WO2013147090A1 - ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス - Google Patents
ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス Download PDFInfo
- Publication number
- WO2013147090A1 WO2013147090A1 PCT/JP2013/059393 JP2013059393W WO2013147090A1 WO 2013147090 A1 WO2013147090 A1 WO 2013147090A1 JP 2013059393 W JP2013059393 W JP 2013059393W WO 2013147090 A1 WO2013147090 A1 WO 2013147090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas barrier
- layer
- primer layer
- barrier laminate
- meth
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/048—Forming gas barrier coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/12—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
- C08J7/0423—Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
- C08J7/18—Chemical modification with polymerisable compounds using wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5886—Mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2433/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2433/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2433/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2433/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2433/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C08J2433/10—Homopolymers or copolymers of methacrylic acid esters
- C08J2433/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2483/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2483/16—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
Definitions
- the present invention relates to a gas barrier laminate, a manufacturing method thereof, an electronic device member comprising the gas barrier laminate, and an electronic device including the electronic device member.
- Patent Document 1 discloses a gas barrier resin film having an inorganic vapor deposition layer (gas barrier layer), a specific adhesive layer, and a polyolefin-based resin layer sequentially on a base material layer, and the base material layer is a polyamide-based material. It consists of a resin layer and an anchor coat layer (primer layer), the anchor coat layer exists so as to be in contact with the inorganic vapor deposition layer, the adhesive layer is composed of a specific thermosetting polyester resin, and the compression modulus at 40 ° C.
- a film having a thickness of 5 kgf / mm 2 or more is disclosed.
- an inorganic vapor deposition layer is used as such a gas barrier layer, the flexibility is low, and there is a problem that when the gas barrier film is rolled or bent, cracks are generated in the gas barrier layer and the gas barrier property is lowered.
- Patent Document 2 proposes a method for producing a gas barrier film by forming a polysilazane film on at least one surface of the film and subjecting the polysilazane film to plasma treatment.
- the gas barrier film as described above has improved flexibility, when the gas barrier film is placed under a high temperature and high humidity for a long time, the gas barrier layer particularly hardens and shrinks, and the gas barrier property may be lowered.
- the gas barrier film when producing a long gas barrier film by a roll-to-roll method, during winding, blocking (the film surface and the back surface of the film in contact with it) or air biting (wrinkle) There is also a problem that a winding failure occurs.
- Patent Document 3 includes a gas barrier layer and an easy-slip layer in this order on a base film, and a static friction coefficient ⁇ with respect to the stainless steel on the surface of the easy-slip layer is 0.4 or less.
- a laminated film is disclosed.
- the present invention has been made in view of the above-described prior art, and does not deteriorate the barrier property even when placed under a high temperature and high humidity for a long time, and is a gas barrier laminate excellent in winding suitability during processing. It is an object of the present invention to provide a body, a manufacturing method thereof, an electronic device member made of the gas barrier laminate, and an electronic device including the electronic device member.
- the inventors of the present invention are gas barrier laminates in which a primer layer and a gas barrier layer are sequentially laminated on at least one surface of a substrate, and the primer layer has a temperature of 90 ° C.
- the laminate having an elastic modulus of 1.6 GPa or more and a coefficient of static friction between the surface of one side of the laminate and the surface of the other side of 0.35 to 0.8 has a gas barrier property, It has been found that it is excellent in both durability and winding property at the time of processing, and the present invention has been completed.
- the following gas barrier laminates (1) to (10), the method for producing a gas barrier laminate (11), the electronic device member (12), and the electronic device (13) are provided. Provided.
- the arithmetic average roughness (Ra) of the surface on the side where the primer layer and the gas barrier layer are laminated in the gas barrier laminate is 8 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is less than 150 nm.
- the arithmetic average roughness (Ra) of the surface of the other surface is 15 nm or more and the maximum cross-sectional height (Rt) of the roughness curve is 150 nm or more, the gas barrier laminate according to (1) .
- the gas barrier laminate according to (1), wherein the primer layer is a layer obtained by curing at least one of a (meth) acrylate ionizing radiation curable compound.
- the gas barrier laminate according to (1), wherein the primer layer has a thickness of 0.5 ⁇ m to 3 ⁇ m.
- the gas barrier laminate according to (1), wherein the gas barrier layer is a layer obtained by implanting ions into a silicon polymer compound layer.
- the gas barrier laminate according to (1) wherein one outermost layer is the gas barrier layer and the other outermost layer is a base material.
- the gas barrier laminate according to (1) wherein the arithmetic average roughness (Ra) of the surface of the gas barrier layer is 8 nm or less and the maximum cross-sectional height (Rt) of the roughness curve is less than 150 nm.
- a member for electronic devices comprising the gas barrier laminate according to any one of (1) to (10).
- An electronic device comprising the electronic device member according to (12).
- the gas barrier laminate of the present invention does not deteriorate the barrier property even when it is placed under a high temperature and high humidity for a long time, has an excellent gas barrier property and durability, and has excellent winding suitability during processing. . Therefore, the gas barrier laminate of the present invention can be suitably used as a flexible display or a member for an electronic device such as a solar cell (for example, a solar cell back sheet). According to the production method of the present invention, even if a long gas barrier laminate is wound into a roll, the long gas barrier laminate can be efficiently and continuously produced without causing winding failure such as blocking. Can be manufactured automatically. Since the member for electronic devices of this invention has the outstanding gas barrier property and durability, it can be used suitably for electronic devices, such as a display and a solar cell.
- FIG. 1 is a schematic view of an example of an apparatus used in the production method of the present invention.
- Gas barrier laminate of the present invention is a gas barrier laminate obtained by sequentially laminating a primer layer and a gas barrier layer on at least one surface of a substrate, and the primer layer is elastic at 90 ° C.
- the rate is 1.6 GPa or more, and the coefficient of static friction between the surface of one side of the laminate and the surface of the other side is 0.35 to 0.8.
- the substrate used for the gas barrier laminate of the present invention is usually a film or sheet.
- the thickness of the substrate is not particularly limited and may be determined according to the purpose of the gas barrier laminate, but is usually 0.5 to 500 ⁇ m, preferably 1 to 100 ⁇ m.
- the material for the substrate is not particularly limited as long as it meets the purpose of the gas barrier laminate of the present invention.
- the substrate surface is one surface of the laminate (when no layer is laminated on one surface of the substrate)
- the substrate surface and the laminate It is necessary to appropriately select the material of the base material so that the coefficient of static friction with the other surface is 0.35 to 0.8.
- the surface of a base material means the outermost side in a laminated body.
- the arithmetic average roughness (Ra) of the surface of the substrate is 15 nm or more, and the maximum cross-sectional height (Rt) of the roughness curve is 150 nm. It is preferable to be as described above.
- the base material examples include polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, and acrylic resin. , Cycloolefin polymers, aromatic polymers and the like.
- polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, polyarylate, or cycloolefin polymer is preferable, and polyester or cycloolefin polymer is more preferable because of excellent transparency and versatility.
- polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
- polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
- cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by ZEON Corporation), and the like. .
- Apel an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
- Arton a norbornene polymer manufactured by JSR
- Zeonoa a norbornene polymer manufactured by ZEON Corporation
- the base material may be obtained by curing a mixture of the above-mentioned base material and an energy ray curable compound.
- the energy ray curable compound include energy ray polymerizable monomers and energy ray polymerizable oligomers.
- the gas barrier laminate of the present invention has a primer layer having an elastic modulus at 90 ° C of 1.6 GPa or more on at least one surface of the substrate.
- the primer layer has a role of enhancing the adhesion between the base material and the gas barrier layer and further improving the gas barrier property.
- the gas barrier layer when the gas barrier layer is placed under high temperature and high humidity for a long time, it tends to cure and shrink and the gas barrier property is lowered.
- a primer layer having a high elastic modulus at a high temperature as the primer layer in contact with the gas barrier layer, the influence of this curing shrinkage can be suppressed, and as a result, the gas barrier property can be prevented from being lowered and the durability can be improved.
- the elastic modulus at 90 ° C. of the primer layer is preferably 1.6 GPa or more, preferably 1.6 to 5.0 GPa, and more preferably 2.0 to 4.0 GPa.
- the elastic modulus at 90 ° C. is preferably 1.6 GPa or more, preferably 1.6 to 5.0 GPa, and more preferably 2.0 to 4.0 GPa.
- the modulus of elasticity of the primer layer at 25 ° C. is preferably 3.2 GPa or more, more preferably 3.2 to 5.0 GPa.
- the elastic modulus at 60 ° C. is preferably 2.3 GPa or more, more preferably 2.3 to 4.5 GPa.
- the elastic modulus of such a primer layer can be measured by a known method, for example, a nanoindentation method using an ultra-micro hardness meter.
- the elasticity modulus of the primer layer of the gas barrier laminate of the present invention is measured by the method shown in Examples in the state where the primer layer is laminated on the substrate for convenience.
- the material constituting the primer layer is not particularly limited as long as the formed primer layer has an elastic modulus at 90 ° C. of 1.6 GPa or more and meets the purpose of the present invention.
- a known material can be used.
- a thermosetting compound or an ionizing radiation curable compound is preferable, and it has excellent handling properties that do not cure even at high temperatures, and from the viewpoint of excellent productivity, ionizing radiation.
- a curable compound is more preferable.
- the ionizing radiation curable compound is not particularly limited as long as it has a property of being cured by irradiation with ionizing radiation, but a (meth) acrylate ionizing radiation curable compound is preferable.
- (meth) acrylate represents “acrylate” or “methacrylate”.
- Examples of (meth) acrylate ionizing radiation curable compounds include (meth) acrylate monomers and / or prepolymers, (meth) acrylate resins, and the like. These can be used individually by 1 type or in combination of 2 or more types.
- (Meth) acrylate monomers include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, neopentyl glycol adipate di (meth) Acrylate, ethylene glycol di (meth) acrylate, isocyanuric acid ethylene oxide modified di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di ( Bifunctional (meth) acrylate compounds such as (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, and allylated cyclohexyl di (meth) acrylate; trimethylolpropane tri (me Acrylate), dipentaerythri
- the (meth) acrylate monomer a polyfunctional (meth) acrylate having a functional group number of 3 or more is preferable from the viewpoint of easily obtaining a primer layer having a desired elastic modulus range, and a hexafunctional (meth) acrylate is preferable.
- Compounds are more preferred.
- (meth) acrylate resins examples include urethane (meth) acrylate resins, polyester (meth) acrylate resins, and epoxy (meth) acrylate resins.
- Examples of the urethane (meth) acrylate resin include those obtained by reacting a hydroxyl group-containing (meth) acrylate compound, a polyvalent isocyanate compound, and a polyol compound.
- hydroxyl-containing (meth) acrylate compounds examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6-hydroxy.
- Hydroxyalkyl (meth) acrylates such as hexyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, dipropylene Glycol (meth) acrylate, fatty acid modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyl-oxypropyl methacrylate, pentaerythritol tri (meth) acrylate, caprolactone-modified pentaerythritol tri (Meth) acrylate, ethylene oxide modified penta
- polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, modified diphenylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, phenylene diisocyanate, and naphthalene diisocyanate; hexamethylene Aliphatic polyisocyanates such as diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate; hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, 1,3-bis (isocyanatomethyl) Such as cyclohexane Cyclic polyisocyanates; trimer compounds or multimeric compounds of these
- polyol-based compound examples include polyether-based polyols such as an alkylene structure-containing polyether-based polyol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol; 3 of polyhydric alcohols such as ethylene glycol and diethylene gool, polycarboxylic acids such as malonic acid, maleic acid and fumaric acid, and cyclic esters such as propiolactone, ⁇ -methyl- ⁇ -valerolactone and ⁇ -caprolactone Polyester polyols such as reactants with different components; Reaction products of polyhydric alcohols and phosgene, polycarbonate-based polyols such as ring-opening polymers of cyclic carbonates (alkylene carbonates such as ethylene carbonate, trimethylene carbonate, tetramethylene carbonate, hexamethylene carbonate); Polyolefin polyols such as those having a homopolymer or
- Examples of commercially available urethane (meth) acrylate resins include “SHIKOH UT-4690” and “SHIKOH UT-4692” (both manufactured by Nippon Synthetic Chemical Co., Ltd.).
- the polyester (meth) acrylate resin is obtained by esterifying the hydroxyl group of a polyester oligomer having a hydroxyl group at both ends obtained by dehydration condensation reaction of a polybasic carboxylic acid (anhydride) and a polyol with (meth) acrylic acid.
- examples thereof include compounds obtained, or compounds obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.
- Polybasic carboxylic acids (anhydrides) used in the production of polyester (meth) acrylate resins include (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (Anhydrous) pyromellitic acid, hexahydro (anhydrous) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like.
- polystyrene resin examples include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, triethylene glycol, propylene glycol, dimethylol heptane, trimethylol propane, pentaerythritol, dipentaerythritol and the like.
- Examples of the epoxy (meth) acrylate resin include compounds obtained by reacting an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolac type epoxy resin with (meth) acrylic acid and esterifying it. . These compounds can also use a commercial item as it is.
- a urethane (meth) acrylate-based resin is preferable from the viewpoint of improving the adhesion between the base material and the gas barrier layer.
- These (meth) acrylate resins are preferably oligomers.
- the molecular weight is preferably from 100 to 10,000, more preferably from 300 to 5000, and even more preferably from 300 to 1000.
- an enethiol ionizing radiation curable resin composition may be used together with the (meth) acrylate ionizing radiation curable compound or instead of the (meth) acrylate ionizing radiation curable compound.
- the enthiol-based ionizing radiation curable resin composition contains a compound having an ethylenically unsaturated group and a compound having a mercapto group.
- the compound having an ethylenically unsaturated group include allyl alcohol derivatives, ester compounds of acrylic acid and polyhydric alcohols, urethane acrylate, and divinylbenzene.
- the compound having a mercapto group include a polymercaptocarboxylic acid amide compound, esters of mercaptocarboxylic acid and a polyhydric alcohol, and the like.
- Examples of commercially available products include “OP-1030K” (manufactured by Denki Kagaku Kogyo Co., Ltd.).
- an ethoxylated isocyanuric acid triacrylate is used from the viewpoint of more easily forming a primer layer having a desired elastic modulus and improving adhesion between the base material and the gas barrier layer.
- trifunctional (meth) acrylate compounds such as 6-functional (meth) acrylate compounds such as dipentaerythritol hexa (meth) acrylate, urethane (meth) acrylate resins, and combinations thereof. Dipentaerythritol hexa (meth) A mixture of a hexafunctional (meth) acrylate compound such as acrylate and a urethane (meth) acrylate resin is particularly preferable.
- the primer layer is prepared by using an ionizing radiation curable compound or the like and, if desired, a photopolymerization initiator in an appropriate solvent.
- the primer layer forming solution dissolved or dispersed in is applied to one or both sides of the substrate, the resulting coating film is dried, then heated as desired, and then cured by irradiation with ionizing radiation. Can be formed.
- the photopolymerization initiator used is not particularly limited, and conventionally known photopolymerization initiators can be used.
- photopolymerization initiators can be used.
- 2,4,6-trimethylbenzoyl-diphenylphosphine oxide benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether; acetophenone, dimethylaminoacetophenone, 2 , 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone and other acetophenone compounds; 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxye
- the amount of the photopolymerization initiator used is in the range of 0.1 to 7% by mass, preferably 1 to 5% by mass in the solid of the primer layer forming solution.
- Solvents used include ester solvents such as ethyl acetate and propyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbon solvents such as benzene and toluene; saturated hydrocarbons such as pentane and hexane. Solvent; and a mixed solvent composed of two or more of these solvents; and the like.
- a known wet coating method can be used as a method of applying the primer layer forming solution to the substrate.
- a known wet coating method can be used. Examples thereof include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
- a conventionally known drying method such as hot air drying, hot roll drying, infrared irradiation or the like can be employed.
- the heating temperature is usually in the range of 60 to 130 ° C.
- the heating time is usually several seconds to several tens of minutes.
- Ionizing radiation means electromagnetic waves or charged particle beams that can polymerize and crosslink molecules.
- ionizing radiation ultraviolet rays and electron beams are usually used, but ultraviolet rays are particularly preferable.
- a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, a metal halide lamp, a microwave excitation lamp, a chemical lamp or the like can be used.
- No particular limitation on the amount of ionizing radiation but is usually in the range of 10mJ / cm 2 ⁇ 1,000mJ / cm 2.
- the irradiation time is usually several seconds to several hours, and the irradiation temperature is usually in the range of room temperature to 100 ° C.
- the thickness of the primer layer obtained is preferably 0.5 to 3 ⁇ m, more preferably 1 to 3 ⁇ m.
- the arithmetic mean roughness (Ra) of the surface of the gas barrier layer formed on the primer layer and the maximum cross-sectional height (Rt) of the roughness curve are set. It can be controlled to a preferred value.
- Gas barrier layer The gas barrier laminate of the present invention comprises a gas barrier layer laminated on the primer layer.
- a gas barrier layer is a layer which has the characteristic (gas barrier property) which suppresses permeation
- gas barrier property gas barrier property
- the arithmetic average roughness (Ra) of the surface of the gas barrier layer is 8 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is 150 nm. It is preferable that it is less than.
- the gas barrier layer examples include a gas barrier layer made of an inorganic vapor deposition film, a gas barrier layer containing a gas barrier resin, and a gas barrier layer obtained by implanting ions into a layer containing a polymer compound.
- a layer obtained by implanting ions into a polymer compound layer is preferable.
- These gas barrier layers may be a single layer or multiple layers.
- Examples of the polymer compound used for forming the layer containing the polymer compound include silicon-based polymer compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, and polysulfone. , Polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic polymer, and combinations of two or more thereof.
- silicon-based polymer compound in that excellent gas barrier properties can be obtained.
- known compounds can be used, and examples thereof include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds (Japanese Patent Laid-Open No. 10-245436, special table). JP 2003-514822 A, JP 2005-36089 A, JP 2008-63586 A, JP 2009-235358 A, JP 2009-286891 A, JP 2010-106100 A, JP 2010-106 A. No. 229445, JP 2010-232569 A, JP 2010-238736 A, etc.).
- a polysilazane compound or a polyorganosiloxane compound is preferable because a gas barrier layer having excellent gas barrier properties can be easily formed.
- the polysilazane compound is a polymer compound having a repeating unit represented by (—Si—N—) in the molecule, and known compounds such as organic polysilazane, inorganic polysilazane, and modified polysilazane can be used. Of these, inorganic polysilazane and organic polysilazane are preferable. From the viewpoint of availability and an injection layer having excellent gas barrier properties, inorganic polysilazane is more preferable, and perhydropolysilazane is particularly preferable.
- a polysilazane layer (a layer containing a polysilazane compound as a silicon-based polymer compound) is obtained by bringing a plasma-polymerizable silazane compound gas such as dimethyldisilazane, tetramethyldisilazane, hexamethyldisilazane, etc. into contact with the intermediate layer. It can also be formed by performing a polymerization treatment (Japanese Patent Laid-Open No. 9-143289). Moreover, the polysilazane compound can also use the commercial item marketed as a glass coating material etc. as it is.
- the layer containing the polymer compound may contain other components in addition to the polymer compound as long as the object of the present invention is not impaired.
- other components include curing agents, other polymers, anti-aging agents, light stabilizers, and flame retardants.
- the content of the polymer compound in the layer containing the polymer compound is preferably 50% by weight or more, and preferably 70% by weight or more from the viewpoint of forming an ion-implanted layer having excellent gas barrier properties. More preferred.
- the layer containing the polymer compound can be formed in the same manner as the primer layer using a gas barrier layer forming composition in which the polymer compound and other components as desired are dissolved or dispersed in a solvent.
- the thickness of the layer containing the polymer compound to be formed is not particularly limited, but is usually 20 nm to 1 ⁇ m, preferably 30 to 500 nm, more preferably 40 to 200 nm.
- a gas barrier laminate having a sufficient gas barrier property can be obtained even if the thickness of the layer containing the polymer compound is nano-order.
- Examples of ions implanted into the layer containing the high molecular compound include argon, helium, neon, krypton, xenon, and other rare gases, fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, and the like; gold, And ions of metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
- metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum.
- an ion implantation layer that can be implanted more easily and has particularly excellent gas barrier properties and transparency can be obtained. At least one ion selected is preferred.
- the ion implantation amount may be appropriately determined according to the purpose of use of the gas barrier laminate to be formed (necessary gas barrier properties, transparency, etc.).
- Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like. Among them, in the present invention, the latter method of implanting plasma ions is preferable because a gas barrier layer can be easily obtained.
- plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high-voltage pulse is applied to a layer containing a polymer compound, whereby ions (positive ions) in the plasma are applied. ) Can be injected into the surface portion of the layer containing the polymer compound.
- a plasma generation gas such as a rare gas
- a negative high-voltage pulse is applied to a layer containing a polymer compound, whereby ions (positive ions) in the plasma are applied.
- the thickness of the region into which ions are implanted can be controlled by the implantation conditions such as the type of ions, applied voltage, treatment time, etc., the thickness of the layer containing the polymer compound, However, it is usually 10 to 1000 nm.
- the ion implantation can be confirmed by performing an elemental analysis measurement in the vicinity of 10 nm from the surface using X-ray photoelectron spectroscopy (XPS).
- XPS X-ray photoelectron spectroscopy
- the thickness of the formed gas barrier layer is not particularly limited, but is usually 20 nm to 1 ⁇ m, preferably 30 to 500 nm, more preferably 40 to 200 nm. In the present invention, even if the gas barrier layer is nano-order, a gas barrier laminate having a sufficient gas barrier property can be obtained.
- the gas barrier laminate of the present invention has a layer structure in which at least a primer layer and a gas barrier layer are sequentially laminated on one side of a substrate, but the primer layer and the gas barrier layer are on one side of the substrate.
- Sequentially laminated layers base material / primer layer / gas barrier layer
- a primer layer and a gas barrier layer are sequentially laminated on both sides of the base material (gas barrier layer / primer layer / base material / primer layer / gas barrier layer) )
- Examples of other layers include a protective layer, a conductor layer, a protective sheet, a pressure-sensitive adhesive layer, and a release sheet.
- the gas barrier laminate of the present invention has other layers, for example, (base material / primer layer / gas barrier layer / protective layer), (base material / primer layer / gas barrier layer / conductor layer), (base material / Examples thereof include a primer layer / gas barrier layer / protective sheet), (conductor layer / base material / primer layer / gas barrier layer), and (protective layer / base material / primer layer / gas barrier layer).
- one outermost layer is a gas barrier layer and the other outermost layer is a base material.
- the static friction coefficient between the surface of one surface of the laminate and the surface of the other surface needs to have a predetermined value.
- the coefficient of static friction between the surface of one surface and the surface of the other surface is 0.35 to 0.8, preferably 0.35 to 0.65, and 0 It is particularly preferably 40 to 0.60.
- the coefficient of static friction is in such a range, the slipperiness becomes appropriate, especially when the laminate is a long film, when taking up during processing, poor winding such as blocking and air biting. Does not occur, and the winding property is excellent.
- the static friction coefficient is a value measured according to JIS K7125.
- the method for setting the coefficient of static friction between the surface of one side of the gas barrier laminate and the surface of the other side to 0.35 to 0.8 is not particularly limited and may be achieved empirically.
- the arithmetic average roughness (Ra) of the surface on the side where the primer layer and the gas barrier layer are laminated in the gas barrier laminate is 8 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is less than 150 nm.
- a method is preferred in which the arithmetic mean roughness (Ra) of the surface of the other surface is 15 nm or more and the maximum cross-sectional height (Rt) of the roughness curve is 150 nm or more.
- the gas barrier layer becomes the outermost layer of the laminate (for example, (base material / primer layer / gas barrier layer), (gas barrier layer / primer layer / base material / primer layer / Gas barrier layer) (conductor layer / base material / primer layer / gas barrier layer), (protective layer / base material / primer layer / gas barrier layer), etc.) is the arithmetic average roughness (Ra) of the surface of the gas barrier layer Is set to 8 nm or less, and the maximum sectional height (Rt) of the roughness curve is set to less than 150 nm, the coefficient of static friction with the surface of the other surface of the laminate may be set to 0.35 to 0.8.
- Ra arithmetic average roughness
- Rt maximum sectional height
- the surface of the surface of a gas barrier layer means the surface located on the opposite side to a base material in the obtained laminated body.
- the gas barrier layer may be formed as described above on the above-described primer layer whose thickness is appropriately adjusted in the range of 1 to 3 ⁇ m.
- the obtained laminate when other layers such as a conductor layer are provided on the gas barrier layer as in the structure of (base material / primer layer / gas barrier layer / conductor layer), a conductor layer, etc.
- the other layers may be such that the maximum cross-sectional height (Rt) of the roughness curve is less than 150 nm.
- the surface roughness can be adjusted by roughening the surface of the substrate.
- the surface roughening treatment include a corona discharge treatment method, a surface treatment method using an antiblocking agent to which a filler has been added, and the like.
- the arithmetic average roughness (Ra) of the surface is 15 nm or more on the side opposite to the side on which the primer layer and the gas barrier layer of the substrate are laminated, and the maximum cross-sectional height of the roughness curve A layer having a thickness (Rt) of 150 nm or more may be provided.
- the arithmetic average roughness (Ra) of the surface and the maximum cross-sectional height (Rt) of the roughness curve can be measured by a conventionally known method using, for example, an optical interference microscope.
- the gas barrier laminate of the present invention has excellent gas barrier properties. It can be confirmed that the gas barrier laminate of the present invention has an excellent gas barrier property because, for example, the water vapor permeability of the laminate is small.
- Water vapor transmission rate is preferably not more than 0.1g / m 2 / day, more preferably not more than 0.05g / m 2 / day.
- permeability such as water vapor
- the gas barrier laminate of the present invention has excellent durability. It can be confirmed that the gas barrier laminate of the present invention has excellent durability because, for example, the gas barrier performance hardly deteriorates even when the gas barrier performance is placed under high temperature and high humidity for a long time.
- the rate of increase in water vapor transmission rate after standing for 150 hours at a temperature of 60 ° C. and a relative humidity of 90% is preferably 60% or less, more preferably 10% or less, and 5% or less. Is more preferable.
- the gas barrier laminate of the present invention is preferably a long laminate film (sheet). This is because the effects of the present invention are more easily obtained.
- the thickness of the laminated film can be appropriately determined depending on the intended use.
- the gas barrier laminate of the present invention is formed by forming a primer layer having an elastic modulus at 90 ° C. of 1.6 GPa or more on at least one surface of a predetermined substrate. On the prepared primer layer, a predetermined gas barrier layer is formed so that the static friction coefficient between the surface of one surface of the laminate and the surface of the other surface is 0.35 to 0.8. Can do.
- step (I) and the step (II) on a long base material by a roll-to-roll method.
- FIG. 1 is a schematic view of an example of an apparatus used in the production method of the present invention.
- 1 is an unwinding roll
- 2 is a winding roll
- 3 is a long base material (hereinafter simply referred to as a primer layer having an elastic modulus at 90 ° C. of 1.6 GPa or more on at least one side).
- a is a means for forming a layer containing a polymer compound
- b is an ion implantation means.
- the resin films listed as the base material in the previous section As the long base material to be used, it is preferable to use the resin films listed as the base material in the previous section.
- the above-mentioned primer layer forming solution is applied and dried on the above-described long substrate by a known method, and then ionizing radiation is applied to the formed coating film.
- step (I) as shown in FIG. 1, a layer containing a polymer compound is formed on the primer layer by means of forming a layer containing a polymer compound while conveying the substrate 3 with a primer layer in a certain direction. Form.
- ions are implanted into the surface portion of the layer containing the formed polymer compound by the ion implantation means b.
- a method for implanting ions as described above, a method using plasma ion implantation is preferable.
- step (II) the base material 3 on which the primer layer and the gas barrier layer are sequentially laminated is wound up in a roll shape by the winding roll 2.
- the surface of one surface can be selected by appropriately selecting the base material, the primer layer forming composition, the polymer compound material, etc. as described above, and further controlling the film thickness and surface roughness. And a laminate having a coefficient of static friction between the surface of the other surface of 0.35 and 0.8. Therefore, even if it winds up, winding-up defects, such as blocking and air biting, do not generate
- the electronic device member of the present invention comprises the gas barrier laminate of the present invention. Therefore, since the electronic device member of the present invention has excellent gas barrier properties, it is possible to prevent deterioration of the element due to gas such as water vapor. Moreover, since it is excellent in durability, it is suitable as a display member such as a liquid crystal display or an EL display; a back sheet for a solar cell;
- the electronic device of the present invention includes the electronic device member of the present invention. Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the gas barrier laminate of the present invention, it has excellent gas barrier properties and durability.
- Primer layer forming solutions (primer layer forming solutions A to I) were prepared as follows. ⁇ Preparation of primer layer forming solution A> As a (meth) acrylate-based ionizing radiation curable compound, 20 parts by mass of dipentaerythritol hexaacrylate (A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd., the same below) was dissolved in 100 parts by mass of methyl isobutyl ketone, and then light A polymerization initiator (Irgacure 127, manufactured by BASF) was added in an amount of 3 parts by mass with respect to 100 parts by mass of the solid content of the primer layer forming solution to prepare a primer layer forming solution A.
- A-DPH dipentaerythritol hexaacrylate
- BASF light A polymerization initiator
- urethane (meth) acrylate resin SHIKOH UT-4690, manufactured by Nippon Synthetic Chemical Co., Ltd.
- Primer layer forming solution C instead of 20 parts by mass of dipentaerythritol hexaacrylate, 20 masses of a mixture (mass ratio 1: 1) of dipentaerythritol hexaacrylate and urethane (meth) acrylate resin (SHIKOH UT-4690, manufactured by Nippon Synthetic Chemical Co., Ltd.)
- a primer layer forming solution C was prepared in the same manner as in the preparation of the primer layer forming solution A except that a part thereof was used.
- primer layer forming solution D ⁇ Preparation of primer layer forming solution D>
- the primer layer forming solution A was used in place of 20 parts by mass of dipentaerythritol hexaacrylate, except that 20 parts by mass of ethoxylated isocyanuric acid triacrylate (A-9300, manufactured by Shin-Nakamura Chemical Co., Ltd., the same applies hereinafter) was used.
- a primer layer forming solution D was prepared in the same manner as in the preparation.
- Primer layer forming solution E instead of 20 parts by mass of dipentaerythritol hexaacrylate, a mixture (mass ratio 1: 1) of ethoxylated isocyanuric acid triacrylate and a urethane acrylate UV curable compound (SHIKOH UT-4690, manufactured by Nippon Synthetic Chemical Co., Ltd.) 20 mass A primer layer forming solution E was prepared in the same manner as the primer layer forming solution A except that the above-mentioned parts were used.
- Primer layer forming solution F instead of 20 parts by mass of dipentaerythritol hexaacrylate, 20 parts by mass of a mixture (mass ratio 1: 1) of dipentaerythritol hexaacrylate and a urethane acrylate UV curable compound (SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd.)
- a primer layer forming solution F was prepared in the same manner as the primer layer forming solution A except that it was used.
- ⁇ Preparation of primer layer forming solution G Preparation of the primer layer forming solution A except that 20 parts by mass of a urethane acrylate UV curable compound (SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of 20 parts by mass of dipentaerythritol hexaacrylate. Similarly, a primer layer forming solution G was prepared.
- a urethane acrylate UV curable compound SHIKOH UT-4692, manufactured by Nippon Synthetic Chemical Co., Ltd.
- ⁇ Preparation of primer layer forming solution H Preparation of the primer layer forming solution A except that 20 parts by mass of a urethane acrylate-based ultraviolet curable compound (SHIKOH UT-4695, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of 20 parts by mass of dipentaerythritol hexaacrylate. Similarly, a primer layer forming solution H was prepared.
- a urethane acrylate-based ultraviolet curable compound SHIKOH UT-4695, manufactured by Nippon Synthetic Chemical Co., Ltd.
- ⁇ Preparation of primer layer forming solution I> Preparation of the primer layer forming solution A except that 20 parts by mass of a urethane acrylate-based ultraviolet curable compound (SHIKOH UT-4697, manufactured by Nippon Synthetic Chemical Co., Ltd.) was used instead of 20 parts by mass of dipentaerythritol hexaacrylate. Similarly, a primer layer forming solution I was prepared.
- a urethane acrylate-based ultraviolet curable compound SHIKOH UT-4697, manufactured by Nippon Synthetic Chemical Co., Ltd.
- Example 1 The primer layer forming solution A was applied by bar coating to a PET film (PET25 T-100, thickness 25 ⁇ m, manufactured by Mitsubishi Plastics, hereinafter referred to as “PET film A”) as a base material, and the coating film was coated with 1 at 70 ° C. After heating and drying for a minute, UV light irradiation is performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), thickness A 1 ⁇ m primer layer was formed. The elastic modulus at 90 ° C. of the formed primer layer was 3.59 GPa.
- the elastic modulus was measured by the following method. ⁇ Elastic modulus> The modulus of elasticity of the primer layer is determined by the elasticity at the position of the surface of the primer layer at 25 ° C., 60 ° C., and 90 ° C. by a nanoindentation method using an ultra micro hardness tester (DUH-W201-S, manufactured by Shimadzu Corporation). The rate (GPa) was measured. The measurement results are shown in Table 1 below.
- perhydropolysilazane (AZNL110A-20, manufactured by AZ Electronic Materials) was applied by spin coating and heated at 120 ° C. for 2 minutes to form a perhydropolysilazane layer (thickness 150 nm) on the primer layer. ) was formed. Thereafter, using a plasma ion implantation apparatus, argon (Ar) was ion-implanted into the surface of the layer containing perhydropolysilazane to produce a laminate 1.
- Plasma ion implantation was performed using the following apparatus under the following conditions.
- RF power source Model number “RF” 56000, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Seisakusho
- Example 2 In Example 1, a laminate 2 was produced in the same manner as in Example 1 except that the primer layer forming solution B was used instead of the primer layer forming solution A.
- Example 3 In Example 1, a laminate 3 was produced in the same manner as in Example 1 except that the primer layer forming solution C was used instead of the primer layer forming solution A.
- Example 4 A laminate 4 was produced in the same manner as in Example 1 except that the primer layer forming solution D was used in place of the primer layer forming solution A in Example 1.
- Example 5 A laminate 5 was produced in the same manner as in Example 1 except that the primer layer forming solution E was used instead of the primer layer forming solution A in Example 1.
- Example 6 In Example 1, a laminate 6 was produced in the same manner as in Example 1 except that the primer layer forming solution F was used instead of the primer layer forming solution A.
- Example 7 A laminate 7 was produced in the same manner as in Example 1 except that a layer containing a polyorganosiloxane compound was used instead of perhydropolysilazane on the primer layer.
- the layer containing the polyorganosiloxane compound is a mixture of 2.72 parts by mass of methyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 20 ml of toluene, 10 ml of distilled water and 0.10 parts by mass of phosphoric acid (manufactured by Kanto Chemical Co., Inc.).
- the resulting polyorganosiloxane compound was applied to the primer layer by spin coating and heated at 120 ° C. for 2 minutes.
- Example 8 In Example 1, a laminate was used in the same manner as in Example 1 except that PET 25 Lumirror R-56 (manufactured by Toray Industries, Inc., thickness 25 ⁇ m, hereinafter referred to as “PET film B”) was used instead of PET film A. 8 was produced.
- PET film B PET 25 Lumirror R-56
- Example 1 A laminate 1r was produced in the same manner as in Example 1 except that the primer layer forming solution G was used instead of the primer layer forming solution A in Example 1.
- Example 2 A laminate 2r was produced in the same manner as in Example 1 except that the primer layer forming solution H was used instead of the primer layer forming solution A in Example 1.
- Example 3 A laminate 3r was produced in the same manner as in Example 1 except that the primer layer forming solution I was used instead of the primer layer forming solution A in Example 1.
- Example 4 A laminate 4r was produced in the same manner as in Example 1 except that the primer layer forming solution J was used instead of the primer layer forming solution A in Example 1.
- Example 5 a laminated body 5r was produced in the same manner as in Example 5 except that the PET film B was used instead of the PET film A.
- Example 6 (Comparative Example 6) In Example 1, instead of PET film A, PET 25T-702 (manufactured by Mitsubishi Plastics Co., Ltd., thickness 25 ⁇ m, hereinafter referred to as “PET film C”) was used in the same manner as in Example 1 to obtain a laminate 6r. Was made.
- PET film C PET 25T-702 (manufactured by Mitsubishi Plastics Co., Ltd., thickness 25 ⁇ m, hereinafter referred to as “PET film C”) was used in the same manner as in Example 1 to obtain a laminate 6r. Was made.
- Example 7 (Comparative Example 7)
- PET 25 Tetron HPE manufactured by Teijin DuPont, thickness 25 ⁇ m, hereinafter referred to as “PET film D”
- PET film D PET 25 Tetron HPE
- the surface (gas barrier) of one side of the laminate was examined with an optical interference microscope (Veeco, NT8000).
- the maximum cross-sectional height (Rt) and the static friction coefficient between the gas barrier layer surface and the substrate surface were measured according to JIS K7125. The measurement results are shown in Table 1 below.
- the modulus of elasticity at 90 ° C. of the primer layer is 1.6 GPa or more, and the static friction coefficient between one surface (the surface of the gas barrier layer) and the other surface (the surface of the base material) is 0.
- the laminates of Examples 1 to 8, which are .35 to 0.8, have an increase rate of water vapor transmission rate of 53% or less before and after the durability test, and are excellent in durability and winding up. Met.
- the laminates of Comparative Examples 1 to 4 in which the primer layer had an elastic modulus at 90 ° C. of 1.6 GPa or less had a large increase in water vapor permeability before and after the durability test, and was inferior in durability. Further, the laminates of Comparative Examples 5 to 7 having a static friction coefficient greater than 0.8 were inferior in winding property.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
しかしながら、ガスバリアフィルムは、高温高湿下に長時間置かれると、基材フィルムの熱収縮による劣化が原因となり、ガスバリア性が低下するという問題があった。
例えば、特許文献1には、基材層上に、無機蒸着層(ガスバリア層)、特定の接着剤層、及びポリオレフィン系樹脂層を順次有するガスバリア性樹脂フィルムであって、基材層がポリアミド系樹脂層とアンカーコート層(プライマー層)とからなり、該アンカーコート層が無機蒸着層と接するように存在し、接着剤層が特定の熱硬化性ポリエステル樹脂で構成され、40℃における圧縮弾性率が5kgf/mm2以上であるフィルムが開示されている。しかしながら、このようなガスバリア層として無機蒸着層を用いる場合、屈曲性が低く、ガスバリアフィルムを丸めたり折り曲げたりすると、該ガスバリア層にクラックが発生してガスバリア性が低下するという問題があった。
(2)前記ガスバリア性積層体におけるプライマー層及びガスバリア層が積層された側の面の表面の算術平均粗さ(Ra)が8nm以下で、粗さ曲線の最大断面高さ(Rt)が150nm未満であり、かつ、他方の面の表面の算術平均粗さ(Ra)が15nm以上で、粗さ曲線の最大断面高さ(Rt)が150nm以上である、(1)に記載のガスバリア性積層体。
(4)前記プライマー層の厚みが、0.5μm~3μmである(1)に記載のガスバリア性積層体。
(5)前記ガスバリア層が、ケイ素系高分子化合物の層にイオンを注入して得られる層である(1)に記載のガスバリア性積層体。
(6)前記ケイ素系高分子化合物の層が、ポリシラザン化合物又はポリオルガノシロキサン化合物を含むものである(5)に記載のガスバリア性積層体。
(7)長尺状の積層フィルムである(1)に記載のガスバリア性積層体。
(8)一方の最外層が前記ガスバリア層であって、他方の最外層が基材である(1)に記載のガスバリア性積層体。
(9)前記ガスバリア層の面の表面の算術平均粗さ(Ra)が8nm以下、粗さ曲線の最大断面高さ(Rt)が150nm未満である(1)に記載のガスバリア性積層体。
(10)前記基材の表面の算術平均粗さ(Ra)が15nm以上、粗さ曲線の最大断面高さ(Rt)が150nm以上である(1)に記載のガスバリア性積層体。
工程(I):少なくとも片面に、90℃における弾性率が1.6GPa以上であるプライマー層が形成された長尺状の基材を一定方向に搬送しながら、前記プライマー層上に、ガスバリア層を形成する工程
工程(II):ガスバリア層が形成された基材をロール状に巻き取る工程
(13)前記(12)に記載の電子デバイス用部材を備える電子デバイス。
本発明の製造方法によれば、長尺状のガスバリア性積層体をロール状に巻き取っても、ブロッキング等の巻取不良が発生することなく、長尺状のガスバリア性積層体を効率よく連続的に製造することができる。
本発明の電子デバイス用部材は、優れたガスバリア性と耐久性を有するため、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
本発明のガスバリア性積層体は、基材の少なくとも片面に、プライマー層及びガスバリア層を順次積層してなるガスバリア性積層体であって、前記プライマー層が、90℃における弾性率が1.6GPa以上のものであり、かつ、積層体の一方の面の表面と他方の面の表面との静摩擦係数が0.35~0.8であることを特徴とする。
本発明のガスバリア性積層体に用いる基材は、通常フィルム状又はシート状のものである。基材の厚みとしては、特に限定されず、ガスバリア性積層体の目的に合わせて決定すればよいが、通常0.5~500μm、好ましくは1~100μmである。
このような場合、静摩擦係数を所定の範囲とする方法として、具体的には、基材の表面の算術平均粗さ(Ra)が15nm以上、粗さ曲線の最大断面高さ(Rt)が150nm以上となるようにすることが好ましい。
ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
本発明のガスバリア性積層体は、前記基材の少なくとも片面に、90℃における弾性率が1.6GPa以上のプライマー層を有する。
プライマー層は、基材とガスバリア層との密着性を高め、ガスバリア性をより向上させる役割を有する。
ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能(メタ)アクリレート化合物;
ジペンタエリスリトールペンタ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能(メタ)アクリレート化合物;
ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能(メタ)アクリレート化合物等が挙げられる。
エチレングリコール、ジエチレングール等の多価アルコール、マロン酸、マレイン酸、フマル酸等の多価カルボン酸、及び、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトン等の環状エステルの3種類の成分による反応物等のポリエステルポリオール;
上述の多価アルコールとホスゲンとの反応物、環状炭酸エステル(エチレンカーボネート、トリメチレンカーボネート、テトラメチレンカーボネート、ヘキサメチレンカーボネート等のアルキレンカーボネート等)の開環重合物等のポリカーボネート系ポリオール;
飽和炭化水素骨格としてエチレン、プロピレン、ブテン等のホモポリマー又はコポリマーを有し、その分子末端に水酸基を有するもの等のポリオレフィン系ポリオール;
炭化水素骨格としてブタジエンの共重合体を有し、その分子末端に水酸基を有するもの等のポリブタジエン系ポリオール;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルを重合体又は共重合体の分子内にヒドロキシル基を少なくとも2つ有するもの等の(メタ)アクリル系ポリオール;
ジメチルポリシロキサンポリオールやメチルフェニルポリシロキサンポリオール等のポリシロキサン系ポリオール;等が挙げられる。
これらの化合物は、市販品をそのまま使用することもできる。
これらの中でも、(メタ)アクリレート系樹脂としては、基材とガスバリア層との密着性を高めるという点から、ウレタン(メタ)アクリレート系樹脂が好ましい。
本発明のガスバリア性積層体は、前記プライマー層上にガスバリア層が積層されてなる。ガスバリア層は、酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層である。後述するように、得られる積層体において、該ガスバリア層が積層体の最外層となる場合は、そのガスバリア層の面の表面と、積層体の他方の面の表面との静摩擦係数が0.35~0.8となることを要する。
これらの中でも、ガスバリア性に優れる層を効率よく形成でき、本発明の目的を達成しやすいことから、高分子化合物の層にイオンを注入して得られる層であるのが好ましい。
これらのガスバリア層は、単層でもよく、多層でもよい。
ケイ素系高分子化合物としては、公知のものを用いることができ、例えば、ポリシラザン化合物、ポリカルボシラン化合物、ポリシラン化合物、及びポリオルガノシロキサン化合物等が挙げられる(特開平10-245436号公報、特表2003-514822号公報、特開2005-36089号公報、特開2008-63586号公報、特開2009-235358号公報、特開2009-286891号公報、特開2010-106100号公報、特開2010-229445号公報、特開2010-232569号公報、特開2010-238736号公報等参照)。
ポリシラザン化合物は、分子内に(-Si-N-)で表される繰り返し単位を有する高分子化合物であり、有機ポリシラザン、無機ポリシラザン、変性ポリシラザン等の公知のものを使用することができる。
なかでも、無機ポリシラザン、有機ポリシラザンが好ましく、入手容易性、及び優れたガスバリア性を有する注入層を形成できる観点から、無機ポリシラザンがより好ましく、ペルヒドロポリシラザンが特に好ましい。
また、ポリシラザン化合物は、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
本発明においては、高分子化合物を含む層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
なかでも、より簡便に注入することができ、特に優れたガスバリア性と透明性を有するイオン注入層が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン及びクリプトンからなる群から選ばれる少なくとも一種のイオンが好ましい。
本発明においては、ガスバリア層がナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
本発明のガスバリア性積層体は、少なくともプライマー層、ガスバリア層が基材の片面に順次積層してなる層構造を有するが、プライマー層、ガスバリア層が基材の片面に順次積層してなるもの(基材/プライマー層/ガスバリア層)でも、基材の両面にプライマー層、ガスバリア層が順次積層してなるもの(ガスバリア層/プライマー層/基材/プライマー層/ガスバリア層)でもよい。また、前記基材、プライマー層及びガスバリア層以外に、他の層を有していてもよい。他の層としては、例えば、保護層、導電体層、保護シート、粘着剤層、剥離シート等が挙げられる。本発明のガスバリア性積層体が他の層を有する場合、例えば、(基材/プライマー層/ガスバリア層/保護層) 、(基材/プライマー層/ガスバリア層/導電体層)、(基材/プライマー層/ガスバリア層/保護シート)、(導電体層/基材/プライマー層/ガスバリア層)、(保護層/基材/プライマー層/ガスバリア層)等の構成が挙げられる。これらの中も、一方の最外層がガスバリア層であって、他方の最外層が基材であるものが好ましい。
ただし、いずれの場合であっても、後述するように、積層体の一方の面の表面と他方の面の表面との静摩擦係数が所定の値を有する必要がある。
なお、静摩擦係数は、JIS K7125に準拠して測定した値である。
また、得られる積層体において、(基材/プライマー層/ガスバリア層/導電体層)の構成のように、前記ガスバリア層上に導電体層等のその他の層を設ける場合は、導電体層等のその他の層を、粗さ曲線の最大断面高さ(Rt)を150nm未満となるようにすれば良い。
また、得られる積層体において、前記基材のプライマー層及びガスバリア層が積層された側の面とは反対側に、表面の算術平均粗さ(Ra)を15nm以上、粗さ曲線の最大断面高さ(Rt)を150nm以上となるような層を設けてもよい。
該積層フィルムの厚みは、目的とする用途によって適宜決定することができる。
本発明のガスバリア性積層体は、上述の通り、所定の基材の少なくとも片面に、90℃における弾性率が1.6GPa以上であるプライマー層を形成し、形成されたプライマー層上に、積層体の一方の面の表面と他方の面の表面との静摩擦係数が0.35~0.8となるように、所定のガスバリア層を形成することにより製造することができる。
工程(I):少なくとも片面に、90℃における弾性率が1.6GPa以上であるプライマー層が形成された長尺状の基材を一定方向に搬送しながら、前記プライマー層上に、ガスバリア層を形成する工程
工程(II):ガスバリア層が形成された基材をロール状に巻き取る工程
図1は、本発明の製造方法に用いる装置の一例の概略図である。図1中、1は巻き出しロール、2は巻き取りロール、3は少なくとも片面に、90℃における弾性率が1.6GPa以上であるプライマー層が形成された長尺状の基材(以下、単に「プライマー層付き基材」ということがある。)、aは高分子化合物を含む層の形成手段、bはイオン注入手段を表す。
プライマー層付き基材を得る方法としては、前述した長尺状の基材上に、前述のプライマー層形成用溶液を公知の方法により塗布・乾燥し、次いで、形成された塗膜に電離放射線を照射して硬化させることにより、90℃における弾性率が1.6GPa以上であるプライマー層を形成する方法が挙げられる。
その後、工程(II)として、プライマー層及びガスバリア層が順次積層された基材3は、巻き取りロール2により、ロール状に巻き取られる。
本発明の電子デバイス用部材は、本発明のガスバリア性積層体からなることを特徴とする。従って、本発明の電子デバイス用部材は、優れたガスバリア性を有しているので、水蒸気等のガスによる素子の劣化を防ぐことができる。また、耐久性に優れるので、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池用バックシート;等として好適である。
本発明の電子デバイスは、本発明のガスバリア性積層体からなる電子デバイス用部材を備えているので、優れたガスバリア性と耐久性を有する。
〈プライマー層形成用溶液Aの調製〉
(メタ)アクリレート系電離放射線硬化型化合物として、ジペンタエリスリトールヘキサアクリレート(A-DPH、新中村化学社製、以下にて同じ)20質量部をメチルイソブチルケトン100質量部に溶解させた後、光重合開始剤(Irgacure127、BASF社製)を、プライマー層形成用溶液の固形分100質量部に対し、3質量添加してプライマー層形成用溶液Aを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ウレタン(メタ)アクリレート系樹脂(SHIKOH UT-4690、日本合成化学社製)を20質量部用いた他は、プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Bを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ジペンタエリスリトールヘキサアクリレートとウレタン(メタ)アクリレート系樹脂(SHIKOH UT-4690、日本合成化学社製)との混合物(質量比1:1)を20質量部用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Cを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、エトキシ化イソシアヌル酸トリアクリレート(A-9300、新中村化学社製、以下にて同じ)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Dを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、エトキシ化イソシアヌル酸トリアクリレートとウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4690、日本合成化学社製)との混合物(質量比1:1)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Eを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ジペンタエリスリトールヘキサアクリレートとウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4692、日本合成化学社製)の混合物(質量比1:1)を20質量部用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Fを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4692、日本合成化学社製)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Gを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4695、日本合成化学社製)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Hを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、ウレタンアクリレート系紫外線硬化型化合物(SHIKOH UT-4697、日本合成化学社製)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Iを調製した。
ジペンタエリスリトールヘキサアクリレート20質量部の代わりに、トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学社製)20質量部を用いた他は、前記プライマー層形成用溶液Aの調製と同様にして、プライマー層形成用溶液Jを調製した。
基材としてのPETフィルム(PET25 T-100、厚さ25μm、三菱樹脂社製、以下「PETフィルムA」という。)に、前記プライマー層形成用溶液Aをバーコートにより塗布し、70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm2、ピーク強度1.466W、パス回数2回)、厚さ1μmのプライマー層を形成した。
形成されたプライマー層の90℃における弾性率は3.59GPaであった。
〈弾性率〉
プライマー層の弾性率は、超微小硬度計(DUH-W201-S、島津製作所社製)を用い、ナノインデンテーション法により、25℃、60℃、90℃におけるプライマー層の表面の位置における弾性率(GPa)を測定した。測定結果を下記表1に示す。
〈プラズマイオン注入装置〉
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
〈プラズマイオン注入の条件〉
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Bを用いた以外は、実施例1と同様にして積層体2を作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Cを用いた以外は、実施例1と同様にして積層体3を作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Dを用いた以外は、実施例1と同様にして積層体4を作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Eを用いた以外は、実施例1と同様にして積層体5を作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Fを用いた以外は、実施例1と同様にして積層体6を作製した。
プライマー層上に、ペルヒドロポリシラザンの代わりにポリオルガノシロキサン系化合物を含む層を用いた以外は、実施例1と同様にして積層体7を作製した。上記ポリオルガノシロキサン系化合物を含む層は、メチルトリメトキシシラン(東京化成工業社製)2.72質量部、トルエン20ml、蒸留水10ml及びリン酸(関東化学社製)0.10質量部を混合し、室温で24時間反応させて、得られたポリオルガノシロキサン系化合物をプライマー層上に、スピンコート法により塗布し、120℃で2分間加熱することによって得た。
実施例1において、PETフィルムAの代わりに、PET25ルミラーR-56(東レ社製、厚さ25μm、以下「PETフィルムB」という。)を用いた以外は、実施例1と同様にして積層体8を作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Gを用いた以外は、実施例1と同様にして積層体1rを作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Hを用いた以外は、実施例1と同様にして積層体2rを作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Iを用いた以外は、実施例1と同様にして積層体3rを作製した。
実施例1において、プライマー層形成用溶液Aの代わりにプライマー層形成用溶液Jを用いた以外は、実施例1と同様にして積層体4rを作製した。
実施例5において、PETフィルムAの代わりに、PETフィルムBを用いた以外は、実施例5と同様にして積層体5rを作製した。
実施例1において、PETフィルムAの代わりに、PET25T-702(三菱樹脂社製、厚さ25μm、以下「PETフィルムC」という。)を用いた以外は、実施例1と同様にして積層体6rを作製した。
実施例1において、PETフィルムAの代わりに、PET25テトロンHPE(帝人デュポン社製、厚さ25μm、以下「PETフィルムD」という。)を用いた以外は、実施例1と同様にして積層体7rを作製した。
水蒸気透過度測定装置(PERMATRAN、mocon社製)を用い、耐久試験(温度60℃、相対湿度90%にて150時間放置した。)前後の水蒸気透過率(g/m2/day)を測定した。試験前後の水蒸気透過率の増加率を下記式により算出し、増加率が10%未満の場合を耐久性が優れる(◎)、10%以上60%未満の場合を耐久性が良い(○)、60%以上の場合を耐久性に劣る(×)と評価した。評価結果を下記表1に示す。
一方、プライマー層の90℃における弾性率が1.6GPa以下の比較例1~4の積層体は、耐久試験前後の水蒸気透過率の増加率が大きく、耐久性に劣るものであった。また、静摩擦係数が0.8より大きい比較例5~7の積層体は、巻取適性に劣るものであった。
Claims (13)
- 基材の少なくとも片面に、プライマー層及びガスバリア層を順次積層してなるガスバリア性積層体であって、
前記プライマー層が、90℃における弾性率が1.6GPa以上のものであり、かつ、
積層体の一方の面と他方の面との静摩擦係数が0.35~0.8であること
を特徴とするガスバリア性積層体。 - 前記ガスバリア性積層体におけるプライマー層及びガスバリア層が積層された側の面の表面の算術平均粗さ(Ra)が8nm以下、粗さ曲線の最大断面高さ(Rt)が150nm未満であり、
他方の面の表面の算術平均粗さ(Ra)が15nm以上、粗さ曲線の最大断面高さ(Rt)が150nm以上である、請求項1に記載のガスバリア性積層体。 - 前記プライマー層が、(メタ)アクリレート系紫外線硬化型樹脂の少なくとも一種を硬化させて得られる樹脂からなる層である、請求項1に記載のガスバリア性積層体。
- 前記プライマー層の厚みが、0.5μm~3μmである請求項1に記載のガスバリア性積層体。
- 前記ガスバリア層が、ケイ素系高分子化合物の層にイオンを注入して得られる層である、請求項1に記載のガスバリア性積層体。
- 前記ケイ素系高分子化合物の層が、ポリシラザン化合物又はポリオルガノシロキサン化合物を含むものである、請求項5に記載のガスバリア性積層体。
- 長尺状の積層フィルムである請求項1に記載のガスバリア性積層体。
- 一方の最外層が前記ガスバリア層であって、他方の最外層が基材である、請求項1に記載のガスバリア性積層体。
- 前記ガスバリア層の面の表面の算術平均粗さ(Ra)が8nm以下、粗さ曲線の最大断面高さ(Rt)が150nm未満である、請求項1に記載のガスバリア性積層体。
- 前記基材の表面の算術平均粗さ(Ra)が15nm以上、粗さ曲線の最大断面高さ(Rt)が150nm以上である、請求項1に記載のガスバリア性積層体。
- 以下の工程を有する請求項1~10のいずれかに記載のガスバリア性積層体の製造方法。
工程(i):少なくとも片面に、90℃における弾性率が1.6GPa以上であるプライマー層が形成された長尺状の基材を一定方向に搬送しながら、前記プライマー層上に、ガスバリア層を形成する工程
工程(ii):ガスバリア層が形成された基材をロール状に巻き取る工程 - 請求項1~10のいずれかに記載のガスバリア性積層体からなる電子デバイス用部材。
- 請求項12に記載の電子デバイス用部材を備える電子デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014508065A JP6023174B2 (ja) | 2012-03-29 | 2013-03-28 | ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス |
CN201380017203.5A CN104203560B (zh) | 2012-03-29 | 2013-03-28 | 阻气性层合体、其制造方法、电子装置用构件和电子装置 |
US14/388,688 US10669427B2 (en) | 2012-03-29 | 2013-03-28 | Gas barrier laminate, method for producing same, member for electronic devices, and electronic device |
EP13769278.6A EP2839953B1 (en) | 2012-03-29 | 2013-03-28 | Gas barrier laminate, method for producing same, member for electronic devices, and electronic device |
KR1020147025933A KR102059326B1 (ko) | 2012-03-29 | 2013-03-28 | 가스 배리어성 적층체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012076192 | 2012-03-29 | ||
JP2012-076192 | 2012-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013147090A1 true WO2013147090A1 (ja) | 2013-10-03 |
Family
ID=49260333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/059393 WO2013147090A1 (ja) | 2012-03-29 | 2013-03-28 | ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス |
Country Status (7)
Country | Link |
---|---|
US (1) | US10669427B2 (ja) |
EP (1) | EP2839953B1 (ja) |
JP (1) | JP6023174B2 (ja) |
KR (1) | KR102059326B1 (ja) |
CN (1) | CN104203560B (ja) |
TW (2) | TWI660841B (ja) |
WO (1) | WO2013147090A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152077A1 (ja) * | 2014-03-31 | 2015-10-08 | リンテック株式会社 | 長尺のガスバリア性積層体およびその製造方法 |
WO2015182203A1 (ja) * | 2014-05-28 | 2015-12-03 | リンテック株式会社 | 積層部材の加工方法、積層部材の加工体およびガスバリアフィルム |
CN106457785A (zh) * | 2014-05-21 | 2017-02-22 | 柯尼卡美能达株式会社 | 气体阻隔性膜的制造方法、气体阻隔性膜、电子器件的制造方法及电子器件 |
JP2017144593A (ja) * | 2016-02-16 | 2017-08-24 | 東レフィルム加工株式会社 | ガスバリアフィルムの製造方法 |
WO2017159787A1 (ja) * | 2016-03-18 | 2017-09-21 | リンテック株式会社 | プライマー層形成用硬化性組成物、ガスバリア性積層フィルムおよびガスバリア性積層体 |
KR20170131255A (ko) | 2016-05-20 | 2017-11-29 | 스미또모 가가꾸 가부시키가이샤 | 가스 배리어성 필름, 광학 필름 및 플렉서블 디스플레이 |
JP6406563B1 (ja) * | 2018-01-26 | 2018-10-17 | 日本製紙株式会社 | ハードコートフィルム及びその製造方法 |
JPWO2017170252A1 (ja) * | 2016-03-28 | 2019-02-07 | リンテック株式会社 | 長尺のガスバリア性積層体 |
WO2019078069A1 (ja) | 2017-10-20 | 2019-04-25 | リンテック株式会社 | ガスバリアフィルム用基材、ガスバリアフィルム、電子デバイス用部材、及び電子デバイス |
WO2024162391A1 (ja) * | 2023-02-02 | 2024-08-08 | Toppanホールディングス株式会社 | 積層体、包装材料、包装体及び包装物品 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105745253A (zh) * | 2013-09-20 | 2016-07-06 | 琳得科株式会社 | 固化性组合物、固化物和固化性组合物的使用方法 |
EP3034560A4 (en) * | 2013-09-20 | 2017-04-05 | Lintec Corporation | Curable composition, curing product, and method for using curable composition |
CN106457786B (zh) * | 2014-05-30 | 2018-10-09 | 日本瑞翁株式会社 | 复层膜和卷绕体 |
CN106574067B (zh) * | 2014-07-31 | 2020-01-10 | 富士胶片株式会社 | 层叠聚酯膜及其制造方法、太阳电池用保护片及太阳电池模块 |
WO2017164387A1 (ja) * | 2016-03-25 | 2017-09-28 | リンテック株式会社 | ガスバリアフィルム及びガスバリアフィルムの製造方法 |
KR102391048B1 (ko) * | 2016-11-10 | 2022-04-26 | 린텍 가부시키가이샤 | 가스 배리어성 적층 시트, 가스 배리어성 적층 시트의 제조 방법, 및 전자 부재 또는 광학 부재 |
US11032770B2 (en) | 2018-01-16 | 2021-06-08 | Apple Inc. | Wake-up-radio discovery frame |
KR102238878B1 (ko) * | 2018-04-25 | 2021-04-12 | 주식회사 엘지화학 | 배리어 필름 |
JP7066136B2 (ja) * | 2018-06-25 | 2022-05-13 | 住友化学株式会社 | 液体塗布装置 |
KR102300537B1 (ko) * | 2018-10-26 | 2021-09-10 | 주식회사 엘지화학 | 배리어 필름 |
KR102294031B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102294026B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
KR102294027B1 (ko) * | 2018-10-26 | 2021-08-27 | 주식회사 엘지화학 | 배리어 필름 |
TWI811636B (zh) * | 2020-03-31 | 2023-08-11 | 日商東洋紡股份有限公司 | 附有保護膜之無機基板/工程塑膠薄膜積層體、積層體之堆疊、積層體的保管方法、及積層體的運輸方法 |
JP7516118B2 (ja) | 2020-06-08 | 2024-07-16 | 日本信号株式会社 | 駐車場システム |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143289A (ja) | 1995-11-20 | 1997-06-03 | Agency Of Ind Science & Technol | プラスチック成形体の劣化防止方法 |
JPH10245436A (ja) | 1997-03-06 | 1998-09-14 | Hitachi Chem Co Ltd | ポリシラザン化合物、ポリシラザン化合物の製造方法、シリカ系被膜形成用塗布液、シリカ系被膜及び半導体装置 |
JPH1170629A (ja) * | 1997-06-25 | 1999-03-16 | Mitsubishi Kagaku Polyester Film Kk | 液晶表示板表面保護フィルム |
JP2000007978A (ja) * | 1998-06-22 | 2000-01-11 | Toyo Ink Mfg Co Ltd | コーティング材及び積層体 |
JP3298099B2 (ja) | 1996-08-09 | 2002-07-02 | 東洋紡績株式会社 | ガスバリア性樹脂フィルム |
JP2003514822A (ja) | 1999-11-12 | 2003-04-22 | キーオン・コーポレーション | 新規なシラザンおよび/またはポリシラザン化合物並びに同化合物の製造方法 |
JP2005036089A (ja) | 2003-07-18 | 2005-02-10 | Clariant (Japan) Kk | ポリシラザン組成物 |
JP2007216504A (ja) * | 2006-02-16 | 2007-08-30 | Dainippon Printing Co Ltd | ガスバリア性積層フィルムおよびその製造方法 |
JP2007237588A (ja) | 2006-03-09 | 2007-09-20 | Kyodo Printing Co Ltd | ガスバリア性フィルム及びその製造方法 |
JP2008063586A (ja) | 2007-11-07 | 2008-03-21 | Osaka Gas Co Ltd | ポリシラン化合物の製造方法 |
JP2009083465A (ja) * | 2007-09-14 | 2009-04-23 | Fujifilm Corp | ガスバリアフィルムおよびこれを用いた表示素子 |
JP2009220277A (ja) | 2008-03-13 | 2009-10-01 | Toppan Printing Co Ltd | 積層フィルム及び積層フィルムの製造方法 |
JP2009235358A (ja) | 2008-03-28 | 2009-10-15 | Osaka Gas Co Ltd | ポリシラン系樹脂組成物 |
JP2009286891A (ja) | 2008-05-29 | 2009-12-10 | Jsr Corp | ポリカルボシランの製造方法 |
JP2010106100A (ja) | 2008-10-29 | 2010-05-13 | Jsr Corp | 絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法 |
JP2010232569A (ja) | 2009-03-30 | 2010-10-14 | Lintec Corp | 太陽電池モジュール用保護シート及び太陽電池モジュール |
JP2010229445A (ja) | 2009-03-26 | 2010-10-14 | Lintec Corp | 成形体、その製造方法、電子デバイス用部材および電子デバイス |
JP2010238736A (ja) | 2009-03-30 | 2010-10-21 | Lintec Corp | 太陽電池モジュール保護用シート及び太陽電池モジュール |
JP2013006340A (ja) * | 2011-06-24 | 2013-01-10 | Lintec Corp | ガスバリア性シート、積層シートおよび素子封止体 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1331734C (en) * | 1988-04-11 | 1994-08-30 | Hercules Incorporated | Gas barrier structure for pneumatic articles |
JP3055278B2 (ja) | 1991-12-27 | 2000-06-26 | 三菱化学ポリエステルフィルム株式会社 | 二軸配向積層ポリエステルフィルム |
JP3117785B2 (ja) | 1992-05-27 | 2000-12-18 | 帝人株式会社 | 積層二軸配向ポリエステルフイルム |
JP3296015B2 (ja) | 1993-04-08 | 2002-06-24 | 東レ株式会社 | 易接着性ポリエステルフィルム |
JPH08225689A (ja) | 1994-12-21 | 1996-09-03 | Sumitomo Chem Co Ltd | 延伸フィルム用ポリプロピレン系樹脂組成物およびその延伸フィルム |
JP3484551B2 (ja) | 1994-12-22 | 2004-01-06 | 大日本印刷株式会社 | 滑性フィルム |
EP1118459A4 (en) * | 1998-07-24 | 2008-03-12 | Japan Polyolefins Co Ltd | GAS-SEALED LAMINATE, MANUFACTURING PROCESS AND CONTAINER FROM THE MATERIAL |
US6364987B1 (en) * | 1999-03-10 | 2002-04-02 | Kuraray Co., Ltd. | Method for producing gas barrier film |
US7229703B2 (en) * | 2003-03-31 | 2007-06-12 | Dai Nippon Printing Co. Ltd. | Gas barrier substrate |
JP2004354828A (ja) | 2003-05-30 | 2004-12-16 | Konica Minolta Opto Inc | 反射防止フィルム、該反射防止フィルムを有する偏光板及び表示装置 |
JP2005205824A (ja) | 2004-01-26 | 2005-08-04 | Toray Ind Inc | ポリエステルフィルムロールおよび磁気記録媒体の製造方法 |
JP4264400B2 (ja) | 2004-10-06 | 2009-05-13 | 三菱重工業株式会社 | 軟質アモルファスカーボン膜及びその製造方法 |
JP2006247894A (ja) * | 2005-03-08 | 2006-09-21 | Fuji Photo Film Co Ltd | ガスバリアフィルム、並びに、これを用いた有機エレクトロルミネッセンス素子および画像表示素子 |
JP2006273544A (ja) | 2005-03-30 | 2006-10-12 | Mitsubishi Paper Mills Ltd | 巻取方法 |
JP2007237598A (ja) | 2006-03-09 | 2007-09-20 | Brother Ind Ltd | インクジェットヘッド |
JP5009690B2 (ja) | 2006-06-15 | 2012-08-22 | 日東電工株式会社 | 偏光板、画像表示装置および偏光板の製造方法 |
JP2008076858A (ja) | 2006-09-22 | 2008-04-03 | Fuji Xerox Co Ltd | クリーニング装置、及び画像形成装置 |
JP2008216568A (ja) | 2007-03-02 | 2008-09-18 | Sumitomo Osaka Cement Co Ltd | 反射防止性・近赤外線遮蔽性積層体及びその製造方法 |
US8067085B2 (en) * | 2007-09-14 | 2011-11-29 | Fujifilm Corporation | Gas barrier film, and display device comprising the same |
JP5107078B2 (ja) | 2007-10-16 | 2012-12-26 | 富士フイルム株式会社 | バリア性積層体、バリア性フィルム基板、デバイス、およびバリア性積層体の製造方法 |
US20090098400A1 (en) | 2007-10-16 | 2009-04-16 | Tomomi Tateishi | Barrier laminate, barrier film substrate, device, and method for producing barrier laminate |
JP2009143074A (ja) | 2007-12-13 | 2009-07-02 | Toray Ind Inc | 表面保護用ポリオレフインフイルム |
JP5292819B2 (ja) * | 2008-01-15 | 2013-09-18 | 東レ株式会社 | 表面保護用ポリオレフインフイルムの製造方法 |
JP2009269193A (ja) | 2008-04-30 | 2009-11-19 | Fujifilm Corp | 積層体及びその製造方法 |
JP2009291971A (ja) * | 2008-06-03 | 2009-12-17 | Toray Ind Inc | 透明蒸着用フイルム及び透明蒸着フイルム |
WO2010067857A1 (ja) | 2008-12-12 | 2010-06-17 | リンテック株式会社 | 積層体、その製造方法、電子デバイス部材および電子デバイス |
JP5612277B2 (ja) | 2009-06-16 | 2014-10-22 | リンテック株式会社 | ガスバリア性フィルム及び電子デバイス用部材 |
JP5600981B2 (ja) | 2010-03-23 | 2014-10-08 | コニカミノルタ株式会社 | ガスバリア性フィルム、有機デバイスの製造方法、および有機デバイス |
JP5549448B2 (ja) | 2010-07-20 | 2014-07-16 | コニカミノルタ株式会社 | バリア性フィルム、バリア性フィルムの製造方法及び有機電子デバイス |
JP6242173B2 (ja) | 2013-11-13 | 2017-12-06 | キヤノン株式会社 | 現像剤担持体、現像装置、プロセスカートリッジ、画像形成装置 |
-
2013
- 2013-03-28 TW TW106123308A patent/TWI660841B/zh active
- 2013-03-28 EP EP13769278.6A patent/EP2839953B1/en active Active
- 2013-03-28 KR KR1020147025933A patent/KR102059326B1/ko active IP Right Grant
- 2013-03-28 JP JP2014508065A patent/JP6023174B2/ja active Active
- 2013-03-28 TW TW102111079A patent/TWI602694B/zh active
- 2013-03-28 CN CN201380017203.5A patent/CN104203560B/zh active Active
- 2013-03-28 WO PCT/JP2013/059393 patent/WO2013147090A1/ja active Application Filing
- 2013-03-28 US US14/388,688 patent/US10669427B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09143289A (ja) | 1995-11-20 | 1997-06-03 | Agency Of Ind Science & Technol | プラスチック成形体の劣化防止方法 |
JP3298099B2 (ja) | 1996-08-09 | 2002-07-02 | 東洋紡績株式会社 | ガスバリア性樹脂フィルム |
JPH10245436A (ja) | 1997-03-06 | 1998-09-14 | Hitachi Chem Co Ltd | ポリシラザン化合物、ポリシラザン化合物の製造方法、シリカ系被膜形成用塗布液、シリカ系被膜及び半導体装置 |
JPH1170629A (ja) * | 1997-06-25 | 1999-03-16 | Mitsubishi Kagaku Polyester Film Kk | 液晶表示板表面保護フィルム |
JP2000007978A (ja) * | 1998-06-22 | 2000-01-11 | Toyo Ink Mfg Co Ltd | コーティング材及び積層体 |
JP2003514822A (ja) | 1999-11-12 | 2003-04-22 | キーオン・コーポレーション | 新規なシラザンおよび/またはポリシラザン化合物並びに同化合物の製造方法 |
JP2005036089A (ja) | 2003-07-18 | 2005-02-10 | Clariant (Japan) Kk | ポリシラザン組成物 |
JP2007216504A (ja) * | 2006-02-16 | 2007-08-30 | Dainippon Printing Co Ltd | ガスバリア性積層フィルムおよびその製造方法 |
JP2007237588A (ja) | 2006-03-09 | 2007-09-20 | Kyodo Printing Co Ltd | ガスバリア性フィルム及びその製造方法 |
JP2009083465A (ja) * | 2007-09-14 | 2009-04-23 | Fujifilm Corp | ガスバリアフィルムおよびこれを用いた表示素子 |
JP2008063586A (ja) | 2007-11-07 | 2008-03-21 | Osaka Gas Co Ltd | ポリシラン化合物の製造方法 |
JP2009220277A (ja) | 2008-03-13 | 2009-10-01 | Toppan Printing Co Ltd | 積層フィルム及び積層フィルムの製造方法 |
JP2009235358A (ja) | 2008-03-28 | 2009-10-15 | Osaka Gas Co Ltd | ポリシラン系樹脂組成物 |
JP2009286891A (ja) | 2008-05-29 | 2009-12-10 | Jsr Corp | ポリカルボシランの製造方法 |
JP2010106100A (ja) | 2008-10-29 | 2010-05-13 | Jsr Corp | 絶縁膜形成用組成物、ならびに絶縁膜およびその形成方法 |
JP2010229445A (ja) | 2009-03-26 | 2010-10-14 | Lintec Corp | 成形体、その製造方法、電子デバイス用部材および電子デバイス |
JP2010232569A (ja) | 2009-03-30 | 2010-10-14 | Lintec Corp | 太陽電池モジュール用保護シート及び太陽電池モジュール |
JP2010238736A (ja) | 2009-03-30 | 2010-10-21 | Lintec Corp | 太陽電池モジュール保護用シート及び太陽電池モジュール |
JP2013006340A (ja) * | 2011-06-24 | 2013-01-10 | Lintec Corp | ガスバリア性シート、積層シートおよび素子封止体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2839953A4 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10377870B2 (en) | 2014-03-31 | 2019-08-13 | Lintec Corporation | Elongated gas barrier laminate and method for producing same |
JP2020073358A (ja) * | 2014-03-31 | 2020-05-14 | リンテック株式会社 | 長尺のガスバリア性積層体およびその製造方法 |
KR20160138447A (ko) * | 2014-03-31 | 2016-12-05 | 린텍 가부시키가이샤 | 장척의 가스 배리어성 적층체 및 그 제조 방법 |
EP3127696A1 (en) | 2014-03-31 | 2017-02-08 | LINTEC Corporation | Elongated gas barrier laminate and method for producing same |
JP2021107163A (ja) * | 2014-03-31 | 2021-07-29 | リンテック株式会社 | 長尺のガスバリア性積層体およびその製造方法 |
CN106457755A (zh) * | 2014-03-31 | 2017-02-22 | 琳得科株式会社 | 长尺寸的阻气性层合体及其制造方法 |
JPWO2015152077A1 (ja) * | 2014-03-31 | 2017-04-13 | リンテック株式会社 | 長尺のガスバリア性積層体およびその製造方法 |
WO2015152077A1 (ja) * | 2014-03-31 | 2015-10-08 | リンテック株式会社 | 長尺のガスバリア性積層体およびその製造方法 |
KR102352337B1 (ko) * | 2014-03-31 | 2022-01-17 | 린텍 가부시키가이샤 | 장척의 가스 배리어성 적층체 및 그 제조 방법 |
US20170107344A1 (en) | 2014-03-31 | 2017-04-20 | Lintec Corporation | Elongated gas barrier laminate and method for producing same |
CN106457785A (zh) * | 2014-05-21 | 2017-02-22 | 柯尼卡美能达株式会社 | 气体阻隔性膜的制造方法、气体阻隔性膜、电子器件的制造方法及电子器件 |
JPWO2015178405A1 (ja) * | 2014-05-21 | 2017-04-20 | コニカミノルタ株式会社 | ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム、電子デバイスの製造方法及び電子デバイス |
WO2015182203A1 (ja) * | 2014-05-28 | 2015-12-03 | リンテック株式会社 | 積層部材の加工方法、積層部材の加工体およびガスバリアフィルム |
JPWO2015182203A1 (ja) * | 2014-05-28 | 2017-04-20 | リンテック株式会社 | 積層部材の加工方法、積層部材の加工体およびガスバリアフィルム |
JP2017144593A (ja) * | 2016-02-16 | 2017-08-24 | 東レフィルム加工株式会社 | ガスバリアフィルムの製造方法 |
WO2017159787A1 (ja) * | 2016-03-18 | 2017-09-21 | リンテック株式会社 | プライマー層形成用硬化性組成物、ガスバリア性積層フィルムおよびガスバリア性積層体 |
JPWO2017159787A1 (ja) * | 2016-03-18 | 2019-02-14 | リンテック株式会社 | プライマー層形成用硬化性組成物、ガスバリア性積層フィルムおよびガスバリア性積層体 |
US10967618B2 (en) | 2016-03-18 | 2021-04-06 | Lintec Corporation | Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate |
JPWO2017170252A1 (ja) * | 2016-03-28 | 2019-02-07 | リンテック株式会社 | 長尺のガスバリア性積層体 |
JP6993962B2 (ja) | 2016-03-28 | 2022-01-14 | リンテック株式会社 | 長尺のガスバリア性積層体 |
KR20170131255A (ko) | 2016-05-20 | 2017-11-29 | 스미또모 가가꾸 가부시키가이샤 | 가스 배리어성 필름, 광학 필름 및 플렉서블 디스플레이 |
US10780675B2 (en) | 2016-05-20 | 2020-09-22 | Sumitomo Chemical Company, Limited | Gas barrier film, optical film, and flexible display |
WO2019078069A1 (ja) | 2017-10-20 | 2019-04-25 | リンテック株式会社 | ガスバリアフィルム用基材、ガスバリアフィルム、電子デバイス用部材、及び電子デバイス |
JP2019127010A (ja) * | 2018-01-26 | 2019-08-01 | 日本製紙株式会社 | ハードコートフィルム及びその製造方法 |
JP6406563B1 (ja) * | 2018-01-26 | 2018-10-17 | 日本製紙株式会社 | ハードコートフィルム及びその製造方法 |
WO2024162391A1 (ja) * | 2023-02-02 | 2024-08-08 | Toppanホールディングス株式会社 | 積層体、包装材料、包装体及び包装物品 |
JP7544309B1 (ja) | 2023-02-02 | 2024-09-03 | Toppanホールディングス株式会社 | 積層体、包装材料、包装体及び包装物品 |
Also Published As
Publication number | Publication date |
---|---|
EP2839953A1 (en) | 2015-02-25 |
JP6023174B2 (ja) | 2016-11-09 |
CN104203560A (zh) | 2014-12-10 |
TWI602694B (zh) | 2017-10-21 |
US10669427B2 (en) | 2020-06-02 |
CN104203560B (zh) | 2015-12-30 |
KR102059326B1 (ko) | 2019-12-26 |
KR20150000879A (ko) | 2015-01-05 |
TW201402318A (zh) | 2014-01-16 |
EP2839953B1 (en) | 2020-08-05 |
EP2839953A4 (en) | 2015-12-09 |
JPWO2013147090A1 (ja) | 2015-12-14 |
US20150099094A1 (en) | 2015-04-09 |
TW201739617A (zh) | 2017-11-16 |
TWI660841B (zh) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6023174B2 (ja) | ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス | |
JP6402093B2 (ja) | 積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス | |
WO2011093286A1 (ja) | ガスバリアフィルムとその製造方法、およびそれを用いたデバイス | |
JP4917943B2 (ja) | ガスバリアフィルムの製造方法 | |
KR20140048960A (ko) | 가스 배리어 필름 및 디바이스 | |
JPWO2018016346A1 (ja) | ガスバリア性積層膜の転写用フィルムおよび有機elデバイス | |
KR20180125499A (ko) | 프라이머층 형성용 경화성 조성물, 가스 배리어성 적층 필름 및 가스 배리어성 적층체 | |
JP6830476B2 (ja) | ガスバリアフィルム及びガスバリアフィルムの製造方法 | |
TWI667133B (zh) | 長條形氣阻性層積體及其製造方法、電子裝置用構件以及電子裝置 | |
JP6544832B2 (ja) | ガスバリア性積層体、電子デバイス用部材および電子デバイス | |
JPWO2017208770A1 (ja) | 積層体、電子デバイス用部材、及び電子デバイス | |
JP2004114584A (ja) | ハードコートフィルム | |
JP2011110811A (ja) | ガスバリア性フィルム、ガスバリア層、装置及びガスバリア性フィルムの製造方法 | |
JP2004106277A (ja) | ハードコートフィルム | |
JP2004099752A (ja) | ハードコートフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769278 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014508065 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147025933 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013769278 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14388688 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |