WO2014077257A1 - レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池 - Google Patents
レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池 Download PDFInfo
- Publication number
- WO2014077257A1 WO2014077257A1 PCT/JP2013/080609 JP2013080609W WO2014077257A1 WO 2014077257 A1 WO2014077257 A1 WO 2014077257A1 JP 2013080609 W JP2013080609 W JP 2013080609W WO 2014077257 A1 WO2014077257 A1 WO 2014077257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion exchange
- microporous membrane
- exchange resin
- redox flow
- diaphragm
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1053—Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/10—Fuel cells in stationary systems, e.g. emergency power source in plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a diaphragm for a redox flow secondary battery and a redox flow secondary battery using the same.
- the redox flow secondary battery stores and discharges electricity, and belongs to a large stationary battery used for leveling the amount of electricity used.
- a redox flow secondary battery separates an electrolyte solution (positive electrode cell) containing a positive electrode and a positive electrode active material and a negative electrode electrolyte solution (negative electrode cell) containing a negative electrode and a negative electrode active material with a diaphragm, and oxidizes both active materials. Charging and discharging is performed using a reduction reaction, and an electrolytic solution containing the both active materials is circulated from the storage tank to the electrolytic layer to be used.
- the active material contained in the electrolytic solution for example, iron-chromium-based, chromium-bromine-based, zinc-bromine-based, vanadium-based utilizing a difference in charge, or the like is used.
- vanadium batteries have advantages such as high electromotive force, fast electrode reaction of vanadium ions, a small amount of hydrogen generation as a side reaction, and high output, they are being developed in earnest.
- the diaphragm is devised so as not to mix the electrolyte containing the active material of both electrodes.
- cited document 1 discloses an example of a zinc-bromine redox flow battery having a diaphragm formed of a polyethylene-based porous membrane and a cation exchange membrane in order to improve current efficiency.
- a substrate formed of a polymer containing hydrophilic fine particles and a highly dispersed state in a pore portion of the substrate.
- a locally supported zinc-bromine battery separator is disclosed.
- JP 59-214173 A Japanese Patent Laid-Open No. 4-312764
- the diaphragms disclosed in Cited Document 1 and Cited Document 2 have room for improvement in that the electrical resistance increases after the cycle test and the current efficiency decreases.
- the present invention is a redox flow secondary battery diaphragm capable of maintaining low electrical resistance and high current efficiency even after a cycle test while ensuring sufficient mechanical properties, and a redox flow secondary battery using the same. The purpose is to provide.
- the present inventors have included a microporous membrane having a specific structure, and further having an ion exchange resin layer, thereby increasing electrical resistance and current efficiency after a cycle test.
- the inventors have found that a membrane for a redox flow secondary battery in which a decrease is suppressed and a redox flow secondary battery using the same can be achieved, and the present invention has been completed.
- An electrolytic cell including a positive electrode cell chamber, a negative electrode cell chamber, and a diaphragm that separates and separates the positive electrode cell chamber and the negative electrode cell chamber;
- the diaphragm has a microporous membrane and an ion exchange resin layer in contact with the microporous membrane, and the air resistance per 200 ⁇ m thickness of the diaphragm is 10,000 seconds / 100 cc or more,
- the microporous membrane contains a polyolefin resin or vinylidene fluoride resin and an inorganic filler,
- the redox flow secondary battery in which the smoothness of at least the surface in contact with the ion exchange resin layer in the microporous membrane is 16000 seconds or less.
- X 1 , X 2 and X 3 each independently represents one or more selected from the group consisting of a halogen atom and a perfluoroalkyl group having 1 to 3 carbon atoms.
- X 4 Represents COOZ, SO 3 Z, PO 3 Z 2 or PO 3 HZ, where Z is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or an amine (NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ), R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of an alkyl group and an arene group.
- R 1 and R 2 are each independently a halogen atom
- a perfluoroalkyl group having 1 to 10 carbon atoms and 1 or more selected from the group consisting of fluorochloroalkyl groups, a and g are numbers satisfying 0 ⁇ a ⁇ 1, 0 ⁇ g ⁇ 1, and a + g 1, b is an integer of 0 to 8 C represents 0 or 1.
- d, e and f each independently represent an integer of 0 to 6 (provided that d, e and f are not 0 at the same time).
- the ion exchange resin layer includes any one of [1] to [4], including a perfluorocarbon sulfonic acid resin (PFSA resin) having a structure represented by the following formula (2) as a fluorine-based polymer electrolyte polymer.
- PFSA resin perfluorocarbon sulfonic acid resin
- Redox flow secondary battery -[CF 2 CF 2 ] a- [CF 2 -CF ((-O- (CF 2 ) m -X 4 )] g- (2)
- the ion exchange resin layer contains a fluorine-based polymer electrolyte polymer having an equivalent mass EW (dry mass in grams per equivalent of ion exchange groups) of 300 to 1300 g / eq,
- EW dry mass in grams per equivalent of ion exchange groups
- the redox flow secondary battery according to any one of [1] to [3], wherein an equilibrium moisture content in the ion exchange resin layer is 5 to 80% by mass.
- a microporous membrane comprising a polyolefin resin or vinylidene fluoride resin and an inorganic filler; An ion exchange resin layer in contact with the microporous membrane; Have The air resistance per 200 ⁇ m thickness is 10,000 seconds / 100 cc or more, A diaphragm for a redox flow secondary battery in which the smoothness of at least the surface in contact with the ion exchange resin layer in the microporous membrane is 16000 seconds or less. [8] The diaphragm for redox flow secondary batteries according to [7], wherein the microporous membrane has a tensile elastic modulus of 200 N / cm or less.
- the ion exchange resin layer includes an ion exchange resin composition mainly composed of a fluorine-based polymer electrolyte polymer having a structure represented by the following formula (1), according to [7] or [8].
- Separator for secondary battery -[CF 2 CX 1 X 2 ] a- [CF 2 -CF ((-O-CF 2 -CF (CF 2 X 3 )) b -O c- (CFR 1 ) d- (CFR 2 ) e- ( CF 2 ) f ⁇ X 4 )] g ⁇ (1)
- X 1 , X 2 and X 3 each independently represents one or more selected from the group consisting of a halogen atom and a perfluoroalkyl group having 1 to 3 carbon atoms.
- X 4 Represents COOZ, SO 3 Z, PO 3 Z 2 or PO 3 HZ, where Z is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or an amine (NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ), R 1 , R 2 , R 3 and R 4 are each independently selected from the group consisting of an alkyl group and an arene group.
- R 1 and R 2 are each independently a halogen atom
- a perfluoroalkyl group having 1 to 10 carbon atoms and 1 or more selected from the group consisting of fluorochloroalkyl groups, a and g are numbers satisfying 0 ⁇ a ⁇ 1, 0 ⁇ g ⁇ 1, and a + g 1, b is an integer of 0 to 8 C represents 0 or 1.
- d, e and f each independently represent an integer of 0 to 6 (provided that d, e and f are not 0 at the same time).
- PFSA resin perfluorocarbon sulfonic acid resin
- the ion exchange resin layer contains a fluorine-based polymer electrolyte polymer having an equivalent mass EW (dry mass in grams per equivalent of ion exchange groups) of 300 to 1300,
- EW dry mass in grams per equivalent of ion exchange groups
- the membrane for a redox flow secondary battery of the present invention can maintain low electrical resistance and high current efficiency over a long period of time while ensuring sufficient mechanical properties.
- FIG. 1 shows an example of a schematic diagram of a redox flow secondary battery in the present embodiment.
- FIG. 2 shows a schematic diagram (cross section) of a test piece used for peel strength measurement.
- the redox flow secondary battery in this embodiment includes an electrolytic cell including a positive electrode cell chamber, a negative electrode cell chamber, and a diaphragm that separates and separates the positive electrode cell chamber and the negative electrode cell chamber.
- the diaphragm includes a microporous membrane and an ion exchange resin layer in contact with the microporous membrane, and the air permeability per 200 ⁇ m in thickness of the diaphragm. The resistance is 10,000 seconds / 100 cc or more.
- the said microporous film contains polyolefin resin or vinylidene fluoride resin, and an inorganic filler.
- the smoothness of at least the surface in contact with the ion exchange resin layer in the microporous membrane is 16000 seconds or less. Since it is comprised as mentioned above, the redox flow secondary battery in this embodiment can maintain low electrical resistance and high current efficiency over a long period of time while ensuring sufficient mechanical characteristics. Hereinafter, such an effect is also simply referred to as “desired effect of the present embodiment”.
- FIG. 1 shows an example of a schematic diagram of a redox flow secondary battery in the present embodiment.
- the redox flow secondary battery 10 in this embodiment includes a positive electrode cell chamber 2 including a positive electrode 1 made of a carbon electrode, a negative electrode cell chamber 4 including a negative electrode 3 made of a carbon electrode, a positive electrode cell chamber 2, and a negative electrode cell chamber 4.
- the positive electrode cell chamber 2 contains a positive electrode electrolyte containing an active material
- the negative electrode cell chamber 4 contains a negative electrode electrolyte containing an active material.
- the positive electrode electrolyte and the negative electrode electrolyte containing the active material are stored, for example, by the positive electrode electrolyte tank 7 and the negative electrode electrolyte tank 8, and are supplied to each cell chamber by a pump or the like.
- the current generated by the Redox flow secondary battery may be converted from direct current to alternating current via the AC / DC converter 9.
- the redox flow secondary battery according to the present embodiment has a liquid-permeable porous collector electrode (for negative electrode and positive electrode) arranged on both sides of the diaphragm, sandwiched by pressing, and partitioned by the diaphragm. Is a positive electrode cell chamber and the other is a negative electrode cell chamber, and the thickness of both cell chambers is secured by a spacer.
- the redox flow secondary battery in the present embodiment is a vanadium redox flow secondary battery (vanadium redox flow) using an electrolyte containing vanadium as a positive electrode electrolyte and a negative electrode electrolyte from the viewpoint of securing a higher electromotive force. Secondary battery).
- a positive electrode electrolyte composed of a sulfuric acid electrolyte containing tetravalent vanadium (V 4+ ) and pentavalent vanadium (V 5+ ) is provided in the positive electrode cell chamber, and 3
- the battery is charged and discharged by circulating a negative electrode electrolyte containing valent vanadium (V 3+ ) and divalent vanadium (V 2+ ).
- V 4+ is oxidized to V 5+ in the positive electrode cell chamber because the vanadium ions emit electrons
- V 3+ is reduced to V 2+ by the electrons returning through the outer path.
- the redox flow secondary battery of this embodiment preferably has a current efficiency of 90% or more, more preferably 94% or more, and still more preferably 97% or more. The current efficiency can be measured by the method shown in the examples described later.
- the diaphragm for a redox flow secondary battery in the present embodiment has a microporous membrane and an ion exchange resin layer. More specifically, the diaphragm for the redox flow secondary battery in the present embodiment comprises a microporous film containing a polyolefin resin or vinylidene fluoride resin and an inorganic filler, and an ion exchange resin layer in contact with the microporous film.
- the redox flow secondary battery membrane according to the present embodiment has an air permeability resistance of 200 000 sec / 100 cc or more per 200 ⁇ m thickness, and the smoothness of at least the surface in contact with the ion exchange resin layer in the microporous membrane.
- the membrane for redox flow secondary batteries in this embodiment can provide the desired effect of this embodiment to the redox flow secondary battery in this embodiment.
- “mainly” means that the corresponding component is contained in the resin composition in an amount of preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass. That means.
- the microporous film in the present embodiment includes a polyolefin resin or a vinylidene fluoride resin. Moreover, the microporous film in this embodiment contains an inorganic filler.
- the polyolefin resin in the present embodiment is classified into homopolymers and copolymers such as high-density polyethylene, low-density polyethylene, and linear low-density polyethylene in terms of mechanical strength, moldability, and cost of the obtained microporous film.
- Polyethylene resin, polypropylene resin, and a mixture thereof are preferable.
- the polyethylene resin preferably has a density of 0.9 g / cm 3 or more, more preferably a density of 0.93 g / cm, from the viewpoint of increasing the mechanical strength of the resulting microporous membrane. It is preferable to use a polyethylene resin of cm 3 or more. From the viewpoint of improving moldability, it is preferable to use a polyethylene resin having a density of 0.99 g / cm 3 or less, more preferably a polyethylene resin having a density of 0.98 g / cm 3 or less.
- polypropylene resin examples include, but are not limited to, propylene homopolymer, ethylene-propylene random copolymer, ethylene-propylene block copolymer, and the like.
- the ethylene content in the polypropylene resin is preferably 1 mol% or less, and more preferably a propylene homopolymer.
- the polyolefin resin preferably contains ultra high molecular weight polyethylene having an intrinsic viscosity of 7 dl / g or more.
- the proportion of the ultrahigh molecular weight polyethylene in the polyolefin resin is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more from the viewpoint of further improving mechanical strength.
- the upper limit of the ratio is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less.
- the ultra high molecular weight polyethylene polyethylene polymerized by a two-stage polymerization method can also be used as the ultra high molecular weight polyethylene.
- the ultra high molecular weight polyethylene a method of mixing with other polyolefin constituting the polyolefin resin is general.
- the said intrinsic viscosity can be calculated
- the intrinsic viscosity [ ⁇ ] of the polyolefin resin is preferably 1 dl / g or more, more preferably 2 dl / g or more, further preferably 3 dl / g or more, from the viewpoint of increasing the mechanical strength of the microporous membrane. Yes, particularly preferably 3.5 dl / g or more.
- the intrinsic viscosity [ ⁇ ] of the polyolefin resin is preferably 15 dl / g or less, more preferably 12 dl / g or less, and still more preferably 11 dl / g or less. Especially preferably, it is 10 dl / g or less, Most preferably, it is 9 dl / g or less.
- the vinylidene fluoride resin in the present embodiment is preferably a vinylidene fluoride homopolymer, a copolymer with another monomer copolymerizable with vinylidene fluoride, or a mixture thereof.
- the monomer copolymerizable with vinylidene fluoride include, but are not limited to, for example, one or two types such as ethylene tetrafluoride, hexafluoropropylene, ethylene trifluoride, ethylene trifluoride chloride, and vinyl fluoride The above can be used.
- the vinylidene fluoride-based resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit, and a vinylidene fluoride homopolymer is most preferable from the viewpoint of increasing mechanical strength.
- the weight average molecular weight (Mw) of the vinylidene fluoride resin is preferably 50,000 or more, more preferably 100,000 or more, and further preferably 200,000 from the viewpoint of mechanical strength. From the viewpoint of workability, it is preferably 1.5 million or less, more preferably 1 million or less, and still more preferably 800,000 or less.
- the above Mw is, for example, using a GPC (gel permeation chromatography) apparatus “GPC-900” manufactured by JASCO Corporation, “shodex KD-806M” manufactured by Showa Denko Co., Ltd. as a column, and “shodex KD-G” manufactured as a precolumn.
- GPC gel permeation chromatography
- NMP N-methyl-2-pyrrolidone
- measurement can be performed under the conditions of a temperature of 40 ° C. and a flow rate of 10 ml / min.
- the microporous film contains an inorganic filler.
- the microporous membrane of this embodiment can increase the affinity with the ion exchange resin layer by including an inorganic filler.
- the smoothness value of the microporous membrane described later can be reduced.
- an inorganic filler a metal oxide is preferable.
- metal oxide examples include, but are not limited to, oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide; silicon nitride, titanium nitride, and nitride Nitride ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite , Ceramics such as asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; glass fiber; and the like. These may be used alone or in combination.
- oxide ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria,
- the inorganic filler of the present embodiment is preferably a hydrophilic inorganic filler from the viewpoint of increasing the affinity with the redox flow battery electrolyte. Especially, it is preferable to use silicon oxide (silica) as a main component from a viewpoint of implement
- the proportion of the inorganic filler in the microporous membrane in the present embodiment is preferably 10% by mass or more, more preferably 15% by mass or more, from the viewpoint of reducing the value of the smoothness of the microporous membrane described later. More preferably, it is 20 mass% or more, Most preferably, it is 25 mass% or more.
- the proportion is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 75% by mass or less, and particularly preferably 70% by mass or less.
- additives such as an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a colorant, a flame retardant, etc., as necessary, do not impair the purpose of this embodiment. It may be included in the range.
- the porosity of the microporous membrane is preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. In addition, from the viewpoint of preventing an excessive decrease in mechanical strength, it is preferably 95% or less, more preferably 90% or less, and still more preferably 85% or less.
- the porosity can be determined by the method described in Examples described later.
- the air resistance of the microporous membrane is preferably 5000 seconds / 100 cc or less, more preferably 3000 seconds / 100 cc or less, and further preferably 2000 seconds / 100 cc or less, from the viewpoint of improving voltage efficiency.
