.00%
- Cu is an important element in the present invention, and suppresses the intrusion of hydrogen into the steel and contributes to improving the HIC resistance. However, if Cu is less than 0.20%, the effect is not sufficient, and if it exceeds 1.00%, weldability deteriorates. Therefore, the Cu content is specified to be 0.20 to 1.00%. Preferably, the Cu content is 0.25% or more. Preferably, the Cu content is 0.5% or less.
- Mo 0.01% or less (including 0) Mo causes an increase in yield ratio due to strain aging and deterioration of the HIC resistance. For this reason, Mo is not contained, or even if it is contained, it is regulated to 0.01% or less. More preferably, it is 0.005% or less.
- Nb 0.005 to 0.05%
- Nb improves toughness by refining the structure, further forms carbides, and contributes to an increase in strength.
- the Nb content is specified to be 0.005 to 0.05%.
- the Nb content is 0.01% or more.
- the Nb content is 0.05% or less.
- Ti 0.005 to 0.040% Due to the pinning effect of TiN, Ti suppresses austenite coarsening during slab heating, improves base metal toughness, further reduces solid solution N, and suppresses an increase in yield ratio due to strain aging. However, if Ti is less than 0.005%, the effect is not sufficient, and if it exceeds 0.040%, the toughness of the weld heat affected zone deteriorates. For this reason, the Ti content is specified to be 0.005 to 0.040%. More preferably, it is 0.005 to 0.02%.
- Al 0.10% or less Al is added as a deoxidizer. If Al exceeds 0.10%, the cleanliness of the steel decreases and the toughness deteriorates. For this reason, Al content is prescribed
- N 0.007% or less
- N is an unavoidable impurity element that causes an increase in yield ratio due to strain aging and deterioration of the toughness of the heat affected zone.
- the upper limit of N content is prescribed
- Ni 0.02 to 0.50%
- Ni is an element that contributes to improving the HIC resistance and is effective in improving toughness and strength. If Ni is less than 0.02%, the effect is not sufficient, and if it exceeds 0.50%, the effect is saturated, which is disadvantageous in terms of cost. For this reason, when Ni is contained, the Ni content is specified to be 0.02 to 0.50%. Preferably, the Ni content is 0.20% or more. Preferably, the Ni content is 0.4% or less.
- Cr 1.00% or less Cr is an effective element for obtaining sufficient strength even at low C.
- the upper limit of Cr content is prescribed
- the Cr content is 0.5% or less.
- the Cr content is 0.1% or more.
- V 0.10% or less V improves toughness by refining the structure, further forms carbides, and contributes to improvement in strength.
- V exceeds 0.10%, the toughness of the heat affected zone is deteriorated.
- V content is prescribed
- the V content is 0.05% or less.
- the V content is 0.005% or more.
- Ca 0.0050% or less
- Ca is an element effective for improving toughness by controlling the form of sulfide inclusions.
- the Ca content is prescribed
- the Ca content is 0.004% or less.
- the Ca content is 0.001% or more.
- B 0.0050% or less B is an element effective in increasing the strength and improving the toughness of the weld heat affected zone. If B exceeds 0.0050%, the weldability deteriorates. For this reason, when it contains, B content is prescribed
- the balance other than the above components in the steel material of the present invention is Fe and inevitable impurities.
- the content of elements other than the above is not a problem as long as the effects of the present invention are not impaired.
- the metal structure of the steel material of the present invention is a multiphase structure mainly composed of ferrite and bainite.
- the multiphase structure mainly composed of ferrite and bainite is a multiphase structure having a total area fraction of ferrite and bainite of 90% or more, and the balance is martensite, pearlite, island martensite, retained austenite, etc. Is a structure having a total area fraction of 10% or less selected from 1 type or 2 types or more.
- the area fraction of ferrite and bainite does not need to be particularly limited, but if the area fraction of ferrite is less than 10%, bainite having a high hardness may not be obtained, so there is a difference in hardness between ferrite and bainite.
- the area ratio of ferrite is set to 10% or more.
- the ferrite area fraction is preferably 50% or less.
- the area fraction of bainite is preferably 10% or more.
- the hardness difference between ferrite and bainite is 70 or more in terms of Vickers hardness (HV).
- HV Vickers hardness
- the hardness difference is preferably 75 or more in HV.
- the hardness difference is less than 70 in HV, the behavior does not change from the single phase structure of ferrite or bainite, the yield ratio becomes high, and it becomes difficult to achieve the desired yield ratio.
- the hardness difference between ferrite and bainite is greater than 180 in HV, the HIC resistance may be degraded and the yield ratio after strain aging may be increased. Therefore, the hardness difference is preferably 180 or less in HV. More preferably, it is 150 or less.
- each metal structure is observed with an optical microscope or a scanning electron microscope, for example, and the type of structure and the area fraction of each phase are obtained by performing image processing on the obtained microstructure picture of at least three visual fields. be able to.
- the hardness is a value measured by a Vickers hardness tester, and an arbitrary load can be selected in order to obtain an indentation of an optimum size inside each phase. It is desirable to measure the hardness of ferrite and bainite under the same load. In addition, considering the local components of the microstructure or variations due to measurement errors, the hardness is measured at at least 15 different positions for each structure, and the average hardness of each structure is determined as the hardness of ferrite and bainite. It is preferable to use it. As the hardness difference when using the average hardness, the absolute value of the difference between the average value of the hardness of ferrite and the average value of the hardness of bainite is used.
- Heating temperature 1000-1300 ° C If the heating temperature is less than 1000 ° C, the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C, the base material toughness deteriorates. For this reason, the heating temperature is regulated to 1000 to 1300 ° C.
- Rolling end temperature Ar 3 points or more
- the cumulative rolling reduction in a temperature range of 900 ° C. or lower is 50% or more.
- Cooling start temperature for accelerated cooling (Ar 3 -50) to (Ar 3 +30) ° C.
- the cooling start temperature is (Ar 3 -50) ° C. or higher, preferably (Ar 3 -30) ° C. or higher.
- the cooling start temperature is (Ar 3 +30) ° C. or lower, and preferably (Ar 3 +25) ° C. or lower.
- Accelerated cooling rate 5 ° C./s or more If the cooling rate is less than 5 ° C./s, pearlite is generated during cooling, and sufficient strength and low yield ratio cannot be obtained. For this reason, a cooling rate is prescribed
- the cooling rate is 8 ° C./s or more, more preferably 10 ° C./s or more.
- the cooling rate is 100 ° C./s or less, more preferably 60 ° C./s or less.
- Cooling stop temperature 500-650 ° C
- the cooling stop temperature for accelerated cooling is an important manufacturing condition. If the cooling stop temperature is less than 500, there are a lot of dislocations and solute C generated by transformation, the yield ratio after the strain aging treatment is increased, and a low yield ratio cannot be achieved. If it exceeds 650 ° C., the bainite is softened, and the hardness difference between ferrite and bainite is less than 70 in HV, so a low yield ratio cannot be achieved. For this reason, the cooling stop temperature for accelerated cooling is specified to be 500 to 650 ° C.
- the cooling stop temperature is 515 ° C or higher, more preferably 530 ° C or higher.
- the cooling stop temperature is 635 ° C. or lower, more preferably 620 ° C. or lower.
- the present invention is a steel pipe using the above-described steel material.
- Examples of the method for forming a steel pipe include a method for forming a steel pipe into a shape by cold forming such as a UOE process or a press bend (also called a bending press).
- the end bending of the width direction end of the steel plate is performed using a press machine, and then the steel plate is processed using a press machine.
- the steel plate is formed into a cylindrical shape so that the widthwise ends of the steel plate face each other.
- the opposing widthwise ends of the steel plates are brought together and welded. This welding is called seam welding.
- seam welding a cylindrical steel plate is constrained, the widthwise ends of opposing steel plates are butted against each other in a tack welding process, and welding is performed on the inner and outer surfaces of the butt portion of the steel plate by the submerged arc welding method.
- a method having a two-stage process that is, a main welding process for performing the above-described process is preferable.
- pipe expansion is performed to remove residual welding stress and improve roundness of the steel pipe.
- the pipe expansion ratio ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion
- the tube expansion rate is preferably in the range of 0.5% to 1.2%.
- a coating treatment can be carried out for the purpose of preventing corrosion.
- a known resin may be applied to the outer surface after heating to a temperature range of 200 to 300 ° C., for example.
- a steel pipe having a substantially circular cross-sectional shape is manufactured by successively forming a steel plate by repeating three-point bending. Thereafter, seam welding is performed in the same manner as the above-described UOE process. Also in the case of press bend, tube expansion may be performed after seam welding, and coating may also be performed.
- Steels having a thickness of 30 mm and a thickness of 33 mm were manufactured using steels (steel types A to K) having the composition shown in Table 1 (the balance being Fe and inevitable impurities) under the conditions shown in Table 2.
- temperature such as heating temperature, rolling completion temperature, and cooling stop (end) temperature
- the center temperature was calculated by inserting a thermocouple in the center of the slab or steel and measuring directly or using parameters such as the plate thickness and thermal conductivity from the surface temperature of the slab or steel.
- the cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature after the hot rolling is finished by the time required for the cooling.
- the steel material produced as described above was subjected to structure observation and evaluated for tensile properties, hardness difference, and HIC resistance.
- the evaluation method is as follows.
- (1) Microstructural observation A specimen for microstructural observation is collected from the obtained thick steel plate, the L-direction cross section is polished, the nital corrosion is performed, and an optical microscope is used for the central portion of the plate thickness that is ⁇ 2 mm from the central plate thickness position. (Magnification: 400 times) or scanning electron microscope (magnification: 2000 times), the microstructure is observed for three or more fields of view, imaged, and image analysis is performed to determine the type of tissue and the area fraction of each phase. It was.
- the metal structure of the steel material was mainly composed of ferrite and bainite, and the hardness difference between ferrite and bainite was 70 or more in terms of Vickers hardness.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(a)Cuを適量添加し、Moを含有しない、あるいは、含有しても0.01%以下にすることにより、耐HIC特性を向上させることが可能である。
(b)加速冷却開始温度と加速冷却停止温度を適正な温度とすることで、鋼板の金属組織が、フェライトおよびベイナイトの2相組織又はこれらを主体とした組織となり、フェライトとベイナイトとの硬度差がビッカース硬さで70以上となるため、歪時効処理前および歪時効処理後(以下、「歪時効処理前後」と称することもある。)の低降伏比化が可能である。
(c)加速冷却における冷却開始温度と冷却停止温度を適正な温度とすることで、固溶Cを低減することができるため、歪時効処理後の降伏比の上昇が抑制できる。
[1]成分組成として、質量%で、C:0.030~0.100%、Si:0.01~0.50%、Mn:0.5~2.5%、P:0.015%以下、S:0.002%以下、Cu:0.20~1.00%、Mo:0.01%以下、Nb:0.005~0.05%、Ti:0.005~0.040%、Al:0.10%以下、N:0.007%以下を含有し、残部がFeおよび不可避的不純物からなり、金属組織はフェライトおよびベイナイトを主体とし、前記フェライトおよびベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
[2]前記成分組成に、さらに、質量%で、Ni:0.02~0.50%、Cr:1.00%以下、V:0.10%以下、Ca:0.0050%以下、B:0.0050%以下のうちから選ばれる1種または2種以上を含有する[1]に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
[3][1]または[2]に記載の成分組成を有する鋼を、1000~1300℃の温度に加熱し、Ar3点以上の圧延終了温度で熱間圧延した後、(Ar3-50)~(Ar3+30)℃から5℃/s以上の冷却速度で500~650℃の冷却停止温度まで加速冷却を行う、金属組織がフェライトおよびベイナイト主体であり、前記フェライト及びベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上、降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材の製造方法。
[4][1]または[2]に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材を素材とする溶接鋼管。
なお、本発明における耐歪時効特性とは、300℃以下の温度の熱処理を施しても降伏比の過度な上昇を抑制できる特性をいう。また、本発明における耐HIC特性とは、pH5以上の湿潤硫化水素環境において水素誘起割れが発生しない特性をいう。また、高変形能とは、一様伸びが9%以上および降伏比が90%以下を満たす特性をいう。
以下に、本発明に係る鋼材の成分組成の限定理由を説明する。なお、成分組成を示す単位の%は、全て質量%を意味する。
Cは、炭化物として析出強化に寄与する元素である。Cが0.030%未満では、十分な強度が確保できない。Cが0.100%を超えると、靭性や溶接性の劣化、歪時効による降伏比の上昇を招く。このため、C含有量を0.030~0.100%に規定する。好ましくは、C含有量は0.05%以上である。また、好ましくは、C含有量は0.09%以下である。
Siは、脱酸のため添加する。Siが0.01%未満では脱酸効果が十分ではない。Siが0.50%を超えると靭性や溶接性の劣化を招く。このため、Si含有量を0.01~0.50%に規定する。さらに好ましくは、0.01~0.3%である。
Mnは、強度、靭性のため添加する。Mnが0.5%未満ではその効果が十分ではない。このため、Mn含有量は0.5%以上とし、MA生成による低降伏比化の観点から好ましくは、1.2%以上であり、より好ましくは、1.5%以上である。Mnが2.5%を超えると靭性と溶接性が劣化する。このため、Mn含有量を2.5%以下に規定し、好ましくは、2.2%以下である。
Pは、溶接性と耐HIC特性を劣化させる不可避的不純物元素である。このため、P含有量の上限を0.015%以下に規定する。さらに好ましくは、0.010%以下である。
Sは、一般的には、鋼中においてMnS介在物となり耐HIC特性を劣化させる。このため、Sは少ないほどよい。Sが0.002%以下であれば問題ないため、S含有量の上限を0.002%に規定する。さらに好ましくは、0.0015%以下である。
Cuは本発明において重要な元素であり、鋼中への水素の侵入を抑制し、耐HIC特性向上に寄与する。しかし、Cuが0.20%未満ではその効果が十分ではなく、1.00%を超えると溶接性が劣化する。このため、Cu含有量を0.20~1.00%に規定する。
好ましくは、Cu含有量は0.25%以上である。また、好ましくは、Cu含有量は0.5%以下である。
Moは歪時効による降伏比の上昇、および、耐HIC特性の劣化を招く。このため、Moは含有しないか、あるいは含有しても0.01%以下に規定する。さらに好ましくは、0.005%以下である。
Nbは組織の微細化により靭性を向上させ、さらに炭化物を形成し、強度上昇に寄与する。しかし、Nbが0.005%未満ではその効果が十分ではなく、0.05%を超えると溶接熱影響部の靭性が劣化する。このため、Nb含有量を0.005~0.05%に規定する。好ましくは、Nb含有量は0.01%以上である。また、好ましくは、Nb含有量は0.05%以下である。
TiはTiNのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させ、さらに固溶Nを低減し歪時効による降伏比上昇を抑制する。しかし、Tiが0.005%未満ではその効果が十分ではなく、0.040%を超えると溶接熱影響部の靭性が劣化する。このため、Ti含有量は0.005~0.040%に規定する。さらに好ましくは、0.005~0.02%である。
Alは脱酸剤として添加される。Alが0.10%を超えると鋼の清浄度が低下し、靭性が劣化する。このため、Al含有量は0.10%以下に規定する。好ましくは、Al含有量は0.08%以下とする。また、好ましくは、Al含有量は0.01%以上である。
Nは歪時効による降伏比の上昇、および、溶接熱影響部の靭性の劣化を招く不可避的不純物元素である。このため、N含有量の上限を0.007%に規定する。さらに好ましくは、0.006%以下である。
Niは耐HIC特性向上に寄与し、靭性の改善と強度の上昇に有効な元素である。Niが0.02%未満ではその効果が十分ではなく、0.50%を超えると効果が飽和し、むしろコスト的に不利になる。このため、含有する場合はNi含有量を0.02~0.50%に規定する。好ましくは、Ni含有量は0.20%以上である。また、好ましくは、Ni含有量は0.4%以下である。
Crは低Cでも十分な強度を得るために有効な元素である。Crが1.00%を超えると溶接性が劣化する。このため、含有する場合はCr含有量の上限を1.00%に規定する。好ましくは、Cr含有量は0.5%以下である。また、好ましくは、Cr含有量は0.1%以上である。
Vは組織の微細化により靭性を向上させ、さらに炭化物を形成し、強度の向上に寄与する。Vが0.10%を超えると溶接熱影響部の靭性が劣化する。このため、含有する場合はV含有量を0.10%以下に規定する。好ましくは、V含有量は0.05%以下である。また、好ましくは、V含有量は0.005%以上である。
Caは硫化物系介在物の形態制御による靭性改善に有効な元素である。Caが0.0050%を超えると効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させる。このため、含有する場合はCa含有量を0.0050%以下に規定する。好ましくは、Ca含有量は0.004%以下である。また、好ましくは、Ca含有量は0.001%以上である。
Bは強度上昇、溶接熱影響部の靭性改善に有効な元素である。Bが0.0050%を超えると溶接性を劣化させる。このため、含有する場合は、B含有量を0.0050%以下に規定する。さらに好ましくは、0.003%以下である。また、好ましくは、B含有量は0.0003%以上である。
本発明の鋼材の金属組織は、フェライトおよびベイナイトを主体とする複相組織とする。フェライトおよびベイナイトを主体とする複相組織とは、フェライトおよびベイナイトの面積分率が合計で90%以上の複相組織であり、残部としては、マルテンサイトやパーライト、島状マルテンサイト、残留オーステナイト等から選ばれる1種または2種以上の合計の面積分率が10%以下の組織である。
なお、フェライトとベイナイトの面積分率は特に限定する必要はないが、フェライトの面積分率が10%未満では、硬度の高いベイナイトを得ることができない場合があるため、フェライトとベイナイトとの硬度差を大きくして低降伏比化を図るという観点からは、フェライトの面積率を10%以上とすることが好ましい。また、フェライトの面積分率が50%を超えると強度の劣化を招く場合があるため、強度確保の観点から、フェライトの面積分率は50%以下であることが好ましい。また、低降伏比および強度確保の観点から、ベイナイトの面積分率は10%以上であることが好ましい。
300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下
地震地帯に適用されるラインパイプ用鋼材は、地盤変動のような大きな変形を受ける場合でも破壊しないように高変形能であることが要求されており、さらに防食のためのコーティングで最大300℃に加熱される歪時効処理後でも高変形能を維持することが必要である。300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である場合は、十分な高変形能が得られ、地震などの大変形により破壊に至る虞はない。高変形能の観点から、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びは10%以上および降伏比が88%以下であることが好ましい。
上述した成分組成を有する鋼素材を用い、加熱温度:1000~1300℃、圧延終了温度:Ar3点以上で熱間圧延を行った後、(Ar3-50)~(Ar3+30)℃から5℃/s以上の冷却速度で冷却停止温度500~650℃まで加速冷却を行うことで、所望の金属組織とすることができる。なお、温度は鋼材の中央部の温度とする。なお、Ar3点は、以下の式より計算される。
Ar3(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
上記式において、元素記号は各元素の含有量(質量%)を示し、含有しない場合は0とする。
加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化する。このため、加熱温度を1000~1300℃に規定する。
圧延終了温度がAr3点未満であると、その後のフェライト変態速度が低下し、圧延による塑性歪がフェライト中に残存してフェライト強度が高くなり、フェライトとベイナイトとの硬度差が低下し、所望の降伏比が達成できなくなる。このため、圧延終了温度をAr3点以上に規定する。さらに、900℃以下の温度域における累積圧下率を50%以上とすることが好ましい。900℃以下の温度域における累積圧下率を50%以上とすることにより、オーステナイト粒を微細化することができる。
冷却開始温度が(Ar3-50)℃未満の温度ではフェライトの面積分率が増加し、母材強度が劣化する。さらに、フェライトとベイナイトの硬度差が大きくなり、耐HIC特性が劣化する。よって、冷却開始温度は(Ar3-50)℃以上とし、好ましくは、(Ar3-30)℃以上である。また、冷却開始温度が(Ar3+30)℃を超えるとフェライトの面積分率が減少するとともに低降伏比化を達成するには不十分となる。よって、冷却開始温度は(Ar3+30)℃以下とし、好ましくは、(Ar3+25)℃以下である。
冷却速度が5℃/s未満では冷却時にパーライトを生成し、十分な強度や低降伏比が得られない。このため、冷却速度を5℃/s以上に規定する。好ましくは、冷却速度は8℃/s以上、より好ましくは10℃/s以上である。また、好ましくは、冷却速度は100℃/s以下、より好ましくは60℃/s以下である。
本発明において、加速冷却の冷却停止温度は重要な製造条件である。冷却停止温度が500未満では、変態によって生じた転位と固溶Cが多く存在し、歪時効処理後の降伏比が上昇し、低降伏比化が達成できない。650℃を超えるとベイナイトが軟化し、フェライトとベイナイトとの硬度差がHVで70未満となり、低降伏比化が達成できない。このため、加速冷却の冷却停止温度を500~650℃に規定する。好ましくは、冷却停止温度は515℃以上、より好ましくは530℃以上である。また、好ましくは、冷却停止温度は635℃以下、より好ましくは620℃以下である。
さらに、溶接鋼管の製造方法について説明する。
(1)組織観察
得られた厚鋼板から組織観察用試験片を採取し、L方向断面を研磨、ナイタール腐食して、板厚中央位置から±2mmの領域である板厚中央部について、光学顕微鏡(倍率:400倍)または走査型電子顕微鏡(倍率:2000倍)を用いて、ミクロ組織を各3視野以上観察し、撮像して画像解析により、組織の種類および各相の面積分率を求めた。
(2)引張特性
歪時効処理前の引張特性については、圧延垂直方向のJIS Z 2201に規定される4号試験片を2本採取し、引張試験を行い、その平均値で評価した。引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向のJIS Z 2201に規定される4号試験片を2本採取し、引張試験を行い、その平均値で評価した。降伏比90%以下、一様伸び9%以上を本発明に必要な降伏比とした。
また、歪時効処理後の引張特性については、圧延方向のJIS Z 2201に規定される4号試験片を2本採取し、2.0%の引張歪を付与した後、250℃にて5分間保持して、歪時効処理した後、引張試験を実施し、その平均値で評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。
(3)硬度差
得られた厚鋼板から硬さ測定用試験片を採取し、フェライトとベイナイトの硬度を、測定荷重5gのビッカース硬度計により測定し、10点以上の測定結果の平均値を用いて、フェライトとベイナイトとの硬度差を求めた。なお、表3No.10はフェライトを含まないため試験しなかった。
(4)耐HIC特性
100%硫化水素を飽和させたpH約5.0の5%NaClを含む1mol/l酢酸+酢酸ナトリウム緩衝溶液中に96時間浸漬する条件でHIC試験を行い、割れが認められない場合を耐HIC特性良好と判断して○印で示し、割れが発生した場合を×印で示した。
Claims (4)
- 成分組成として、質量%で、C:0.030~0.100%、Si:0.01~0.50%、Mn:0.5~2.5%、P:0.015%以下、S:0.002%以下、Cu:0.20~1.00%、Mo:0.01%以下、Nb:0.005~0.05%、Ti:0.005~0.040%、Al:0.10%以下、N:0.007%以下を含有し、残部がFeおよび不可避的不純物からなり、金属組織はフェライトおよびベイナイトを主体とし、前記フェライトおよびベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上および降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
- 前記成分組成に、さらに、質量%で、Ni:0.02~0.50%、Cr:1.00%以下、V:0.10%以下、Ca:0.0050%以下、B:0.0050%以下のうちから選ばれる1種または2種以上を含有する請求項1に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材。
- 請求項1または請求項2に記載の成分組成を有する鋼を、1000~1300℃の温度に加熱し、Ar3点以上の圧延終了温度で熱間圧延した後、(Ar3-50)~(Ar3+30)℃から5℃/s以上の冷却速度で冷却停止温度500~650℃まで加速冷却を行う、金属組織がフェライトおよびベイナイト主体であり、前記フェライト及びベイナイトの面積分率は合計で90%以上であり、前記フェライトと前記ベイナイトとの硬度差がビッカース硬さで70以上であり、300℃以下の温度の歪時効処理前および歪時効処理後における一様伸びが9%以上、降伏比が90%以下である耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材の製造方法。
- 請求項1または請求項2に記載の耐歪時効特性及び耐HIC特性に優れた高変形能ラインパイプ用鋼材を素材とする溶接鋼管。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016511375A JP6226062B2 (ja) | 2014-03-31 | 2015-03-26 | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 |
CN201580017406.3A CN106133175B (zh) | 2014-03-31 | 2015-03-26 | 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管 |
KR1020167027218A KR101893845B1 (ko) | 2014-03-31 | 2015-03-26 | 내변형 시효 특성 및 내hic 특성이 우수한 고변형능 라인 파이프용 강재 및 그 제조 방법 그리고 용접 강관 |
RU2016138675A RU2653031C2 (ru) | 2014-03-31 | 2015-03-26 | Сталь для высокодеформируемых труб магистральных трубопроводов с высокой стойкостью к деформационному старению и водородному охрупчиванию, способ их изготовления и сварная стальная труба |
US15/300,980 US10344362B2 (en) | 2014-03-31 | 2015-03-26 | Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe |
EP15773521.8A EP3128029B1 (en) | 2014-03-31 | 2015-03-26 | Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070824 | 2014-03-31 | ||
JP2014-070824 | 2014-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151469A1 true WO2015151469A1 (ja) | 2015-10-08 |
Family
ID=54239815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001726 WO2015151469A1 (ja) | 2014-03-31 | 2015-03-26 | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10344362B2 (ja) |
EP (1) | EP3128029B1 (ja) |
JP (1) | JP6226062B2 (ja) |
KR (1) | KR101893845B1 (ja) |
CN (1) | CN106133175B (ja) |
RU (1) | RU2653031C2 (ja) |
WO (1) | WO2015151469A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105886915A (zh) * | 2016-05-12 | 2016-08-24 | 宝鸡石油钢管有限责任公司 | 一种抗h2s腐蚀的空芯钢制连续抽油杆 |
US20170022583A1 (en) * | 2014-03-31 | 2017-01-26 | Jfe Steel Corporation | Steel material for highly deformable line pipes having superior strain aging resistance and superior hic resistance, method for manufacturing same, and welded steel pipe |
WO2017206321A1 (zh) * | 2016-06-03 | 2017-12-07 | 深圳市樊溪电子有限公司 | 一种低合金钢、钢管及其制造方法 |
EP3385399A4 (en) * | 2015-12-04 | 2019-05-22 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | HEAT-TREATED STEEL PLATE WITH HIGH LIMIT LIMIT AND SUPPRESSIVE HARDNESS OF A WELD HEAT-RESISTANT ZONE AND SUPPRESSED DEGRADATION OF THE TEMPERATURE TEMPERATURE TREATMENT OF THE WELD HEAT-RESISTANT ZONE |
EP3375900A4 (en) * | 2016-03-22 | 2019-07-17 | Nippon Steel Corporation | ELECTRIC RESISTANT WELDED STEEL TUBE FOR A TUBE |
JP2020012169A (ja) * | 2018-07-19 | 2020-01-23 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
JP2020111771A (ja) * | 2019-01-09 | 2020-07-27 | 日本製鉄株式会社 | ラインパイプ用鋼板 |
JP2020537047A (ja) * | 2017-10-11 | 2020-12-17 | ポスコPosco | 低温変形時効衝撃特性に優れた厚鋼板及びその製造方法 |
JP2023000624A (ja) * | 2021-06-18 | 2023-01-04 | 日本製鉄株式会社 | 鋳片の連続鋳造方法 |
JP2024126142A (ja) * | 2023-03-07 | 2024-09-20 | Jfeスチール株式会社 | 非調質円形溶接鋼管およびその製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101893845B1 (ko) * | 2014-03-31 | 2018-08-31 | 제이에프이 스틸 가부시키가이샤 | 내변형 시효 특성 및 내hic 특성이 우수한 고변형능 라인 파이프용 강재 및 그 제조 방법 그리고 용접 강관 |
CN106498287B (zh) * | 2016-12-15 | 2018-11-06 | 武汉钢铁有限公司 | 一种ct90级连续管用热轧钢带及其生产方法 |
KR101899689B1 (ko) * | 2016-12-23 | 2018-09-17 | 주식회사 포스코 | 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관 |
KR102339890B1 (ko) * | 2017-09-08 | 2021-12-15 | 제이에프이 스틸 가부시키가이샤 | 강판 및 그 제조 방법 |
CN109536838B (zh) * | 2018-12-20 | 2020-12-01 | 张家港宏昌钢板有限公司 | 针状铁素体型耐低温n80级石油套管用钢及制备方法 |
WO2020196214A1 (ja) | 2019-03-28 | 2020-10-01 | Jfeスチール株式会社 | ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法 |
JP6693610B1 (ja) * | 2019-08-23 | 2020-05-13 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
CN110643884A (zh) * | 2019-10-10 | 2020-01-03 | 南京钢铁股份有限公司 | 一种一钢多级用管线钢坯料生产方法 |
CN111286672B (zh) * | 2020-03-25 | 2022-03-29 | 江苏省沙钢钢铁研究院有限公司 | 一种针状铁素体型x60级抗hic管线钢及其轧制方法 |
KR20250091955A (ko) | 2023-12-14 | 2025-06-23 | 주식회사 포스코 | 열연강판 및 그 제조방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543766B2 (ja) * | 1986-06-11 | 1993-07-02 | Nippon Kokan Kk | |
JPH08209241A (ja) * | 1995-02-02 | 1996-08-13 | Nippon Steel Corp | 耐co2 腐食性および低温靱性の優れたラインパイプ用鋼板の製造方法 |
JP2012017522A (ja) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2012241271A (ja) * | 2011-05-24 | 2012-12-10 | Jfe Steel Corp | 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法 |
JP2013133476A (ja) * | 2011-12-26 | 2013-07-08 | Jfe Steel Corp | 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5597425A (en) | 1979-01-19 | 1980-07-24 | Nippon Kokan Kk <Nkk> | Preparation of high-tensile steel with low yield ratio, low carbon and low alloy |
JPH01176027A (ja) | 1987-12-29 | 1989-07-12 | Nippon Steel Corp | 低降伏比高張力溶接構造用鋼板の製造方法 |
JP4089455B2 (ja) | 2002-02-07 | 2008-05-28 | Jfeスチール株式会社 | 耐hic特性に優れた高強度鋼材 |
JP3869747B2 (ja) | 2002-04-09 | 2007-01-17 | 新日本製鐵株式会社 | 変形性能に優れた高強度鋼板、高強度鋼管および製造方法 |
EP2853615B1 (en) | 2003-06-12 | 2017-12-27 | JFE Steel Corporation | Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same |
JP4412098B2 (ja) * | 2003-07-31 | 2010-02-10 | Jfeスチール株式会社 | 溶接熱影響部靭性に優れた低降伏比高強度鋼板及びその製造方法 |
JP4507746B2 (ja) | 2003-07-31 | 2010-07-21 | Jfeスチール株式会社 | 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法 |
JP4066905B2 (ja) * | 2003-07-31 | 2008-03-26 | Jfeスチール株式会社 | 溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法 |
JP4507747B2 (ja) | 2003-07-31 | 2010-07-21 | Jfeスチール株式会社 | 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法 |
JP4305216B2 (ja) | 2004-02-24 | 2009-07-29 | Jfeスチール株式会社 | 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法 |
JP5251092B2 (ja) | 2006-11-30 | 2013-07-31 | 新日鐵住金株式会社 | 低温靱性に優れた高強度ラインパイプ用溶接鋼管及びその製造方法 |
JP5251089B2 (ja) * | 2006-12-04 | 2013-07-31 | 新日鐵住金株式会社 | 低温靱性に優れた高強度厚肉ラインパイプ用溶接鋼管及びその製造方法 |
KR101257547B1 (ko) | 2007-07-23 | 2013-04-23 | 신닛테츠스미킨 카부시키카이샤 | 변형 특성이 우수한 강관 및 그 제조 방법 |
CN102549189B (zh) | 2009-09-30 | 2013-11-27 | 杰富意钢铁株式会社 | 具有低屈服比、高强度以及高韧性的钢板及其制造方法 |
RU2502820C1 (ru) * | 2009-09-30 | 2013-12-27 | ДжФЕ СТИЛ КОРПОРЕЙШН | Толстолистовая сталь, характеризующаяся низким соотношением между пределом текучести и пределом прочности, высокой прочностью и высоким равномерным относительным удлинением, и способ ее изготовления |
JP5532800B2 (ja) | 2009-09-30 | 2014-06-25 | Jfeスチール株式会社 | 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法 |
CN102639734A (zh) | 2009-11-25 | 2012-08-15 | 杰富意钢铁株式会社 | 高压缩强度和耐酸性优异的管线管用焊接钢管及其制造方法 |
JP5857400B2 (ja) | 2009-11-25 | 2016-02-10 | Jfeスチール株式会社 | 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法 |
JP5561120B2 (ja) | 2009-11-25 | 2014-07-30 | Jfeスチール株式会社 | 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法 |
JP5742123B2 (ja) * | 2010-07-16 | 2015-07-01 | Jfeスチール株式会社 | ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法 |
JP5782827B2 (ja) * | 2011-05-24 | 2015-09-24 | Jfeスチール株式会社 | 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法 |
JP6047947B2 (ja) * | 2011-06-30 | 2016-12-21 | Jfeスチール株式会社 | 耐サワー性に優れたラインパイプ用厚肉高強度継目無鋼管およびその製造方法 |
RU2496906C2 (ru) * | 2011-09-02 | 2013-10-27 | Открытое акционерное общество "ОМК-Сталь" (ОАО "ОМК-Сталь") | Низкоуглеродистая сталь и прокат из низкоуглеродистой стали повышенной стойкости к водородному растрескиванию и повышенной хладостойкости |
KR101664635B1 (ko) * | 2011-12-27 | 2016-10-10 | 제이에프이 스틸 가부시키가이샤 | 고장력 열연 강판 및 그 제조 방법 |
JP5516784B2 (ja) | 2012-03-29 | 2014-06-11 | Jfeスチール株式会社 | 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管 |
JP5516785B2 (ja) | 2012-03-29 | 2014-06-11 | Jfeスチール株式会社 | 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管 |
CN105102654B (zh) | 2013-03-29 | 2017-08-25 | 杰富意钢铁株式会社 | 厚壁钢管用钢板、其制造方法以及厚壁高强度钢管 |
JP6048615B2 (ja) * | 2014-03-31 | 2016-12-21 | Jfeスチール株式会社 | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 |
KR101893845B1 (ko) * | 2014-03-31 | 2018-08-31 | 제이에프이 스틸 가부시키가이샤 | 내변형 시효 특성 및 내hic 특성이 우수한 고변형능 라인 파이프용 강재 및 그 제조 방법 그리고 용접 강관 |
US10640843B2 (en) * | 2015-05-20 | 2020-05-05 | Nippon Steel Corporation | High strength electric resistance welded steel pipe and method for producing high strength electric resistance welded steel pipe |
-
2015
- 2015-03-26 KR KR1020167027218A patent/KR101893845B1/ko active Active
- 2015-03-26 CN CN201580017406.3A patent/CN106133175B/zh active Active
- 2015-03-26 WO PCT/JP2015/001726 patent/WO2015151469A1/ja active Application Filing
- 2015-03-26 EP EP15773521.8A patent/EP3128029B1/en active Active
- 2015-03-26 RU RU2016138675A patent/RU2653031C2/ru active
- 2015-03-26 US US15/300,980 patent/US10344362B2/en active Active
- 2015-03-26 JP JP2016511375A patent/JP6226062B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0543766B2 (ja) * | 1986-06-11 | 1993-07-02 | Nippon Kokan Kk | |
JPH08209241A (ja) * | 1995-02-02 | 1996-08-13 | Nippon Steel Corp | 耐co2 腐食性および低温靱性の優れたラインパイプ用鋼板の製造方法 |
JP2012017522A (ja) * | 2010-06-08 | 2012-01-26 | Sumitomo Metal Ind Ltd | ラインパイプ用鋼材 |
JP2012241271A (ja) * | 2011-05-24 | 2012-12-10 | Jfe Steel Corp | 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法 |
JP2013133476A (ja) * | 2011-12-26 | 2013-07-08 | Jfe Steel Corp | 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170022583A1 (en) * | 2014-03-31 | 2017-01-26 | Jfe Steel Corporation | Steel material for highly deformable line pipes having superior strain aging resistance and superior hic resistance, method for manufacturing same, and welded steel pipe |
US10465261B2 (en) * | 2014-03-31 | 2019-11-05 | Jfe Steel Corporation | Steel material for highly deformable line pipes having superior strain aging resistance and superior HIC resistance, method for manufacturing same, and welded steel pipe |
EP3385399A4 (en) * | 2015-12-04 | 2019-05-22 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | HEAT-TREATED STEEL PLATE WITH HIGH LIMIT LIMIT AND SUPPRESSIVE HARDNESS OF A WELD HEAT-RESISTANT ZONE AND SUPPRESSED DEGRADATION OF THE TEMPERATURE TEMPERATURE TREATMENT OF THE WELD HEAT-RESISTANT ZONE |
EP3375900A4 (en) * | 2016-03-22 | 2019-07-17 | Nippon Steel Corporation | ELECTRIC RESISTANT WELDED STEEL TUBE FOR A TUBE |
CN105886915A (zh) * | 2016-05-12 | 2016-08-24 | 宝鸡石油钢管有限责任公司 | 一种抗h2s腐蚀的空芯钢制连续抽油杆 |
WO2017206321A1 (zh) * | 2016-06-03 | 2017-12-07 | 深圳市樊溪电子有限公司 | 一种低合金钢、钢管及其制造方法 |
JP7022822B2 (ja) | 2017-10-11 | 2022-02-18 | ポスコ | 低温変形時効衝撃特性に優れた厚鋼板及びその製造方法 |
JP2020537047A (ja) * | 2017-10-11 | 2020-12-17 | ポスコPosco | 低温変形時効衝撃特性に優れた厚鋼板及びその製造方法 |
JP2020012169A (ja) * | 2018-07-19 | 2020-01-23 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
JP7155703B2 (ja) | 2018-07-19 | 2022-10-19 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
JP2020111771A (ja) * | 2019-01-09 | 2020-07-27 | 日本製鉄株式会社 | ラインパイプ用鋼板 |
JP7163777B2 (ja) | 2019-01-09 | 2022-11-01 | 日本製鉄株式会社 | ラインパイプ用鋼板 |
JP2023000624A (ja) * | 2021-06-18 | 2023-01-04 | 日本製鉄株式会社 | 鋳片の連続鋳造方法 |
JP7709020B2 (ja) | 2021-06-18 | 2025-07-16 | 日本製鉄株式会社 | 鋳片の連続鋳造方法 |
JP2024126142A (ja) * | 2023-03-07 | 2024-09-20 | Jfeスチール株式会社 | 非調質円形溶接鋼管およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106133175A (zh) | 2016-11-16 |
EP3128029B1 (en) | 2020-05-27 |
RU2016138675A (ru) | 2018-04-02 |
US10344362B2 (en) | 2019-07-09 |
EP3128029A1 (en) | 2017-02-08 |
KR101893845B1 (ko) | 2018-08-31 |
US20170022590A1 (en) | 2017-01-26 |
JPWO2015151469A1 (ja) | 2017-04-13 |
KR20160129875A (ko) | 2016-11-09 |
RU2016138675A3 (ja) | 2018-04-02 |
RU2653031C2 (ru) | 2018-05-04 |
EP3128029A4 (en) | 2017-09-20 |
JP6226062B2 (ja) | 2017-11-08 |
CN106133175B (zh) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6226062B2 (ja) | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 | |
JP6521197B2 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 | |
EP3276026B1 (en) | Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe | |
JP6048615B2 (ja) | 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管 | |
JP6825748B2 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 | |
WO2018181564A1 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 | |
JP6241434B2 (ja) | ラインパイプ用鋼板、ラインパイプ用鋼管、およびその製造方法 | |
JP6665822B2 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 | |
JP5786351B2 (ja) | 耐コラプス性能の優れたラインパイプ用鋼管 | |
WO2020067210A1 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 | |
JPWO2019064459A1 (ja) | 耐サワーラインパイプ用高強度鋼板およびその製造方法並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15773521 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016511375 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015773521 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015773521 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016138675 Country of ref document: RU Kind code of ref document: A Ref document number: 20167027218 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15300980 Country of ref document: US |