WO2013099274A1 - 方向性電磁鋼板およびその鉄損改善方法 - Google Patents
方向性電磁鋼板およびその鉄損改善方法 Download PDFInfo
- Publication number
- WO2013099274A1 WO2013099274A1 PCT/JP2012/008411 JP2012008411W WO2013099274A1 WO 2013099274 A1 WO2013099274 A1 WO 2013099274A1 JP 2012008411 W JP2012008411 W JP 2012008411W WO 2013099274 A1 WO2013099274 A1 WO 2013099274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- irradiation
- grain
- less
- coating
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 52
- 239000010959 steel Substances 0.000 title claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 50
- 238000000034 method Methods 0.000 title claims description 30
- 229910052742 iron Inorganic materials 0.000 title claims description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 82
- 238000000576 coating method Methods 0.000 claims abstract description 82
- 230000007547 defect Effects 0.000 claims abstract description 25
- 238000005096 rolling process Methods 0.000 claims description 29
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims description 27
- 238000000137 annealing Methods 0.000 claims description 24
- 238000001953 recrystallisation Methods 0.000 claims description 15
- 238000005121 nitriding Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000008119 colloidal silica Substances 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 7
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 4
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 230000005381 magnetic domain Effects 0.000 abstract description 35
- 230000007797 corrosion Effects 0.000 abstract description 18
- 238000005260 corrosion Methods 0.000 abstract description 18
- 238000010894 electron beam technology Methods 0.000 description 20
- 238000009413 insulation Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 239000007788 liquid Substances 0.000 description 15
- 238000013467 fragmentation Methods 0.000 description 9
- 238000006062 fragmentation reaction Methods 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910052711 selenium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 238000012935 Averaging Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 229910052839 forsterite Inorganic materials 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CRGGPIWCSGOBDN-UHFFFAOYSA-N magnesium;dioxido(dioxo)chromium Chemical compound [Mg+2].[O-][Cr]([O-])(=O)=O CRGGPIWCSGOBDN-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
- H01F1/18—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/38—Heating by cathodic discharges
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/40—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
- C23C8/42—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
- C23C8/48—Nitriding
- C23C8/50—Nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24851—Intermediate layer is discontinuous or differential
Definitions
- the present invention relates to a grain-oriented electrical steel sheet suitable for an iron core material such as a transformer.
- the grain-oriented electrical steel sheet is mainly used as an iron core of a transformer, and is required to have excellent magnetization characteristics, particularly low iron loss. To that end, it is important to highly align the secondary recrystallized grains in the steel sheet with the (110) [001] orientation (Goss orientation) and to reduce impurities in the product. Furthermore, since there is a limit to the control of crystal orientation and the reduction of impurities, technology that introduces non-uniformity to the surface of the steel sheet by a physical method, subdivides the width of the magnetic domain, and reduces iron loss, That is, magnetic domain fragmentation technology has been developed.
- Patent Document 1 proposes a technique for narrowing the magnetic domain width and reducing iron loss by irradiating a final product plate with a laser and introducing a high dislocation density region into the steel sheet surface layer.
- Patent Document 2 proposes a technique for controlling the magnetic domain width by electron beam irradiation.
- Thermal strain-introducing magnetic domain subdivision methods such as laser beam irradiation or electron beam irradiation damage the insulating coating on the steel sheet due to rapid and local heat introduction, resulting in insulation properties such as interlayer resistance and withstand voltage, Had a problem that the corrosion resistance deteriorated. Therefore, after the irradiation with the laser beam or the electron beam, the insulating coating is applied again, and the re-coating is performed in which the baking is performed in a temperature range in which the thermal distortion is not eliminated. However, if re-coating is performed, problems such as an increase in cost due to the addition of processes and deterioration in magnetism due to deterioration in the space factor occur.
- Patent Document 3 Patent Document 4, Patent Document 5, and Patent Document 6 propose a technique for introducing distortion while suppressing damage to the insulating coating. That is, the methods disclosed in Patent Documents 1 to 5 reduce the amount of thermal strain introduced itself into the steel sheet, such as defocusing the beam and suppressing the beam output, in order to suppress damage to the coating, Even if the insulation of the steel sheet is maintained, the iron loss reduction amount is reduced.
- Patent Document 6 discloses a method of irradiating laser from both surfaces of a steel plate to reduce iron loss while maintaining insulation, but the number of processing steps increases by performing irradiation on both surfaces of the steel plate. Therefore, it is disadvantageous in terms of cost.
- Japanese Patent Publication No.57-2252 Japanese Patent Publication No. 6-072266 Japanese Patent Publication No.62-49322 Japanese Patent Publication No. 5-32881 Japanese Patent No. 3361709 Japanese Patent No.4091749
- An object of the present invention is to provide a grain-oriented electrical steel sheet having an insulating coating excellent in insulation and corrosion resistance, which has been subjected to magnetic domain refinement by introducing strain.
- the principle that the iron loss is reduced by the introduction of strain is as follows. First, when strain is introduced, a reflux magnetic domain is generated starting from the strain. The generation of the reflux magnetic domain increases the magnetostatic energy of the steel sheet, but the 180 degree magnetic domain is subdivided so that it decreases, and the iron loss in the rolling direction decreases. On the other hand, since the return magnetic domain becomes pinning of domain wall motion and leads to an increase in hysteresis loss, it is preferable to introduce strain locally within a range where the effect of reducing iron loss is not impaired.
- the coating forsterite coating and insulating tension coating formed thereon
- its insulation and corrosion resistance Will deteriorate significantly.
- the coating will be damaged to some extent, and its insulation and corrosion resistance will be impaired.
- the degree of damage to the film is large, even if it is recoated, the insulation and corrosion resistance are not easily recovered. Therefore, an intensive investigation was conducted as to the reason why the insulation and corrosion resistance did not recover even after re-coating.
- the ratio of the area where defects such as cracks and holes are present on the surface of the insulating coating in the re-coated irradiation mark region is 40% or less
- the maximum width in the rolling direction of the irradiation mark region is 250 ⁇ m or less
- the thickness of the insulation coating by re-coating is 0.3 ⁇ m or more and 2.0 ⁇ m or less
- the gist configuration of the present invention is as follows. (1) A grain-oriented electrical steel sheet obtained by re-coating with an insulating film after introducing linear strain extending in a direction crossing the rolling direction of the steel sheet by irradiation with a high energy beam, In the irradiation trace region of the high energy beam, the ratio of the area where defects exist on the insulating coating is 40% or less, A grain-oriented electrical steel sheet, wherein a maximum width in the steel sheet rolling direction of the irradiation mark region is 250 ⁇ m or less, and a thickness of the insulating coating by recoating is 0.3 ⁇ m or more and 2.0 ⁇ m or less.
- the insulating coating is subjected to re-coating with the insulating coating after the strain is introduced.
- a coating solution mainly composed of aluminum phosphate and chromic acid and not containing colloidal silica is applied to the surface of the steel sheet, and baking is carried out at a temperature range of 260 ° C to 350 ° C. Temperature increase rate: 50 ° C / s or less.
- a grain-oriented electrical steel sheet having a coating with excellent insulation and corrosion resistance, which has been subjected to magnetic domain refinement by introducing strain can be provided at low cost.
- the grain-oriented electrical steel sheet of the present invention needs to regulate the steel sheet properties after recoating to the following requirements (a) to (c). Below, it explains in detail for every requirement.
- the ratio of the area where defects exist on the surface of the insulating coating in the re-coated irradiation mark region is 40% or less.
- the surface of the steel sheet after irradiation with the energy beam is observed, and the portion where the coating film is dissolved or peeled out of the region irradiated with the laser beam or electron beam.
- 1 (a) is a radiation mark regions R P in the case of point-like radiation
- FIG. 1 (b) is an irradiation mark regions R L in the case of the linear irradiation. Note that these irradiation traces can be distinguished by microscopic observation even after re-coating unless they are very thick, but even if the edges cannot be identified, spatial mapping of Fe intensity by EPMA and contrast differences in reflected electron images Can be determined.
- the crack portion 2 and the surface of the insulating coating 1 after re-coating the steel plate after introduction of strain It is important to suppress the occurrence of the perforated portion 3 as much as possible. That is, the area ratio of defects in the crack portion 2 and the hole portion 3 occupying the irradiation mark region RP or RL needs to be 40% or less. This is because if there are cracks and holes in the surface of the insulating coating, this is the starting point for rusting.
- the defect is a form in which the surface of the insulating coating after re-coating is not smooth and a dent or crack having a depth of 0.3 ⁇ m or more is formed on a part of the coating surface, with the crack portion 2 and the hole portion 3 as typical examples. It is intended for those showing.
- the area of the defect is connected so that all of the vertices of the outermost area of the area where the crack exists (the polygonal area is an acute angle) as shown in FIG. Area).
- the area of the hole portion is the area of the hole itself.
- the ratio of the area obtained by adding both to the area of the irradiation trace area is defined as the area ratio of the defect on the insulating coating in the irradiation trace area of the high energy beam.
- the area is obtained by averaging the results of observing five or more locations at a magnification of 500 times or more in a sample having a width of 100 mm and a rolling direction of 400 mm.
- the maximum width in the rolling direction of the irradiation mark region is 250 ⁇ m or less As shown in FIG. 1, the maximum width D in the rolling direction of the irradiation mark region defined above is set to 250 ⁇ m or less. That is, as described above, it was observed that many defects such as cracks on the surface of the insulating coating after re-coating occurred in the center of the irradiation mark region. This is probably because the central portion of the irradiation mark has a large amount of heat input during beam irradiation, and the cross-sectional shape of the irradiation mark region becomes a crater. As a result, when the coating liquid is applied thereto, the liquid film thickness at the center portion is larger than that at the edge portion.
- the reason for the occurrence of cracks and perforated defects on the surface of the coating is that solvent vapor remains in the coating and foams because the surface is first dried and solidified during baking. When the liquid film is thick, the solidification of the surface tends to proceed first, and foaming occurs and defects are likely to occur. Therefore, it is considered that many film defects occurred during baking at the central portion of the irradiation mark where the liquid film was thick.
- the inventors have found that it is advantageous to reduce the area of the central portion of the irradiation mark by narrowing the maximum width in the rolling direction of the irradiation mark region. This is because, from the observation results, it was confirmed that even if the width of the irradiation mark region in the rolling direction changes, the width of the portion (edge portion) in the irradiation mark region that does not have a defect does not change so much. This is because the width of the central portion can be reduced without adverse effects by reducing the width of the irradiation mark region.
- the maximum width is 250 ⁇ m or less, a film property with few surface defects can be obtained.
- the said maximum width is calculated
- the thickness of the insulating coating by re-coating is 0.3 ⁇ m or more and 2.0 ⁇ m or less
- the thickness of the insulating coating is measured by observing a cross section of the steel sheet portion other than the irradiation mark region.
- the insulating film formed before the beam irradiation and the insulating film formed by re-coating of the steel plate irradiated with the laser beam or the electron beam have the same component, it is very difficult to distinguish the insulating film. In that case, 1/2 of the total thickness of the insulating tension coating and the recoat coating is taken as the thickness of the insulation coating by recoating.
- the thickness of the insulating coating is obtained by averaging the results of observing five or more locations at a magnification of 500 times or more in a sample having a width of 100 mm and a rolling direction of 400 mm.
- the thickness of the insulating coating is 0.3 ⁇ m or more and 2.0 ⁇ m or less is that, as described above, when the thickness of the recoat coating is large, surface defects are likely to occur. Moreover, the space factor of a steel plate also decreases and magnetism deteriorates. As a result of the examination, the thickness of the recoat film needs to be 2.0 ⁇ m or less. Further, in order to recover the corrosion resistance, a recoat film thickness of 0.3 ⁇ m or more is necessary.
- a high energy beam such as laser irradiation or electron beam irradiation that can introduce a large energy with a reduced beam diameter is suitable as a magnetic domain fragmentation method.
- a method of subdividing the magnetic domain is known as a method using plasma jet irradiation.
- laser irradiation or electron beam irradiation is used. Is preferred.
- This magnetic domain subdivision method will be described sequentially from the case of laser irradiation.
- the form of laser oscillation is not particularly limited, such as fiber, CO 2 , and YAG, but a continuous irradiation type laser is suitable.
- pulse oscillation type laser irradiation such as the Q switch type irradiates a lot of energy at one time, so that the damage of the film is large and the irradiation mark width is within the range of the present invention within a range where the magnetic domain subdivision effect is sufficient. Is difficult.
- the average laser output P (W), beam scanning speed V (m / s), and beam diameter d (mm) during laser irradiation are particularly limited as long as the maximum width in the rolling direction of the irradiation mark region satisfies the above requirements. do not do. However, since it is necessary to sufficiently obtain the magnetic domain fragmentation effect, it is preferable that the amount of heat input P / V per unit length is greater than 10 W ⁇ s / m. Further, the irradiation may be performed continuously on the steel sheet or in a point sequence.
- a method for introducing distortion into a point sequence is to stop scanning at a predetermined time interval while quickly scanning the beam, and continue to irradiate the beam at the point at a time suitable for the present invention, and then start scanning again. This is achieved by repeating the process.
- the irradiation column interval in the rolling direction of magnetic domain subdivision by laser irradiation is irrelevant to the steel sheet properties defined in the present invention, but is preferably 3 to 5 mm in order to enhance the magnetic domain subdivision effect.
- the direction of irradiation is preferably within 30 ° with respect to the direction perpendicular to the rolling, and more preferably the direction perpendicular to the rolling.
- the acceleration voltage E (kV), beam current I (mA), and beam scanning speed V (m / s) during electron beam irradiation are particularly limited as long as the maximum width in the rolling direction of the irradiation mark region satisfies the above requirements. do not do. However, since it is necessary to sufficiently obtain the magnetic domain fragmentation effect, it is preferable that the energy heat input E ⁇ I / V per unit length is larger than 6 W ⁇ s / m.
- the degree of vacuum (pressure in the processing chamber) is preferably 2 Pa or less in the processing chamber in which the steel sheet is irradiated with the electron beam.
- the irradiation may be performed continuously on the steel sheet or in a point sequence.
- a method for introducing distortion into a point sequence is to stop scanning at a predetermined time interval while quickly scanning the beam, and continue to irradiate the beam at the point at a time suitable for the present invention, and then start scanning again. This is achieved by repeating the process.
- the deflection voltage of the electron beam may be changed using an amplifier having a large capacity.
- the irradiation column interval in the rolling direction of magnetic domain fragmentation by electron beam irradiation is irrelevant to the steel sheet properties defined in the present invention, but is preferably 3 to 5 mm in order to enhance the magnetic domain fragmentation effect. Furthermore, the direction of irradiation is preferably within 30 ° with respect to the direction perpendicular to the rolling, and more preferably the direction perpendicular to the rolling.
- Coating liquid component Mainly composed of aluminum phosphate and chromic acid, and does not contain colloidal silica
- the magnetic domain fragmentation effect by laser irradiation or electron beam irradiation is due to the introduction of thermal strain.
- baking is performed at a high temperature, the strain is released and the magnetic domain fragmentation effect is reduced. Therefore, baking at approximately 500 ° C. or lower is necessary.
- the temperature is as low as possible, specifically 350 ° C. or less, and the rate of temperature rise is small, specifically 50 ° C./s or less, during the baking. If the baking temperature is higher than 350 ° C., the solvent water becomes vapor before evaporating from the surface, causing defects. On the other hand, when the baking temperature is less than 260 ° C., the film formation reaction does not proceed.
- the rate of temperature rise is higher than 50 ° C./s, the temperature distribution in the liquid becomes non-uniform, causing the surface to solidify first.
- the minimum in particular of a temperature increase rate is not defined, it is preferable to set it as 5 degree-C / s from a viewpoint of productivity.
- the composition of the coating liquid is mainly composed of aluminum phosphate and chromic acid and does not contain colloidal silica. This is because an insulating tension coat has already been applied, so that it is not necessary to contain colloidal silica for imparting tension, and recoating only needs to have an insulating property. And by not including colloidal silica, low temperature baking becomes possible, and it becomes possible to maintain the effect of domain subdivision by introducing strain.
- the method for producing the grain-oriented electrical steel sheet of the present invention is not particularly limited except for the above points, but the recommended preferred component composition and the production method other than the points of the present invention will be described.
- an inhibitor for example, when using an AlN-based inhibitor, Al and N are contained, and when using an MnS / MnSe-based inhibitor, an appropriate amount of Mn, Se and / or S is contained. Just do it. Of course, both inhibitors may be used in combination.
- the preferred contents of Al, N, S and Se are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
- this invention is applicable also to the grain-oriented electrical steel sheet which restricted content of Al, N, S, and Se and which does not use an inhibitor.
- the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.
- C 0.08 mass% or less
- the amount of C exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less, at which no magnetic aging occurs during the production process.
- the lower limit since a secondary recrystallization is possible even with a material not containing C, it is not particularly necessary to provide it.
- Si 2.0-8.0% by mass
- Si is an element effective in increasing the electrical resistance of steel and improving iron loss, but if the content is less than 2.0% by mass, it is difficult to achieve a sufficient iron loss reduction effect, while 8.0% by mass If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered. Therefore, the Si content is preferably in the range of 2.0 to 8.0% by mass.
- Mn 0.005 to 1.0 mass%
- Mn is an element that is preferably added to improve hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, while if it exceeds 1.0% by mass, the magnetic flux density of the product plate is low. Therefore, the Mn content is preferably in the range of 0.005 to 1.0% by mass.
- Ni 0.03-1.50% by mass
- Sn 0.01-1.50% by mass
- Sb 0.005-1.50% by mass
- Cu 0.03-3.0% by mass
- P 0.03-0.50% by mass
- Mo 0.005-0.10% by mass
- Cr At least one Ni selected from 0.03 to 1.50% by mass is an element useful for improving the magnetic properties by improving the hot rolled sheet structure.
- the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
- the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.50% by mass.
- Sn, Sb, Cu, P, Cr, and Mo are elements that are useful for improving the magnetic properties. However, if the lower limit of each component is not exceeded, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered. The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.
- the steel material adjusted to the above-mentioned suitable component composition may be made into a slab by a normal ingot-making method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be directly produced by a continuous casting method.
- the slab is heated by a normal method and subjected to hot rolling, but may be immediately subjected to hot rolling without being heated after casting.
- hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is.
- a cold-rolled sheet having a final thickness is obtained by cold rolling at least once with one or more intermediate sandwiches, and then the primary recrystallization annealing (de-molding) is performed on the cold-rolled sheet.
- Carbon annealing After final finishing annealing, insulating tension coating and flattening annealing are performed to obtain a grain-oriented electrical steel sheet with an insulating coating. Thereafter, the magnetic domain refinement process is performed on the grain-oriented electrical steel sheet by laser irradiation or electron beam irradiation. Further, the insulating coating is recoated with the above-described requirements to obtain the product of the present invention.
- nitriding treatment for increasing the nitrogen content to 50 ppm or more and 1000 ppm or less for the purpose of strengthening the inhibitor function.
- this nitriding treatment damage to the coating tends to be greater when the magnetic domain subdivision treatment is performed by laser irradiation or electron beam irradiation after the treatment, compared to the case where nitriding treatment is not performed, and recoating is performed. Later corrosion resistance and insulation will deteriorate significantly. Therefore, it is particularly effective to apply the present invention when performing nitriding treatment. The reason for this is not clear, but it is considered that the structure of the base film formed in the final annealing has changed and the peelability of the film has deteriorated.
- the magnetic domain is subdivided by irradiating a continuous laser beam with a fiber laser at intervals of 3 mm perpendicular to the rolling direction on the insulating film, or by irradiating an electron beam in a dot sequence at a point interval of 0.32 mm. Went.
- Table 1 shows the irradiation conditions of the continuous laser
- Table 2 shows the irradiation conditions of the electron beam.
- Coating liquid A Colloidal silica 20% aqueous dispersion 100cc, aluminum phosphate 50% aqueous solution 60cc, magnesium chromate about 25% aqueous solution 15cc, boric acid 3g
- coating liquid B aluminum phosphate 50% aqueous solution 60cc, chromium Liquid containing 15cc of 25% magnesium acid solution, 3g of boric acid and 100cc of water (not containing colloidal silica)
- interlayer resistance current, withstand voltage, wet rust ratio, and iron loss W 17/50 of 1.7 T, 50 Hz were measured with a single plate magnetic tester (SST). These measurement results are shown in Tables 1 and 2.
- the measurement of interlayer resistance current, withstand voltage, and wet rust rate was performed as follows.
- the steel sheet that satisfies the conditions in the irradiation mark region of the present invention has an interlayer resistance of 0.2 A or less and withstand voltage before recoating or after recoating by thinning. It satisfies 60V or more, and the iron loss W 17/50 is 0.70 W / kg or less.
- Example 1 an annealing separator mainly composed of MgO was applied, and final annealing including a secondary recrystallization process and a purification process was performed to obtain a grain-oriented electrical steel sheet having a forsterite film.
- the coating liquid A in Example 1 was applied to the grain-oriented electrical steel sheet and baked at 800 ° C. to form an insulating film.
- a continuous laser irradiation was performed linearly with a fiber laser at a 3 mm interval in the rolling direction at right angles to the rolling direction on the insulating coating, and a magnetic domain refinement treatment was performed. As a result, a material having a magnetic flux density B 8 value of 1.92 T to 1.95 T was obtained.
- the insulating coating was recoated on both surfaces of the steel plate that had undergone the magnetic domain refinement treatment.
- Two coating liquids (coating liquids A and B) in Example 1 described above were prepared and applied separately.
- interlayer resistance current, withstand voltage, wet rust ratio, and iron loss W 17/50 of 1.7 T, 50 Hz were measured with a single plate magnetic tester (SST). These measurement results are shown in Table 3.
- the measurement of an interlayer resistance current, a withstand voltage, and a wet rust rate is as above-mentioned.
- the nitriding material is inferior in both insulation and corrosion resistance as compared with the case where nitriding is not performed.
- the nitriding material has insulation and corrosion resistance equivalent to the case where nitriding treatment is not performed, and it can be seen that it is useful to apply the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
そのためには、鋼板中の二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃えることや製品中の不純物を低減することが重要である。さらに、結晶方位の制御や不純物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入し、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
たとえば、特許文献1には、最終製品板にレーザを照射し、鋼板表層に高転位密度領域を導入することにより、磁区幅を狭くし鉄損を低減する技術が提案されている。また、特許文献2には、電子ビームの照射により磁区幅を制御する技術が提案されている。
また、被膜の損傷が激しい場合、再コートをしても絶縁性や耐食性が回復せずに、単に再コートの目付け量が厚くなるという問題があった。再コートの目付け量を厚くすると、占積率が悪化するだけでなく、密着性や外観も損なわれ、製品としての価値が著しく減少することになる。
まず、歪みを導入すると、歪みを起点として還流磁区が発生する。還流磁区の発生により、鋼板の静磁エネルギーが増大するが、それが下がるように180度磁区が細分化され、圧延方向の鉄損は減少する。一方で、還流磁区は磁壁移動のピニングとなり履歴損を増加させることにつながるため、鉄損低減効果が損なわれない範囲で局所的に歪みを導入することが好ましい。
(i)再コートを行った照射痕領域において、絶縁被膜表面に多数のクラックや穴空き部などの欠陥が存在している。
(ii)さらに、それらの絶縁被膜表面のクラックや穴あき部などの欠陥は、主に照射痕領域の中央部に密集している。
よって、再コートをしても絶縁性および耐食性が回復しない原因は、再コートした照射痕領域の主に中央部の被膜表面に多数のクラックや穴あき部などの欠陥が存在することにあると考えた。この推論は、後述する耐食性試験において、照射痕領域の中央部より錆が発生しやすいという観察事象とも一致する。
(a)再コートした照射痕領域における、絶縁被膜表面にクラック及び穴空き部などの欠陥が存在する面積比率が40%以下
(b)照射痕領域の圧延方向の最大幅が250μm以下
(c)再コートによる絶縁被膜の厚さが0.3μm以上2.0μm以下
(1)高エネルギービームの照射により、鋼板の圧延方向を横切る向きに延びる線状の歪を導入したのち、絶縁被膜による再コートを施してなる方向性電磁鋼板であって、
前記高エネルギービームの照射痕領域における、前記絶縁被膜上に欠陥が存在する面積の比率が40%以下、
前記照射痕領域の鋼板圧延方向の最大幅が250μm以下および
前記再コートによる絶縁被膜の厚さが0.3μm以上2.0μm以下
であることを特徴とする方向性電磁鋼板。
(a)再コートした照射痕領域における、絶縁被膜表面に欠陥が存在する面積比率が40%以下
(b)照射痕領域の圧延方向の最大幅が250μm以下
(c)再コートによる絶縁被膜の厚さが0.3μm以上2.0μm以下
まず、照射痕領域とは、光学顕微鏡又は電子顕微鏡を用いて、レーザビームや電子ビームなどの高エネルギービームを照射後の鋼板の表面を観察し、レーザビームや電子ビームを照射した領域の内、被膜が溶解又は剥離した部分を言う。図1(a)は点状照射の場合の照射痕領域RPであり、図1(b)は線状照射の場合の照射痕領域RLである。なお、これら照射痕は、再コート後も、極めて厚い目付けでない限り、顕微鏡観察でもエッジは判別できるが、エッジが判別できない場合でも、EPMAによるFe強度の空間マッピングや、反射電子像におけるコントラストの違いにより判別できる。
なぜなら、絶縁被膜の表面にクラック及び穴空き部が存在する場合、そこが錆び発生の起点となる。また、こういった表面欠陥が存在する場合、表面の凹凸も大きくなる傾向にあり、鋼板間の絶縁性を考える場合、ある箇所に電位が集中し不利となる。かような欠陥は、その面積率が40%以下であれば、十分な絶縁性および耐食性が維持されることが、後述の実施例にて示すとおり判明したのである。
図1に示すように、上記で定義した照射痕領域の圧延方向の最大幅Dを250μm以下とする。すなわち、上述のように、再コート後の絶縁被膜表面のクラックなどの欠陥は、照射痕領域の中央に多く発生することが観察された。この原因は、照射痕中央部はビーム照射の際の入熱量が大きく、照射痕領域の断面形状がクレーター状になることが考えられる。その結果、そこにコーティング液を塗布した場合、中央部はエッジ部に比べ液膜厚が厚くなる。被膜表面にクラックや穴空き欠陥が生じる原因は、焼き付け時に表面が先に乾燥固化されるために、被膜内に溶媒蒸気が残留し、それが発泡することにある。液膜が厚い場合は、表面の固化が先に進みやすく、発泡が生じ欠陥が生じやすい。よって、液膜の厚い照射痕中央部に焼き付けの際に被膜欠陥が多く生じたと考えられる。
絶縁被膜の厚さは、照射痕領域以外の鋼板部分を断面観察して測定する。但し、レーザビームや電子ビームの照射を施した鋼板の、ビーム照射前に形成された絶縁被膜と再コートによる絶縁被膜とが同一成分の場合、絶縁被膜を区別することは非常に難しい。その場合、絶縁張力被膜と再コート被膜を合わせた厚さの1/2を再コートによる絶縁被膜の厚さとする。
はじめに、磁区細分化手法としては、大きなエネルギーをビーム径を絞って導入することができるレーザ照射や電子ビーム照射などの高エネルギービームが適している。レーザ照射や電子ビーム照射の他にも磁区細分化手法としては、プラズマジェット照射による手法などが公知であるが、本発明で所期する鉄損を得るためには、レーザ照射や電子ビーム照射が好適である。
レーザ発振の形態としては、ファイバー、CO2、YAGなど特に問わないが、連続照射タイプのレーザが適する。なお、Qスイッチ型などパルス発振タイプのレーザ照射は、多くのエネルギーを一度に照射するため、被膜の損傷が大きく、磁区細分化効果が十分な範囲において、照射痕幅を本発明の範囲に納めるのは難しい。
レーザ照射による磁区細分化の圧延方向の照射列間隔は、本発明で定める鋼板性状に無関係であるが、磁区細分化効果を高める為には、3~5mmが好ましい。さらに、照射の向きは圧延直角方向に対して30°以内であることが好ましく、より好ましくは圧延直角方向である。
電子ビーム照射の際の、加速電圧E(kV)、ビーム電流I(mA)およびビームの走査速度V(m/s)は、照射痕領域の圧延方向最大幅が上記要件を満たす限り、特に制限しない。但し、磁区細分化効果を十分に得られることが必要となるため、単位長さ当たりのエネルギー入熱量E×I/Vは6W・s/mより大きいことが好ましい。真空度(加工室内の圧力)については、電子ビームを鋼板に照射する加工室において、2Pa以下であることが望ましい。これより真空度が低い(圧力が大きい)と、電子銃から鋼板までの行路の中で、残存ガスによりビームがぼやけ、磁区細分化効果が小さくなる。また、照射は鋼板に連続状に照射しても、点列状に照射しても良い。点列に歪みを導入する方法は、ビームを素早く走査しながら所定の時間間隔で停止し、本発明に適合する時間にて当該点でビームを照射しつづけた後、また走査を開始するという、プロセスを繰り返すことにより実現する。電子ビーム照射でこのプロセスを実現するには、容量の大きなアンプを用いて、電子ビームの偏向電圧を変化させれば良い。点列状に照射する際の、点相互の間隔は、広すぎると磁区細分化効果が小さくなるので、0.40mm以下が好ましい。
(i)コーティング液成分:リン酸アルミニウムおよびクロム酸を主体とし、コロイダルシリカを含まない
(ii)焼き付け温度:260℃以上350℃以下
(iii)焼き付け時の昇温速度:50 ℃/s以下
焼き付け温度が350℃を超えて高いと、溶媒である水が表面より蒸発する前に蒸気となり、欠陥の原因となる。一方、焼き付け温度が260℃未満になると、被膜形成反応が進まない。
本発明において、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。
この場合におけるAl,N,SおよびSeの好適含有量はそれぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。
この場合には、Al,N,SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
C:0.08質量%以下
C量が0.08質量%を超えると、製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるから、特に設ける必要はない。
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成しにくく、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0~8.0質量%の範囲とすることが好ましい。
Mnは、熱間加工性を良好にする上で添加することが好ましい元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、 Mn量は0.005~1.0質量%の範囲とすることが好ましい。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03~1.50質量%の範囲とするのが好ましい。
コーティング液A:コロイダルシリカ20%水分散液100cc、リン酸アルミニウム50%水溶液60cc、クロム酸マグネシウム約25%水溶液15cc、ホウ酸3gを配合した液
コーティング液B:リン酸アルミニウム50%水溶液60cc、クロム酸マグネシウム約25%水溶液15cc、ホウ酸3g、水100ccを配合した液(コロイダルシリカを含有しない)
その後、層間抵抗電流、耐電圧、湿潤錆び率及び、1.7T、50Hzの鉄損W17/50を単板磁気試験器(SST)にて測定した。これらの測定結果を、表1および表2に示す。なお、層間抵抗電流、耐電圧および湿潤錆び率の測定は、以下のとおりに行った。
JIS-C2550に記載された層間抵抗試験の測定方法の内、A法に準拠して測定を行った。接触子に流れる全電流値を層間抵抗電流とする。
[耐電圧]
電極の片方を試料地鉄の一端につなぎ、もう片方を25mmφ、重さ1kgの極につなぎ、試料表面にのせて、これに徐々に電圧を加えて、絶縁破壊した時の電圧値を読み取る。試料表面にのせる極の場所を変えて、5箇所で測定し、その平均値を測定値とする。
[湿潤錆び率]
温度50℃、湿度98%の環境下で48時間放置した時の、照射痕領域内の錆び発生率を目視で算出した。
表3に示すように、本発明の範囲外において窒化処理材は、窒化処理をしない場合に比べて絶縁性および耐食性が共に劣る。一方、本発明の範囲内において窒化処理材は、窒化処理をしない場合と同等の絶縁性および耐食性を有しており、本発明を適用するのが有用であることがわかる。
1 絶縁被膜
2 クラック部
3 穴空き部
Claims (4)
- 高エネルギービームの照射により、鋼板の圧延方向を横切る向きに延びる線状の歪を導入したのち、絶縁被膜による再コートを施してなる方向性電磁鋼板であって、
前記高エネルギービームの照射痕領域における、前記絶縁被膜上に欠陥が存在する面積の比率が40%以下、
前記照射痕領域の鋼板圧延方向の最大幅が250μm以下および
前記再コートによる絶縁被膜の厚さが0.3μm以上2.0μm以下
であることを特徴とする方向性電磁鋼板。 - 前記線状の歪は、鋼板の圧延直角方向と成す角度が30°以内の向きに延びることを特徴とする請求項1に記載の方向性電磁鋼板。
- 高エネルギービームの照射により、鋼板の圧延方向を横切る向きに延びる線状の歪を導入したのち、絶縁被膜による再コートを施すに当たり、該絶縁被膜は、前記歪導入後の鋼板の表面に、リン酸アルミニウムおよびクロム酸を主体として、かつコロイダルシリカを含まないコーティング液を塗布し、260℃以上350℃以下の温度域での焼付けを、昇温速度:50 ℃/s以下の条件下で行うことを特徴とする方向性電磁鋼板の鉄損改善方法。
- 請求項3において、方向性電磁鋼用冷延板に、一次再結晶焼鈍を施し、ついで最終仕上げ焼鈍を施して高エネルギービームを照射するに際し、前記一次再結晶焼鈍の途中、あるいは一次再結晶焼鈍後に窒化処理を施すことを特徴とする方向性電磁鋼板の鉄損改善方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12861065.6A EP2799566B1 (en) | 2011-12-28 | 2012-12-27 | Grain-oriented electrical steel sheet and method for improving iron loss properties thereof |
US14/368,975 US10062483B2 (en) | 2011-12-28 | 2012-12-27 | Grain-oriented electrical steel sheet and method for improving iron loss properties thereof |
RU2014131023/02A RU2578296C2 (ru) | 2011-12-28 | 2012-12-27 | Текстурированный лист из электротехнической стали и способ снижения потерь в железе |
JP2013527810A JP5532185B2 (ja) | 2011-12-28 | 2012-12-27 | 方向性電磁鋼板およびその鉄損改善方法 |
KR1020147018758A KR101570018B1 (ko) | 2011-12-28 | 2012-12-27 | 방향성 전기 강판 및 그 철손 개선 방법 |
CN201280065047.5A CN104024455B (zh) | 2011-12-28 | 2012-12-27 | 方向性电磁钢板及其铁损改善方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-289914 | 2011-12-28 | ||
JP2011289914 | 2011-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013099274A1 true WO2013099274A1 (ja) | 2013-07-04 |
WO2013099274A8 WO2013099274A8 (ja) | 2014-05-15 |
Family
ID=48696803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/008411 WO2013099274A1 (ja) | 2011-12-28 | 2012-12-27 | 方向性電磁鋼板およびその鉄損改善方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10062483B2 (ja) |
EP (1) | EP2799566B1 (ja) |
JP (1) | JP5532185B2 (ja) |
KR (1) | KR101570018B1 (ja) |
CN (1) | CN104024455B (ja) |
RU (1) | RU2578296C2 (ja) |
WO (1) | WO2013099274A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015021153A (ja) * | 2013-07-18 | 2015-02-02 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP2015172223A (ja) * | 2014-03-11 | 2015-10-01 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP2015172222A (ja) * | 2014-03-11 | 2015-10-01 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP2017106111A (ja) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
EP3199649A4 (en) * | 2014-09-26 | 2018-07-04 | JFE Steel Corporation | Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core |
WO2022250163A1 (ja) * | 2021-05-28 | 2022-12-01 | 日本製鉄株式会社 | 方向性電磁鋼板 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6007501B2 (ja) | 2012-02-08 | 2016-10-12 | Jfeスチール株式会社 | 方向性電磁鋼板 |
KR101596446B1 (ko) * | 2014-08-07 | 2016-03-07 | 주식회사 포스코 | 포스테라이트 피막이 제거된 방향성 전기강판용 예비 코팅제 조성물, 이를 이용하여 제조된 방향성 전기강판 및 상기 방향성 전기강판의 제조방법 |
WO2016063317A1 (ja) | 2014-10-23 | 2016-04-28 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
EP3358041B1 (en) * | 2015-09-29 | 2021-03-24 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
BR112019013259A2 (pt) | 2017-01-10 | 2019-12-24 | Nippon Steel Corp | núcleo enrolado e método para sua fabricação |
CN108660295A (zh) * | 2017-03-27 | 2018-10-16 | 宝山钢铁股份有限公司 | 一种低铁损取向硅钢及其制造方法 |
JP6856114B2 (ja) * | 2017-09-28 | 2021-04-07 | Jfeスチール株式会社 | 方向性電磁鋼板 |
EP3770290B1 (en) * | 2018-03-22 | 2024-04-24 | Nippon Steel Corporation | Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet |
KR20230150996A (ko) * | 2021-03-26 | 2023-10-31 | 닛폰세이테츠 가부시키가이샤 | 방향성 전자 강판 및 그 제조 방법 |
CN117015627A (zh) * | 2021-03-26 | 2023-11-07 | 日本制铁株式会社 | 方向性电磁钢板及其制造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572252B2 (ja) | 1978-07-26 | 1982-01-14 | ||
JPS57152423A (en) * | 1982-03-09 | 1982-09-20 | Nippon Steel Corp | Treatment of electromagnetic steel plate |
JPS6249322B2 (ja) | 1983-04-23 | 1987-10-19 | Nippon Steel Corp | |
JPH03130377A (ja) * | 1989-10-16 | 1991-06-04 | Babcock Hitachi Kk | 低鉄損方向性珪素鋼板の絶縁被膜の形成方法 |
JPH04337079A (ja) * | 1991-05-15 | 1992-11-25 | Nippon Steel Corp | 鉄心加工性に優れた低温焼付けの方向性電磁鋼板の絶縁被膜形成方法 |
JPH051387A (ja) * | 1991-06-24 | 1993-01-08 | Kawasaki Steel Corp | 方向性けい素鋼板の絶縁コートの形成方法 |
JPH0532881B2 (ja) | 1982-07-30 | 1993-05-18 | Armco Inc | |
JPH0672266B2 (ja) | 1987-01-28 | 1994-09-14 | 川崎製鉄株式会社 | 超低鉄損一方向性珪素鋼板の製造方法 |
JP2001303214A (ja) * | 2000-04-25 | 2001-10-31 | Kawasaki Steel Corp | 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法 |
JP3361709B2 (ja) | 1997-01-24 | 2003-01-07 | 新日本製鐵株式会社 | 磁気特性の優れた方向性電磁鋼板の製造方法 |
JP4091749B2 (ja) | 2000-04-24 | 2008-05-28 | 新日本製鐵株式会社 | 磁気特性の優れた方向性電磁鋼板 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK172081A (da) | 1980-04-21 | 1981-10-22 | Merck & Co Inc | Mercaptoforbindelse og fremgangsmaade til fremstilling deraf |
JPS59229419A (ja) | 1983-06-11 | 1984-12-22 | Nippon Steel Corp | 方向性電磁鋼板の鉄損特性改善方法 |
SU1744128A1 (ru) * | 1990-04-04 | 1992-06-30 | Институт физики металлов Уральского отделения АН СССР | Способ изготовлени анизотропной электротехнической стали |
JPH0532881A (ja) | 1991-07-26 | 1993-02-09 | Nippon G Ii Plast Kk | ポリフエニレンエーテル系樹脂組成物 |
JPH0543945A (ja) | 1991-08-14 | 1993-02-23 | Kawasaki Steel Corp | 低鉄損一方向性珪素鋼板の製造方法 |
JP2731312B2 (ja) | 1992-01-16 | 1998-03-25 | 川崎製鉄株式会社 | 電磁鋼板絶縁被膜の均一形成用予備処理方法 |
JPH062042A (ja) | 1992-06-16 | 1994-01-11 | Kawasaki Steel Corp | 積鉄芯用低鉄損一方向性珪素鋼板の製造方法 |
JP3082460B2 (ja) | 1992-08-31 | 2000-08-28 | タカタ株式会社 | エアバッグ装置 |
JPH07336969A (ja) | 1994-06-09 | 1995-12-22 | Nkk Corp | 接着鉄心用電磁鋼板およびその製造方法 |
IT1290172B1 (it) | 1996-12-24 | 1998-10-19 | Acciai Speciali Terni Spa | Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche. |
WO1998044517A1 (fr) * | 1997-04-03 | 1998-10-08 | Kawasaki Steel Corporation | Tole d'acier au silicium unidirectionnel a perte ultra-faible dans le fer |
IT1306157B1 (it) * | 1999-05-26 | 2001-05-30 | Acciai Speciali Terni Spa | Procedimento per il miglioramento di caratteristiche magnetiche inlamierini di acciaio al silicio a grano orientato mediante trattamento |
JP2002220642A (ja) * | 2001-01-29 | 2002-08-09 | Kawasaki Steel Corp | 鉄損の低い方向性電磁鋼板およびその製造方法 |
KR100500189B1 (ko) | 2001-01-31 | 2005-07-18 | 제이에프이 스틸 가부시키가이샤 | 표면처리강판 및 그 제조방법 |
WO2003087420A1 (fr) * | 2002-03-28 | 2003-10-23 | Nippon Steel Corporation | Bande ou feuille d'acier magnetique laminee a chaud orientee possedant une tres grande adherence au revetement et procede de production de celle-ci |
WO2004083465A1 (ja) * | 2003-03-19 | 2004-09-30 | Nippon Steel Corporation | 磁気特性の優れた方向性電磁鋼板とその製造方法 |
RU2405841C1 (ru) * | 2009-08-03 | 2010-12-10 | Открытое акционерное общество "Новолипецкий металлургический комбинат" | Способ производства листовой анизотропной электротехнической стали |
JP5919617B2 (ja) * | 2010-08-06 | 2016-05-18 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
US9240266B2 (en) | 2010-08-06 | 2016-01-19 | Jfe Steel Corporation | Grain oriented electrical steel sheet |
WO2013046716A1 (ja) * | 2011-09-28 | 2013-04-04 | Jfeスチール株式会社 | 方向性電磁鋼板およびその製造方法 |
EP2799576B1 (en) * | 2011-12-26 | 2018-08-01 | JFE Steel Corporation | Grain-oriented electrical steel sheet |
US10395806B2 (en) * | 2011-12-28 | 2019-08-27 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method of manufacturing the same |
-
2012
- 2012-12-27 CN CN201280065047.5A patent/CN104024455B/zh active Active
- 2012-12-27 KR KR1020147018758A patent/KR101570018B1/ko active Active
- 2012-12-27 JP JP2013527810A patent/JP5532185B2/ja active Active
- 2012-12-27 WO PCT/JP2012/008411 patent/WO2013099274A1/ja active Application Filing
- 2012-12-27 EP EP12861065.6A patent/EP2799566B1/en active Active
- 2012-12-27 RU RU2014131023/02A patent/RU2578296C2/ru active
- 2012-12-27 US US14/368,975 patent/US10062483B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572252B2 (ja) | 1978-07-26 | 1982-01-14 | ||
JPS57152423A (en) * | 1982-03-09 | 1982-09-20 | Nippon Steel Corp | Treatment of electromagnetic steel plate |
JPH0532881B2 (ja) | 1982-07-30 | 1993-05-18 | Armco Inc | |
JPS6249322B2 (ja) | 1983-04-23 | 1987-10-19 | Nippon Steel Corp | |
JPH0672266B2 (ja) | 1987-01-28 | 1994-09-14 | 川崎製鉄株式会社 | 超低鉄損一方向性珪素鋼板の製造方法 |
JPH03130377A (ja) * | 1989-10-16 | 1991-06-04 | Babcock Hitachi Kk | 低鉄損方向性珪素鋼板の絶縁被膜の形成方法 |
JPH04337079A (ja) * | 1991-05-15 | 1992-11-25 | Nippon Steel Corp | 鉄心加工性に優れた低温焼付けの方向性電磁鋼板の絶縁被膜形成方法 |
JPH051387A (ja) * | 1991-06-24 | 1993-01-08 | Kawasaki Steel Corp | 方向性けい素鋼板の絶縁コートの形成方法 |
JP3361709B2 (ja) | 1997-01-24 | 2003-01-07 | 新日本製鐵株式会社 | 磁気特性の優れた方向性電磁鋼板の製造方法 |
JP4091749B2 (ja) | 2000-04-24 | 2008-05-28 | 新日本製鐵株式会社 | 磁気特性の優れた方向性電磁鋼板 |
JP2001303214A (ja) * | 2000-04-25 | 2001-10-31 | Kawasaki Steel Corp | 高周波磁気特性に優れた方向性電磁鋼板およびその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015021153A (ja) * | 2013-07-18 | 2015-02-02 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP2015172223A (ja) * | 2014-03-11 | 2015-10-01 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
JP2015172222A (ja) * | 2014-03-11 | 2015-10-01 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
EP3199649A4 (en) * | 2014-09-26 | 2018-07-04 | JFE Steel Corporation | Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core |
EP3517637A1 (en) * | 2014-09-26 | 2019-07-31 | JFE Steel Corporation | Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core |
US10697038B2 (en) | 2014-09-26 | 2020-06-30 | Jfe Steel Corporation | Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core |
US10889875B2 (en) | 2014-09-26 | 2021-01-12 | Jfe Steel Corporation | Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core |
JP2017106111A (ja) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
WO2022250163A1 (ja) * | 2021-05-28 | 2022-12-01 | 日本製鉄株式会社 | 方向性電磁鋼板 |
JPWO2022250163A1 (ja) * | 2021-05-28 | 2022-12-01 |
Also Published As
Publication number | Publication date |
---|---|
EP2799566B1 (en) | 2019-04-17 |
JPWO2013099274A1 (ja) | 2015-04-30 |
CN104024455A (zh) | 2014-09-03 |
RU2014131023A (ru) | 2016-02-20 |
WO2013099274A8 (ja) | 2014-05-15 |
JP5532185B2 (ja) | 2014-06-25 |
RU2578296C2 (ru) | 2016-03-27 |
US20150132547A1 (en) | 2015-05-14 |
US10062483B2 (en) | 2018-08-28 |
EP2799566A4 (en) | 2015-08-19 |
CN104024455B (zh) | 2016-05-25 |
KR20140110913A (ko) | 2014-09-17 |
KR101570018B1 (ko) | 2015-11-17 |
EP2799566A1 (en) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532185B2 (ja) | 方向性電磁鋼板およびその鉄損改善方法 | |
JP6157360B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
KR101421387B1 (ko) | 방향성 전기 강판 및 그 제조 방법 | |
JP5998424B2 (ja) | 方向性電磁鋼板 | |
JP5754097B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
KR101593346B1 (ko) | 방향성 전기 강판 및 그 제조 방법 | |
JP5742294B2 (ja) | 方向性電磁鋼板の製造方法 | |
WO2012001952A1 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5953690B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5712667B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6465048B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6973369B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP5527094B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP5754170B2 (ja) | 方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013527810 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861065 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012861065 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14368975 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147018758 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014131023 Country of ref document: RU Kind code of ref document: A |