- the lower limit is not particularly limited from the viewpoint of improving the performance of the diaphragm, and may be, for example, 1 second / 100 cc.
- the said air permeability resistance can be calculated
- the tensile elastic modulus of the microporous membrane is preferably 200 N / cm or less. Furthermore, the tensile elastic modulus is 200 N / cm or less both in the mechanical direction of the film (hereinafter sometimes abbreviated as MD) and in the direction perpendicular to MD (hereinafter sometimes abbreviated as TD). More preferably.
- the said tensile elasticity modulus can be calculated
- the present inventors have found that when the tensile elastic modulus of the microporous membrane is 200 N / cm or less, it is preferable in terms of dramatically improving the durability of the diaphragm. The reason for this is not clear, but is presumed as follows. In other words, the fact that the tensile elastic modulus is not more than a predetermined value means that the stiffness of the membrane becomes soft, and this is an improvement in adhesion between the microporous membrane and the ion exchange resin layer and durability due to dimensional stability. It is estimated that it has led to improvement.
- the tensile elastic modulus is more preferably 180 N / cm or less, further preferably 150 N / cm or less, and particularly preferably 130 N / cm or less.
- the lower limit of the tensile elastic modulus is preferably 10 N / cm or more, more preferably 20 N / cm or more, still more preferably 30 N / cm or more, and particularly preferably 50 N / cm from the viewpoint of handling during battery assembly. cm or more. From the viewpoint of more effectively achieving the above-described effects, it is preferable to mainly use a polyolefin resin as the resin for forming the microporous film.
- the method for adjusting the tensile elastic modulus to a desired value is not limited to the following, for example, a method for adjusting the crystallinity and molecular weight of a resin used as a raw material, a method for adjusting the porosity of a microporous membrane, and the like. Is mentioned.
- the tensile strength at break of the microporous membrane is preferably 2.5 MPa or more, more preferably 3 MPa or more, from the viewpoint of withstanding the pressure during electrolyte flow and the differential pressure between the positive electrode electrolyte and the negative electrode electrolyte. Preferably it is 3.5 MPa or more.
- the upper limit of this tensile breaking strength is not specifically limited, For example, 50 MPa may be sufficient.
- the tensile rupture strength can be determined by the method described in Examples described later.
- the tensile elongation at break of the microporous membrane is preferably 50% or more, more preferably 100% or more, from the viewpoint of withstanding the pressure during electrolyte flow and the differential pressure between the positive electrode electrolyte and the negative electrode electrolyte. More preferably, it is 150% or more.
- the upper limit of this tensile breaking elongation is not specifically limited, For example, 1000% may be sufficient.
- the tensile elongation at break can be determined by the method described in Examples described later.
- the smoothness of at least the surface of the microporous membrane in this embodiment that contacts the ion exchange resin layer is 16000 seconds or less.
- the smoothness is an index representing the degree of unevenness on the surface of the film-like composition.
- the present inventors have found that setting the smoothness of the microporous membrane to 16000 seconds or less leads to a dramatic improvement in the durability of the diaphragm. The reason for this is not clear, but is presumed as follows. That is, reducing the smoothness to a predetermined value or less means increasing the degree of unevenness on the surface of the microporous membrane.
- the smoothness is preferably 12000 seconds or less, more preferably 10,000 seconds or less, and even more preferably 8000 seconds or less.
- the minimum of smoothness is 1 second or more, More preferably, it is 100 seconds or more.
- the method for adjusting the smoothness to a desired value is not limited to the following.
- a method for adjusting the blending amount of the inorganic filler while containing an inorganic filler as a raw material for the microporous membrane, a microporous membrane And a method of adjusting the molecular weight of the resin used as the raw material, and a method of stretching in at least one direction in the course of producing the microporous membrane is not limited to the following. For example, a method for adjusting the blending amount of the inorganic filler while containing an inorganic filler as a raw material for the microporous membrane, a microporous membrane And a method of adjusting the molecular weight of the resin used as the raw material, and a method of stretching in at least one direction in the course of producing the microporous membrane.
- the electrical resistance of the microporous film is preferably at most 0.2 ⁇ ⁇ cm 2 / sheet, more preferably 0.1 ⁇ ⁇ cm 2 / sheet or less, more preferably is a 0.06 ⁇ ⁇ cm 2 / sheet or less, particularly preferably 0.02 ohm ⁇ cm 2 / sheet or less.
- the lower limit of this electrical resistance is not particularly limited, and may be, for example, 0 ⁇ ⁇ 100 cm 2 / sheet.
- the electrical resistance can be determined by the method described in the examples described later.
- the method for adjusting the parameter is not limited to the following, and examples thereof include a method for adjusting the ratio of the resin and the inorganic filler. Moreover, when manufacturing a microporous film with the manufacturing method mentioned later, the method of adjusting the ratio of resin, an inorganic filler, and a plasticizer can be mentioned.
- the thickness of the microporous membrane in the present embodiment is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, still more preferably 100 ⁇ m or more, and particularly preferably 150 ⁇ m or more.
- the thickness is preferably 600 ⁇ m or less, more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
- the said thickness (film thickness) can be calculated
- the microporous membrane of the present embodiment can be produced, for example, by the steps shown below.
- a raw material mixture of a resin, a plasticizer, and, if necessary, the inorganic filler is prepared.
- the resin used as a raw material may be one type of resin or a composition composed of two or more types of resins.
- a polyolefin resin or a vinylidene fluoride resin can be used alone, or a mixture of a polyolefin resin and a vinylidene fluoride resin can also be used.
- the ratio of the resin in the raw material mixture is preferably 5% by mass or more, more preferably 10% by mass or more, with respect to the total mass of the raw material mixture from the viewpoint of ensuring high mechanical strength.
- the ratio is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass or less, with respect to the total mass of the raw material mixture. It is particularly preferably 30% by mass or less.
- the proportion of the inorganic filler in the raw material mixture is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total mass of the raw material mixture, from the viewpoint of improving the adhesion with the ion exchange resin membrane. Yes, more preferably 15% by mass or more, particularly preferably 20% by mass or more.
- the ratio is preferably 60% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass with respect to the total mass of the raw material mixture. % Or less, and particularly preferably 30% by mass or less.
- the plasticizer is preferably a liquid at the time of melt molding and is inert.
- plasticizers include, but are not limited to, diethyl phthalate (DEP), dibutyl phthalate (DBP), dioctyl phthalate (DnOP), and bis (2-ethyl-xyl) phthalate (DOP).
- organic substances such as phthalic acid esters or phosphoric acid esters and liquid paraffin. Of these, DBP, DnOP, DOP and a mixture thereof are preferable in order to obtain high ion permeability.
- the proportion of the plasticizer in the raw material mixture is preferably 30% by mass or more, more preferably 35% by mass or more, based on the total mass of the raw material mixture from the viewpoint of ensuring high ion permeability. Preferably it is 40 mass% or more, Most preferably, it is 45 mass% or more. On the other hand, from the viewpoint of ensuring high moldability and mechanical strength, the ratio is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass with respect to the total mass of the raw material mixture. It is not more than mass%, particularly preferably not more than 65 mass%, and very preferably not more than 60 mass%.
- a normal mixing method using a compounding machine such as a Henschel mixer, a V-blender, a pro shear mixer, or a ribbon blender is sufficient.
- the raw material mixture obtained in the above step is kneaded by a melt kneader such as an extruder or a kneader, and formed into a sheet by melt molding using a T die or the like.
- the plasticizer is solvent-extracted from the sheet-like molded body and dried to obtain a microporous film that becomes a base film.
- the solvent used for the extraction of the plasticizer is not limited to the following.
- an organic solvent such as methanol, ethanol, methyl ethyl ketone, and acetone
- a halogenated hydrocarbon solvent such as methylene chloride
- the sheet-like molded body can be stretched before, after, or both of extracting the plasticizer, as long as the advantages of the present embodiment are not impaired.
- stretching By extending
- the post treatment include, but are not limited to, a hydrophilic treatment with a surfactant or the like, a crosslinking treatment with ionizing radiation, and the like.
- the ion exchange resin layer in the present embodiment is in contact with the microporous membrane in the present embodiment.
- the above “contact” includes not only a direct contact mode but also an indirect contact mode via an intervening layer such as an adhesive layer.
- the ion exchange resin layer in the present embodiment is not particularly limited, but is preferably formed from an ion exchange resin composition. It does not specifically limit as said ion exchange resin composition, A cation exchange resin and an anion exchange resin can be mentioned.
- the cation exchange resin is not limited to the following, and for example, a fluorine-based cation exchange resin having an ion-exchangeable acidic group such as COOH or SO 3 H can be used.
- anion exchange resin examples include, but are not limited to, for example, a polysulfone type hydrocarbon anion exchange resin, a styrene anion exchange resin having a pyridinium group, or the above styrene anion exchange resin together with divinylbenzene.
- Known materials such as a polymerized cross-linked anion exchange resin can be used.
- the ion exchange resin layer in the present embodiment is preferably mainly composed of a polymer electrolyte polymer having a structure represented by the following formula (1).
- the fluorinated cation exchange resin mainly composed of the polymer electrolyte polymer By using the fluorinated cation exchange resin mainly composed of the polymer electrolyte polymer, the desired effect of this embodiment tends to become more prominent.
- X 1 , X 2 and X 3 each independently represent one or more selected from the group consisting of a halogen atom and a perfluoroalkyl group having 1 to 3 carbon atoms.
- X 4 represents COOZ, SO 3 Z, PO 3 Z 2 or PO 3 HZ.
- Z is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or an amine (NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ).
- R 1 , R 2 , R 3 and R 4 each independently represent one or more selected from the group consisting of an alkyl group and an aryl group.
- R 1 and R 2 each independently represents one or more selected from the group consisting of a halogen atom, a perfluoroalkyl group having 1 to 10 carbon atoms and a fluorochloroalkyl group.
- b represents an integer of 0 to 8.
- c represents 0 or 1;
- d, e and f each independently represent an integer of 0 to 6 (provided that d, e and f are not 0 at the same time).
- X 1 , X 2 and X 3 each independently represent one or more selected from the group consisting of a halogen atom and a perfluoroalkyl group having 1 to 3 carbon atoms.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- X 1 , X 2 and X 3 are preferably a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms from the viewpoint of chemical stability of the polymer.
- X 4 represents COOZ, SO 3 Z, PO 3 Z 2 or PO 3 HZ.
- X 4 is also referred to as an ion exchange group.
- Z is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or an amine (NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ).
- NH 4 , NH 3 R 1 , NH 2 R 1 R 2 , NHR 1 R 2 R 3 , NR 1 R 2 R 3 R 4 ).
- it does not specifically limit as an alkali metal atom, A lithium atom, a sodium atom, a potassium atom, etc. are mentioned.
- alkaline-earth metal atom A calcium atom, a magnesium atom, etc. are mentioned.
- R 1 , R 2 , R 3 and R 4 each independently represent one or more selected from the group consisting of an alkyl group and an aryl group.
- X 4 is PO 3 Z 2
- Z may be the same or different.
- X 4 is preferably SO 3 Z from the viewpoint of chemical stability of the polymer.
- R 1 and R 2 each independently represents one or more selected from the group consisting of a halogen atom, a perfluoroalkyl group having 1 to 10 carbon atoms and a fluorochloroalkyl group.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- b represents an integer of 0 to 8.
- c represents 0 or 1;
- d, e and f each independently represent an integer of 0 to 6. However, d, e, and f are not 0 at the same time.
- a perfluorocarbon sulfonic acid resin (hereinafter sometimes abbreviated as PFSA resin) is used as the fluoropolymer electrolyte polymer. It is preferable to contain.
- the PFSA resin in this embodiment is a resin in which a main chain composed of a tetrafluoroethylene skeleton chain, perfluorocarbon as a side chain, and one or more sulfonic acid groups are bonded to each side chain.
- the sulfonic acid group may be partially in the form of a salt depending on the case.
- the PFSA resin in this embodiment is It is preferably composed of a repeating unit represented by — (CF 2 —CF 2 ) — and a repeating unit represented by the following formula (3), the following formula (4) or the following formula (4 ′).
- CF 2 CF—O— (CF 2 CFXO) n — [A] (3)
- X represents F or a perfluoroalkyl group having 1 to 3 carbon atoms, and n represents an integer of 0 to 5.
- [A] is (CF 2 ) m -W (m is Represents an integer of 0 to 6. However, n and m are not simultaneously 0. W represents SO 3 H.);
- CF 2 CF-O- (CF 2) P -CF (-O- (CF 2) K -W) ... (4), CF 2 ⁇ CF—O— (CF 2 ) P —CF (— (CF 2 ) L —O— (CF 2 ) m —W) (4 ′)
- P represents an integer of 0 to 5
- k represents an integer of 1 to 5
- L represents an integer of 1 to 5
- m represents an integer of 0 to 6. Show. However, k and L may be the same or different, and P, K, and L are not 0 at the same time.
- the PFSA resin includes a repeating unit represented by — (CF 2 —CF 2 ) — and — (CF 2 —CF (—O— (CF 2 CFXO) n — (CF 2 ) m —SO 3 H)) — It is more preferable that it is a copolymer containing the repeating unit represented by these.
- X represents F or CF 3
- n represents an integer of 0 to 5
- m represents an integer of 0 to 12.
- n and m are not 0 at the same time.
- the PFSA resin is a copolymer having the above structure and has an equivalent mass EW of 300 to 1500
- the resulting ion exchange resin layer has sufficient hydrophilicity and is a radical species generated by oxidative degradation. Tend to be more resistant.
- n in the repeating unit represented by — (CF 2 —CF (—O— (CF 2 CFXO) n — (CF 2 ) m —SO 3 H)) — in the PFSA resin is 0, Is an integer of 1 to 6, or CF 2 ⁇ CF—O— (CF 2 ) P —CF (—O— (CF 2 ) K —W) and CF 2 ⁇ CF represented by the formula (4)
- the equivalent mass EW is lowered, and the resulting ion exchange resin layer It tends to be highly hydrophilic.
- the ion exchange resin layer in the present embodiment tends to make the desired effect of the present embodiment more prominent, it is a perfluorocarbon sulfonic acid having a structure represented by the following formula (2) as a fluorine-based polymer electrolyte polymer.
- a resin PFSA
- PFSA perfluorocarbon sulfonic acid
- the fluorine-based polymer electrolyte polymer in the present embodiment can be obtained, for example, by producing a polymer electrolyte polymer precursor (hereinafter also referred to as “resin precursor”) and then hydrolyzing it.
- a polymer electrolyte polymer precursor hereinafter also referred to as “resin precursor”
- a PFSA resin precursor composed of a copolymer of a fluorinated vinyl ether compound represented by the following formula (5) and a fluorinated olefin monomer represented by the following general formula (6) is hydrolyzed.
- PFSA resin precursor composed of a copolymer of a fluorinated vinyl ether compound represented by the following formula (5) and a fluorinated olefin monomer represented by the following general formula (6) is hydrolyzed.
- CF 2 CF—O— (CF 2 CFXO) n — [A] (5)
- X represents F or a perfluoroalkyl group having 1 to 3 carbon atoms
- n represents an integer of 0 to 5
- p is an integer from 0 to 12
- m is an integer from 0 to 6 (where n and m are not 0 at the same time)
- k is an integer from 1 to 5
- L represents an integer of 1 to 5 (provided that n and L or K do not simultaneously become 0)
- W represents a functional group that can be converted to SO 3 H by hydrolysis.
- CF 2 CFZ (6)
- Z represents H, Cl, F, a perfluoroalkyl group having 1 to 3 carbon atoms, or a cyclic perfluoroalkyl group which may contain oxygen.
- the W shown a functional group capable of conversion to SO 3 H by hydrolysis in the above formula (5) is not particularly limited, SO 2 F, SO 2 Cl , SO 2 Br are preferred.
- the precursor of the fluorine-based polymer electrolyte polymer in the present embodiment can be synthesized by a known means.
- a polymerization solvent such as a fluorine-containing hydrocarbon
- TFE tetrafluoroethylene
- Polymerization by filling and dissolving a gas of fluorinated olefin solution polymerization
- Polymerization using a vinyl fluoride compound itself as a polymerization solvent without using a solvent such as fluorine-containing hydrocarbon bulk polymerization
- Polymerization by emulsifying a surfactant solution as a medium and filling and reacting a vinyl fluoride compound and a fluorinated olefin gas emulsion polymerization
- in an aqueous solution of a surfactant and an auxiliary emulsifier such as alcohol.
- emulsion polymerization A method of polymerizing by emulsifying and reacting with a vinyl fluoride compound and a fluoroolefin gas (emulsion polymerization); and suspension stabilization A method of polymerization by reacting filled suspending fluoride vinyl compound and the fluorinated olefin gas (suspension polymerization), and the like to an aqueous solution of.
- any precursor produced by any of the above-described polymerization methods can be used.
- polymerization conditions such as the supply amount of TFE gas, may be sufficient.
- the fluorine-based polyelectrolyte polymer precursor can be prepared by removing impurities generated in the resin molecular structure during the polymerization reaction or a portion (CO group, H bond portion, etc.) that is structurally susceptible to oxidation by a known method. It may be treated under and the part may be fluorinated.
- the molecular weight of the resin precursor can be evaluated by a melt flow index (MFI) value measured according to ASTM: D1238 for the resin precursor. That is, the MFI of the resin precursor is preferably 0.05 to 50 (g / 10 minutes) under the measurement conditions of a temperature of 270 ° C. and a load of 2160 g. A more preferable range of MFI of the precursor resin is 0.1 to 30 (g / 10 minutes), and a further preferable range is 0.5 to 20 (g / 10 minutes).
- MFI melt flow index
- Fluoropolymer electrolyte polymer resin precursor is extruded with a nozzle or die using an extruder and then subjected to hydrolysis treatment or as a product produced by polymerization, that is, dispersed liquid, or precipitated, filtered After making it into the made powdery thing, a hydrolysis process is performed.
- the shape of the resin precursor is not particularly limited, but from the viewpoint of increasing the treatment speed in the hydrolysis treatment and acid treatment described later, it is in the form of pellets of 0.5 cm 3 or less, or in the form of dispersed liquid or powder particles. Among them, it is preferable to use a powdery product after polymerization. From the viewpoint of cost, an extruded film-like resin precursor may be used.
- the resin precursor obtained as described above and molded as necessary is subsequently immersed in a basic reaction solution and hydrolyzed.
- the basic reaction solution used for the hydrolysis treatment is not limited to the following, but, for example, an aqueous solution of an amine compound such as dimethylamine, diethylamine, monomethylamine, monoethylamine, or an alkali metal or alkaline earth metal
- An aqueous solution of hydroxide is preferable, and an aqueous solution of sodium hydroxide and potassium hydroxide is particularly preferable.
- an alkali metal or alkaline earth metal hydroxide is used, its content is not particularly limited, but it is preferably 10 to 30% by mass with respect to the entire reaction solution.
- the reaction solution further contains a swellable organic compound such as methyl alcohol, ethyl alcohol, acetone and DMSO.
- a swellable organic compound such as methyl alcohol, ethyl alcohol, acetone and DMSO.
- the content of the swellable organic compound is preferably 1 to 30% by mass with respect to the entire reaction solution.
- the resin precursor is hydrolyzed in the basic reaction liquid, sufficiently washed with warm water, and then acid-treated.
- the acid used for the acid treatment is not limited to the following, but for example, mineral acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as oxalic acid, acetic acid, formic acid and trifluoroacetic acid are preferred. And a mixture thereof is more preferable.
- the said acids may be used independently or may use 2 or more types together.
- the basic reaction solution used in the hydrolysis treatment may be removed in advance before the acid treatment, for example, by treatment with a cation exchange resin.
- the resin precursor is protonated to generate ion exchange groups.
- W of the PFSA resin precursor is protonated by acid treatment and becomes SO 3 H.
- the fluorine-based polymer electrolyte polymer obtained by the hydrolysis and acid treatment can be dispersed or dissolved in a protic organic solvent, water, or a mixed solvent of both.
- the equivalent mass EW (dry mass gram of the fluorine-based polymer electrolyte polymer per equivalent of ion-exchange groups) of the fluorine-based polymer electrolyte polymer in the present embodiment is preferably adjusted to 300 to 1300 (g / eq). . That is, it is preferable that the ion exchange resin layer in this embodiment includes a fluorine-based polymer electrolyte polymer having an equivalent mass EW (dry mass in grams per equivalent of ion exchange groups) of 300 to 1300 g / eq.
- the equivalent mass EW of the fluoropolymer electrolyte polymer in the present embodiment is more preferably 350 to 1000 (g / eq), still more preferably 400 to 900 (g / eq), and particularly preferably 450 to 750 (g / eq). ).
- the equivalent mass EW of the fluorine-based polymer electrolyte polymer By adjusting the equivalent mass EW of the fluorine-based polymer electrolyte polymer to the above range, it is possible to impart excellent hydrophilicity to the ion exchange resin composition containing the same, and the ion exchange resin layer containing the resin composition is It tends to exhibit low electrical resistance and high hydrophilicity, high oxidation resistance (hydroxyl radical resistance), low electrical resistance, and good ion selective permeability.
- the equivalent mass EW of the fluorine-based polymer electrolyte polymer is preferably 300 or more from the viewpoint of hydrophilicity and water resistance of the film, and is preferably 1300 or less from the viewpoint of hydrophilicity and electric resistance of the film.
- EW of the fluoropolymer electrolyte polymer is close to the above lower limit value, a partial cross-linking reaction may be performed directly or indirectly between some molecules of the ion exchange groups on the side chains of the membrane.
- the resin may be modified to control solubility and excessive swelling.
- Examples of the partial crosslinking reaction include, but are not limited to, for example, a reaction between an ion exchange group and a functional group or main chain of another molecule, a reaction between ion exchange groups, an oxidation-resistant low molecular compound, an oligomer, or a high molecular weight compound.
- Examples thereof include a crosslinking reaction (covalent bond) via a molecular substance and the like, and in some cases, it may be a reaction with a salt (including an ionic bond with a SO 3 H group) forming substance.
- Examples of the oxidation-resistant low molecular weight compound, oligomer or polymer substance include, but are not limited to, polyhydric alcohols and organic diamines.
- the water resistance of the membrane can be improved even if the EW of the fluoropolymer electrolyte polymer is about 280. That is, the water solubility should be reduced (water resistance improved) without sacrificing the amount of ion exchange groups evaluated by EW. Also, when the fluorine-based polyelectrolyte polymer is in a low melt flow region (polymer region) and there are many intermolecular entanglements, it is water-soluble without sacrificing the amount of ion-exchange groups as in the case of partial crosslinking reaction. It can be said that it is only necessary to decrease the property. Moreover, the functional group (for example, SO 2 F group) before hydrolysis of the fluorine-based polymer electrolyte polymer is partially imidized (including alkylimidation) partially (including intermolecular). Also good.
- SO 2 F group for example, SO 2 F group
- the equivalent mass EW of the fluorine-based polymer electrolyte polymer can be measured by subjecting the fluorine-based polymer electrolyte polymer to salt substitution and back titrating the solution with an alkaline solution. Further, the equivalent mass EW of the fluorine-based polymer electrolyte polymer can be adjusted by the copolymerization ratio of the fluorine-based monomer, the selection of the monomer type, and the like.
- the content of the fluorine-based polymer electrolyte polymer contained in the ion exchange resin composition forming the ion exchange resin layer in the present embodiment is preferably 33.3 to 100% by mass, more preferably 40 to 100% by mass. More preferably, it is 50 to 99.5% by mass.
- the fluorine-based polymer electrolyte polymer is a partial salt with an alkali metal, alkaline earth metal, or other radical-degradable transition metal (Ce compound, Mn compound, etc.) (total ion exchange group equivalent of 0.01 to 5). May be used alone or in combination with a basic polymer.
- fluorine-based resins other than PFSA resins resins containing carboxylic acid, phosphoric acid, etc. and other known fluorine-based resins
- PFSA resins resins containing carboxylic acid, phosphoric acid, etc. and other known fluorine-based resins
- these resins may be mixed in a solvent or dispersed in a medium, or resin precursors may be extruded and mixed.
- the equilibrium water content of the ion exchange resin layer is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 15% by mass or more. Moreover, as an upper limit, it is 80 mass% or less, More preferably, it is 50 mass% or less, More preferably, it is 40 mass% or less. That is, in this embodiment, the equilibrium water content in the ion exchange resin layer is preferably 5 to 80% by mass. When the equilibrium water content of the ion exchange resin layer is 5% by mass or more, the electric resistance, current efficiency, oxidation resistance, and ion selective permeability of the membrane tend to be good.
- the equilibrium moisture content of the ion-exchange resin layer is determined based on a film obtained by forming a resin composition from a dispersion of water and an alcohol solvent and drying at 160 ° C. or lower at 23 ° C. and 50% relative humidity (RH). Is expressed by the equilibrium water absorption (Wc).
- the equilibrium water content of the ion exchange resin layer can be adjusted by the same method as that for EW described above.
- the method for forming the ion exchange resin layer in the present embodiment is not limited to the following.
- ion exchange resin membrane an ion exchange resin composition
- Formation method a In the formation method a), a microporous membrane and an ion exchange resin membrane are laminated. In the diaphragm of the present embodiment, the microporous membrane and the ion exchange resin membrane may be laminated and then physically or chemically bonded.
- the production method (film formation method) of the ion exchange resin film is not particularly limited, and a known extrusion method or cast film formation can be used.
- the ion exchange resin membrane may be a single layer or a multilayer (2 to 5 layers). In the case of a multilayer, the performance of the ion exchange resin membrane is improved by laminating films having different properties (for example, resins having different EW and functional groups). Can be improved. In the case of a multilayer, it may be laminated at the time of extrusion film formation or casting, or the obtained respective films may be laminated.
- the ion exchange resin film formed by the above method is sufficiently washed with water, or treated with a dilute aqueous acidic solution such as hydrochloric acid, nitric acid, sulfuric acid or the like as necessary before washing with water to remove impurities. It is preferable. Further, the ion exchange resin film after removing impurities is heat-treated in air (preferably in an inert gas) at 130 to 200 ° C., preferably 140 to 180 ° C., more preferably 150 to 170 ° C. for 1 to 30 minutes. It is preferable. The heat treatment time is more preferably 2 to 20 minutes, further preferably 3 to 15 minutes, and particularly preferably 5 to 10 minutes.
- the water resistance of the ion exchange resin membrane and the saturated water absorption rate of water tend to be stabilized.
- One of the reasons why the above-mentioned effect is produced by the heat treatment is considered to be because the polymer forming the ion exchange resin film generates a stable cluster that is difficult to swell. That is, it is considered that the above-mentioned heat treatment sufficiently entangles between the particles derived from the raw material (between primary particles and secondary particles) and between molecules.
- the ion exchange resin membrane in this embodiment may have a reinforcing material.
- the reinforcing material is not particularly limited, and examples thereof include a general nonwoven fabric, a woven fabric, and a porous film made of various materials.
- the porous membrane is not particularly limited as long as it has a good affinity with the fluorine-based polymer electrolyte polymer. Among them, a polytetrafluoroethylene (PTFE) -based membrane that has been stretched and made porous is used, and fluorine is added thereto.
- PTFE polytetrafluoroethylene
- a reinforcing membrane in which an ion exchange resin composition mainly composed of a polyelectrolyte polymer is embedded substantially without gaps is more preferable from the viewpoint of the strength of the thin film and the suppression of dimensional changes in the plane (longitudinal and lateral) directions.
- the reinforcing membrane is obtained by immersing an appropriate amount of a dispersion of an appropriate concentration of a solute having the above components in an organic solvent or alcohol-water containing the above ion exchange resin composition in a porous membrane, It can be obtained by drying.
- the solvent used for producing the reinforcing membrane is not particularly limited, but a solvent having a boiling point of 250 ° C. or lower is preferable, a solvent having a boiling point of 200 ° C. or lower is more preferable, and a boiling point of 120 ° C. or lower is more preferable. It is a solvent. Of these, water and aliphatic alcohols are preferable, and specific examples include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol.
- the said solvent may be used by a single solvent, or may use 2 or more types together.
- the breaking strength of the ion exchange resin membrane of this embodiment is preferably 200 kgf / cm 2 or more, more preferably 300 kgf / cm 2 or more.
- the breaking strength of the ion exchange resin membrane can be measured using a precision universal testing machine AGS-1KNG manufactured by Shimadzu Corporation based on JIS K7113. At this time, the sample is left to stand for 12 hours or more in a thermostatic chamber at 23 ° C. and 65% RH, and then cut into a width of 5 mm and a length of 50 mm for use in measurement. The measurement is performed on three samples, and the average value can be obtained as the breaking strength of the ion exchange resin membrane.
- Lamination method of microporous membrane and ion exchange resin membrane As a method of laminating the microporous membrane and the ion exchange resin membrane, for example, a method of arranging the ion exchange resin membrane on the surface of the microporous membrane can be mentioned. At this point, the microporous membrane and the ion exchange resin membrane need not be bonded. That is, in the assembly of battery cells, current collector electrodes are arranged on both sides of the laminated membrane, and when pressed, the microporous membrane and the ion exchange resin membrane are brought into close contact with each other. Because it acts as. Further, the microporous membrane and the ion exchange resin membrane may be physically or chemically bonded. Examples of such a method include a method in which a microporous membrane and an ion exchange resin membrane are bonded by pressure bonding.
- Examples of the crimping method include, but are not limited to, a method of pressurizing and pressurizing using a heated press, a method of thermocompression bonding through a heated roll, and the like.
- the temperature of the press machine or roll during the pressure bonding is preferably not higher than the melting point of the microporous membrane in that it can suppress a decrease in proton permeability caused by clogging the pores of the microporous membrane by melting the resin.
- the pressure (surface pressure) of the pressing machine or roll during the pressure bonding is preferably 15 MPa or less, more preferably 10 MPa or less, and still more preferably 5 MPa or less from the viewpoint of not blocking the pores of the microporous membrane.
- the mode of laminating the microporous membrane and the ion exchange resin membrane is not particularly limited, but as a specific example, an embodiment composed of one microporous membrane and one ion exchange resin membrane, ions on both sides of one microporous membrane An embodiment in which an exchange resin membrane is present, an embodiment in which microporous membranes are present on both sides of one ion exchange resin membrane, and the like.
- Formation method b For example, Nafion (registered trademark) DE2020, DE2021, DE520, DE521, DE521, DE1020, and DE1021 manufactured by Du Pont can be used as the dispersion of the ion exchange resin used in the forming method b). Also, ionomer solutions SS900 / 10 and SS1100 / 5 manufactured by Asahi Kasei E-Materials Co., Ltd. can be used.
- the solvent for the dispersion is not particularly limited, but for example, a solvent having a boiling point of 250 ° C. or lower is preferable, a solvent having a boiling point of 200 ° C. or lower is more preferable, and a solvent having a boiling point of 120 ° C. or lower is more preferable.
- water and aliphatic alcohols are preferable, and specific examples include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol.
- the said solvent may be used by a single solvent, or may use 2 or more types together. Of these, a mixed solvent of ethanol and water is preferable.
- the blending ratio is preferably 20% by mass or more, more preferably 30% by mass or more, and still more preferably 40% by mass from the viewpoint of strengthening the ion exchange resin layer. It is preferable to include the above.
- the application method is not limited to the following, for example, gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade Examples include a coater method, a rod coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method.
- the ion exchange resin dispersion may be applied only to one side of the microporous membrane as the base material, or may be applied to both sides.
- the microporous film serving as the substrate may be subjected to a surface treatment.
- the subsequent impregnation of the polymer electrolyte can be suitably performed.
- Examples of such surface treatment include corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment.
- the surface of the microporous membrane is previously wetted with the solvent used in the dispersion, or the dispersion is diluted with the above solvent.
- a solution of a basic polymer or the like may be applied to the substrate in advance.
- the coating quality of the ion exchange resin dispersion is improved.
- the peeling strength of the obtained ion exchange resin layer improves.
- the peel strength is preferably larger than 10 g from the viewpoint of durability, more preferably 30 g or more, still more preferably 60 g or more, and particularly preferably 100 g or more.
- the upper limit of peeling strength is not specifically limited, For example, 400 g or less may be sufficient.
- the said peeling strength can be measured by the method as described in the Example mentioned later.
- the diaphragm according to the present embodiment combines a microporous membrane and an ion exchange resin layer to improve the strength of the membrane and further suppress dimensional changes in the surface (vertical and horizontal) directions when immersed in an electrolytic solution. It becomes possible.
- the dimensional change in the surface direction of the ion exchange resin layer is preferably 20% or less, more preferably 15% or less. When the dimensional change in the surface direction of the ion exchange resin layer is 20% or less, the stress applied to the diaphragm when the battery cell is assembled tends to be small and the durability tends to be improved, which is preferable. About the said dimension change, it can measure directly, for example with a stainless steel ruler.
- the length of sides in the MD direction and TD direction of the measurement sample (30 mm ⁇ 40 mm) can be measured, and the dimensions at 23 ° C. and 50% RH can be used as a reference. Further, the sample can be left in the water at about 30 ° C. for about 1 hr to swell and then taken out from the water, and the dimensions of the sample at this time can be measured and compared to determine the dimensional change.
- the air permeation resistance per 200 ⁇ m thickness of the diaphragm in this embodiment is 10,000 seconds / 100 cc or more, preferably 50,000 seconds / 100 cc or more, more preferably 100,000 seconds / 100 cc or more.
