WO2012081417A4 - 酢酸の製造方法 - Google Patents
酢酸の製造方法 Download PDFInfo
- Publication number
- WO2012081417A4 WO2012081417A4 PCT/JP2011/077845 JP2011077845W WO2012081417A4 WO 2012081417 A4 WO2012081417 A4 WO 2012081417A4 JP 2011077845 W JP2011077845 W JP 2011077845W WO 2012081417 A4 WO2012081417 A4 WO 2012081417A4
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acetic acid
- iodide
- concentration
- weight
- catalyst
- Prior art date
Links
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 title claims abstract description 465
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 239000003054 catalyst Substances 0.000 claims abstract description 153
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 141
- 238000006243 chemical reaction Methods 0.000 claims abstract description 122
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims abstract description 104
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 claims abstract description 76
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 claims abstract description 76
- 229910000043 hydrogen iodide Inorganic materials 0.000 claims abstract description 55
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 claims abstract description 53
- 239000002184 metal Substances 0.000 claims abstract description 53
- 239000011541 reaction mixture Substances 0.000 claims abstract description 45
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 38
- 238000005810 carbonylation reaction Methods 0.000 claims abstract description 15
- 230000006315 carbonylation Effects 0.000 claims abstract description 7
- 230000002401 inhibitory effect Effects 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 54
- 238000007701 flash-distillation Methods 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- 239000010948 rhodium Substances 0.000 claims description 28
- 229910052703 rhodium Inorganic materials 0.000 claims description 27
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 26
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 15
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 238000011084 recovery Methods 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910001516 alkali metal iodide Inorganic materials 0.000 claims description 7
- 239000002585 base Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 abstract description 78
- 230000008020 evaporation Effects 0.000 abstract description 76
- 239000012530 fluid Substances 0.000 abstract 1
- 238000004821 distillation Methods 0.000 description 111
- 238000009835 boiling Methods 0.000 description 105
- 239000007788 liquid Substances 0.000 description 62
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 54
- 239000000243 solution Substances 0.000 description 52
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 39
- 241001417501 Lobotidae Species 0.000 description 35
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 29
- 239000007789 gas Substances 0.000 description 27
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 26
- 238000005260 corrosion Methods 0.000 description 25
- 230000007797 corrosion Effects 0.000 description 25
- 229910052739 hydrogen Inorganic materials 0.000 description 24
- 239000001257 hydrogen Substances 0.000 description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 21
- 239000003456 ion exchange resin Substances 0.000 description 21
- 229920003303 ion-exchange polymer Polymers 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- 238000000926 separation method Methods 0.000 description 19
- 238000004064 recycling Methods 0.000 description 15
- 235000019260 propionic acid Nutrition 0.000 description 13
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000012295 chemical reaction liquid Substances 0.000 description 10
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 10
- 239000003729 cation exchange resin Substances 0.000 description 9
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 150000004694 iodide salts Chemical class 0.000 description 8
- -1 lithium iodide (ie Chemical compound 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- 150000001351 alkyl iodides Chemical class 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- ANOOTOPTCJRUPK-UHFFFAOYSA-N 1-iodohexane Chemical compound CCCCCCI ANOOTOPTCJRUPK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000007810 chemical reaction solvent Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910000856 hastalloy Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- IQGZCSXWIRBTRW-ZZXKWVIFSA-N (2E)-2-ethyl-2-butenal Chemical compound CC\C(=C/C)C=O IQGZCSXWIRBTRW-ZZXKWVIFSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- SKIDNYUZJPMKFC-UHFFFAOYSA-N 1-iododecane Chemical compound CCCCCCCCCCI SKIDNYUZJPMKFC-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- MYSWGLZTUMZAAS-UHFFFAOYSA-N [Rh].[I] Chemical class [Rh].[I] MYSWGLZTUMZAAS-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910001619 alkaline earth metal iodide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CECABOMBVQNBEC-UHFFFAOYSA-K aluminium iodide Chemical compound I[Al](I)I CECABOMBVQNBEC-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- JUCWKFHIHJQTFR-UHFFFAOYSA-L beryllium iodide Chemical compound [Be+2].[I-].[I-] JUCWKFHIHJQTFR-UHFFFAOYSA-L 0.000 description 1
- 229910001639 beryllium iodide Inorganic materials 0.000 description 1
- YMEKEHSRPZAOGO-UHFFFAOYSA-N boron triiodide Chemical compound IB(I)I YMEKEHSRPZAOGO-UHFFFAOYSA-N 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- QZJVWTNHFOMVHX-UHFFFAOYSA-N methanol;methyl acetate Chemical compound OC.COC(C)=O QZJVWTNHFOMVHX-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
- C07C51/12—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
- B01J27/13—Platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/10—Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
- C07C51/44—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
- C07C51/46—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/50—Use of additives, e.g. for stabilisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C53/00—Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
- C07C53/08—Acetic acid
Definitions
- the present invention relates to a method for producing acetic acid while efficiently suppressing an increase in concentration of hydrogen iodide in a flash evaporation tank (flasher) for distilling a reaction mixture from a reactor.
- flasher flash evaporation tank
- acetic acid Various industrial production methods of acetic acid are known, among which methanol is used in the presence of water, using a metal catalyst such as a rhodium catalyst, an ionic iodide (eg, lithium iodide etc.) and methyl iodide.
- a metal catalyst such as a rhodium catalyst, an ionic iodide (eg, lithium iodide etc.) and methyl iodide.
- the method of continuously reacting carbon monoxide with carbon monoxide to produce acetic acid is an industrially excellent method.
- improvements in reaction conditions and catalysts have been studied, and by adding a catalyst stabilizer such as an iodide salt, the reaction is carried out under conditions of lower moisture than conventional conditions, and industrial acetic acid having high productivity is obtained.
- the manufacturing method of has been developed.
- a reaction mixture obtained by the reaction of methanol and carbon monoxide and containing acetic acid is distilled (flash distillation) in a flasher (flash evaporation tank), and the components volatilized by this distillation are further distilled ( Acetic acid is produced by subjecting to rectification) and separating (further purifying) the component containing acetic acid.
- the reaction mixture contains acetic acid as a product, methyl iodide and the like
- the concentration of hydrogen iodide in the flash evaporation tank is due to distillation conditions such as composition change, pressure change, temperature change and the like. Rising can promote corrosion of the flash evaporation tank.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2006-160645 is a method of distilling a liquid mixture containing hydrogen iodide and water, wherein distillation is performed at a water concentration of 5% by weight or less in the distillation system, A method of suppressing the concentration of hydrogen iodide in the system is disclosed. And although it is applicable also to reaction mixture (or liquid reaction composition) about the liquid mixture which applies this method to this literature, it is separated by the first distillation among reaction mixtures, and water, alcohol, alkyl iodide, It is described that it is applied to light components rich in low boiling point components such as carboxylic acids or their acid anhydrides, carboxylic acid esters and hydrogen iodide.
- the water concentration is hydrogen iodide, using a process liquid which does not contain ionic iodide such as lithium iodide (ie, the volatile component separated by flash distillation of the reaction mixture).
- ionic iodide such as lithium iodide
- Patent Document 1 assumes hydrogen iodide to be concentrated in distillation, and no study has been made to reduce hydrogen iodide in the flash evaporation tank.
- Japanese Patent Laid-Open No. 6-40998 has a method of producing acetic acid by reacting methanol and carbon monoxide in the presence of a rhodium catalyst and methyl iodide, wherein the water concentration in the reaction solution is 10 wt.
- reaction liquid is flash-distilled at a can liquid temperature of 120 to 138 ° C. to make the liquid amount one half, methyl iodide 0.5% by weight, methyl acetate 0.2% by weight etc.
- a concentrate containing C. is obtained, hydrogen iodide in flash distillation is not assumed at all.
- an object of the present invention is to provide a method for producing acetic acid while efficiently suppressing the concentration increase of hydrogen iodide in the flash evaporation tank.
- Another object of the present invention is to provide a method for producing acetic acid which can suppress corrosion of a flash evaporation tank.
- the composition of the reaction solution is basically determined theoretically by the reaction temperature, the pressure in the flash distillation, and the like under adiabatic conditions, the present inventors have found that such equilibrium findings.
- Hydrogen iodide in a flash evaporation tank in the flash distillation step of the reaction mixture obtained by the carbonylation reaction of methanol using a catalyst system containing a metal catalyst, an ionic iodide (such as an alkali metal iodide) and methyl iodide We tried to investigate how to suppress the increase in concentration.
- the temperature, pressure and composition can be set arbitrarily, and the combination not only changes the flash distillation conditions in various ways, but the reactions involved in the formation of hydrogen iodide in the flash evaporation tank are complicated in many ways In a simple equilibrium theory, it was practically difficult to stably suppress the formation or concentration increase of hydrogen iodide while maintaining sufficient productivity of acetic acid.
- the present inventors flash-distill, adjusting the composition of the specific component in the liquid component (catalyst liquid) which the volatile component was isolate
- the concentration increase of hydrogen iodide in the flash evaporation tank can be suppressed, and the corrosion of the flash evaporation tank can be suppressed by suppressing such concentration increase, and furthermore, the volatile component from the flash evaporation tank And / or the entire process in which the catalyst liquid is supplied [eg, a distillation column (fractionation column) for providing volatile components to further distillation, its ancillary equipment (eg, heat exchangers such as circulating pumps, condensers, reboilers, etc.), catalyst Incidental equipment (heat exchanger, circulating pump, etc.) for recycling the liquid to the reactor, and further, a line for supplying these distillation towers and incidental equipment It found that can reduce the adverse effects of hydrogen iodide (corrosion, etc.) in, and have completed the present invention.
- ancillary equipment eg, heat exchangers such as circulating pumps, condensers, reboilers, etc.
- catalyst Incidental equipment heat exchanger
- the method of the present invention comprises the steps of: using a catalyst system consisting of a metal catalyst (such as a rhodium catalyst), an ionic iodide (such as an alkali metal iodide such as lithium iodide), and methyl iodide;
- a method for producing acetic acid comprising: a flash distillation step of evaporating volatile components; and an acetic acid recovery step of separating acetic acid-containing fractions from the volatile components to recover acetic acid, wherein the flash distillation step comprises The volatile component is separated from the reaction mixture, and methyl acetate is contained in a catalyst solution containing at least a metal catalyst and an ionic iodide.
- Degree is process for the production of
- the methyl acetate concentration in the catalyst solution may be 1% by weight or more (in particular, 1.5% by weight or more).
- the concentration of water in the catalyst solution may be 15% by weight or less, and the concentration of the metal catalyst in the catalyst solution may be 300 ppm or more on a weight basis.
- the acetic acid concentration may be 40% by weight or more. In the present invention, it is possible to suppress the increase in the concentration of hydrogen iodide in the flasher while securing a sufficient production efficiency (or reaction rate) of acetic acid.
- the concentration of each component is 50% by weight or less of ionic iodide, 5% by weight or less of methyl iodide and about 45 to 90% by weight of acetic acid
- the water concentration may be 10% by weight or less.
- the concentration of each component is 40% by weight or less of ionic iodide, about 0.01 to 4% by weight of methyl iodide, and 50 to 85% by weight of acetic acid.
- the concentration may be about 0.7 to 5% by weight and the concentration of water may be about 0.8 to 8% by weight.
- flash distillation may be performed at an absolute pressure of 0.1 to 0.5 MPa, and the temperature of the catalyst solution (or flash distillation temperature) may be about 100 to 170 ° C.
- adjustment of the concentration of each component in the flash evaporation tank may be performed by adding each component or a component that produces each component.
- the methyl acetate concentration in the catalyst solution can be adjusted (for example, 0.6 weight) by adding or mixing methyl acetate and / or a component that produces methyl acetate to the reaction mixture and / or the flash evaporation tank You may adjust to% or more.
- concentration or generation of hydrogen iodide in the flash evaporation tank can be suppressed by adjusting the concentration of methyl acetate or the like, and furthermore, corrosion of the flash evaporation tank can be suppressed.
- a reaction step in which methanol and carbon monoxide are continuously reacted in a carbonylation reactor in the presence of a catalyst system composed of a metal catalyst, ionic iodide and methyl iodide A flash distillation step of continuously supplying a reaction mixture from a reactor to a flasher (flash evaporation tank) and evaporating volatile components containing at least acetic acid, methyl acetate and methyl iodide produced by flash distillation;
- the acetic acid production process including the acetic acid recovery step of separating the acetic acid-containing fraction from the basic components and recovering the acetic acid, the liquid phase in the flasher (in the catalyst solution) and / or in the flasher in the flasher.
- a method of suppressing the formation or concentration increase of hydrogen iodide in a gas phase portion comprising the steps of:
- the iodine in the flasher is separated by flash distillation under the condition that the volatile component is separated from the mixture and the methyl acetate concentration in the catalyst solution containing at least the metal catalyst and the ionic iodide is 0.6% by weight or more.
- Also included are methods of suppressing the formation or concentration increase of hydrogen fluoride (or suppressing the corrosion of flashers).
- the concentration of hydrogen iodide in the catalyst solution may be maintained, for example, at 1% by weight or less.
- the material of the flasher may be an alloy (eg, a nickel base alloy).
- the present invention since corrosion can be suppressed, even a flasher made of such a material that is relatively easily corroded can be suitably used.
- the total of the proportions of optional components present in the same mixed system (such as a catalyst liquid) is 100% by weight or less, and the total proportion of all the components is 100% by weight.
- acetic acid can be produced while efficiently suppressing the concentration increase of hydrogen iodide in the flash evaporation tank.
- the method of the present invention can suppress the corrosion of the flash evaporation tank. Therefore, flash distillation can be efficiently performed without forming a flash evaporation tank with a high-quality material that is highly corrosion resistant.
- the acetic acid production process Cost effectively.
- FIG. 1 is a flowchart for explaining an example of the method (or apparatus for producing) acetic acid of the present invention.
- FIG. 1 is a flow chart for explaining an example of the method (or apparatus for producing) acetic acid according to the present invention.
- a catalyst system composed of a rhodium catalyst as a metal catalyst, lithium [cobalt as a co-catalyst [ionic iodide (or iodide salt), and methyl iodide], and acetic acid, methyl acetate
- a continuous process for the production of acetic acid (CH 3 COOH) from the reaction mixture produced by the continuous carbonylation reaction of methanol (MeOH) and carbon monoxide (CO) in the presence of a finite amount of water. It is done.
- This process comprises a reactor (reaction system) 1 for carrying out the carbonylation reaction of methanol, and a reaction mixture which is introduced from the reactor 1 through a feed line 14 and contains acetic acid produced by the reaction.
- flasher or evaporation tank (flash evaporation tank) 2 for separating it from a catalyst liquid (low volatility component or high boiling point fraction) containing water, and volatile components introduced from the evaporation tank 2 through the supply line 15, At least a portion of the low-boiling fraction containing low-boiling components (methyl iodide, methyl acetate, acetaldehyde, etc.) is separated or removed
- the process also includes a condenser or heat exchanger to condense the components supplied through each line.
- a condenser or heat exchanger to condense the components supplied through each line.
- the condenser 5 for condensing the condensable component in the off gas (vapor) discharged through the discharge line 11 and the liquid component condensed in the condenser 5 are recycled to the reactor 1
- a condenser 8 for condensing the condensable components in the low-boiling fraction or overhead discharged through the discharge line 20 and the liquid component condensed in the condenser 8 are supplied to the reactor 1.
- the recycling line 22 for recycling, the recycling line 22 a for recycling (or refluxing) part of the liquid component condensed by the condenser 8 to the first distillation column 3, and the non-condensing constituents of the condenser 8 A discharge line 21 for discharging a gas component and a line 24 for discharging the high boiling fraction of the first distillation column 3 and recycling it to the reactor 1 are provided.
- the liquid component recycled to the first distillation column 3 is used for reflux in the first distillation column 3.
- a condenser 9 for condensing the condensable constituents in the low boiling fraction or overhead discharged through the discharge line 25, and the liquid component condensed in this condenser 9 or the low boiling fraction
- the reactor 1 is provided with a recycle line 27 for recycling (or refluxing) the second distillation column 4 and part or all of the liquid component or low-boiling fraction condensed in the condenser 9 from the line 27.
- a line 28 for supplying the gas separated by the condenser 9 to the scrubber 10 through the line 13.
- FIG. 1 further recovers the gas component (or non-condensed component) and the like discharged by the condenser 5, the heat exchanger 7 and the condenser 8, and discards and / or reacts (reactor 1 etc.)
- a line for recycling gas components and the like from the scrubber system 10 to the reaction system (such as the reactor 1) is omitted in FIG.
- Methanol as a liquid component and carbon monoxide as a gaseous reaction component are continuously supplied to the reactor 1 at a predetermined speed, and a carbonylation catalyst system (a main catalyst component such as a rhodium catalyst, lithium iodide, and the like)
- a catalyst mixture comprising a catalyst system
- a cocatalyst such as methyl iodide
- fractions containing low boiling fractions and / or high boiling fractions from subsequent steps evaporation tank 2, first and second distillation columns 3 and 4, heat exchanger 7, scrubber system 10, etc.
- liquid form may be supplied to the reactor 1.
- a liquid phase reaction system containing a reactive component and a high boiling component such as a metal catalyst component (such as a rhodium catalyst) and an ionic iodide (such as lithium iodide), carbon monoxide and a reaction
- a vapor phase system composed of by-produced hydrogen, methane, carbon dioxide, and vaporized low-boiling components (methyl iodide, produced acetic acid, methyl acetate etc.) forms an equilibrium state, and it is possible to use a stirrer or the like. Under stirring, the carbonylation reaction of methanol proceeds.
- reaction pressure carbon monoxide partial pressure, hydrogen partial pressure, methane partial pressure, nitrogen partial pressure, etc.
- the extracted vapor is cooled by a condenser 5 to form a liquid component (including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water and the like) and a gas component (including carbon monoxide, hydrogen and the like),
- the obtained liquid component is recycled to the reactor 1 and the gas component (exhaust gas) is discharged to the scrubber system 10 and recycled to the reactor 1 if necessary.
- the reaction system is an exothermic reaction system with heat generation, part of the heat of reaction generated in the reactor can be removed by cooling a part of the reaction heat transferred from the reaction liquid to the vapor with the condenser 5 .
- Hydrogen may be supplied to the reactor 1 if necessary in order to enhance the catalytic activity.
- the reactor 1 since the reaction system is an exothermic reaction system accompanied by heat generation, the reactor 1 may be provided with a heat removal or cooling device (jacket etc.) for controlling the reaction temperature.
- a heat removal or cooling device for controlling the reaction temperature.
- a reactor is such a heat removal or cooling device It is possible to remove heat without having to
- reaction crude liquid In the reaction mixture (reaction crude liquid) produced in the reactor 1, acetic acid, hydrogen iodide, low boiling components having a boiling point lower than that of acetic acid or low boiling impurities (methyl iodide as a cocatalyst, acetic acid and methanol Methyl acetate which is a reaction product, acetaldehyde which is a side reaction product, crotonaldehyde, higher ethyl iodide such as 2-ethyl crotonaldehyde, hexyl iodide, hexyl iodide, decyl iodide and the like) and high-boiling components having a boiling point higher than that of acetic acid Or high-boiling impurities [a metal catalyst component (a rhodium catalyst and lithium iodide as a cocatalyst), propionic acid, water and the like] and the like.
- the reaction mixture (or a part of the reaction mixture) is continuously withdrawn from the reactor 1 and introduced or supplied to the flasher (evaporation tank) 2 Do.
- Flasher 2 flash distillation is used to evaporate volatile components or low-boiling fractions (mainly containing acetic acid, methyl acetate, methyl iodide, water, hydrogen iodide, etc., which are products and also function as a reaction solvent).
- the catalyst solution or the high boiling fraction (mainly containing a rhodium catalyst and a metal catalyst component such as lithium iodide, etc.) is separated from the reaction mixture.
- the catalyst solution contains, in addition to the metal catalyst component, acetic acid, methyl iodide, water, methyl acetate and the like remaining without evaporation.
- the flasher 2 flash distillation is performed so that at least the methyl acetate concentration in the catalyst solution maintains a predetermined concentration (for example, 0.6% by weight or more).
- a predetermined concentration for example 0.6% by weight or more.
- the methyl acetate concentration may be adjusted by, for example, increasing the methanol concentration in the reaction mixture to promote the reaction between methanol and acetic acid, and, if necessary, methyl acetate and / or methyl acetate
- the component which produces (for example, methanol, dimethyl ether etc.) may be adjusted by supplying the flash evaporation tank 2.
- a line 30 joining the line 14 is provided, and, if necessary, methyl acetate and / or a component producing methyl acetate is mixed with the reaction mixture from the reactor 1 through the line 30. It is also possible to adjust the methyl acetate concentration in the flash evaporation tank.
- the catalyst solution is continuously discharged from the bottom of the column.
- the catalyst liquid thus produced may be recycled to the reactor 1 as it is, but in the example of the figure, the heat is removed (cooled) in the heat exchanger 6 and then recycled to the reactor 1.
- volatile components or low-boiling fractions are distilled from the top or upper part of the flasher 2 and supplied or introduced into the first distillation column 3 and heat exchange of part of the volatile components It is introduced into vessel 7 and condensed.
- the volatile components cooled by the heat exchanger 7 include liquid components (including acetic acid, methanol, methyl iodide, methyl acetate, water, propionic acid, acetaldehyde and the like) and gaseous components (including carbon monoxide, hydrogen and the like) And the obtained liquid component is recycled to the reactor 1, and the gas component (exhaust gas) is discharged to the scrubber system 10, as it is, as it is or as PSA (pressure swing adsorption) method, etc.
- the carbon monoxide is purified by the following procedure and recycled to the reactor 1.
- a low-boiling fraction (or overhead) containing low-boiling components (including methyl iodide, methanol, methyl acetate, acetaldehyde, water and the like) is usually separated from the top of the column or the top of the column
- low-boiling components including methyl iodide, methanol, methyl acetate, acetaldehyde, water and the like
- high boiling fractions containing high boiling components water, propionic acid, entrained catalyst, lithium iodide etc.
- the high boiling point fraction (first high boiling point fraction) contains not only the high boiling point component but also the low boiling component remaining without evaporation, acetic acid and the like, and a part of the high boiling point fraction discharged to the line 24 May be recycled to the flasher 2 through the line 24a, if necessary. Then, a side stream mainly containing acetic acid (acetic acid stream or crude acetic acid stream) is distilled from the first distillation column 3 by a side cut, and supplied or introduced into the second distillation column 4.
- the low boiling fraction (overhead or first overhead or first low boiling fraction) distilled from the top or the upper portion of the first distillation column 3 also contains acetic acid and the like, and is supplied to the condenser 8 Ru.
- the condenser 8 Ru By condensing the low boiling fraction distilled from the first distillation column 3 with the condenser 8, a part of the heat of reaction transferred from the reaction liquid to the low boiling fraction through the flash vapor can be cooled with the condenser 8. Part of the heat of reaction can be removed.
- the low-boiling fraction is condensed and separated into a gas component mainly containing carbon monoxide, hydrogen and the like, and a liquid component containing methyl iodide, methyl acetate, acetic acid, acetaldehyde and the like.
- the gas component separated by the condenser 8 is discharged to the scrubber system 10 and, if necessary, recycled to a reaction system (such as the reactor 1) (not shown).
- the liquid component separated in the condenser 8 may be recycled to the first distillation column 3 through the line 22a.
- the liquid component may be a uniform liquid, or may be a liquid separation (for example, two-layer liquid separation) system.
- the liquid component when the liquid component contains a predetermined amount of water, the liquid component is composed of an aqueous phase (aqueous layer, aqueous phase) containing acetic acid, acetaldehyde and the like, and an oily phase (organic layer, organic phase) containing methyl iodide and the like. It may be separated into two layers.
- the oily phase may be recycled to the reactor 1 and / or the first distillation column 3
- the aqueous phase (water phase) may be recycled to the reactor 1 and / or the first distillation column 3.
- the acetic acid stream which is side-cut from the first distillation column 3 and supplied to the second distillation column 4 further contains low-boiling components (such as water) remaining in the acetic acid stream in the second distillation column 4 Separate and distill a purer acetic acid stream (purified acetic acid stream) as a side stream.
- the low-boiling fraction containing the low-boiling component is supplied to the condenser 9 from the top or the upper part of the column, and the side stream (acetic acid stream) rich in acetic acid is side-cut Distill.
- the low-boiling fraction (overhead or second overhead or second low-boiling fraction) discharged from the column top or upper column is recycled to the second distillation column 4 and / or the reaction system 1 as necessary It is also good.
- Water may be separated as a low-boiling component in the second distillation column 4, may be mainly separated in the first distillation column 3, and further purification may be performed in the second distillation column 4.
- high boiling point fractions such as high boiling point components (such as propionic acid) may be recycled from the bottom or the lower portion of the column, and may be recycled to the reactor 1 if necessary. It may be discharged out of the system (not shown).
- the low boiling fraction distilled from the top or upper portion of the second distillation column 4 contains methyl iodide, methyl acetate, water, acetaldehyde and the like, and is condensed in the condenser 9.
- the low boiling fraction condensed in the condenser 9 may be recycled to the reactor 1 through the line 26 and may be recycled to the second distillation column 4 through the line 27.
- the gas separated in the condenser 9 may be supplied to the scrubber 10 through the line 13.
- the aqueous phase and the oily phase may be separated and recycled as in the first distillation column.
- reaction step carbonylation reaction step
- methanol is carbonylated with carbon monoxide in the presence of a catalyst system.
- Methanol may be fed fresh methanol directly or indirectly to the reaction system, or may be fed to the reaction system by recycling methanol or its derivative distilled from various distillation steps. Good.
- the catalyst system can usually consist of a metal catalyst, a cocatalyst and a promoter.
- the metal catalyst may, for example, be a transition metal catalyst, in particular, a metal catalyst containing a periodic table group 8 metal, such as a cobalt catalyst, a rhodium catalyst or an iridium catalyst.
- the catalyst may be a metal alone, and may be an oxide (including complex oxides), a hydroxide, a halide (such as chloride, bromide or iodide), a carboxylate (such as acetate), an inorganic substance It can also be used in the form of acid salts (sulfates, nitrates, phosphates, etc.), complexes, etc.
- Such metal catalysts can be used singly or in combination of two or more.
- Preferred metal catalysts are rhodium catalysts and iridium catalysts (especially rhodium catalysts).
- the metal catalyst in a soluble form in the reaction solution.
- rhodium is usually present as a complex in the reaction solution
- the catalyst is not particularly limited as long as it can be converted to a complex in the reaction solution, and various forms are possible. It can be used in As such a rhodium catalyst, rhodium iodine complexes (eg, RhI 3 , [RhI 2 (CO) 4 ] ⁇ , [Rh (CO) 2 I 2 ] ⁇ , etc.), rhodium carbonyl complexes, etc. are particularly preferable.
- the catalyst can also be stabilized in the reaction solution by the addition of halide salts (such as iodide salts) and / or water.
- the concentration of the metal catalyst is, for example, 10 to 5000 ppm (by weight, the same applies hereinafter), preferably 100 to 4000 ppm, more preferably 200 to 3000 ppm, and particularly 300 to 2000 ppm (eg, 500) based on the whole liquid phase in the reactor. About 1500 ppm).
- An ionic iodide (iodide salt) is used as a co-catalyst or promoter constituting the catalyst system.
- the iodide salt is added particularly for stabilization of the rhodium catalyst under low water content and suppression of side reactions.
- the iodide salt is not particularly limited as long as it generates an iodine ion in the reaction solution, and examples thereof include metal halides [eg, alkali metal iodides (lithium iodide, sodium iodide, potassium iodide, Rubidium iodide, cesium iodide etc.), alkaline earth metal iodide (beryllium iodide, magnesium iodide, calcium iodide etc.), periodic table salt of Group 3B of iodide (boron iodide, aluminum iodide etc.) Metal halides, etc.], organic halides [eg, phosphonium salt of iodide (eg, salt with tributylphosphine, triphenylphosphine etc.), ammonium salt of iodide (tertiary amine, pyridines, imidazoles, etc.
- metal halides e
- Organic iodides such as imides and salts of iodides with iodides, bromides corresponding to these And the like chloride] is.
- the alkali metal iodide such as lithium iodide
- These iodide salts can be used alone or in combination of two or more. Among these iodide salts, alkali metal iodides such as lithium iodide are preferred.
- the concentration of ionic iodide in the reactor is, for example, 1 to 25% by weight, preferably 2 to 22% by weight, and more preferably, based on the entire liquid phase (or reaction liquid) in the reactor. It is about 3 to 20% by weight.
- alkyl iodide eg, methyl iodide, ethyl iodide, C1-4 alkyl iodide such as propyl iodide, etc.
- the promoter may include at least methyl iodide. The higher the concentration of the promoter, the more the reaction is promoted. Therefore, the recovery of the promoter, the scale of equipment for the process of recycling the recovered promoter to the reactor, the amount of energy required for recovery and circulation, etc.
- the concentration that is advantageous to the concentration of alkyl iodide (especially methyl iodide) in the reaction system is, for example, 1 to 25% by weight, preferably 5 to 20% by weight, and more preferably 6 to 16% by weight based on the whole liquid phase in the reactor. % (Eg, 12 to 15% by weight).
- the reaction solution may usually contain methyl acetate.
- the content of methyl acetate is, for example, 0.1 to 30% by weight, preferably 0.3 to 20% by weight, and more preferably 0.5 to 10% by weight (eg, 0.5 to 6% by weight) of the whole reaction solution. %) May be sufficient.
- the carbon monoxide supplied to the reaction system may be used as a pure gas or may be used after diluting with an inert gas (eg, nitrogen, helium, carbon dioxide, etc.).
- an inert gas eg, nitrogen, helium, carbon dioxide, etc.
- exhaust gas components containing carbon monoxide obtained from the subsequent steps may be recycled to the reaction system.
- the carbon monoxide partial pressure in the reactor may be, for example, about 2 to 30 atm, preferably about 4 to 15 atm.
- a shift reaction occurs by the reaction of carbon monoxide and water to generate hydrogen, but hydrogen may be supplied to the reaction system.
- Hydrogen to be supplied to the reaction system can also be supplied to the reaction system as a mixed gas together with carbon monoxide as a raw material.
- hydrogen may be supplied by appropriately purifying the gas components (including hydrogen, carbon monoxide, etc.) discharged in the subsequent distillation step (distillation column), if necessary, and recycling it to the reaction system.
- the hydrogen partial pressure of the reaction system may be, for example, about 0.5 to 200 kPa, preferably 1 to 150 kPa, and more preferably about 5 to 100 kPa (eg, 10 to 50 kPa) in absolute pressure.
- the partial pressure of carbon monoxide and hydrogen in the reaction system may be determined, for example, by the supply amount of carbon monoxide and hydrogen to the reaction system or the amount of these components recycled to the reaction system, the raw material substrate to the reaction system (methanol And so forth), the reaction temperature, the reaction pressure and the like.
- the reaction temperature may be, for example, about 150 to 250 ° C., preferably about 160 to 230 ° C., and more preferably about 180 to 220 ° C.
- the reaction pressure total reactor pressure
- total reactor pressure may be, for example, about 15 to 40 atm.
- the reaction may be carried out in the presence or absence of a solvent.
- the reaction solvent is not particularly limited as long as it does not lower the reactivity or the separation or purification efficiency, and various solvents can be used. Usually, acetic acid which is a product and also a reaction solvent is often used.
- the concentration of water contained in the reaction system is not particularly limited, but may be low.
- the water concentration of the reaction system is, for example, 15% by weight or less (eg, 0.1 to 12% by weight), preferably 10% by weight or less (eg, 0.1 to 6% by weight) based on the whole liquid phase of the reaction system. %, More preferably about 0.1 to 5% by weight, and usually about 1 to 15% by weight (eg, 2 to 10% by weight).
- the solubility of carbon monoxide in the liquid supplied to the evaporation tank is reduced by reacting each component, in particular, the iodide salt (lithium iodide) and the water concentration while maintaining them at a specific concentration, The loss of carbon monoxide can be reduced.
- acetic acid is generated, and an ester of the generated acetic acid and methanol (methyl acetate), water, and further, acetaldehyde, propionic acid and the like are generated along with the esterification reaction.
- the generation of hydrogen in the reaction system may be suppressed by adjusting the water concentration.
- the space-time yield (production rate) of acetic acid in the reaction system may be, for example, about 5 to 50 mol / Lh, preferably about 8 to 40 mol / Lh, and more preferably about 10 to 30 mol / Lh.
- the vapor component extracted from the top of the reactor by a condenser, a heat converter or the like in order to remove part of the heat of reaction.
- the cooled vapor component is separated into a liquid component (including acetic acid, methyl acetate, methyl iodide, acetaldehyde, water and the like) and a gas component (including carbon monoxide, hydrogen and the like), and the liquid component is added to the reactor It is preferred to recycle and introduce gaseous components into the scrubber system.
- the reaction system may also contain methanol (unreacted methanol).
- concentration of methanol in the reaction system is, for example, 1% by weight or less (eg, 0 to 0.8% by weight), preferably 0.5% by weight or less (eg, 0 to 0.3% by weight), more preferably 0. .About.3 wt.% Or less (eg, 0 to 0.2 wt.%) Or less, usually below the detection limit (less than 0.1 wt.%).
- the concentration of methyl acetate also depends on the concentration of methanol present in the system. Therefore, the amount of methanol supplied to the reaction system may be adjusted in relation to the methyl acetate concentration in the flasher described later.
- Flash distillation process or catalyst separation process In the flash distillation step (evaporation tank), at least the high boiling point catalyst component (metal catalyst component such as a rhodium catalyst and the like) is prepared from the reaction mixture supplied from the reaction step or the reactor to the flasher (flash evaporation tank, flash distillation column).
- the low volatile component or catalyst liquid (high boiling point fraction) containing the ionic iodide) is separated as a liquid, and the volatile component or volatile phase containing the acetic acid (low boiling point) is separated as a vapor.
- the reaction mixture may be heated, or the vapor component and the liquid component may be separated without heating.
- the reaction mixture in the adiabatic flash, the reaction mixture can be separated into the vapor component and the liquid component by depressurization without heating, and in the isothermal flash, the reaction mixture is heated (further decompressed) to form the vapor component from the reaction mixture. And the liquid component, and these flash conditions may be combined to separate the reaction mixture.
- the reaction temperature is, for example, 100 to 260 ° C. (eg, 110 to 250 ° C.), preferably 120 to 240 ° C. (eg, 140 to 230 ° C.), more preferably 150 to 220 ° C. (eg, 160 to It may be about 210 ° C., particularly about 170 to 200 ° C.
- the temperature of the catalyst liquid is, for example, 80 to 200 ° C. (eg, 90 to 180 ° C.), preferably 100 to 170 ° C. (eg, 120 to 160 ° C.) More preferably, the temperature may be about 130 to 160.degree.
- the absolute pressure is 0.03 to 1 MPa (e.g., 0.05 to 1 MPa), preferably 0.07 to 0.7 MPa, more preferably 0.1 to 0.5 MPa (e.g., 0.1 to 0.5 MPa). It may be about 15 to 0.4 MPa). Under such relatively high temperature (and high pressure) conditions, the formation of hydrogen iodide is likely to occur (or the concentration of hydrogen iodide is likely to increase), but in the present invention, even under such conditions, The generation or increase in concentration of hydrogen iodide in the flash evaporation tank can be efficiently suppressed.
- Flash distillation Separation of the metal catalyst component can usually be performed using a distillation column (flash evaporation tank).
- the metal catalyst component may be separated by using flash distillation in combination with a method for collecting industrially widely used mist or solid.
- the material of the flasher is not particularly limited, and may be made of metal, ceramic, glass or the like, but usually it is often made of metal.
- the rise in the hydrogen iodide concentration in the flash evaporation tank can be significantly suppressed, the corrosion of the flash evaporation tank can also be suppressed at a high level.
- the flash evaporation tank in addition to highly corrosion-resistant but expensive materials such as made of zirconium, simple metals (titanium, aluminum etc.), alloys [eg iron-based alloy (or iron-based alloy (or iron)] Alloys based on (eg, stainless steel (including stainless steel including chromium, nickel, molybdenum etc.)), nickel-based alloys (or alloys based on nickel, eg, Hastelloy (trade name), Inconel) Materials that are relatively inexpensive and do not have high corrosion resistance, such as cobalt-based alloys (or alloys based on cobalt), transition metal-based alloys such as titanium alloys; A flash evaporator can also be used.
- alloys eg, stainless steel (including stainless steel including chromium, nickel, molybdenum etc.)
- nickel-based alloys or alloys based on nickel, eg, Hastelloy (trade name), Inconel
- cobalt-based alloys or alloys based on
- the separation step of the catalyst liquid may be constituted by a single step or may be constituted by combining a plurality of steps.
- the catalyst liquid or high-boiling point catalyst component (metal catalyst component) separated in this manner may be generally recycled to the reaction system as in the example of the above figure.
- the catalyst liquid may be cooled (or removed heat) by a heat exchanger and recycled to the reactor as shown in the example of the above figure. Cooling can improve the heat removal efficiency of the entire system.
- metal catalyst rhodium catalyst etc.
- ionic iodide eg alkali metal iodide such as lithium iodide
- It includes acetic acid, methyl iodide, water, methyl acetate, hydrogen iodide and the like which have remained without treatment.
- the concentration of at least methyl acetate among the components in such a catalyst solution is adjusted.
- concentration as described above, it is possible to efficiently suppress the formation or increase in concentration of hydrogen iodide in the flash evaporation tank under a wide range of flash distillation conditions.
- the reason why the increase in hydrogen iodide concentration is suppressed by adjusting the methyl acetate concentration is complex, it is considered that the consumption of hydrogen iodide by the following equilibrium reaction is also one of the factors.
- the methyl acetate concentration in the catalyst solution can be selected from the range of 0.6 wt% or more (for example, 0.6 to 20 wt%), for example, 0.7 wt% or more (for example, 0.7 to 15 wt%) ), Preferably 0.8% by weight or more (eg, 0.8 to 10% by weight), more preferably 0.9 to 5% by weight, usually 0.7 to 5% by weight (eg, 0.7 to 3% by weight). %, Preferably 0.8 to 2 wt%, more preferably 0.9 to 1.5 wt%).
- the methyl acetate concentration in the catalyst solution is 1% by weight or more (eg, 1.2 to 10% by weight), preferably 1.3% by weight or more (eg, 1.4 to 8% by weight), and more preferably
- the concentration may be as high as 1.5% by weight or more (eg, 1.7 to 7% by weight), particularly 2% by weight or more (eg, 2.2 to 5% by weight).
- the concentration of water in the catalyst solution can be selected, for example, in the range of 15% by weight or less (eg, 0.1 to 12% by weight), for example, 10% by weight or less (eg, 0.5 to 10% by weight) Preferably, it is 8% by weight or less (eg, 0.8 to 8% by weight), more preferably 4% by weight or less (eg, 0.8 to 4% by weight), particularly 2% by weight or less (eg, 0.8 to 2) %) May be used.
- the concentration of acetic acid in the catalyst solution is, for example, 30% by weight or more (eg, 35 to 95% by weight), preferably 40% by weight or more (eg, 45 to 90% by weight), and more preferably 50% by weight or more For example, it may be 50 to 85% by weight, and usually about 60 to 90% by weight.
- the methyl iodide concentration in the catalyst solution can be selected from the range of 10% by weight or less (eg, 0.001 to 8% by weight), for example, 7% by weight or less (eg, 0.005 to 6% by weight) , Preferably 5 wt% or less (eg, 0.01 to 4 wt%), more preferably 3 wt% or less (eg, 0.05 to 2.5 wt%), especially 2 wt% or less (eg, 0. 5 wt%). It may be 1 to 1.8% by weight, and usually about 0.1 to 3% by weight (eg, 0.3 to 2.5% by weight, preferably 0.5 to 2% by weight). Good.
- the ionic iodide concentration in the catalyst solution is, for example, 60% by weight or less (eg, 1 to 55% by weight), preferably 50% by weight or less (eg, 2 to 45% by weight), more preferably 40 % Or less (eg, 3 to 37% by weight), particularly 36% by weight or less (eg, 5 to 35% by weight), and generally 5 to 25% by weight (eg, 8 to 20% by weight) It may be Although the reason why the rise in concentration of hydrogen iodide is suppressed by adjusting the concentration of ionic iodide is also complex, it is thought that the consumption of hydrogen iodide by the following equilibrium reaction is also one of the reasons Be MI + CH 3 COOH ⁇ CH 3 COOM + HI [Wherein, M represents a residue of ionic iodide (or a cationic group, for example, an alkali metal such as lithium). ] The amount of the component that generates hydrogen iodide by equilibrium, such as methyl iodide
- the concentration of the metal catalyst in the catalyst solution is, for example, 100 ppm or more (eg, 150 to 10000 ppm), preferably 200 ppm or more (eg, 250 to 5000 ppm), more preferably 300 ppm or more (eg, 350 to 500 ppm). It may be about 3000 ppm).
- the methanol concentration in the catalyst solution is, for example, 1% by weight or less (eg, 0 to 0.8% by weight), preferably 0.5% by weight or less (eg, 0 to 0.3% by weight), and more preferably May be about 0.3% by weight or less (eg, 0 to 0.2% by weight). As described later, when the methanol concentration is increased, the concentration of methyl acetate in the catalyst solution can be efficiently increased.
- Adjustment of the component concentration in the catalyst solution is not particularly limited, and may be adjusted by flash distillation conditions, the amount of process solution recycled from the subsequent reaction (step), etc. If necessary, adjustment may be made by adding to the reaction mixture and / or the flash evaporation tank a component that raises or lowers the concentration of each component [eg, an ester (such as acetate, alcohol, ether, etc.)].
- a component may be a component (basic component) capable of reacting with hydrogen iodide.
- the methyl acetate concentration in the catalyst solution can be efficiently increased by increasing the methanol concentration in the reaction mixture (or catalyst solution). That is, as represented by the following formula, methanol produces methyl acetate by reaction (equilibration reaction) with acetic acid, so that with the increase of methanol concentration, methyl acetate production reaction tends to occur, and as a result, in the catalyst solution
- the methyl acetate concentration of can also be increased. CH 3 OH + CH 3 COOH ⁇ CH 3 COOCH 3 + H 2 O
- Such a methanol concentration can be increased by increasing the concentration of methanol charged in the reaction, reducing the reaction rate to suppress the consumption of methanol, or the like, as long as the production efficiency of acetic acid can be sufficiently secured.
- the reaction rate can be adjusted by appropriately selecting the reaction temperature, catalyst concentration (methyl iodide concentration, metal catalyst concentration, etc.), carbon monoxide concentration (or partial pressure of carbon monoxide), and the like.
- the methanol concentration may be adjusted by adding methanol directly as described later.
- the concentration of methyl acetate or methanol in the reaction solution is high, the production amount of acetic acid can be increased, and the hydrogen iodide concentration in the flasher may be easily reduced. However, the reaction becomes unstable, and the temperature Management and pressure management can be difficult. Therefore, it is preferable to keep the concentration of methyl acetate or methanol as a methyl acetate source low in the reaction solution, and adjust the concentration of methyl acetate to the above concentration in the flasher (or catalyst solution).
- the methyl acetate concentration in the catalyst solution may be adjusted by adding methyl acetate and / or a component that produces methyl acetate (for example, methanol, dimethyl ether, etc.).
- a component that produces methyl acetate for example, methanol, dimethyl ether, etc.
- methanol produces methyl acetate by the reaction with acetic acid and the like
- dimethyl ether reacts with methanol produced by the reaction with hydrogen iodide and the like to produce methyl acetate.
- the components that raise or lower the concentration of each component may be added or mixed in the form of a mixed solution containing a solvent, as necessary.
- the addition position may be before it is supplied from the reaction mixture to the flash evaporation tank, and may be supplied to the reactor, from the point of process efficiency, May be supplied to the reaction mixture before being discharged to the flash evaporation tank (for example, the reaction mixture discharged from the reactor may be supplied to the flash evaporation tank, as shown in the above figure). May be supplied to the line to
- the addition position is not particularly limited, and it may be either liquid phase part in the flash evaporation tank or gas phase part It may also be added to both of these. Also, it may be added to the process liquid to be recycled to the flash evaporation tank from the subsequent step.
- the volatile components (acetic acid stream) separated by the flasher are, in addition to the product acetic acid, methyl iodide, an ester of methanol and acetic acid product (methyl acetate), water, trace by-products (acetaldehyde and the like)
- the purified acetic acid can be produced by distillation in the first and second distillation columns, which contain propionic acid and the like.
- the concentration of hydrogen iodide in the volatile component is, for example, 1% by weight or less (eg, 0 or detection limit to 0.8% by weight), preferably 0.6% by weight or less (eg, 0.001 to 0.5% by weight, more preferably 0.3% by weight or less (eg, 0.01 to 0.2% by weight), particularly 0.1% by weight or less (eg, 0.02 to 0.09% by weight)
- the degree can be.
- the concentration of hydrogen iodide in the catalyst solution is, for example, 1% by weight or less (eg, 0 or detection limit to 0.8% by weight), preferably 0.6% by weight or less (eg, 0.001 to 0. 5% by weight, more preferably 0.3% by weight or less (eg, 0.01 to 0.2% by weight), particularly 0.1% by weight or less (eg, 0.02 to 0.09% by weight) can do.
- the hydrogen iodide concentration may be measured directly or indirectly (or calculated).
- hydrogen iodide concentration, the total iodide ion (I -) iodide salt from concentrations e.g., other iodides from cocatalyst such as LiI, corrosion metals to produce in the production process of acetic acid (Fe, Ni, Cr , Mo, Zn, etc.) may be calculated by reducing the concentration of iodine ions derived from metal iodides such as iodides).
- a part of the separated volatile components may be introduced into a condenser or a heat exchanger to cool or remove heat, as in the example of the above figure. Since such heat removal can cool part of the reaction heat transferred from the reaction liquid to the flash vapor, the heat removal efficiency can be improved, and high purity acetic acid can be obtained without providing an external circulation cooling system for the reactor. It can be manufactured. Also, the cooled volatile components may be recycled to the reaction system as in the example of the above figure. On the other hand, the gaseous component of the cooled volatile component may be introduced into the scrubber system.
- the acetic acid-containing fraction is separated from the volatile component to recover acetic acid.
- the separation method is not particularly limited, generally, the separated volatile component is supplied to a distillation column (splitter column), and low-boiling components (methyl iodide, acetic acid, methyl acetate, by-product) are produced by distillation (fractionation) It separates into a low-boiling fraction (overhead) containing acetaldehyde etc.) and a stream containing acetic acid (acetic acid stream).
- the acetic acid recovery step does not necessarily have to be the example shown in the above figure, but it is a step of treating low-boiling components and dehydrating in one distillation column (for example, a step using a distillation column described in Japanese Patent No. 3616400) Or the step of performing further purification in the second distillation column following the distillation column carrying out the low-boiling point component treatment and dehydration treatment, etc., but from the point of purification efficiency etc.
- You may utilize suitably the distillation process which mainly performs a de-boiling-point component process with a distillation column, and performs a dehydration process mainly with a 2nd distillation column.
- the first distillation column is fed from the acetic acid stream (low-boiling fraction) supplied from the flasher, with the remaining acetic acid stream partially introduced into the heat exchanger.
- a low boiling fraction (a first low boiling fraction or a first overhead) containing at least a part of a low boiling component (methyl iodide, methyl acetate, acetaldehyde etc.), and a high boiling component
- the high-boiling fraction (bottom output) containing at least a portion of (propionic acid, water, etc.) is separated, and a stream containing at least acetic acid is distilled.
- the acetic acid stream is distilled (or withdrawn) as a side stream (side cut) from the side in the example of FIG. 1, but may be withdrawn from the bottom of the column.
- the acetic acid stream supplied to the first distillation column is not limited to the acetic acid stream obtained by removing the rhodium catalyst component and the like from the reaction mixture from the reaction system as described above, but at least acetic acid, low boiling components and high boiling components It may be an acetic acid stream containing components etc., and may be a mixture of these components.
- the first distillation column a conventional distillation column (or rectification column), for example, a rectification column such as a plate column or a packed column can be used.
- a rectification column such as a plate column or a packed column
- the material of the first distillation column the same material as the exemplified material in the flasher can be applied.
- distillation of a relatively inexpensive material such as an alloy is performed similarly to the flash evaporation tank.
- the tower can be used.
- the distillation temperature and pressure in the first distillation column can be appropriately selected depending on the type of distillation column and conditions such as which one of the low boiling component and the high boiling component is to be removed intensively.
- the pressure in the column (usually, the pressure at the top of the column) is 0.01 to 1 MPa, preferably 0.01 to 0.7 MPa, more preferably 0.05 to 0. It may be about 5 MPa.
- the temperature in the column (usually, the temperature at the top of the column) can be adjusted by adjusting the pressure in the column, for example, 20 to 180 ° C., preferably 50 to 150 ° C., more preferably 100 It may be about 140 ° C.
- the theoretical plate is not particularly limited, and is 5 to 50, preferably 7 to 35, and more preferably 8 to 30 depending on the type of the separated component.
- the theoretical plate may be 10 to 80, preferably 12 to 60, and more preferably 15 to 40 or so. .
- the reflux ratio may be selected, for example, from about 0.5 to 3000, preferably about 0.8 to 2000, depending on the number of theoretical plates, and the number of theoretical plates is increased to set the reflux ratio. May be reduced. In the first distillation column, distillation may be performed without reflux.
- the low-boiling fraction separated from the first distillation column is recycled to the reaction system (or reactor) and / or the first distillation column as it contains useful components such as methyl iodide and methyl acetate.
- part of the reaction heat in the reaction system for example, a reactor
- the low-boiling fraction distilled from the first distillation column need not necessarily be recycled to the first distillation column after being condensed by a condenser as in the example of FIG.
- the low-boiling fraction may be recycled as it is, or simply by cooling, off-gas components such as carbon monoxide and hydrogen may be removed, and the remaining liquid components may be recycled.
- off-gas components such as carbon monoxide and hydrogen
- acetaldehyde reduces the quality of product acetic acid, so as necessary after removing acetaldehyde (for example, the acetaldehyde for which the fraction containing low boiling impurities is described later)
- the remaining components may be recycled to the reaction system and / or the first distillation column after being subjected to the separation step (acetaldehyde separation column) and removing acetaldehyde).
- the off gas component may be introduced into the scrubber system.
- the high-boiling fraction (bottoms or first high-boiling fraction) separated in the first distillation column is water, acetic acid, a rhodium catalyst mixed by entrainment, lithium iodide, and the like, without evaporation. Since the residual acetic acid and the low-boiling impurities etc. are contained, they may be recycled to the reaction system (reactor) and / or the evaporation tank, if necessary. In addition, prior to recycling, propionic acid may be removed which degrades the quality of product acetic acid.
- the second distillation column In the second distillation column, hydrogen iodide, low boiling components, high boiling components and the like remaining without being separated in the first distillation column are removed with higher accuracy.
- a conventional distillation column for example, a plate column, a packed column, etc.
- the material of the second distillation column is the same material as the first distillation column.
- the temperature in the column, the pressure in the column, the number of theoretical plates, and the reflux ratio in the second distillation column can be selected according to the type of the distillation column and the like, and can be selected from the same range as the first distillation column, for example. .
- the low-boiling fraction (second low-boiling fraction or second overhead) separated from the second distillation column contains useful components such as methyl iodide and methyl acetate, and thus the reaction system (for example, And / or a second distillation column, which may be recycled to the second distillation column, in order to remove a part of the heat of reaction, like the low-boiling distillate distilled from the first distillation column, After making it liquid by a heat converter etc., you may recycle.
- the low-boiling fraction may contain acetaldehyde, and if necessary, the low-boiling fraction may be recycled after being introduced by, for example, an aldehyde separation column described later to remove acetaldehyde.
- the off gas component may be introduced into the scrubber system.
- the high-boiling fraction (second high-boiling fraction) may be bottomed off from the bottom or the lower portion of the column.
- the high boiling fraction separated from the second distillation column may be discarded as it is because it contains propionic acid and the like.
- the high boiling point fraction may further contain acetic acid and the like, if necessary, it may be recycled to a reaction system (for example, a reactor) after removing and / or recovering propionic acid and the like.
- the purified acetic acid stream is distilled by side-cut, but the position of the sidestream port is usually in the middle or lower part of the distillation column It may well be distilled from the bottom of the column.
- the acetic acid stream may be distilled from the side port located above the can outlet where the high-boiling fraction is bottomed to efficiently separate the side stream and the high-boiling fraction.
- the recovered purified acetic acid is usually introduced into a product acetic acid column to become a product acetic acid, but before or after being introduced into a product acetic acid column, it is further subjected to an iodide removal step to obtain iodide (hexyl iodide, iodide etc. iodide C 1-15 alkyl) such as decyl may be removed.
- iodide hexyl iodide, iodide etc. iodide C 1-15 alkyl
- a flow of acetic acid may be brought into contact with a removal body (for example, zeolite, activated carbon, ion exchange resin, etc.) having an iodide removal ability or adsorption ability.
- a removal body for example, zeolite, activated carbon, ion exchange resin, etc.
- an ion exchange resin having iodide removal ability or adsorption ability in particular, an iodide removal tower equipped with the above-mentioned ion exchange resin, etc. is used It is advantageous to do.
- an ion exchange resin (usually, at least a part of active sites (usually, an acidic group such as a sulfone group, a carboxyl group, a phenolic hydroxyl group, a phosphonic group, etc.) is substituted or exchanged with a metal
- a cation exchange resin is used.
- the metal for example, at least one selected from silver Ag, mercury Hg and copper Cu can be used.
- the base cation exchange resin may be either a strongly acidic cation exchange resin or a weakly acidic cation exchange resin, but a strongly acidic cation exchange resin such as a macroreticular type ion exchange resin is preferred.
- ion exchange resin for example, about 10 to 80 mol%, preferably about 25 to 75 mol%, more preferably about 30 to 70 mol% of the active site may be exchanged with the metal.
- the iodide can be removed by at least contacting (preferably passing) the ion exchange resin with a stream of acetic acid from the second distillation column.
- the acetic acid stream may be heated stepwise, if necessary, in accordance with the contact (or liquid flow) with the ion exchange resin. By raising the temperature stepwise, the iodide can be efficiently removed while preventing the metal of the ion exchange resin from flowing out.
- the iodide removal tower a tower comprising at least a packed tower filled with the metal-exchanged ion exchange resin, a bed of ion exchange resin (eg, a bed having a resin in a granular form) (guard bed), etc. It can be illustrated.
- the iodide removal column may be internally provided with other ion exchange resins (cation exchange resin, anion exchange resin, nonionic exchange resin, etc.) and the like.
- a cation exchange resin When a cation exchange resin is disposed downstream of the metal exchange ion exchange resin (for example, by filling, a resin bed is disposed), even if metal flows out from the metal exchange ion exchange resin, the cation exchange resin causes carboxylic acid It can be removed from the stream.
- the temperature of the iodide removal column may be, for example, about 18 to 100 ° C., preferably about 30 to 70 ° C., and more preferably about 40 to 60 ° C.
- the flow rate of acetic acid flow is not particularly limited, for example, in an iodide removal tower utilizing a guard bed, for example, 3 to 15 bed volumes / h, preferably 5 to 12 bed volumes / h, more preferably 6 to 6 It may be about 10 bed volumes / h.
- a column provided with a metal exchange ion exchange resin and a column provided with another ion exchange resin may be For example, it may be composed of an anion exchange resin tower and a metal exchange ion exchange resin tower on the downstream side, or may be composed of a metal exchange ion exchange resin tower and a tower of a cation exchange resin on the downstream side.
- a column provided with a metal exchange ion exchange resin and a column provided with another ion exchange resin May be
- it may be composed of an anion exchange resin tower and a metal exchange ion exchange resin tower on the downstream side, or may be composed of a metal exchange ion exchange resin tower and a tower of a cation exchange resin on the downstream side.
- International Publication WO 02/062740 can be referred to.
- the recycle liquid is supplied to the acetaldehyde separation column, and the aldehyde separation column is separated after being separated into a low boiling point fraction containing acetaldehyde and a high boiling point fraction containing methyl iodide, methyl acetate and water.
- a method of separating acetaldehyde together with off-gas components such as carbon monoxide and hydrogen may be used.
- off-gas components may be removed in advance by using a condenser, a cooler or the like.
- the high boiling point fraction obtained by removing acetaldehyde as a low boiling point fraction may be recycled to the reaction system since it contains methyl iodide, water, methyl acetate, acetic acid and the like.
- aldehyde separation column for example, a conventional distillation column, for example, a plate column, a packed column, a flash evaporation tank and the like can be used.
- the temperature (overhead temperature) and the pressure (overhead pressure) use the difference in boiling point between acetaldehyde and other components (especially methyl iodide) to form a recycle liquid (for example, the first and / or the above).
- a recycle liquid for example, the first and / or the above.
- the pressure may be about 0.01 to 1 MPa, preferably about 0.01 to 0.7 MPa, and more preferably about 0.05 to 0.5 MPa in gauge pressure.
- the temperature in the column is, for example, about 10 to 150 ° C., preferably about 20 to 130 ° C., and more preferably about 40 to 120 ° C.
- the theoretical plate may be, for example, about 5 to 150, preferably 8 to 120, and more preferably about 10 to 100.
- the reflux ratio can be selected from about 1 to 1000, preferably 10 to 800, more preferably 50 to 600 (eg, 70 to 400), depending on the number of theoretical plates.
- test pieces of various materials were put in the catalyst solution of Flasher 2, and the continuous production process of acetic acid was carried out for 100 hours as it was. A corrosion test was performed on the test piece after 100 hours.
- the production method of the present invention is extremely useful as a process for producing acetic acid while efficiently suppressing the concentration increase of hydrogen iodide in a flash evaporation tank for distilling the reaction mixture from the reactor.
- reactor 1 ... reactor 2 ... flasher (evaporation tank) 3 first distillation column 4 second distillation column 5, 6, 7, 8, 9 condenser or heat exchanger 10 scrubber system
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
反応工程(カルボニル化反応工程)では、触媒系の存在下、メタノールを一酸化炭素でカルボニル化する。なお、メタノールは、新鮮なメタノールを直接又は間接的に反応系へ供給してもよく、また、各種蒸留工程から留出するメタノール又はその誘導体を、リサイクルすることにより、反応系に供給してもよい。
フラッシュ蒸留工程(蒸発槽)では、前記反応工程又は前記反応器からフラッシャー(フラッシュ蒸発槽、フラッシュ蒸留塔)に供給された反応混合物から、少なくとも高沸点触媒成分(金属触媒成分、例えば、ロジウム触媒及びイオン性ヨウ化物)を含む低揮発性成分又は触媒液(高沸点留分)を液体として分離するとともに、酢酸を含む揮発性成分又は揮発相(低沸点留分)を蒸気として分離する。
CH3I+CH3COOH⇔CH3COOCH3+HI
触媒液中の酢酸メチル濃度は、0.6重量%以上(例えば、0.6~20重量%)の範囲から選択でき、例えば、0.7重量%以上(例えば、0.7~15重量%)、好ましくは0.8重量%以上(例えば、0.8~10重量%)、さらに好ましくは0.9~5重量%、通常0.7~5重量%(例えば、0.7~3重量%、好ましくは0.8~2重量%、さらに好ましくは0.9~1.5重量%)程度であってもよい。また、触媒液中の酢酸メチル濃度は、1重量%以上(例えば、1.2~10重量%)、好ましくは1.3重量%以上(例えば、1.4~8重量%)、さらに好ましくは1.5重量%以上(例えば、1.7~7重量%)、特に2重量%以上(例えば、2.2~5重量%)程度の高濃度であってもよい。
MI+CH3COOH⇔CH3COOM+HI
[式中、Mはイオン性ヨウ化物の残基(又はカチオン性基、例えば、リチウムなどのアルカリ金属)を示す。]
なお、ヨウ化メチルやヨウ化リチウムなどの平衡によりヨウ化水素を発生させる成分の量は、腐食抑制の観点から少ない方が好ましい。
CH3OH+CH3COOH⇔CH3COOCH3+H2O
このようなメタノール濃度は、酢酸の製造効率を十分に担保できる範囲で、反応において仕込むメタノールの濃度を多くしたり、反応速度を低下させてメタノールの消費を抑えることなどにより大きくすることができる。反応速度は、反応温度、触媒濃度(ヨウ化メチル濃度、金属触媒濃度など)、一酸化炭素濃度(又は一酸化炭素の分圧)などを適宜選択することにより調整できる。なお、メタノール濃度は、後述のように、直接的にメタノールを添加することにより調整してもよい。
酢酸回収工程(蒸留工程)では、前記揮発性成分から酢酸を含む流分を分離して、酢酸を回収する。分離方法は特に限定されないが、通常、分離された揮発性成分を蒸留塔(スプリッターカラム)に供給し、蒸留(精留)により、低沸成分(ヨウ化メチル、酢酸、酢酸メチル、副生したアセトアルデヒドなど)を含む低沸点留分(オーバーヘッド)と、酢酸を含む流分(酢酸流)とに分離する。酢酸回収工程は、必ずしも前記図の例である必要はなく、1つの蒸留塔で脱低沸成分処理及び脱水処理を行う工程(例えば、特許第3616400号公報に記載の蒸留塔などを利用した工程)、脱低沸成分処理及び脱水処理を行う蒸留塔に続いて、第2の蒸留塔で更なる精製を行う工程などのいずれであってもよいが、精製効率などの点から、第1の蒸留塔で主として脱低沸成分処理を行い、第2の蒸留塔で主として脱水処理を行う蒸留工程を好適に利用してもよい。
第1の蒸留塔には、フラッシャーから供給された酢酸流(低沸点留分)から、一部を熱交換器に導入した残りの酢酸流が供給される。第1の蒸留塔では、低沸成分(ヨウ化メチル、酢酸メチル、アセトアルデヒドなど)の少なくとも一部を含む低沸点留分(第1の低沸点留分又は第1のオーバーヘッド)と、高沸成分(プロピオン酸、水など)の少なくとも一部を含む高沸点留分(缶出)とを分離し、少なくとも酢酸を含む流分を留出させている。なお、酢酸流は、図1の例では、側部から側流(サイドカット)として留出させ(又は抜き出し)ているが、塔底から抜き出してもよい。
第2の蒸留塔では、第1の蒸留塔で分離されずに残存したヨウ化水素、低沸成分、高沸成分などをさらに精度よく除去する。第2の蒸留塔としては、慣用の蒸留塔(又は精留塔)、例えば、棚段塔、充填塔などが使用でき、第2の蒸留塔の材質は第1の蒸留塔と同様の材質が適用できる。また、第2の蒸留塔における塔内温度、塔内圧力、理論段数、及び還流比は、蒸留塔の種類などに応じて選択でき、例えば、前記第1の蒸留塔と同様の範囲から選択できる。
回収した精製酢酸は、通常は、製品酢酸塔に導入され、製品酢酸となるが、製品酢酸塔に導入する前又は後に、さらにヨウ化物除去工程に供して、ヨウ化物(ヨウ化ヘキシル、ヨウ化デシルなどのヨウ化C1-15アルキルなど)を除去してもよい。
反応により生成したアセトアルデヒドを含む留分を、リサイクルにより反応系に循環させると、プロピオン酸、不飽和アルデヒド、ヨウ化アルキルなどの副生量が増大する。そのため、リサイクル液中のアセトアルデヒドを分離除去するのが好ましい。特に、アセトアルデヒドを除去することにより、第2蒸留塔において、酢酸を製品規格外とさせるプロピオン酸を分離除去する必要がなくなるため、好適である。アセトアルデヒドの分離方法としては、リサイクル液をアセトアルデヒド分離塔に供給し、アセトアルデヒドを含む低沸点留分と、ヨウ化メチル、酢酸メチル及び水などを含む高沸点留分とに分離した後、アルデヒド分離塔の塔頂又は塔上段部からは、一酸化炭素、水素などのオフガス成分とともに、アセトアルデヒドを分離する方法であってもよい。さらに、アセトアルデヒドの分離に先立って、コンデンサーや冷却器などを利用することによりオフガス成分を予め除去してもよい。また、アセトアルデヒドを低沸点留分として除去して得られた高沸点留分は、ヨウ化メチル、水、酢酸メチル、酢酸などを含んでいるため、反応系にリサイクルしてもよい。
◎:テストピースに全く腐食が見られない
○:テストピースにほとんど腐食が見られない
△:テストピースがやや腐食している
×:テストピースが著しく腐食している。
2…フラッシャー(蒸発槽)
3…第1の蒸留塔
4…第2の蒸留塔
5,6,7,8,9…コンデンサー又は熱交換器
10…スクラバーシステム
Claims (12)
- 金属触媒、イオン性ヨウ化物及びヨウ化メチルで構成された触媒系の存在下、メタノールと一酸化炭素とをカルボニル化反応器で連続的に反応させる反応工程と、前記反応器からの反応混合物をフラッシャーに連続的に供給し、フラッシュ蒸留により、生成した酢酸、酢酸メチルおよびヨウ化メチルを少なくとも含む揮発性成分を蒸発させるフラッシュ蒸留工程と、前記揮発性成分から酢酸を含む流分を分離して、酢酸を回収する酢酸回収工程とを含む酢酸の製造方法であって、前記フラッシュ蒸留工程において、前記反応混合物から前記揮発性成分が分離され、金属触媒およびイオン性ヨウ化物を少なくとも含む触媒液中の酢酸メチル濃度が0.6重量%以上の条件下でフラッシュ蒸留する酢酸の製造方法。
- 触媒液中の酢酸メチル濃度が1重量%以上である請求項1記載の酢酸の製造方法。
- 触媒液中の酢酸メチル濃度が1.5重量%以上である請求項1又は2記載の酢酸の製造方法。
- 触媒液中の水の濃度が15重量%以下である請求項1~3のいずれかに記載の製造方法。
- 金属触媒がロジウム触媒であり、イオン性ヨウ化物がヨウ化アルカリ金属であり、触媒液において、金属触媒濃度が重量基準で300ppm以上である請求項1~4のいずれかに記載の製造方法。
- 触媒液において、酢酸濃度が40重量%以上である請求項1~5のいずれかに記載の製造方法。
- 触媒液において、イオン性ヨウ化物濃度が50重量%以下であり、ヨウ化メチル濃度が5重量%以下であり、酢酸濃度が45~90重量%であり、水濃度が10重量%以下である請求項1~6のいずれかに記載の製造方法。
- 触媒液において、イオン性ヨウ化物濃度が40重量%以下であり、ヨウ化メチル濃度が0.01~4重量%であり、酢酸濃度が50~85重量%であり、酢酸メチル濃度が0.7~5重量%であり、水濃度が0.8~8重量%である請求項1、4~7のいずれか記載の製造方法。
- フラッシュ蒸留工程において、絶対圧力0.1~0.5MPaでフラッシュ蒸留するとともに、触媒液の温度が100~170℃である請求項1~8のいずれかに記載の製造方法。
- 酢酸メチル及び/又は酢酸メチルを生成する成分を、反応混合物及び/又はフラッシャーに添加又は混合することにより、触媒液中の酢酸メチル濃度を調整する請求項1~9のいずれかに記載の製造方法。
- 金属触媒、イオン性ヨウ化物及びヨウ化メチルで構成された触媒系の存在下、メタノールと一酸化炭素とをカルボニル化反応器で連続的に反応させる反応工程と、前記反応器からの反応混合物をフラッシャーに連続的に供給し、フラッシュ蒸留により、生成した酢酸、酢酸メチルおよびヨウ化メチルを少なくとも含む揮発性成分を蒸発させるフラッシュ蒸留工程と、前記揮発性成分から酢酸を含む流分を分離して、酢酸を回収する酢酸回収工程とを含む酢酸製造プロセスにおいて、フラッシャー内でのヨウ化水素の生成又は濃度上昇を抑制する方法であって、前記フラッシュ蒸留工程において、前記反応混合物から前記揮発性成分が分離され、金属触媒およびイオン性ヨウ化物を少なくとも含む触媒液中の酢酸メチル濃度を0.6重量%以上となる条件下でフラッシュ蒸留することにより、フラッシャー内でのヨウ化水素の生成又は濃度上昇を抑制する方法。
- フラッシャーの材質が、ニッケル基合金である請求項1~11のいずれかに記載の方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11848297.5T ES2651953T3 (es) | 2010-12-15 | 2011-12-01 | Método de producción de ácido acético |
US13/994,275 US9073843B2 (en) | 2010-12-15 | 2011-12-01 | Process for producing acetic acid |
CN201180067613.1A CN103370300B (zh) | 2010-12-15 | 2011-12-01 | 乙酸的制备方法 |
SG2013042023A SG190940A1 (en) | 2010-12-15 | 2011-12-01 | Process for producing acetic acid |
KR1020137018309A KR101851035B1 (ko) | 2010-12-15 | 2011-12-01 | 아세트산의 제조 방법 |
EP11848297.5A EP2653460B2 (en) | 2010-12-15 | 2011-12-01 | Acetic acid production method |
BR112013014804A BR112013014804B1 (pt) | 2010-12-15 | 2011-12-01 | processo para produzir ácido acético, método para inibir a produção de iodeto de hidrogênio, ou aumento da concentração de iodeto de hidrogênio em um vaporizador, em um processo de produção de ácido acético, e processo ou método |
JP2012548727A JP6166043B2 (ja) | 2010-12-15 | 2011-12-01 | 酢酸の製造方法 |
MX2013006883A MX340955B (es) | 2010-12-15 | 2011-12-01 | Procedimiento para producir acido acetico. |
US16/712,371 USRE50062E1 (en) | 2010-12-15 | 2011-12-01 | Process for producing acetic acid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010279798 | 2010-12-15 | ||
JP2010-279798 | 2010-12-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012081417A1 WO2012081417A1 (ja) | 2012-06-21 |
WO2012081417A4 true WO2012081417A4 (ja) | 2012-08-16 |
Family
ID=46244526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/077845 WO2012081417A1 (ja) | 2010-12-15 | 2011-12-01 | 酢酸の製造方法 |
Country Status (13)
Country | Link |
---|---|
US (2) | USRE50062E1 (ja) |
EP (1) | EP2653460B2 (ja) |
JP (2) | JP6166043B2 (ja) |
KR (1) | KR101851035B1 (ja) |
CN (1) | CN103370300B (ja) |
BR (1) | BR112013014804B1 (ja) |
ES (1) | ES2651953T3 (ja) |
MX (1) | MX340955B (ja) |
MY (1) | MY161203A (ja) |
SA (1) | SA111330056B1 (ja) |
SG (1) | SG190940A1 (ja) |
TW (1) | TWI526426B (ja) |
WO (1) | WO2012081417A1 (ja) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081417A1 (ja) | 2010-12-15 | 2012-06-21 | 株式会社ダイセル | 酢酸の製造方法 |
USRE46999E1 (en) * | 2010-12-15 | 2018-08-21 | Daicel Corporation | Process for producing acetic acid |
SG11201503291RA (en) | 2012-12-21 | 2015-07-30 | Daicel Corp | Process for producing acetic acid |
AR094541A1 (es) * | 2013-01-25 | 2015-08-12 | Daicel Corp | Procedimiento para producir ácido carboxílico |
MY179084A (en) | 2014-10-02 | 2020-10-27 | Celanese Int Corp | Process for producing acetic acid |
WO2016076973A1 (en) * | 2014-11-14 | 2016-05-19 | Celanese International Corporation | Process for flashing a reaction medium comprising lithium acetate |
US9340481B1 (en) | 2014-11-14 | 2016-05-17 | Celanese International Corporation | Process for flashing a reaction medium comprising lithium acetate |
US9233907B1 (en) | 2014-11-14 | 2016-01-12 | Celanese International Corporation | Reducing hydrogen iodide content in carbonylation processes |
US9458077B2 (en) | 2014-11-14 | 2016-10-04 | Celanese International Corporation | Reducing hydrogen iodide content in carbonylation processes |
US9540304B2 (en) | 2014-11-14 | 2017-01-10 | Celanese International Corporation | Processes for producing an acetic acid product having low butyl acetate content |
KR102465649B1 (ko) | 2014-11-14 | 2022-11-11 | 셀라니즈 인터내셔날 코포레이션 | 낮은 요오드화에틸 함량을 갖는 반응 매질로부터 아세트산을 제조하기 위한 방법 |
ES2740773T3 (es) | 2014-11-14 | 2020-02-06 | Celanese Int Corp | Procedimiento de producción de ácido acético mediante la introducción de un compuesto de litio |
US9302975B1 (en) | 2015-07-01 | 2016-04-05 | Celanese International Corporation | Process for flashing a reaction medium |
US9260369B1 (en) | 2014-11-14 | 2016-02-16 | Celanese International Corporation | Processes for producing acetic acid product having low butyl acetate content |
MY181883A (en) | 2014-11-14 | 2021-01-12 | Celanese Int Corp | Processes for producing acetic acid with decanter control |
JP6738330B2 (ja) * | 2014-11-14 | 2020-08-12 | セラニーズ・インターナショナル・コーポレーション | 鉄の除去による酢酸収量の改良法 |
US9487464B2 (en) | 2015-01-30 | 2016-11-08 | Celanese International Corporation | Processes for producing acetic acid |
JP6034478B2 (ja) * | 2015-01-30 | 2016-11-30 | セラニーズ・インターナショナル・コーポレーション | 酢酸の製造方法 |
JP6034477B2 (ja) * | 2015-01-30 | 2016-11-30 | セラニーズ・インターナショナル・コーポレーション | 酢酸の製造方法 |
US9561994B2 (en) | 2015-01-30 | 2017-02-07 | Celanese International Corporation | Processes for producing acetic acid |
RS59401B1 (sr) | 2015-01-30 | 2019-11-29 | Celanese Int Corp | Postupci proizvodnje sirćetne kiseline |
CN107207392B (zh) | 2015-01-30 | 2021-06-08 | 国际人造丝公司 | 生产乙酸的方法 |
US9540302B2 (en) | 2015-04-01 | 2017-01-10 | Celanese International Corporation | Processes for producing acetic acid |
US9512056B2 (en) | 2015-02-04 | 2016-12-06 | Celanese International Corporation | Process to control HI concentration in residuum stream |
US9505696B2 (en) | 2015-02-04 | 2016-11-29 | Celanese International Corporation | Process to control HI concentration in residuum stream |
US10413840B2 (en) | 2015-02-04 | 2019-09-17 | Celanese International Coporation | Process to control HI concentration in residuum stream |
US9540303B2 (en) | 2015-04-01 | 2017-01-10 | Celanese International Corporation | Processes for producing acetic acid |
US9382186B1 (en) | 2015-07-01 | 2016-07-05 | Celanese International Corporation | Process for producing acetic acid |
US9382183B1 (en) | 2015-07-01 | 2016-07-05 | Celanese International Corporation | Process for flashing a reaction medium |
US9302974B1 (en) | 2015-07-01 | 2016-04-05 | Celanese International Corporation | Process for producing acetic acid |
US10428006B2 (en) * | 2015-09-30 | 2019-10-01 | Daicel Corporation | Method and apparatus for producing acetic acid |
US9416088B1 (en) | 2015-10-02 | 2016-08-16 | Celanese International Corporation | Process to produce acetic acid with recycle of water |
US9957216B2 (en) * | 2015-11-13 | 2018-05-01 | Celanese International Corporation | Processes for producing acetic acid |
US9908835B2 (en) | 2015-11-13 | 2018-03-06 | Celanese International Corporation | Processes for purifying acetic and hydrating anhydride |
MY186618A (en) * | 2017-03-08 | 2021-07-30 | Daicel Corp | Method for producing acetic acid |
US10550058B2 (en) | 2017-03-08 | 2020-02-04 | Daicel Corporation | Method for producing acetic acid |
JP7440229B2 (ja) * | 2019-09-05 | 2024-02-28 | ケロッグ ブラウン アンド ルート エルエルシー | 酢酸製造方法 |
CN114644550B (zh) * | 2020-12-21 | 2024-03-12 | 大连理工江苏研究院有限公司 | 一种甲醇羰基化制备乙酸的反应系统及工艺 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3769329A (en) | 1970-03-12 | 1973-10-30 | Monsanto Co | Production of carboxylic acids and esters |
US4029553A (en) * | 1975-07-28 | 1977-06-14 | Monsanto Company | Purification of acetic acid streams by distillation |
FR2421168A1 (fr) | 1978-03-28 | 1979-10-26 | Propylox Sa | Procede pour la fabrication de peracides carboxyliques |
US5144068A (en) | 1984-05-03 | 1992-09-01 | Hoechst Celanese Corporation | Methanol carbonylation process |
US4894477A (en) | 1986-10-14 | 1990-01-16 | Hoechst Celanese Corporation | Process for regenerating a carbonylation catalyst solution to remove corrosion metals and carbonylation of methanol to acetic acid |
GB9211671D0 (en) | 1992-06-02 | 1992-07-15 | Bp Chem Int Ltd | Process |
JP3213392B2 (ja) | 1992-07-28 | 2001-10-02 | ダイセル化学工業株式会社 | 酢酸の製造法 |
GB9306409D0 (en) | 1993-03-26 | 1993-05-19 | Bp Chem Int Ltd | Process |
JP3377555B2 (ja) | 1993-05-31 | 2003-02-17 | ダイセル化学工業株式会社 | カルボニル化反応生成物に含有されるヨウ素化合物の除去方法 |
US5352415A (en) | 1993-09-29 | 1994-10-04 | Hoechst Celanese Corporation | Control system for acetic acid manufacturing process |
US5374774A (en) | 1994-03-11 | 1994-12-20 | Hoechst Celanese Corporation | Control system for an acetic acid manufacturing process |
JP3058577B2 (ja) * | 1994-12-29 | 2000-07-04 | 千代田化工建設株式会社 | カルボニル化反応方法及び反応器 |
GB9503385D0 (en) * | 1995-02-21 | 1995-04-12 | Bp Chem Int Ltd | Process |
JP3883221B2 (ja) | 1995-08-03 | 2007-02-21 | ダイセル化学工業株式会社 | アセトアルデヒドの分離除去方法 |
IN192600B (ja) | 1996-10-18 | 2004-05-08 | Hoechst Celanese Corp | |
GB9626324D0 (en) | 1996-12-19 | 1997-02-05 | Bp Chem Int Ltd | Process |
US6066762A (en) | 1996-12-30 | 2000-05-23 | Chiyoda Corporation | Process for the production of carbonyl compound |
US6211405B1 (en) | 1998-10-23 | 2001-04-03 | Celanese International Corporation | Addition of iridium to the rhodium/inorganic iodide catalyst system |
US6303813B1 (en) | 1999-08-31 | 2001-10-16 | Celanese International Corporation | Rhodium/inorganic iodide catalyst system for methanol carbonylation process with improved impurity profile |
JP3896742B2 (ja) | 1999-11-26 | 2007-03-22 | 三菱化学株式会社 | アルコール類の製造方法 |
US6657078B2 (en) | 2001-02-07 | 2003-12-02 | Celanese International Corporation | Low energy carbonylation process |
JP5069827B2 (ja) | 2001-02-28 | 2012-11-07 | 株式会社ダイセル | 反応制御方法および制御装置 |
JP4489487B2 (ja) | 2004-04-02 | 2010-06-23 | ダイセル化学工業株式会社 | ヨウ化水素の分離方法 |
JP4732743B2 (ja) | 2004-12-06 | 2011-07-27 | ダイセル化学工業株式会社 | 蒸留方法 |
US7678940B2 (en) | 2005-07-14 | 2010-03-16 | Daicel Chemical Industries, Ltd. | Process for producing carboxylic acid |
US7820855B2 (en) * | 2008-04-29 | 2010-10-26 | Celanese International Corporation | Method and apparatus for carbonylating methanol with acetic acid enriched flash stream |
US7790920B2 (en) * | 2008-09-11 | 2010-09-07 | Lyondell Chemical Technology, L.P. | Preparation of acetic acid |
US20100113827A1 (en) | 2008-11-03 | 2010-05-06 | Wei Wang | Removing iodobenzene compounds from acetic acid |
CN102971284B (zh) | 2010-05-18 | 2016-01-27 | 国际人造丝公司 | 生产乙酸的方法 |
ES2645007T3 (es) | 2010-07-26 | 2017-12-01 | Daicel Corporation | Procedimiento para la producción de ácido acético |
USRE46999E1 (en) | 2010-12-15 | 2018-08-21 | Daicel Corporation | Process for producing acetic acid |
WO2012081417A1 (ja) | 2010-12-15 | 2012-06-21 | 株式会社ダイセル | 酢酸の製造方法 |
US8629298B2 (en) | 2011-02-28 | 2014-01-14 | Lyondell Chemical Technology, L.P. | Acetic acid production process |
TWI547477B (zh) | 2012-03-14 | 2016-09-01 | 大賽璐股份有限公司 | 醋酸之製造方法 |
US8859810B2 (en) | 2012-08-21 | 2014-10-14 | Celanese International Corporation | Process for recovering permanganate reducing compounds from an acetic acid production process |
KR102465649B1 (ko) | 2014-11-14 | 2022-11-11 | 셀라니즈 인터내셔날 코포레이션 | 낮은 요오드화에틸 함량을 갖는 반응 매질로부터 아세트산을 제조하기 위한 방법 |
-
2011
- 2011-12-01 WO PCT/JP2011/077845 patent/WO2012081417A1/ja active Application Filing
- 2011-12-01 CN CN201180067613.1A patent/CN103370300B/zh not_active Ceased
- 2011-12-01 ES ES11848297.5T patent/ES2651953T3/es active Active
- 2011-12-01 US US16/712,371 patent/USRE50062E1/en active Active
- 2011-12-01 SG SG2013042023A patent/SG190940A1/en unknown
- 2011-12-01 JP JP2012548727A patent/JP6166043B2/ja active Active
- 2011-12-01 BR BR112013014804A patent/BR112013014804B1/pt not_active IP Right Cessation
- 2011-12-01 EP EP11848297.5A patent/EP2653460B2/en active Active
- 2011-12-01 US US13/994,275 patent/US9073843B2/en not_active Ceased
- 2011-12-01 MX MX2013006883A patent/MX340955B/es active IP Right Grant
- 2011-12-01 KR KR1020137018309A patent/KR101851035B1/ko active Active
- 2011-12-01 MY MYPI2013002224A patent/MY161203A/en unknown
- 2011-12-14 SA SA111330056A patent/SA111330056B1/ar unknown
- 2011-12-14 TW TW100146093A patent/TWI526426B/zh active
-
2017
- 2017-04-28 JP JP2017090240A patent/JP2017128609A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
SA111330056B1 (ar) | 2015-06-02 |
BR112013014804B1 (pt) | 2019-08-13 |
CN103370300B (zh) | 2016-07-06 |
TW201231448A (en) | 2012-08-01 |
US9073843B2 (en) | 2015-07-07 |
KR101851035B1 (ko) | 2018-04-20 |
CN103370300A (zh) | 2013-10-23 |
ES2651953T3 (es) | 2018-01-30 |
US20130261334A1 (en) | 2013-10-03 |
JP2017128609A (ja) | 2017-07-27 |
EP2653460A4 (en) | 2016-05-25 |
KR20140032369A (ko) | 2014-03-14 |
MX340955B (es) | 2016-07-29 |
USRE50062E1 (en) | 2024-07-30 |
JP6166043B2 (ja) | 2017-07-19 |
MX2013006883A (es) | 2013-07-05 |
EP2653460B2 (en) | 2022-07-20 |
EP2653460A1 (en) | 2013-10-23 |
SG190940A1 (en) | 2013-07-31 |
JPWO2012081417A1 (ja) | 2014-05-22 |
EP2653460B1 (en) | 2017-11-22 |
TWI526426B (zh) | 2016-03-21 |
MY161203A (en) | 2017-04-14 |
WO2012081417A1 (ja) | 2012-06-21 |
BR112013014804A2 (pt) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012081417A4 (ja) | 酢酸の製造方法 | |
JP5823981B2 (ja) | 酢酸の製造方法 | |
JP6007108B2 (ja) | 酢酸の製造方法 | |
JP5662269B2 (ja) | 酢酸の製造方法 | |
JP6158788B2 (ja) | 酢酸の製造方法 | |
WO2012081418A1 (ja) | 酢酸の製造方法 | |
JP6693959B2 (ja) | 酢酸の製造方法 | |
JPWO2019211904A1 (ja) | 酢酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11848297 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012548727 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2011848297 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011848297 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13994275 Country of ref document: US Ref document number: MX/A/2013/006883 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137018309 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013014804 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013014804 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130613 |