- the air resistance can be measured by the method described in Examples described later.
- the diaphragm in this embodiment has excellent ion selective permeability when the air resistance is in the above range.
- the film thickness of the diaphragm in the present embodiment is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, and further preferably 100 ⁇ m or more, from the viewpoint of suppressing permeation of metal ions as an active material and the mechanical strength.
- the film thickness of the said diaphragm can be calculated
- the film thickness is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 400 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
- the diaphragm in the present embodiment is preferable in that the electrolyte membrane is disposed on the positive electrode side of the redox flow secondary battery in that oxidation resistance deterioration is suppressed and durability tends to be improved.
- the diaphragm in this embodiment has excellent ion selective permeability, low electrical resistance, excellent durability (mainly, hydroxyl radical oxidation resistance), and excellent performance as a diaphragm for redox flow secondary batteries. Demonstrate.
- Microporous membrane thickness ( ⁇ m) The film thickness of the microporous film was measured at an ambient temperature of 23 ⁇ 2 ° C. using a micro thickness gauge (type KBN, terminal diameter ⁇ 5 mm, measurement pressure 62.47 kPa) manufactured by Toyo Seiki.
- Air permeability resistance (sec / 100cc)
- the air resistance of the microporous membrane and the diaphragm was measured using a Gurley type air resistance meter (G-B2 (registered trademark) manufactured by Toyo Seiki Co.) according to JIS P-8117.
- G-B2 registered trademark
- the measurement is performed by superposing these membranes on the above air resistance meter. It was. More specifically, the inner cylinder mass was 567 g, and the time required for 100 mL of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured.
- the air resistance was evaluated as “100,000 or more”.
- composition ratio of the inorganic filler contained in the microporous membrane was calculated using a thermogravimetric analyzer TG / DTA220 (registered trademark) manufactured by Seiko Denshi Kogyo Co., Ltd. . Specifically, about 10 mg of the sample was measured using the weight initially measured under an air stream and the weight measured after being left at 550 ° C. for 60 minutes, and the difference between these weights was used as the mass of the inorganic filler. The composition ratio was calculated.
- Intrinsic viscosity [ ⁇ ] of raw material polyolefin and microporous membrane The intrinsic viscosity [ ⁇ ] of the raw material polyolefin and microporous membrane was obtained by determining the intrinsic viscosity [ ⁇ ] at 135 ° C. in a decalin solvent based on ASTM D4020. The intrinsic viscosity as a microporous membrane was measured as described above for a sample obtained by the method shown below. The microporous membrane was immersed in alcohol and air was sufficiently extracted. Then, it was immersed in a 20% aqueous solution of caustic soda at 80 ° C for one day and night, washed with warm water at 60 ° C, and then washed with running water for one day.
- the membrane was dried for one day in a dryer set at 40 ° C. to obtain a sample.
- the obtained sample was obtained by using a thermogravimetric analyzer TG / DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd., and a weight measured after leaving about 10 mg of a dried sample in an air flow at 60 ° C. for 60 minutes.
- the composition was calculated from the above, and it was confirmed that the amount of the remaining inorganic filler was 1% by mass or less.
- a fluororubber having a thickness of 1 mm was attached to the inside of the chuck of the tensile tester.
- the tensile elongation at break (%) was determined by dividing the amount of elongation (mm) up to fracture by the distance between chucks (50 mm) and multiplying by 100.
- the tensile strength at break (MPa) was determined by dividing the strength at break by the cross-sectional area of the sample before the test.
- the tensile elastic modulus (N / cm) is evaluated by an inclination between 1 to 4% in elongation, and the elastic modulus (N / cm 2 ) obtained from the inclination is multiplied by the film thickness of the microporous film before the test, The elastic modulus per 1 cm width was determined. The measurement was performed at a temperature of 23 ⁇ 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min.
- a 15 cm long mending tape (Scotch (registered trademark) manufactured by Sumitomo 3M Co., Ltd., trade name: 810-3-102, width: 12 mm) is arranged as shown in FIG. 2, and the mending tape (E) is a diaphragm.
- a test piece was prepared by pressing and pasting several times so as to adhere to the test surface (D) of the sample.
- the test piece is attached to a tensile tester (AG-A (trademark) manufactured by Shimadzu Corporation), the mending tape side is moved at a test speed of 100 mm / min in the tensile mode, and the peel strength at a peel distance of 25 mm to 50 mm is measured. The average value was measured.
- the positive electrode cell chamber contains a positive electrode electrolyte composed of a sulfuric acid electrolyte containing tetravalent vanadium (V 4+ ) and pentavalent vanadium (V 5+ ), and the negative electrode cell chamber contains trivalent vanadium (V 3+ ) and divalent vanadium (
- the negative electrode electrolyte containing V 2+ was circulated to charge and discharge the battery. The charge / discharge experiment was performed using the battery obtained as described above.
- aqueous electrolyte solution with a total vanadium concentration of 2 mol / L and a total sulfate radical concentration of 4 mol / L is used, and the thickness of the installed positive and negative electrode cell chambers is 5 mm, respectively, between the porous electrodes and the diaphragm.
- the charge / discharge experiment was conducted at a current density of 80 mA / cm 2 .
- the cell electrical resistivity was determined by measuring the DC resistance value at an AC voltage of 10 mV and a frequency of 20 kHz at the start of discharge using the AC impedance method, and multiplying this by the electrode area. Further, the current efficiency was obtained as follows. That is, charging and discharging were performed at a current density of 80 mA / cm 2 . This was defined as one cycle, and after 5 cycles, the average value of 2 to 4 cycles was defined as the current efficiency.
- ion exchange resin dispersion A An ionomer solution SS1100 / 5 (EW1100 (g / eq), hereinafter simply referred to as “ion exchange resin dispersion A”) manufactured by Asahi Kasei E-Materials Co., Ltd. is a carrier sheet by a known ordinary method. The film was obtained by casting on a polyimide film, applying hot air at 120 ° C. (20 minutes), almost completely removing the solvent, and drying. This was further heat-treated in a hot air atmosphere at 160 ° C. for 10 minutes to obtain an ion exchange resin film having a thickness of 17 ⁇ m. The obtained membrane was designated as an ion exchange resin membrane A.
- the equilibrium moisture content of the obtained membrane was 8% by mass, and the maximum moisture content of the ion exchange resin membrane A in 3 hours at 25 ° C. in water was 17% by mass. The maximum value observed during the measurement of the equilibrium moisture content was taken as the maximum moisture content.
- the TFE gas is continuously supplied to keep the pressure of the autoclave at 0.7 MPa, which corresponds to 0.70 times in mass ratio with respect to the supplied TFE.
- An amount of CF 2 ⁇ CFO (CF 2 ) 2 —SO 2 F was continuously supplied to perform polymerization, and the polymerization conditions were adjusted to an optimum range to obtain a perfluorocarbon sulfonic acid resin precursor powder.
- the MFI of the obtained PFSA resin precursor powder A1 was 1.5 (g / 10 min).
- PFSA resin precursor powder was dissolved in an aqueous solution in which potassium hydroxide (15% by mass) and methyl alcohol (50% by mass) were dissolved at 80 ° C. For 20 hours to perform hydrolysis treatment. Then, it was immersed in 60 degreeC water for 5 hours. Next, the treatment of immersing in a 2N aqueous hydrochloric acid solution at 60 ° C. for 1 hour was repeated 5 times by updating the aqueous hydrochloric acid solution every time, and then washed with ion-exchanged water and dried. Thus, having a sulfonic acid group (SO 3 H), was obtained PFSA resin A1 having the structure represented by formula (1). The EW of the obtained PFSA resin A1 was 720 (g / eq).
- a microporous membrane A was produced by the following method. High-density polyethylene 10 having [ ⁇ ] of 11.5 dl / g and density of 0.94 g / cm 3 and ultrahigh molecular weight polyethylene of 10% by mass, [ ⁇ ] of 2.8 dl / g and density of 0.96 g / cm 3 25% by mass of a hydrophilic wet silica fine powder having a dispersion average particle size of 2.00 ⁇ m and 55% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed by a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 200 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane A thus obtained.
- the ultrahigh molecular weight polyethylene and the high density polyethylene are simply expressed as “polyethylene” in Table 1.
- a microporous membrane B was produced by the following method. [ ⁇ ] is 11.5 dl / g, density is 0.94 g / cm 3 ultrahigh molecular weight polyethylene 6.6% by mass, [ ⁇ ] is 2.8 dl / g, density is 0.96 g / cm 3 high density 26.4% by mass of polyethylene, 22% by mass of hydrophilic wet silica fine powder having a dispersion average particle size of 2.00 ⁇ m, and 45% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed with a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a thickness of 100 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane B thus obtained.
- the microporous membrane A was produced by roll stretching at a roll temperature of 150 ° C. so that the total longitudinal stretching ratio was 2 times.
- Table 1 shows the physical properties of the microporous membrane C thus obtained.
- a microporous membrane D was produced by the following method. [ ⁇ ] is 11.5 dl / g, density is 0.94 g / cm 3 ultrahigh molecular weight polyethylene 4.5% by mass, [ ⁇ ] is 2.8 dl / g, density is 0.96 g / cm 3 40.5% by mass of polyethylene, 10% by mass of hydrophilic wet silica fine powder having a dispersion average particle size of 2.00 ⁇ m, and 45% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed with a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 200 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane D thus obtained.
- a microporous membrane F was produced by the following method. High-density polyethylene 15 with [ ⁇ ] of 11.5 dl / g and density of 0.94 g / cm 3 and ultrahigh molecular weight polyethylene of 8% by mass, [ ⁇ ] of 2.8 dl / g and density of 0.96 g / cm 3 25% by mass of a hydrophilic wet silica fine powder having a dispersion average particle diameter of 2.00 ⁇ m and 52% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed by a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 400 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane F thus obtained.
- a microporous membrane G was produced by the following method. [ ⁇ ] is 11.5 dl / g, density is 0.94 g / cm 3 ultrahigh molecular weight polyethylene 16% by mass, [ ⁇ ] is 2.8 dl / g, density is 0.96 g / cm 3 high density polyethylene 16 25% by mass of hydrophilic silica fine particles having a dispersion average particle diameter of 2.00 ⁇ m and 43% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed with a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the gear pump pressure kept constant via a gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 300 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane G thus obtained.
- a microporous membrane H was produced by the following method. High-density polyethylene 10 having [ ⁇ ] of 11.5 dl / g and density of 0.94 g / cm 3 and ultrahigh molecular weight polyethylene of 10% by mass, [ ⁇ ] of 2.8 dl / g and density of 0.96 g / cm 3 A supermixer was mixed with 25% by mass of a hydrophilic silica fine powder having a dispersion average particle diameter of 2.00 ⁇ m and 55% by mass of bis (2-ethyl-xyl) phthalate (DOP).
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the gear pump pressure kept constant via a gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 200 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous film H thus obtained.
- a microporous membrane I was produced by the following method. [ ⁇ ] is 11.5 dl / g, density is 0.94 g / cm 3 ultrahigh molecular weight polyethylene 16% by mass, [ ⁇ ] is 2.8 dl / g, density is 0.96 g / cm 3 high density polyethylene 16 25% by mass of hydrophilic silica fine particles having a dispersion average particle diameter of 2.00 ⁇ m and 43% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed with a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the gear pump pressure kept constant via a gear pump.
- the resin mixture extruded from the T die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 335 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane I thus obtained.
- a microporous membrane J was produced by the following method. High-density polyethylene 22 with [ ⁇ ] of 11.5 dl / g and density of 0.94 g / cm 3 and ultrahigh molecular weight polyethylene of 22% by mass, [ ⁇ ] of 2.8 dl / g and density of 0.96 g / cm 3 25% by mass of hydrophilic silica fine particles having a dispersion average particle diameter of 2.00 ⁇ m and 31% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed with a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the gear pump pressure kept constant via a gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 305 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane J thus obtained.
- a microporous membrane K was produced by the following method.
- High-density polyethylene 10 having [ ⁇ ] of 11.5 dl / g and density of 0.94 g / cm 3 and ultrahigh molecular weight polyethylene of 10% by mass, [ ⁇ ] of 2.8 dl / g and density of 0.96 g / cm 3 25% by mass of a hydrophilic wet silica fine powder having a dispersion average particle size of 2.00 ⁇ m and 55% by mass of bis (2-ethyl-xyl) phthalate (DOP) were mixed by a super mixer.
- DOP bis (2-ethyl-xyl) phthalate
- a 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 220 ° C.
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a thickness of 100 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and then dried.
- Table 1 shows the physical properties of the microporous membrane K thus obtained.
- [Microporous membrane production example 12] [ ⁇ ] is 320,000 (catalog value), a polyvinylidene fluoride resin manufactured by Solvay Solexis Co., Ltd., 35% by mass of SOLEF® 6010, and 23% by mass of hydrophilic wet silica fine powder having a dispersion average particle size of 2.00 ⁇ m. Then, 29% by mass of bis (2-ethyl-xyl) phthalate (DOP) and 13% by mass of dibutyl phthalate were mixed with a super mixer. A 450 mm wide T die was attached to a 30 mm ⁇ twin screw extruder, and this mixture was molded and extruded at a T die discharge resin temperature of 250 ° C.
- DOP bis (2-ethyl-xyl) phthalate
- melt extrusion was performed with the pressure before the gear pump kept constant via the gear pump.
- the resin mixture extruded from the T-die was roll-formed with a calender roll whose temperature was adjusted to 140 ° C. to form a sheet having a film thickness of 200 ⁇ m.
- the molded sheet was immersed in methylene chloride for 1 hour to extract bis (2-ethyl-xyl) phthalate (DOP) and dibutyl phthalate and then dried.
- Table 1 shows the physical properties of the microporous membrane L thus obtained.
- SOLEF (registered trademark) 6010 is simply represented as “PVDF” in Table 1.
- Example 1 On one side of the microporous membrane A, the ion exchange resin dispersion A was applied using a gravure coater and dried at 60 degrees. The obtained film was fixed to a metal frame and subjected to heat treatment at 80 degrees for 12 hours to obtain a diaphragm.
- the air permeability resistance per 200 ⁇ m thickness of the obtained diaphragm (hereinafter simply referred to as “air resistance”, also indicated in Table 2) was 100,000 seconds / 100 cc or more.
- Example 2 A microporous membrane A and an ion exchange resin membrane B were pressed using a vacuum press machine at 120 ° C. and a surface pressure of 7 MPa to obtain a diaphragm.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 3 An ion exchange resin membrane B was superposed on the surface of the microporous membrane A, and used as a diaphragm of a vanadium redox flow secondary battery in which the ion exchange membrane side was arranged on the positive electrode side.
- the microporous membrane A and the ion exchange resin membrane B functioned as a diaphragm because they were brought into close contact with each other by pressing applied to the liquid-permeable porous electrode in the redox flow secondary battery.
- Table 2 it is described that the microporous membrane A and the ion exchange resin membrane B are combined by “bonding” as described above (the same applies hereinafter).
- Example 4 A hydrocarbon-based anion exchange membrane Neoceptor AMX (thickness 150 ⁇ m, hereinafter also referred to as ion exchange membrane C) manufactured by Tokuyama Corporation was superposed on the surface of the microporous membrane A, and the ion exchange membrane side was disposed on the positive electrode side. Used as a diaphragm of a vanadium redox flow secondary battery. The microporous membrane A and the ion exchange membrane C functioned as a diaphragm because they were brought into close contact with each other by pressing applied to the liquid-permeable porous electrode in the redox flow secondary battery.
- Example 5 A diaphragm was obtained in the same manner as in Example 2, except that the microporous membrane B was used instead of the microporous membrane A in Example 2.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 6 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane B was used instead of the microporous membrane A in Example 3.
- Example 7 A membrane was obtained in the same manner as in Example 4 except that the microporous membrane B was used instead of the microporous membrane A in Example 4.
- Example 8 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane C was used instead of the microporous membrane A in Example 3.
- Example 9 A diaphragm was obtained in the same manner as in Example 4 except that the microporous membrane C was used instead of the microporous membrane A in Example 4.
- Example 10 A membrane was obtained in the same manner as in Example 2 except that the microporous membrane F was used instead of the microporous membrane A in Example 2.
- Example 11 A diaphragm was obtained in the same manner as in Example 3, except that the microporous membrane F was used instead of the microporous membrane A in Example 3.
- Example 12 The ion exchange resin membrane A was superposed on the surface of the microporous membrane A and used as a diaphragm of a vanadium redox flow secondary battery in which the ion exchange membrane side was arranged on the positive electrode side. Since the microporous membrane A and the ion exchange resin membrane A are in close contact with each other by the pressure applied to the liquid permeable porous electrode in the vanadium redox flow secondary battery in which the ion exchange membrane side is disposed on the positive electrode side, It worked.
- Example 13 A diaphragm was obtained in the same manner as in Example 1 except that the microporous membrane B was used instead of the microporous membrane A in Example 1.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 14 A membrane was obtained in the same manner as in Example 12 except that the microporous membrane B was used instead of the microporous membrane A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 15 A membrane was obtained in the same manner as in Example 1 except that the microporous membrane G was used instead of the microporous membrane A in Example 1.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 16 A membrane was obtained in the same manner as in Example 12 except that the microporous membrane G was used instead of the microporous membrane A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 17 A membrane was obtained in the same manner as in Example 3 except that the microporous membrane G was used instead of the microporous membrane A in Example 3.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 18 A membrane was obtained in the same manner as in Example 2 except that the microporous membrane G was used instead of the microporous membrane A in Example 2.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 19 A diaphragm was obtained in the same manner as in Example 4 except that the microporous membrane G was used instead of the microporous membrane A in Example 4.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 20 A diaphragm was obtained in the same manner as in Example 1 except that the microporous membrane H was used instead of the microporous membrane A in Example 1.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 21 A diaphragm was obtained in the same manner as in Example 12 except that the microporous membrane H was used instead of the microporous membrane A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 22 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane H was used instead of the microporous membrane A in Example 3.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 23 A membrane was obtained in the same manner as in Example 2 except that the microporous membrane H was used instead of the microporous membrane A in Example 2.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 24 A diaphragm was obtained in the same manner as in Example 4 except that the microporous membrane H was used instead of the microporous membrane A in Example 4.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 25 A membrane was obtained in the same manner as in Example 1 except that the microporous membrane I was used instead of the microporous membrane A of Example 1.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 26 A membrane was obtained in the same manner as in Example 12 except that the microporous membrane I was used instead of the microporous membrane A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 27 A diaphragm was obtained in the same manner as in Example 3, except that the microporous membrane I was used instead of the microporous membrane A in Example 3.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 28 A membrane was obtained in the same manner as in Example 2 except that the microporous membrane I was used instead of the microporous membrane A in Example 2.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 29 A diaphragm was obtained in the same manner as in Example 4 except that the microporous membrane I was used instead of the microporous membrane A in Example 4.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 30 A diaphragm was obtained in the same manner as in Example 1 except that the microporous membrane J was used instead of the microporous membrane A in Example 1.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 31 A diaphragm was obtained in the same manner as in Example 12 except that the microporous film J was used instead of the microporous film A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 32 A membrane was obtained in the same manner as in Example 3 except that the microporous membrane J was used instead of the microporous membrane A in Example 3.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 33 A diaphragm was obtained in the same manner as in Example 2 except that the microporous membrane J was used instead of the microporous membrane A in Example 2.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 34 A membrane was obtained in the same manner as in Example 4 except that the microporous membrane J was used instead of the microporous membrane A in Example 4.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 35 A membrane was obtained in the same manner as in Example 2 except that the microporous membrane K was used instead of the microporous membrane A in Example 2.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 36 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane L was used instead of the microporous membrane A in Example 3.
- the air permeability resistance of the diaphragm was 100,000 or more.
- Example 1 A membrane was obtained in the same manner as in Example 1 except that the microporous membrane D was used instead of the microporous membrane A of Example 1.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 2 A diaphragm was obtained in the same manner as in Example 2 except that the microporous membrane D was used instead of the microporous membrane A in Example 2.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 3 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane D was used instead of the microporous membrane A in Example 3.
- Example 4 A membrane was obtained in the same manner as in Example 4 except that the microporous membrane D was used instead of the microporous membrane A in Example 4.
- Example 5 A membrane was obtained in the same manner as in Example 1 except that the microporous membrane E was used instead of the microporous membrane A in Example 1.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 6 A diaphragm was obtained in the same manner as in Example 2 except that the microporous membrane E was used instead of the microporous membrane A in Example 2.
- the air permeability resistance of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- Example 7 A diaphragm was obtained in the same manner as in Example 3 except that the microporous membrane E was used instead of the microporous membrane A in Example 3.
- Example 8 A diaphragm was obtained in the same manner as in Example 4 except that the microporous membrane E was used instead of the microporous membrane A in Example 4.
- Example 10 A membrane was obtained in the same manner as in Example 12 except that the microporous membrane D was used instead of the microporous membrane A in Example 12.
- the air permeability of the obtained diaphragm was 100,000 seconds / 100 cc or more.
- the diaphragm of the present invention has excellent selective ion permeability, low electrical resistance, excellent durability (mainly hydroxyl radical oxidation resistance), and redox flow that has excellent dimensional stability in the electrolyte. It has industrial applicability as a diaphragm for secondary batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Cell Separators (AREA)
- Fuel Cell (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
特に、バナジウム系電池は起電力が高く、バナジウムイオンの電極反応が速い、副反応である水素発生量が少ない、出力が高い等の利点を有するため、開発が本格的に進められている。
また、隔膜については、両極の活物質を含む電解液が混ざらないように工夫されている。
また、引用文献2には、イオン化した臭素分子の負極側への拡散を抑制するために、親水性微粒子を含有する高分子で形成された基体と、該基体の細孔部に高分散状態で局所的に担持された亜鉛-臭素電池用セパレーターが開示されている。
上記事情に鑑み、本発明は、十分な機械特性を確保した上で、サイクル試験後も低い電気抵抗及び高い電流効率を維持できるレドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池を提供することを目的とする。
[1]
正極セル室と、負極セル室と、当該正極セル室と当該負極セル室とを隔離分離する隔膜と、を含む電解槽を備え、
前記隔膜が、微多孔膜と当該微多孔膜に接するイオン交換樹脂層とを有しており、かつ、当該隔膜の厚み200μmあたりの透気抵抗度が10000秒/100cc以上であり、
前記微多孔膜が、ポリオレフィン樹脂又はフッ化ビニリデン系樹脂と無機フィラーとを含み、
前記微多孔膜において、少なくとも前記イオン交換樹脂層に接する面の平滑度が16000秒以下である、レドックスフロー二次電池。
[2]
前記微多孔膜の引張弾性率が200N/cm以下である、[1]に記載のレドックスフロー二次電池。
[3]
前記レドックスフロー二次電池は、バナジウムを含む電解液を、正極電解液及び負極電解液として用いたバナジウム系レドックスフロー二次電池である、[1]又は[2]に記載のレドックスフロー二次電池。
[4]
前記イオン交換樹脂層は、下記式(1)で表される構造を有するフッ素系高分子電解質ポリマーを主体とするイオン交換樹脂組成物を含む、[1]~[3]のいずれかに記載のレドックスフロー二次電池。
-[CF2CX1X2]a-[CF2-CF((-O-CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- …(1)
(式(1)中、X1、X2及びX3は、それぞれ独立して、ハロゲン原子及び炭素数1~3のパーフルオロアルキル基からなる群から選択される1種以上を示す。X4は、COOZ、SO3Z、PO3Z2又はPO3HZを示す。Zは、水素原子、アルカリ金属原子、アルカリ土類金属原子、又はアミン類(NH4、NH3R1、NH2R1R2、NHR1R2R3、NR1R2R3R4)を示す。R1、R2、R3及びR4は、それぞれ独立して、アルキル基及びアレーン基からなる群から選択されるいずれか1種以上を示す。ここで、X4がPO3Z2である場合、Zは同じでも異なっていてもよい。R1及びR2は、それぞれ独立して、ハロゲン原子、炭素数1~10のパーフルオロアルキル基及びフルオロクロロアルキル基からなる群から選択される1種以上を示す。a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示す。bは0~8の整数を示す。cは0又は1を示す。d、e及びfは、それぞれ独立して、0~6の整数を示す(ただし、d、e及びfは同時に0ではない。)。)
[5]
前記イオン交換樹脂層は、フッ素系高分子電解質ポリマーとして下記式(2)で表される構造を有するパーフルオロカーボンスルホン酸樹脂(PFSA樹脂)を含む、[1]~[4]のいずれかに記載のレドックスフロー二次電池。
-[CF2CF2]a-[CF2-CF((-O-(CF2)m-X4)]g- …(2)
(式(2)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示し、X4はSO3Hを示す。)
[6]
前記イオン交換樹脂層が、当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が300~1300g/eqであるフッ素系高分子電解質ポリマーを含み、
前記イオン交換樹脂層における平衡含水率が5~80質量%である、[1]~[3]のいずれかに記載のレドックスフロー二次電池。
ポリオレフィン樹脂又はフッ化ビニリデン系樹脂と無機フィラーとを含む微多孔膜と、
前記微多孔膜に接するイオン交換樹脂層と、
を有し、
厚み200μmあたりの透気抵抗度が10000秒/100cc以上であり、
前記微多孔膜において、少なくとも前記イオン交換樹脂層に接する面の平滑度が16000秒以下である、レドックスフロー二次電池用隔膜。
[8]
前記微多孔膜の引張弾性率が200N/cm以下である、[7]に記載のレドックスフロー二次電池用隔膜。
[9]
前記イオン交換樹脂層は、下記式(1)で表される構造を有するフッ素系高分子電解質ポリマーを主体とするイオン交換樹脂組成物を含む、[7]又は[8]に記載のレドックスフロー二次電池用隔膜。
-[CF2CX1X2]a-[CF2-CF((-O-CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- …(1)
(式(1)中、X1、X2及びX3は、それぞれ独立して、ハロゲン原子及び炭素数1~3のパーフルオロアルキル基からなる群から選択される1種以上を示す。X4は、COOZ、SO3Z、PO3Z2又はPO3HZを示す。Zは、水素原子、アルカリ金属原子、アルカリ土類金属原子、又はアミン類(NH4、NH3R1、NH2R1R2、NHR1R2R3、NR1R2R3R4)を示す。R1、R2、R3及びR4は、それぞれ独立して、アルキル基及びアレーン基からなる群から選択されるいずれか1種以上を示す。ここで、X4がPO3Z2である場合、Zは同じでも異なっていてもよい。R1及びR2は、それぞれ独立して、ハロゲン原子、炭素数1~10のパーフルオロアルキル基及びフルオロクロロアルキル基からなる群から選択される1種以上を示す。a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示す。bは0~8の整数を示す。cは0又は1を示す。d、e及びfは、それぞれ独立して、0~6の整数を示す(ただし、d、e及びfは同時に0ではない。)。)
[10]
前記イオン交換樹脂層は、フッ素系高分子電解質ポリマーとして下記式(2)で表される構造を有するパーフルオロカーボンスルホン酸樹脂(PFSA樹脂)を含む、[7]~[9]のいずれかに記載のレドックスフロー二次電池用隔膜。
-[CF2CF2]a-[CF2-CF((-O-(CF2)m-X4)]g- …(2)
(式(2)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示し、X4はSO3Hを示す。)
[11]
前記イオン交換樹脂層が、当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が300~1300であるフッ素系高分子電解質ポリマーを含み、
前記イオン交換樹脂層における平衡含水率が5~80質量%である、[7]~[10]のいずれかに記載のレドックスフロー二次電池用隔膜。
本実施形態におけるレドックスフロー二次電池用隔膜は、微多孔膜とイオン交換樹脂層とを有するものである。より詳細には、本実施形態におけるレドックスフロー二次電池用隔膜は、ポリオレフィン樹脂又はフッ化ビニリデン系樹脂と無機フィラーとを含む微多孔膜と、前記微多孔膜に接するイオン交換樹脂層と、を有する。更に、本実施形態におけるレドックスフロー二次電池用隔膜は、厚み200μmあたりの透気抵抗度が10000秒/100cc以上であり、前記微多孔膜において、少なくとも前記イオン交換樹脂層に接する面の平滑度が16000秒以下である。このように構成されているため、本実施形態におけるレドックスフロー二次電池用隔膜は、本実施形態におけるレドックスフロー二次電池に本実施形態の所望の効果を付与することができる。なお、本実施形態において「主体とする」とは、樹脂組成物中に該当成分が、好ましくは50~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%含まれることをいう。
本実施形態における微多孔膜は、ポリオレフィン樹脂又はフッ化ビニリデン系樹脂を含む。また、本実施形態における微多孔膜は、無機フィラーを含む。
本実施形態におけるポリオレフィン樹脂としては、得られる微多孔膜の機械的強度、成形性、コストの面で、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン等の、ホモポリマーやコポリマーに分類されるポリエチレン樹脂や、ポリプロピレン樹脂、及びこれらの混合物等であることが好ましい。
また、前記ポリオレフィン樹脂としてポリエチレン樹脂を用いる場合、得られる微多孔膜の機械的強度を高める観点から、好ましくは密度が0.9g/cm3以上のポリエチレン樹脂、より好ましくは密度が0.93g/cm3以上のポリエチレン樹脂を用いることが好ましい。また、成形性を高める観点から、好ましくは密度が0.99g/cm3以下のポリエチレン樹脂、より好ましくは密度が0.98g/cm3以下のポリエチレン樹脂を用いることが好ましい。
本実施形態におけるフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、フッ化ビニリデンと共重合可能な他のモノマーとの共重合体、あるいはこれらの混合物であることが好ましい。
フッ化ビニリデンと共重合可能なモノマーとしては、以下に限定されないが、例えば、四フッ化エチレン、六フッ化プロピレン、三フッ化エチレン、三フッ化塩化エチレン、フッ化ビニル等の一種又は二種以上を用いることができる。フッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70モル%以上含有することが好ましく、機械的強度を高める観点からフッ化ビニリデン単独重合体が最も好ましい。
前記フッ化ビニリデン系樹脂の重量平均分子量(Mw)は、機械的強度の観点から5万万以上が好ましく、より好ましくは10万以上であり、更に好ましくは20万である。加工性の観点から150万以下であることが好ましく、より好ましくは100万以下、更に好ましくは80万以下である。上記Mwは、例えば日本分光社製のGPC(ゲルパーミエーションクロマトグラフィー)装置「GPC-900」を用い、カラムに昭和電工社製の「shodex KD-806M」、プレカラムに「shodex KD-G」、溶媒にNMP(N-メチル-2-ピロリドン)を使用し、温度40℃、流量10ml/分の条件で測定することができる。
前記微多孔膜は、無機フィラーを含有する。本実施形態の微多孔膜は無機フィラーを含むことで、イオン交換樹脂層との親和性を高めることができる。また、後述する微多孔膜の平滑度の値を小さくすることができる。
ここで、無機フィラーとしては、酸化金属が好ましい。酸化金属としては、以下に限定されないが、例えば、アルミナ、シリカ(酸化珪素)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維;などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。
前記無機フィラーが、本実施形態における微多孔膜中に占める割合としては、後述する微多孔膜の平滑度の値を小さくする観点から、好ましくは10質量%以上、より好ましくは15質量%以上、更に好ましくは20質量%以上、特に好ましくは25質量%以上である。また、機械強度の低下を防ぐ観点から、その割合は好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは75質量%以下、特に好ましくは70質量%以下である。
なお、前記微多孔膜としては、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤、難燃化剤等の添加物を、本実施の形態の目的を損なわない範囲で含んでもよい。
微多孔膜の気孔率は、高いイオン透過性を得る為に、好ましくは30%以上であり、より好ましくは40%以上であり、更に好ましくは50%以上である。加えて、過度の機械強度低下を防ぐ観点から、好ましくは95%以下であり、より好ましくは90%以下であり、更に好ましくは85%以下である。なお、上記気孔率は後述する実施例に記載の方法で求めることができる。
前記微多孔膜の透気抵抗度は、電圧効率向上の観点から、好ましくは5000秒/100cc以下であり、より好ましくは3000秒/100cc以下であり、更に好ましくは2000秒/100cc以下である。下限に関しては、隔膜の性能向上の観点から特に限定はなく、例えば1秒/100ccであってもよい。なお、上記透気抵抗度は後述する実施例に記載の方法で求めることができる。
前記微多孔膜の引張弾性率は、200N/cm以下であることが好ましい。更に、上記引張弾性率は、膜の機械方向(以下、MDと略す場合がある)及びMDに対して垂直な方向(以下、TDと略す場合がある)の何れにおいても、200N/cm以下であることがより好ましい。なお、上記引張弾性率は後述する実施例に記載の方法で求めることができる。
微多孔膜の引張破断強度は、電解液フロー時の圧力及び正極電解液と負極電解液との差圧に耐える観点から、好ましくは2.5MPa以上であり、より好ましくは3MPa以上であり、更に好ましくは3.5MPa以上である。なお、この引張破断強度の上限は特に限定されず、例えば、50MPaであってもよい。上記引張破断強度は、後述する実施例に記載の方法で求めることができる。
また、前記微多孔膜の引張破断伸度は、電解液フロー時の圧力及び正極電解液と負極電解液との差圧に耐える観点から、好ましくは50%以上であり、より好ましくは100%以上であり、更に好ましくは150%以上である。なお、この引張破断伸度の上限は特に限定されず、例えば、1000%であってもよい。上記引張破断伸度は、後述する実施例に記載の方法で求めることができる。
この理由は明らかではないが、次のように推測される。すなわち、平滑度を低減して所定の値以下とすることは、微多孔膜表面の凹凸度合いが増加することを意味する。このため、微多孔膜の凹凸が後述のイオン交換樹脂層に対するバインド効果をもつために、密着性向上と寸法安定性による耐久性向上につながっているものと推測される。平滑度は、好ましくは12000秒以下であり、より好ましくは10000秒以下であり、更に好ましくは8000秒以下である。なお、平滑度の下限は1秒以上であることが好ましく、より好ましくは100秒以上である。
前記微多孔膜の電気抵抗は、隔膜としての性能向上の観点から、0.2Ω・cm2/枚以下であることが好ましく、より好ましくは0.1Ω・cm2/枚以下であり、更に好ましくは0.06Ω・cm2/枚以下であり、特に好ましくは0.02Ω・cm2/枚以下である。この電気抵抗の下限は特に限定されず、例えば0Ω・100cm2/枚であってもよい。上記電気抵抗は、後述する実施例に記載の方法で求めることができる。尚、当該パラメータを調整する方法としては、以下に限定されないが、例えば、樹脂と無機フィラーとの比率を調整する方法などが挙げられる。また、後述する製造方法により微多孔膜を製造する場合には、樹脂、無機フィラー及び可塑剤の比率を調整する方法を挙げることができる。
本実施の形態の微多孔膜は、例えば、以下に示す工程により作製することができる。
樹脂と、可塑剤と、必要に応じ前記無機フィラーとの原料混合物を作製する。原料となる樹脂は、1種類の樹脂でもよいし、2種類以上の樹脂からなる組成物であってもよい。
上記樹脂として、ポリオレフィン樹脂又はフッ化ビニリデン系樹脂を単独で用いることもでき、ポリオレフィン樹脂とフッ化ビニリデン系樹脂との混合物を用いることもできる。
ここで、原料混合物中の前記樹脂の割合は、高い機械的強度を確保する観点から原料混合物の全質量に対して、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは15質量%以上であり、特に好ましくは20質量%以上である。一方、高いイオン透過性を確保する観点から原料混合物の全質量に対して、その割合は好ましくは60質量%以下であり、より好ましくは50質量%以下であり、更に好ましくは40質量%以下であり、特に好ましくは30質量%以下である。
これら樹脂、無機フィラー、及び可塑剤の混合には、ヘンシェルミキサー、V-ブレンダー、プロシェアミキサー、リボンブレンダー等の配合機を用いた通常の混合法で充分である。
上記工程で得られた原料混合物を、押出機、ニーダー等の溶融混練装置により混練し、Tダイス等を用いた溶融成形によりシート状に成形する。
次に、上記シート状の成形体から可塑剤を溶剤抽出し、乾燥して基材膜となる微多孔膜を得る。
可塑剤の抽出に用いられる溶剤としては、以下に限定されないが、例えば、メタノール、エタノール、メチルエチルケトン、アセトン等の有機溶剤、塩化メチレン等のハロゲン系炭化水素溶剤を使用することができる。
なお、本実施形態の利点を損なわない範囲で、可塑剤を抽出する前、後、あるいはその両方でシート状の成形体を延伸することもできる。延伸することにより透過性と気孔率を適宜調節し、隔膜としての性能を向上させることもできる。
また、前記基材膜(微多孔膜)に更に後処理を行ってもよい。後処理としては、以下に限定されないが、例えば、界面活性剤等による親水化処理や電離放射線等による架橋処理等が挙げられる。
本実施形態におけるイオン交換樹脂層は、本実施形態における微多孔膜に接するものである。なお、上記「接する」とは、直接接する態様だけでなく、例えば接着層等の介在層を介して間接的に接する態様も含むものである。本実施形態におけるイオン交換樹脂層は、特に限定されないが、イオン交換樹脂組成物から形成されることが好ましい。
上記イオン交換樹脂組成物としては、特に限定されず、陽イオン交換樹脂や陰イオン交換樹脂を挙げることができる。陽イオン交換樹脂としては、以下に限定されないが、例えば、COOHやSO3Hなどのイオン交換可能な酸性基を有するフッ素系陽イオン交換樹脂を用いることができる。陰イオン交換樹脂としては、以下に限定されないが、例えば、ポリスルホン型の炭化水素系陰イオン交換樹脂、ピリジニュウム基を有するスチレン系陰イオン交換樹脂、又は上記スチレン系陰イオン交換樹脂がジビニルベンゼンと共重合した架橋型陰イオン交換樹脂など、公知の材料を用いることができる。
-[CF2CX1X2]a-[CF2-CF((-O-CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- …(1)
a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示す。bは0~8の整数を示す。cは0又は1を示す。d、e及びfは、それぞれ独立して、0~6の整数を示す。ただし、d、e及びfは同時に0にはならない。
-(CF2-CF2)-で表される繰り返し単位と、下記式(3)又は下記式(4)若しくは下記式(4’)で表される繰り返し単位と、からなることが好ましい。
(上記式(3)中、Xは、F又は炭素数1~3のパーフルオロアルキル基を示し、nは0~5の整数を示す。[A]は(CF2)m-W(mは0~6の整数を示す。ただし、nとmは同時に0にならない。WはSO3Hを示す。);
CF2=CF-O-(CF2)P-CF(-(CF2)L-O-(CF2)m-W) …(4’)
-[CF2CF2]a-[CF2-CF((-O-(CF2)m-X4)]g- …(2)
(上記式(2)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示し、X4はSO3Hを示す。)
PFSA樹脂の場合、例えば、下記式(5)で表されるフッ化ビニルエーテル化合物と、下記一般式(6)で表されるフッ化オレフィンモノマーとの共重合体からなるPFSA樹脂前駆体を加水分解することにより得られる。
(上記式(5)中、Xは、F又は炭素数1~3のパーフルオロアルキル基を示し、nは0~5の整数を示し、Aは(CF2)m-W、又はCF2=CF-O-(CF2)P-CF(-O-(CF2)K-W)若しくはCF2=CF-O-(CF2)P-CF(-(CF2)L-O-(CF2)m-W)を示し、pは0~12の整数を示し、mは0~6の整数を示し(ただし、nとmは同時に0にならない。)、kは1~5の整数を示し、Lは1~5の整数を示し(ただし、nとL又はKは同時に0とならない。)、Wは加水分解によりSO3Hに転換し得る官能基を示す。)
(上記式(6)中、Zは、H、Cl、F、炭素数1~3のパーフルオロアルキル基、又は酸素を含んでいてもよい環状パーフルオロアルキル基を示す。)
また、フッ素系高分子電解質ポリマー前駆体は、重合反応中に樹脂分子構造中に生成した不純末端や、構造上酸化されやすい部分(CO基、H結合部分等)を、公知の方法によりフッ素ガス下で処理し、該部分をフッ化してもよい。
また、フッ素系高分子電解質ポリマーの加水分解前の官能基(例えば、SO2F基)は、その一部が、部分的(分子間を含む)にイミド化(アルキルイミド化など)されていてもよい。
また、フッ素系高分子電解質ポリマーの当量質量EWは、フッ素系モノマーの共重合比、モノマー種の選定等により調整することができる。
本実施形態では、イオン交換樹脂層の平衡含水率は、好ましくは5質量%以上であり、より好ましくは10質量%以上、更に好ましくは15質量%以上である。また、上限としては、80質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。すなわち、本実施形態では、イオン交換樹脂層における平衡含水率が5~80質量%であることが好ましい。イオン交換樹脂層の平衡含水率が5質量%以上であると、膜の電気抵抗や電流効率、耐酸化性、イオン選択透過性が良好となる傾向にある。一方、平衡含水率が50質量%以下であると、膜の寸法安定性や強度が良好となり、また水溶解性成分の増加を抑制できる傾向にある。イオン交換樹脂層の平衡含水率は、樹脂組成物を水とアルコール系溶媒での分散液から成膜し、160℃以下で乾燥した膜を基準とし、23℃、50%関係湿度(RH)での平衡(24Hr放置)飽和吸水率(Wc)で表す。
イオン交換樹脂層の平衡含水率は、上述したEWと同様の方法により調整することができる。
本実施形態におけるイオン交換樹脂層の形成方法としては、以下に限定されないが、例えば、a)微多孔膜とイオン交換樹脂組成物から形成される膜(以下、「イオン交換樹脂膜」ともいう。)とを積層する方法、及びb)微多孔膜にイオン交換樹脂の分散液を塗布し、分散液中の溶媒を除去することでイオン交換樹脂層を形成する方法、並びに上記形成方法a)とb)を組み合わせる方法等を挙げることができる。
上記形成方法a)においては、微多孔膜とイオン交換樹脂膜とを積層する。本実施形態の隔膜においては微多孔膜とイオン交換樹脂膜とを積層した後に物理的又は化学的に接着してもよい。
イオン交換樹脂膜の製造方法(成膜法)としては、特に限定されず、公知の、押し出し方法、キャスト成膜を用いることができる。イオン交換樹脂膜は単層でも多層(2~5層)でもよく、多層の場合は性質の異なる膜(例えば、EWや官能基の異なる樹脂)を積層することにより、イオン交換樹脂膜の性能を改善することができる。多層の場合は、押出し製膜時、キャスト時に積層させるか、又は得られたそれぞれの膜を積層させればよい。
本実施態様のイオン交換樹脂膜の破断強度は、好ましくは200kgf/cm2以上であり、より好ましくは300kgf/cm2以上である。イオン交換樹脂膜の破断強度が200kgf/cm2以上であると、寸法変化の抑制が容易となる傾向にある。イオン交換樹脂膜の破断強度は、JIS K7113に基づき、島津製作所製精密万能試験機AGS-1KNGを用いて測定することができる。この際、サンプルは、23℃、65%RHの恒温室で12時間以上放置した後に幅5mm、長さ50mmに切出して測定に供する。測定は3サンプルについて行い、その平均値を求めてイオン交換樹脂膜の破断強度とすることができる。
微多孔膜とイオン交換樹脂膜とを積層する方法としては、例えば微多孔膜の表面にイオン交換樹脂膜を配置する方法が挙げられる。この時点では、微多孔膜とイオン交換樹脂膜は接着している必要はない。
即ち、電池セルの組立において、積層した膜の両側に、集電体電極が配置され、押圧がかかると,微多孔膜とイオン交換樹脂膜とが密着するため、これらの膜は一枚の隔膜として作用するからである。
また、微多孔膜とイオン交換樹脂膜とは物理的又は化学的に接着されていてもよい。
このような方法としては、微多孔膜とイオン交換樹脂膜を圧着して接着する方法が挙げられる。
圧着する際のプレス機又はロールの温度は、微多孔膜の融点以下であると、樹脂の融解によって微多孔膜の細孔が閉塞することに起因するプロトン透過性の低下を抑制できる点で好ましい。
また、圧着する際のプレス機又はロールの圧力(面圧)は、微多孔膜の細孔を閉塞させない観点から、15MPa以下が好ましく、より好ましくは10MPa以下、更に好ましくは5MPa以下である。
微多孔膜とイオン交換樹脂膜とを積層する態様は特に限定されないが、具体例としては、1つの微多孔膜と1つのイオン交換樹脂膜とからなる態様、1つの微多孔膜の両側にイオン交換樹脂膜が存在する態様、1つのイオン交換樹脂膜の両側に微多孔膜が存在する態様等が挙げられる。
形成方法b)に用いられるイオン交換樹脂の分散液としては、例えば、Du Pont社製のNafion(登録商標)DE2020、同DE2021、同DE520、同DE521、同DE1020、同DE1021が使用できる。また、旭化成イーマテリアルズ(株)製のアイオノマー溶液SS900/10、同SS1100/5を用いることもできる。
エタノールと水の混合溶媒を使用する場合の配合比は、イオン交換樹脂層を強固にする観点からエタノールを20質量%以上含むことが好ましく、より好ましくは30質量%以上、更に好ましくは40質量%以上含むことが好ましい。
本実施形態における隔膜の厚み200μmあたりの透気抵抗度は、10000秒/100cc以上であり、好ましくは50000秒/100cc以上であり、より好ましくは100000秒/100cc以上である。上記透気抵抗度は後述する実施例に記載の方法により測定することができる。
本実施形態における隔膜は、透気抵抗度が上記の範囲であることにより、優れたイオン選択透過性を有する。
本実施形態における隔膜の膜厚は、活物質である金属イオンの透過を抑制する観点及び機械的強度の観点から、好ましくは50μm以上であり、より好ましくは80μm以上であり、更に好ましくは100μm以上であり、特に好ましくは150μm以上である。なお、上記隔膜の膜厚は、微多孔膜とイオン交換樹脂層の厚みの和により求めることができる。
加えて、プロトン透過性を確保する観点から、その膜厚は好ましくは1000μm以下であり、より好ましくは500μm以下であり、更に好ましくは400μm以下であり、特に好ましくは300μm以下である。
本実施形態における隔膜は、イオンの選択透過性に優れ、電気抵抗も低く、耐久性(主に、ヒドロキシラジカル耐酸化性)にも優れており、レドックスフロー二次電池用の隔膜として優れた性能を発揮する。
(1)微多孔膜の膜厚(μm)
微多孔膜の膜厚は、東洋精機製の微少測厚器(タイプKBN、端子径Φ5mm、測定圧62.47kPa)を用いて、雰囲気温度23±2℃で測定した。
微多孔膜及び隔膜の透気抵抗度は、JIS P-8117準拠のガーレー式透気抵抗度計(東洋精機製G-B2(登録商標))を用いて測定した。なお、微多孔膜とイオン交換樹脂膜とを接着しない態様の隔膜の透気抵抗度を測定する際には、これらの膜を重ねあわせて上記の透気抵抗度計に設置して測定を行った。
より詳細には、内筒質量は567gで、直径28.6mm、645mm2の面積を空気100mLが通過する時間を測定した。
なお、測定開始後10万秒経過した後でも測定が終了しない場合には透気抵抗度を「10万以上」と評価した。
微多孔膜の電気抵抗は、JIS C-2313に準拠し、濃度28質量%の希硫酸水溶液中、25±0.5℃にて測定した。
(i)微多孔膜中の無機フィラーの組成解析方法
微多孔膜に含まれる無機フィラーの組成割合を、セイコー電子工業株式会社製、熱重量分析計TG/DTA220(登録商標)を用いて算出した。具体的には、試料約10mgを、空気流下にて初期に測定した重量と、550℃にて60分放置した後に測定した重量を用い、それらの重量の差分を無機充填剤の質量として、上記組成割合を算出した。
(ii)気孔率の算出
気孔率(%)=(1-(X/(Y×Z)))×100
X:膜の質量(g/m2)
Y:膜の比重(g/cm3)は、の密度、無機フィラーの密度、並びに上述の微多孔膜中の無機フィラー組成解析方法から求めた組成割合を用いて計算した。
Z:膜厚(μm)
原料のポリオレフィン及び微多孔膜の極限粘度[η]は、ASTMD4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めることによって得た。
なお、微多孔膜としての極限粘度は、以下に示す方法で得られるサンプルに対して、上記のように測定することとした。
微多孔膜をアルコールに浸漬し、空気を十分に抜き出した。その後、苛性ソーダ20%水溶液80℃に1昼夜漬け、60℃の温水にて洗浄した後、1昼夜流水にて洗浄した。その膜を40℃設定の乾燥機にて1昼夜乾燥してサンプルを得た。得られたサンプルは、セイコー電子工業株式会社製、熱重量分析計TG/DTA220を用い、乾燥した試料約10mgを空気流下で初期に測定した重量と550℃にて60分放置した後に測定した重量とから組成を算出し、残存無機フィラー量が1質量%以下であることを確認した。
JIS8155:2010に準拠した旭精工株式会社製の王研式透気度・平滑度測定器(EY0型)を用い、測定時間240秒、室内温度23±2℃にて測定した。
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG-A型(登録商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。また、サンプルはチャック間距離を50mmとし、サンプルの両端部(各25mm)の片面にセロハンテープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に厚み1mmのフッ素ゴムを貼り付けた。
引張破断伸び(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して100を乗じることにより求めた。引張破断強度(MPa)は、破断時の強度を、試験前のサンプル断面積で除すことで求めた。
引張弾性率(N/cm)は伸びが1~4%間の傾きで評価し、傾きから得られる弾性率(N/cm2)に、試験前の微多孔膜の膜厚を掛けることで、幅1cm当たりの弾性率を求めた。
なお、測定は、温度;23±2℃、チャック圧0.30MPa、引張速度;200mm/minで行った。
(1) PFSA樹脂前駆体のメルトフローインデックス
ASTM:D1238に準拠して、測定条件:温度270℃、荷重2160gで測定を行った。
PFSA樹脂0.3gを、25℃、飽和NaCl水溶液30mLに浸漬し、攪拌しながら30分間放置した。次いで、飽和NaCl水溶液中の遊離プロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液を用いて中和滴定した。中和後に得られた、イオン交換基の対イオンがナトリウムイオンの状態となっているPFSA樹脂分を純水ですすぎ、更に真空乾燥して秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンの状態となっているPFSA樹脂の質量をW(mg)とし、下記式より当量質量EW(g/eq)を求めた。
EW=(W/M)-22
膜サンプルを23℃、50%RHの恒温恒湿の室内で1時間以上静置した後、膜厚計(東洋精機製作所製、商品名「B-1」)を用いて膜厚を測定した。
PFSA樹脂の分散液を清澄なガラス板上に塗布し、150℃で約10分間乾燥し、剥離して約30μmの膜を形成させ、これを23℃の水中に約3時間放置し、その後23℃、関係湿度(RH)50%の部屋に24時間放置した時の平衡含水率を測定した。基準の乾燥膜としては、80℃真空乾燥膜を用いた。平衡含水率は、膜の質量変化から算出した。
(1) 剥離強度の測定
長さ76mm×幅26mmのスライドグラス(A)(松浪硝子工業(株)製、商品名S1112)の片面上に、長さ方向全面かつ幅方向の略中央に、幅15mmの両面テープ(B)(ニチバン(株)製ナイスタック(登録商標)、商品名NW-15)を貼り付け、測定板を準備した。測定板上の粘着面全体に、長さ70mm×幅15mmの隔膜サンプルの非試験面側(C)を貼り付けた。長さ15cmのメンディングテープ(住友スリーエム(株)製Scotch(登録商標)、商品名810-3-102、幅12mm)を、図2に示すような配置で、メンディングテープ(E)が隔膜サンプルの試験面(D)に固着するように数回押し付けて貼り付け、試験片を作製した。当該試験片を、引張試験機(島津製作所製AG-A型(商標))に取り付け、メンディングテープ側を引張モードで試験速度100mm/分にて移動させ、剥離距離25mm~50mmにおける剥離強度の平均値を測定した。
レドックスフロー二次電池は、隔膜の両側にて、液透過性で多孔質の集電体電極(負極用、正極用)を隔膜の両側にそれぞれ配置し、押圧でそれらを挟み、隔膜で仕切られた一方を正極セル室、他方を負極セル室とし、スペーサーで両セル室の厚みを確保して形成した。正極セル室には、4価バナジウム(V4+)及び5価バナジウム(V5+)を含む硫酸電解液からなる正極電解液を、負極セル室には3価バナジウム(V3+)及び2価バナジウム(V2+)を含む負極電解液を流通させ、電池の充電及び放電を行った。
充放電実験は、上述のようにして得られた電池を用いて行った。全バナジウム濃度が2mol/Lで、全硫酸根濃度が4mol/Lでの水系電解液を使用し、また、設置した正極及び負極セル室の厚みがそれぞれ5mmで、両多孔質電極と隔膜の間には炭素繊維からなる厚み5mmで嵩密度が約0.1g/cm3の多孔質状のフエルトを挟んで用いた。充放電実験は電流密度80mA/cm2で実施した。 セル電気抵抗率は、ACインピーダンス法を用いて、放電開始時においてAC電圧10mV,周波数20kHzでの直流抵抗値を測定し、それに電極面積を掛けることによって求めた。また、電流効率は次のようにして求めた。すなわち、電流密度80mA/cm2で充電及び放電を行った。これを1サイクルとし、5サイクル繰り返した後、2~4サイクルの平均値を電流効率とした。
旭化成イーマテリアルズ(株)製のアイオノマー溶液SS1100/5(EW1100(g/eq)、以下では単に「イオン交換樹脂分散液A」ともいう)を、公知の通常の方法にて、担体シートであるポリイミド製フィルム上にキャストし、120℃(20分)の熱風を当てて、溶媒をほぼ完全に飛ばし、乾燥させることにより膜を得た。これを更に、160℃10分の条件下における熱風空気雰囲気下で、熱処理することにより膜厚17μmのイオン交換樹脂膜を得た。得られた膜をイオン交換樹脂膜Aとした。得られた膜の平衡含水率は8質量%、25℃水中3時間におけるイオン交換樹脂膜Aの最大含水率は17質量%であった。なお、平衡含水率測定時に観測される最大値を最大含水率とした。
(1)(PFSA樹脂前駆体の作製)
ステンレス製攪拌式オートクレーブに、C7F15COONH4の10%水溶液と純水とを仕込み、十分に真空、窒素置換を行った後、テトラフルオロエチレン(CF2=CF2)(以下、「TFE」とも略記する。)ガスを導入してケージ圧力で0.7MPaまで昇圧した。引き続いて、過硫酸アンモニウム水溶液を注入して重合を開始した。重合により消費されたTFEを補給するため、連続的にTFEガスを供給してオートクレーブの圧力を0.7MPaに保つようにして、供給したTFEに対して、質量比で0.70倍に相当する量のCF2=CFO(CF2)2-SO2Fを連続的に供給して重合を行い、重合条件を最適な範囲に調整して、パーフルオロカーボンスルホン酸樹脂前駆体粉末を得た。得られたPFSA樹脂前駆体粉末A1のMFIは1.5(g/10分)であった。
得られたPFSA樹脂前駆体粉末を、水酸化カリウム(15質量%)とメチルアルコール(50質量%)を溶解した水溶液中に、80℃で20時間接触させて、加水分解処理を行った。その後、60℃水中に5時間浸漬した。次に、60℃の2N塩酸水溶液に1時間浸漬させる処理を、毎回塩酸水溶液を更新して5回繰り返した後、イオン交換水で水洗、乾燥した。これにより、スルホン酸基(SO3H)を有し、式(1)で表される構造を有するPFSA樹脂A1を得た。得られたPFSA樹脂A1のEWは720(g/eq)であった。
得られたPFSA樹脂分散液を、分散液(ASF1)とした。
得られた分散液(ASF1)を、公知の通常の方法にて、担体シートであるポリイミド製フィルム上にキャストし、120℃(20分)の熱風を当てて、溶媒をほぼ完全に飛ばし、乾燥させることにより膜を得た。これを更に、160℃10分の条件下における熱風空気雰囲気下で、熱処理することにより膜厚20μmのイオン交換樹脂膜を得た。得られた膜をイオン交換樹脂膜Bとした。得られたイオン交換樹脂膜Bの平衡含水率は10質量%、25℃水中3時間における電解質膜の最大含水率は20質量%であった。
微多孔膜Aを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン10質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン10質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)55質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚200μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Aの物性を表1に示す。なお、超高分子量ポリエチレンと高密度ポリエチレンについては、表1中では単に「ポリエチレン」と表記する。
微多孔膜Bを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン6.6質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン26.4質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体22質量%、フタル酸ビス(2-エチル-キシル)(DOP)45質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚100μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Bの物性を表1に示す。
微多孔膜Cとして、微多孔膜Aを、ロール温度150℃で、総縦延伸倍率2倍となるようにロール延伸することにより製造した。こうして得られた微多孔膜Cの物性を表1に示す。
微多孔膜Dを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン4.5質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン40.5質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体10質量%、フタル酸ビス(2-エチル-キシル)(DOP)45質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚200μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Dの物性を表1に示す。
微多孔膜Aを、前記測定方法(5)に示す手順で親水性湿式シリカを除去し残存シリカ量が1.0%以下であるポリオレフィン(ポリエチレン)のみからなる、微多孔膜Eを得た。こうして得られた微多孔膜Eの物性を表1に示す。
微多孔膜Fを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン8質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン15質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)52質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚400μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Fの物性を表1に示す。
微多孔膜Gを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン16質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン16質量%、分散平均粒径2.00μmの親水性シリカ微紛体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)43質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚300μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Gの物性を表1に示す。
微多孔膜Hを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン10質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン10質量%、分散平均粒径2.00μmの親水性シリカ微紛体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)55質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚200μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Hの物性を表1に示す。
微多孔膜Iを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン16質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン16質量%、分散平均粒径2.00μmの親水性シリカ微紛体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)43質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚335μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Iの物性を表1に示す。
微多孔膜Jを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン22質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン22質量%、分散平均粒径2.00μmの親水性シリカ微紛体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)31質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚305μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Jの物性を表1に示す。
微多孔膜Kを以下の方法で作製した。
[η]が11.5dl/g、密度が0.94g/cm3の超高分子量ポリエチレン10質量%、[η]が2.8dl/g、密度が0.96g/cm3の高密度ポリエチレン10質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体25質量%、フタル酸ビス(2-エチル-キシル)(DOP)55質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度220℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚100μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)を抽出した後、乾燥させた。こうして得られた微多孔膜Kの物性を表1に示す。
[η]が32万(カタログ値)のソルベイソレクシス株式会社製ポリフッ化ビニリデン樹脂、SOLEF(登録商標)6010を35質量%、分散平均粒径2.00μmの親水性湿式シリカ微粉体23質量%、フタル酸ビス(2-エチル-キシル)(DOP)29質量%、フタル酸ジブチル13質量%をスーパーミキサーで混合した。この混合物を30mmΦ二軸押出機に450mm幅のTダイスを取り付け、Tダイス吐出樹脂温度250℃にて成形押出した。この際、寸法安定性を持たせるため、ギアポンプを介してギアポンプ前圧力を一定にして溶融押出した。Tダイスから押し出した樹脂混合物を140℃に温度調整されたカレンダーロールにて圧延成形して膜厚200μmのシート状に成形した。
成形されたシートを塩化メチレン中に1時間浸漬して、フタル酸ビス(2-エチル-キシル)(DOP)とフタル酸ジブチルを抽出した後、乾燥させた。こうして得られた微多孔膜Lの物性を表1に示す。なお、SOLEF(登録商標)6010については、表1中で単に「PVDF」と表記する。
微多孔膜Aの片面に、イオン交換樹脂分散液Aをグラビアコーターを用いて塗工し、60度で乾燥処理を行った。得られた膜を金属製の枠に固定し、80度で12時間熱処理を行うことにより隔膜を得た。なお、得られた隔膜の厚み200μmあたりの透気抵抗度(以下、単に「透気抵抗度」という。表2中も同様に表記する。)は10万秒/100cc以上であった。
微多孔膜Aとイオン交換樹脂膜Bを真空プレス機を用いて、120℃、面圧7MPaで圧着させることにより隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
微多孔膜Aの表面上にイオン交換樹脂膜Bを重ね合わせ、イオン交換膜側を正極側に配置したバナジウムレドックスフロー二次電池の隔膜として用いた。微多孔膜Aとイオン交換樹脂膜Bは、レドックスフロー二次電池内で、液透過性の多孔質電極に印加される押圧により密着されるため隔膜として機能した。なお、表2中では、上記のようにして微多孔膜Aとイオン交換樹脂膜Bが「貼り合わせ」により複合化されたものと表記する(以下でも同様)。
微多孔膜Aの表面上に(株)トクヤマ製炭化水素系陰イオン交換膜 ネオセプタAMX(膜厚150μm、以下、イオン交換膜Cともいう)を重ね合わせ、イオン交換膜側を正極側に配置したバナジウムレドックスフロー二次電池の隔膜として用いた。微多孔膜Aとイオン交換膜Cは、レドックスフロー二次電池内で、液透過性の多孔質電極に印加される押圧により密着されるため隔膜として機能した。
実施例2の微多孔膜Aの代わりに微多孔膜Bを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Bを用いたこと以外は実施例3と同様の方法により隔膜を得た。
実施例4の微多孔膜Aの代わりに微多孔膜Bを用いたこと以外は実施例4と同様の方法により隔膜を得た。
実施例3の微多孔膜Aの代わりに微多孔膜Cを用いたこと以外は実施例3と同様の方法により隔膜を得た。
実施例4の微多孔膜Aの代わりに微多孔膜Cを用いたこと以外は実施例4と同様の方法により隔膜を得た。
実施例2の微多孔膜Aの代わりに微多孔膜Fを用いたこと以外は実施例2と同様の方法により隔膜を得た。
実施例3の微多孔膜Aの代わりに微多孔膜Fを用いたこと以外は実施例3と同様の方法により隔膜を得た。
微多孔膜Aの表面上に、イオン交換樹脂膜Aを重ね合わせ、イオン交換膜側を正極側に配置したバナジウムレドックスフロー二次電池の隔膜として用いた。微多孔膜Aとイオン交換樹脂膜Aは、イオン交換膜側を正極側に配置したバナジウムレドックスフロー二次電池内で、液透過性の多孔質電極に印加される押圧により密着されるため隔膜として機能した。
実施例1の微多孔膜Aの代わりに微多孔膜Bを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例12の微多孔膜Aの代わりに微多孔膜Bを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例1の微多孔膜Aの代わりに微多孔膜Gを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例12の微多孔膜Aの代わりに微多孔膜Gを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Gを用いたこと以外は実施例3と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Gを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例4の微多孔膜Aの代わりに微多孔膜Gを用いたこと以外は実施例4と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例1の微多孔膜Aの代わりに微多孔膜Hを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例12の微多孔膜Aの代わりに微多孔膜Hを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Hを用いたこと以外は実施例3と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Hを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例4の微多孔膜Aの代わりに微多孔膜Hを用いたこと以外は実施例4と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例1の微多孔膜Aの代わりに微多孔膜Iを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例12の微多孔膜Aの代わりに微多孔膜Iを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Iを用いたこと以外は実施例3と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Iを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例4の微多孔膜Aの代わりに微多孔膜Iを用いたこと以外は実施例4と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例1の微多孔膜Aの代わりに微多孔膜Jを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例12の微多孔膜Aの代わりに微多孔膜Jを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Jを用いたこと以外は実施例3と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Jを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例4の微多孔膜Aの代わりに微多孔膜Jを用いたこと以外は実施例4と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Kを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Lを用いたこと以外は実施例3と同様の方法で隔膜を得た。隔膜の透気抵抗度は10万以上であった。
実施例1の微多孔膜Aの代わりに微多孔膜Dを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Dを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Dを用いたこと以外は実施例3と同様の方法により隔膜を得た。
実施例4の微多孔膜Aの代わりに微多孔膜Dを用いたこと以外は実施例4と同様の方法により隔膜を得た。
実施例1の微多孔膜Aの代わりに微多孔膜Eを用いたこと以外は実施例1と同様の方法により隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
実施例2の微多孔膜Aの代わりに微多孔膜Eを用いたこと以外は実施例2と同様の方法により隔膜を得た。なお、得られた隔膜の透気抵抗度は10万秒/100cc以上であった。
実施例3の微多孔膜Aの代わりに微多孔膜Eを用いたこと以外は実施例3と同様の方法により隔膜を得た。
実施例4の微多孔膜Aの代わりに微多孔膜Eを用いたこと以外は実施例4と同様の方法により隔膜を得た。
イオン交換樹脂分散液Aの中に微多孔膜Aを浸漬した状態で真空デシケータに入れて2時間脱気を行った。その後、溶液から微多孔膜Aを引き上げ、空気中で乾燥させた後、80℃の高温槽中で2時間乾燥させた。得られた隔膜の厚み200μmあたりの透気抵抗度は2600秒/100ccであり、200サイクル後の電流効率は78%であった。
実施例12の微多孔膜Aの代わりに微多孔膜Dを用いたこと以外は実施例12と同様の方法により隔膜を得た。なお、得られた隔膜の透気度は10万秒/100cc以上であった。
次に、上記の隔膜を用いて、充放電を200サイクル実施して再度セル電気抵抗率及び電流効率を測定し、その変化を調べることにより耐久試験を行った。得られた充放電試験結果を表2に示す。
次に、充放電を200サイクル実施した後のセルを解体し、隔膜の外観を観察した。炭素電極が接していた部分の面積のうち、しわが入っていない面積が目視で70%以上の場合を「A」、50%以上70%未満の場合を「B」、30%以上50%未満の場合を「C」、10%以上30%未満の場合を「D」、10%未満の場合を「E」と評価した。
表2に、上記実施例1~36及び比較例1~10の評価結果を示す。
2 正極セル室
3 負極
4 負極セル室
5 隔膜
6 電解槽
7 正極電解液タンク
8 負極電解液タンク
9 交直交換装置
Claims (11)
- 正極セル室と、負極セル室と、当該正極セル室と当該負極セル室とを隔離分離する隔膜と、を含む電解槽を備え、
前記隔膜が、微多孔膜と当該微多孔膜に接するイオン交換樹脂層とを有しており、かつ、当該隔膜の厚み200μmあたりの透気抵抗度が10000秒/100cc以上であり、
前記微多孔膜が、ポリオレフィン樹脂又はフッ化ビニリデン系樹脂と無機フィラーとを含み、
前記微多孔膜において、少なくとも前記イオン交換樹脂層に接する面の平滑度が16000秒以下である、レドックスフロー二次電池。 - 前記微多孔膜の引張弾性率が200N/cm以下である、請求項1に記載のレドックスフロー二次電池。
- 前記レドックスフロー二次電池は、バナジウムを含む電解液を、正極電解液及び負極電解液として用いたバナジウム系レドックスフロー二次電池である、請求項1又は2に記載のレドックスフロー二次電池。
- 前記イオン交換樹脂層は、下記式(1)で表される構造を有するフッ素系高分子電解質ポリマーを主体とするイオン交換樹脂組成物を含む、請求項1~3のいずれか1項に記載のレドックスフロー二次電池。
-[CF2CX1X2]a-[CF2-CF((-O-CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- …(1)
(式(1)中、X1、X2及びX3は、それぞれ独立して、ハロゲン原子及び炭素数1~3のパーフルオロアルキル基からなる群から選択される1種以上を示す。X4は、COOZ、SO3Z、PO3Z2又はPO3HZを示す。Zは、水素原子、アルカリ金属原子、アルカリ土類金属原子、又はアミン類(NH4、NH3R1、NH2R1R2、NHR1R2R3、NR1R2R3R4)を示す。R1、R2、R3及びR4は、それぞれ独立して、アルキル基及びアレーン基からなる群から選択されるいずれか1種以上を示す。ここで、X4がPO3Z2である場合、Zは同じでも異なっていてもよい。R1及びR2は、それぞれ独立して、ハロゲン原子、炭素数1~10のパーフルオロアルキル基及びフルオロクロロアルキル基からなる群から選択される1種以上を示す。a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示す。bは0~8の整数を示す。cは0又は1を示す。d、e及びfは、それぞれ独立して、0~6の整数を示す(ただし、d、e及びfは同時に0ではない。)。) - 前記イオン交換樹脂層は、フッ素系高分子電解質ポリマーとして下記式(2)で表される構造を有するパーフルオロカーボンスルホン酸樹脂(PFSA樹脂)を含む、請求項1~4のいずれか1項に記載のレドックスフロー二次電池。
-[CF2CF2]a-[CF2-CF((-O-(CF2)m-X4)]g- …(2)
(式(2)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示し、X4はSO3Hを示す。) - 前記イオン交換樹脂層が、当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が300~1300g/eqであるフッ素系高分子電解質ポリマーを含み、
前記イオン交換樹脂層における平衡含水率が5~80質量%である、請求項1~5のいずれか1項に記載のレドックスフロー二次電池。 - ポリオレフィン樹脂又はフッ化ビニリデン系樹脂と無機フィラーとを含む微多孔膜と、
前記微多孔膜に接するイオン交換樹脂層と、
を有し、
厚み200μmあたりの透気抵抗度が10000秒/100cc以上であり、
前記微多孔膜において、少なくとも前記イオン交換樹脂層に接する面の平滑度が16000秒以下である、レドックスフロー二次電池用隔膜。 - 前記微多孔膜の引張弾性率が200N/cm以下である、請求項7に記載のレドックスフロー二次電池用隔膜。
- 前記イオン交換樹脂層は、下記式(1)で表される構造を有するフッ素系高分子電解質ポリマーを主体とするイオン交換樹脂組成物を含む、請求項7又は8に記載のレドックスフロー二次電池用隔膜。
-[CF2CX1X2]a-[CF2-CF((-O-CF2-CF(CF2X3))b-Oc-(CFR1)d-(CFR2)e-(CF2)f-X4)]g- …(1)
(式(1)中、X1、X2及びX3は、それぞれ独立して、ハロゲン原子及び炭素数1~3のパーフルオロアルキル基からなる群から選択される1種以上を示す。X4は、COOZ、SO3Z、PO3Z2又はPO3HZを示す。Zは、水素原子、アルカリ金属原子、アルカリ土類金属原子、又はアミン類(NH4、NH3R1、NH2R1R2、NHR1R2R3、NR1R2R3R4)を示す。R1、R2、R3及びR4は、それぞれ独立して、アルキル基及びアレーン基からなる群から選択されるいずれか1種以上を示す。ここで、X4がPO3Z2である場合、Zは同じでも異なっていてもよい。R1及びR2は、それぞれ独立して、ハロゲン原子、炭素数1~10のパーフルオロアルキル基及びフルオロクロロアルキル基からなる群から選択される1種以上を示す。a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示す。bは0~8の整数を示す。cは0又は1を示す。d、e及びfは、それぞれ独立して、0~6の整数を示す(ただし、d、e及びfは同時に0ではない。)。) - 前記イオン交換樹脂層は、フッ素系高分子電解質ポリマーとして下記式(2)で表される構造を有するパーフルオロカーボンスルホン酸樹脂(PFSA樹脂)を含む、請求項7~9のいずれか1項に記載のレドックスフロー二次電池用隔膜。
-[CF2CF2]a-[CF2-CF((-O-(CF2)m-X4)]g- …(2)
(式(2)中、a及びgは、0≦a<1、0<g≦1、a+g=1を満たす数を示し、mは1~6の整数を示し、X4はSO3Hを示す。) - 前記イオン交換樹脂層が、当量質量EW(イオン交換基1当量あたりの乾燥質量グラム数)が300~1300であるフッ素系高分子電解質ポリマーを含み、
前記イオン交換樹脂層における平衡含水率が5~80質量%である、請求項7~10のいずれか1項に記載のレドックスフロー二次電池用隔膜。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK13855385.4T DK2922132T3 (en) | 2012-11-13 | 2013-11-12 | SEPARATION MEMBRANE FOR REDOX-FLOW SECONDARY BATTERIES AND REDOX-FLOW SECONDARY BATTERY USING SAME |
US14/442,148 US9837678B2 (en) | 2012-11-13 | 2013-11-12 | Separation membrane for redox flow secondary battery and redox flow secondary battery comprising the same |
CN201380059066.1A CN104813529B (zh) | 2012-11-13 | 2013-11-12 | 氧化还原液流二次电池用隔膜及使用其的氧化还原液流二次电池 |
JP2014546994A JP5942210B2 (ja) | 2012-11-13 | 2013-11-12 | レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池 |
EP13855385.4A EP2922132B1 (en) | 2012-11-13 | 2013-11-12 | Separation membrane for redox flow secondary batteries, and redox flow secondary battery using same |
KR1020157012055A KR101807377B1 (ko) | 2012-11-13 | 2013-11-12 | 레독스 플로우 이차 전지용 격막 및 그것을 사용한 레독스 플로우 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-249748 | 2012-11-13 | ||
JP2012249748 | 2012-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014077257A1 true WO2014077257A1 (ja) | 2014-05-22 |
Family
ID=50731169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080609 WO2014077257A1 (ja) | 2012-11-13 | 2013-11-12 | レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9837678B2 (ja) |
EP (1) | EP2922132B1 (ja) |
JP (1) | JP5942210B2 (ja) |
KR (1) | KR101807377B1 (ja) |
CN (1) | CN104813529B (ja) |
DK (1) | DK2922132T3 (ja) |
WO (1) | WO2014077257A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033895A (ja) * | 2015-08-06 | 2017-02-09 | 東洋紡株式会社 | レドックス電池用隔膜 |
KR101814716B1 (ko) * | 2016-05-23 | 2018-01-03 | 한국화학연구원 | 상전환법 및 롤-프레스 방법으로 제조된 고분자 다공성 막 및 이를 구비한 레독스 흐름전지 |
JP2019102225A (ja) * | 2017-11-30 | 2019-06-24 | 旭化成株式会社 | レドックスフロー電池用隔膜及びレドックスフロー電池 |
JP2019195788A (ja) * | 2018-05-11 | 2019-11-14 | 住友電工ファインポリマー株式会社 | 多層シートの製造方法 |
JP2021531161A (ja) * | 2018-07-27 | 2021-11-18 | ダブリュ.エル.ゴア アンド アソシエイツ, インコーポレイティドW.L. Gore & Associates, Incorporated | 連続アイオノマー相を有する一体型複合膜 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015014828A1 (de) * | 2015-11-18 | 2017-05-18 | Friedrich-Schiller-Universität Jena | Hybrid-Flow-Zelle zur Speicherung elektrischer Energie und deren Verwendung |
JP6540961B2 (ja) * | 2016-01-26 | 2019-07-10 | 住友電気工業株式会社 | 電池、及びシール材 |
CN109314263A (zh) * | 2016-06-17 | 2019-02-05 | 3M创新有限公司 | 离子交换膜以及生产离子交换膜的方法、膜电极组件和氧化还原液流电池组 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
CN110998945A (zh) * | 2017-08-09 | 2020-04-10 | 住友电气工业株式会社 | 氧化还原液流电池 |
KR102335259B1 (ko) | 2018-05-24 | 2021-12-02 | 한국화학연구원 | 연신을 통한 레독스 흐름 전지용 분리막의 제조방법 및 그로부터 제조되는 레독스 흐름 전지용 분리막 |
US11791479B2 (en) * | 2018-08-10 | 2023-10-17 | Ess Tech, Inc. | Methods and system for manufacturing a redox flow battery system by roll-to-roll processing |
CN110416477A (zh) * | 2019-07-19 | 2019-11-05 | 田韬 | 一种锂硫电池正极用离子透过型包覆膜材料 |
KR20220048022A (ko) * | 2019-10-08 | 2022-04-19 | 아사히 가세이 가부시키가이샤 | 폴리올레핀 미다공막 |
CN112652784B (zh) * | 2019-10-11 | 2022-05-06 | 中国科学院大连化学物理研究所 | 一种Daramic复合离子传导膜及制备和应用 |
US11923584B2 (en) * | 2020-04-24 | 2024-03-05 | Asahi Kasei Kabushiki Kaisha | Membrane for redox flow battery, method for producing membrane for redox flow battery, membrane electrode assembly for redox flow battery, cell for redox flow battery, and redox flow battery |
WO2022038543A1 (en) * | 2020-08-19 | 2022-02-24 | W. L. Gore & Associates, Inc. | Composite electrolyte membrane |
KR102492270B1 (ko) | 2020-10-26 | 2023-01-26 | 한국화학연구원 | 과불화탄소계 고분자 전해질의 이축연신과 이를 이용한 바나듐 레독스 흐름전지 및 고분자전해질 수전해 장치 |
CN113471464B (zh) * | 2021-05-19 | 2022-07-08 | 深圳先进技术研究院 | 一种电池隔膜用材料、材料制备方法及电池隔膜 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59214173A (ja) | 1983-05-20 | 1984-12-04 | Meidensha Electric Mfg Co Ltd | 亜鉛−臭素電池のセパレ−タ |
JPH04312764A (ja) | 1991-04-09 | 1992-11-04 | Toyota Central Res & Dev Lab Inc | 亜鉛−臭素電池用セパレータ |
JPH09223513A (ja) * | 1996-02-19 | 1997-08-26 | Kashimakita Kyodo Hatsuden Kk | 液循環式電池 |
JPH10172600A (ja) * | 1996-12-10 | 1998-06-26 | Tokuyama Corp | バナジウム系レドックスフロー電池用隔膜 |
JP2005158383A (ja) * | 2003-11-25 | 2005-06-16 | Sumitomo Electric Ind Ltd | レドックス電池 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06260183A (ja) | 1993-03-04 | 1994-09-16 | Sumitomo Electric Ind Ltd | 水溶媒系電気化学装置用隔膜およびそれを用いた水溶媒系電池 |
JP4837224B2 (ja) | 2000-05-22 | 2011-12-14 | 旭化成イーマテリアルズ株式会社 | 亜鉛臭素二次電池用セパレータ及びその製造方法 |
CA2527871C (en) | 2003-06-27 | 2010-08-17 | Asahi Kasei Chemicals Corporation | Polymer electrolyte membrane having high durability and method for producing the same |
JP5474573B2 (ja) | 2008-02-06 | 2014-04-16 | 旭化成イーマテリアルズ株式会社 | 金属ハロゲン電池用セパレーター |
EP2650947A4 (en) | 2010-12-10 | 2014-05-21 | Dalian Chemical Physics Inst | USE OF A POROUS MEMBRANE AND COMPOUND MEMBRANE THEREOF IN A REDOX FLOW MEMORY BATTERY |
-
2013
- 2013-11-12 EP EP13855385.4A patent/EP2922132B1/en active Active
- 2013-11-12 DK DK13855385.4T patent/DK2922132T3/en active
- 2013-11-12 US US14/442,148 patent/US9837678B2/en active Active
- 2013-11-12 KR KR1020157012055A patent/KR101807377B1/ko active Active
- 2013-11-12 WO PCT/JP2013/080609 patent/WO2014077257A1/ja active Application Filing
- 2013-11-12 JP JP2014546994A patent/JP5942210B2/ja active Active
- 2013-11-12 CN CN201380059066.1A patent/CN104813529B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59214173A (ja) | 1983-05-20 | 1984-12-04 | Meidensha Electric Mfg Co Ltd | 亜鉛−臭素電池のセパレ−タ |
JPH04312764A (ja) | 1991-04-09 | 1992-11-04 | Toyota Central Res & Dev Lab Inc | 亜鉛−臭素電池用セパレータ |
JPH09223513A (ja) * | 1996-02-19 | 1997-08-26 | Kashimakita Kyodo Hatsuden Kk | 液循環式電池 |
JPH10172600A (ja) * | 1996-12-10 | 1998-06-26 | Tokuyama Corp | バナジウム系レドックスフロー電池用隔膜 |
JP2005158383A (ja) * | 2003-11-25 | 2005-06-16 | Sumitomo Electric Ind Ltd | レドックス電池 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017033895A (ja) * | 2015-08-06 | 2017-02-09 | 東洋紡株式会社 | レドックス電池用隔膜 |
KR101814716B1 (ko) * | 2016-05-23 | 2018-01-03 | 한국화학연구원 | 상전환법 및 롤-프레스 방법으로 제조된 고분자 다공성 막 및 이를 구비한 레독스 흐름전지 |
JP2019102225A (ja) * | 2017-11-30 | 2019-06-24 | 旭化成株式会社 | レドックスフロー電池用隔膜及びレドックスフロー電池 |
JP2019195788A (ja) * | 2018-05-11 | 2019-11-14 | 住友電工ファインポリマー株式会社 | 多層シートの製造方法 |
JP7123619B2 (ja) | 2018-05-11 | 2022-08-23 | 住友電工ファインポリマー株式会社 | 多層シートの製造方法 |
JP2021531161A (ja) * | 2018-07-27 | 2021-11-18 | ダブリュ.エル.ゴア アンド アソシエイツ, インコーポレイティドW.L. Gore & Associates, Incorporated | 連続アイオノマー相を有する一体型複合膜 |
JP7342103B2 (ja) | 2018-07-27 | 2023-09-11 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | 連続アイオノマー相を有する一体型複合膜 |
Also Published As
Publication number | Publication date |
---|---|
DK2922132T3 (en) | 2018-03-26 |
US20160260988A1 (en) | 2016-09-08 |
EP2922132B1 (en) | 2018-02-21 |
EP2922132A1 (en) | 2015-09-23 |
EP2922132A4 (en) | 2016-01-06 |
KR20150070234A (ko) | 2015-06-24 |
JPWO2014077257A1 (ja) | 2017-01-05 |
US9837678B2 (en) | 2017-12-05 |
CN104813529A (zh) | 2015-07-29 |
JP5942210B2 (ja) | 2016-06-29 |
KR101807377B1 (ko) | 2017-12-08 |
CN104813529B (zh) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5942210B2 (ja) | レドックスフロー二次電池用隔膜及びそれを用いたレドックスフロー二次電池 | |
JP5797778B2 (ja) | レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 | |
JP6005065B2 (ja) | レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 | |
JP6034200B2 (ja) | レドックスフロー二次電池 | |
JP5823601B2 (ja) | 高分子電解質膜 | |
JP5334273B2 (ja) | フッ素系高分子電解質膜 | |
CN104011921A (zh) | 氧化还原液流二次电池和氧化还原液流二次电池用电解质膜 | |
JP5972286B2 (ja) | レドックスフロー二次電池及びレドックスフロー二次電池用電解質膜 | |
JP6131051B2 (ja) | レドックスフロー二次電池用電解質膜及びそれを用いたレドックスフロー二次電池 | |
JP5189394B2 (ja) | 高分子電解質膜 | |
TW202141834A (zh) | 氧化還原液流電池用隔膜、氧化還原液流電池用隔膜之製造方法、氧化還原液流電池用隔膜電極接合體、氧化還原液流電池用單元及氧化還原液流電池 | |
CN104377371A (zh) | 氧化还原液流二次电池用电解质膜 | |
JP6101494B2 (ja) | レドックスフロー二次電池用電解質膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13855385 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014546994 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157012055 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013855385 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442148 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |