[go: up one dir, main page]

WO2012035828A1 - 熱可塑性樹脂組成物の製造方法 - Google Patents

熱可塑性樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2012035828A1
WO2012035828A1 PCT/JP2011/061920 JP2011061920W WO2012035828A1 WO 2012035828 A1 WO2012035828 A1 WO 2012035828A1 JP 2011061920 W JP2011061920 W JP 2011061920W WO 2012035828 A1 WO2012035828 A1 WO 2012035828A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermoplastic resin
modified
ethylene
rubber
Prior art date
Application number
PCT/JP2011/061920
Other languages
English (en)
French (fr)
Inventor
航一 川口
祐一 原
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to EP11824840.0A priority Critical patent/EP2474570B1/en
Priority to US13/504,268 priority patent/US20130156982A1/en
Priority to CN2011800045948A priority patent/CN102639633B/zh
Publication of WO2012035828A1 publication Critical patent/WO2012035828A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0853Ethene vinyl acetate copolymers
    • C08L23/0861Saponified copolymers, e.g. ethene vinyl alcohol copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/06Copolymers of allyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/06Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]

Definitions

  • the present invention relates to a method for producing a thermoplastic resin composition, and more specifically, a method for producing a thermoplastic resin composition having excellent low temperature durability and fatigue resistance in addition to excellent gas barrier properties, and the method. It relates to a thermoplastic resin composition produced by the method described above and a product obtained from the thermoplastic resin composition.
  • a gas barrier structure used in applications (for example, pneumatic tires, gas or fluid transport hoses) that are required to prevent gas permeation.
  • a rubber composition mainly composed of butyl rubber such as butyl rubber or halogenated butyl rubber is used for the inner liner disposed as a gas permeation preventive layer on the inner surface of the tire in order to maintain the internal pressure of the pneumatic tire.
  • the rubber composition mainly composed of butyl rubber has a low gas barrier property, when the inner liner is formed using such a rubber composition, it is necessary to increase the thickness of the inner liner. there were.
  • Patent Document 1 and Patent Document 2 propose to provide the inner surface of the tire.
  • EVOH ethylene-vinyl alcohol copolymer
  • Patent Document 3 discloses that an ethylene content of 20 to 70 mol%, an ethylene-vinyl alcohol copolymer having a saponification degree of 85% or more, 60 to 99 wt%, and a hydrophobic plasticizer 1 to 40 are used.
  • a technique of using a resin composition consisting of% by weight for an inner liner of a pneumatic tire is disclosed.
  • Patent Document 4 discloses a modified ethylene-vinyl alcohol copolymer obtained by reacting 1 to 50 parts by weight of an epoxy compound with 100 parts by weight of an ethylene-vinyl alcohol copolymer having an ethylene content of 25 to 50 mol%.
  • a technique for using the combined body for an inner liner of a pneumatic tire is disclosed.
  • Patent Document 5 a soft resin having a Young's modulus at 23 ° C. smaller than that of the modified ethylene-vinyl alcohol copolymer is dispersed in a matrix composed of the ethylene-vinyl alcohol copolymer modified with the epoxy compound.
  • a technique using an inner liner for a tire including a phase composed of a resin composition is disclosed.
  • the inner liner for pneumatic tires obtained by the above technology does not have sufficient internal pressure retention performance after fatigue (after running the tire), further improving fatigue resistance and reducing deterioration of gas barrier properties due to fatigue There is still a need to do.
  • gas or liquid transport hoses are also required to reduce weight and to reduce deterioration of gas barrier properties due to fatigue.
  • EVOH is also known to have a disadvantage that it is brittle particularly at low temperatures, and in resin compositions formulated with EVOH, it is required to improve durability at low temperatures while taking advantage of the excellent gas barrier properties of EVOH. It has been.
  • an object of the present invention is to provide a method for producing a thermoplastic resin composition having excellent low temperature durability and fatigue resistance in addition to excellent gas barrier properties.
  • the inventor has two types of resin compositions, namely, a resin composition obtained by dispersing an acid anhydride-modified or epoxy-modified rubber in an ethylene-vinyl alcohol copolymer resin, and a crosslinkable elastomer.
  • a resin composition obtained by dispersing an acid anhydride-modified or epoxy-modified rubber in an ethylene-vinyl alcohol copolymer resin and a crosslinkable elastomer.
  • An acid anhydride-modified or epoxy-modified rubber (A) is melt-kneaded with an ethylene-vinyl alcohol copolymer resin (B) to modify the acid anhydride in the ethylene-vinyl alcohol copolymer resin (B).
  • thermoplastic resin composition obtained by such a method and various products produced from the thermoplastic resin composition, for example, a film made of the thermoplastic resin composition were used as an inner liner.
  • a pneumatic tire and a hose using a film made of the thermoplastic resin composition as a gas barrier layer are provided.
  • the method for producing the thermoplastic resin composition of the present invention comprises first and second resin compositions obtained after separately preparing the first and second resin compositions (steps (I) and (II)).
  • a two-stage kneading / mixing operation of melt-mixing the resin composition 2 (step (III)) is performed.
  • the acid anhydride-modified or epoxy-modified rubber (A) used for preparing the first resin composition in the step (I) has an acid anhydride group or an epoxy-containing group at the side chain and / or terminal of the rubber molecule. It is rubber. Due to the presence of an acid anhydride group or epoxy-containing group in the modified rubber (A), the modified rubber (A) exhibits compatibility with the ethylene-vinyl alcohol copolymer (EVOH) resin (B), Rubber (A) can be dispersed in EVOH resin (B).
  • EVOH ethylene-vinyl alcohol copolymer
  • Examples of acid anhydride groups that may be present in the modified rubber (A) include carboxylic anhydride groups such as maleic anhydride groups, and examples of epoxy-containing groups include epoxyethyl groups, glycidyl groups, A glycidyl ether group etc. are mentioned.
  • the modified rubber (A) can be prepared according to a known method. For example, a modified rubber having an acid anhydride group can be produced, for example, by reacting an acid anhydride and a peroxide with the rubber.
  • the modified rubber having an epoxy group can be produced, for example, by copolymerizing glycidyl methacrylate with rubber.
  • the copolymerization ratio is not limited, but is 10 to 50 parts by mass of glycidyl methacrylate with respect to 100 parts by mass of rubber.
  • the modified rubber (A) include acid anhydride-modified products and epoxy-modified products of ethylene- ⁇ -olefin copolymers and derivatives thereof (for example, acid-modified products of ethylene-propylene copolymers, ethylene Acid anhydride modified products of butene copolymers), acid anhydride modified products and epoxy modified products of ethylene-unsaturated carboxylic acid copolymers and derivatives thereof (for example, ethylene-acrylic acid copolymers, ethylene-methacrylic copolymers).
  • the ethylene-vinyl alcohol copolymer (EVOH) resin (B) used in the method for producing the thermoplastic resin composition of the present invention can be prepared by a known method. For example, ethylene and vinyl acetate are polymerized to produce ethylene-acetic acid. It can be produced by preparing a vinyl copolymer (EVA) and hydrolyzing the obtained EVA.
  • the EVOH resin preferably has an ethylene content of 25 to 50 mol% from the viewpoint of fatigue resistance and melt moldability.
  • the EVOH resin preferably has a saponification degree of 95% or more, more preferably 98% or more, from the viewpoints of gas barrier properties and thermal stability during molding.
  • Examples of commercially available EVOH resins include Soarnol H4815B (ethylene unit content: 48 mol%), Soarnol H4412B (ethylene unit content: 44 mol%), Soarnol E3808B (ethylene) manufactured by Nippon Synthetic Chemical Co., Ltd.
  • EVAL-G156B ethylene unit content: 48 mol%) manufactured by Kuraray Co., Ltd.
  • EVAL-E171B ethylene unit content: 44 mol%)
  • EVAL-H171B ethylene unit content: 38 mol%)
  • EVAL-F171B ethylene unit content: 32 mol%)
  • EVAL-L171B ethylene unit content: 27 mol%).
  • One type of EVOH resin may be used, or two or more types of EVOH resins may be used in combination.
  • the first resin composition obtained by melt-kneading the modified rubber (A) with the EVOH resin (B) and dispersing the modified rubber (A) in the EVOH resin (B) constitutes a dispersed phase. Since the EVOH resin (B), which is thermoplastic, constitutes a continuous phase (matrix phase) with respect to the modified rubber (A), the first resin composition exhibits thermoplasticity, and the first resin composition The product can be molded in the same manner as a normal thermoplastic resin.
  • the amount of the modified rubber (A) is typically 70 to 180 parts by mass, preferably 75 to 145 parts by mass with respect to 100 parts by mass of the EVOH resin (B).
  • the modified rubber (A) forms a co-continuous phase with the EVOH resin (B), or the modified rubber (A) forms a continuous phase, and the EVOH resin (B) forms a dispersed phase.
  • the obtained first resin composition does not exhibit thermoplasticity, and thereafter it becomes difficult to melt and mix with the second resin composition.
  • the modified rubber (A) dispersed in the EVOH resin (B) typically has an average particle diameter of about 1 to 7 ⁇ m.
  • any additive such as a compatibilizer, an anti-aging agent, a cross-linking agent may be used as long as the object of the present invention is not impaired.
  • Agents, vulcanization accelerators, vulcanization accelerators, vulcanization retarders, plasticizers, fillers, colorants, and processing aids may be used as necessary.
  • low temperature durability can be further improved by adding a crosslinking agent (or vulcanizing agent) to the first resin composition.
  • the type and amount of the crosslinking agent (or vulcanizing agent) used for the preparation of the first resin composition can be appropriately selected by those skilled in the art depending on the type of the modified rubber and the dynamic crosslinking conditions.
  • the crosslinking agent examples include compounds having two or more amino groups, such as 2,2-dithiodianiline, 4,4-dithiodianiline, 2,2-diaminodiphenyl ether, 3,3-diaminodiphenyl ether, 4, Examples include 4-diaminodiphenyl ether and 3,3′-diaminodiphenyl sulfone.
  • the blending amount of the crosslinking agent is typically 0.1 to 10 parts by mass with respect to 100 parts by mass of the modified rubber (A).
  • the first resin composition uses the modified rubber (A), EVOH resin (B), and optional additives, for example, a known kneader such as a kneader, a Banbury mixer, a uniaxial kneading extruder, or a biaxial kneading extruder. Then, it can be prepared by melt-kneading, but it is preferable to use a twin-screw kneading extruder because of its high productivity.
  • the kneading conditions depend on the type and blending amount of the modified rubber (A), EVOH resin (B), and optional additives used, and melt kneading is generally performed at about 200 to about 250 ° C.
  • the lower limit of the melt kneading temperature may be at least the melting temperature of the EVOH resin (B), and is typically about 140 ° C. to about 250 ° C.
  • the dynamic crosslinking time (residence time) is typically about 30 seconds to about 10 minutes.
  • Examples of the crosslinkable elastomer (C) used in the preparation of the second resin composition include diene rubbers and hydrogenated products thereof (for example, natural rubber (NR), isoprene rubber (IR), epoxidized natural rubber) Styrene butadiene rubber (SBR), butadiene rubber (BR) (high cis BR and low cis BR), nitrile rubber (NBR), hydrogenated NBR, hydrogenated SBR), olefin rubber (eg ethylene propylene rubber (EPDM, EPM) ), Maleic acid-modified ethylene propylene rubber (M-EPM), butyl rubber (IIR), isobutylene and aromatic vinyl or diene monomer copolymer, acrylic rubber (ACM), halogen-containing rubber (for example, brominated butyl rubber (Br-IIR)) ), Chlorinated butyl rubber (Cl-IIR), isobutylene paramethylstyrene copolymer odor (Br-
  • the crosslinkable elastomer (C) may be the same type as that of the modified rubber (A) (that is, the same chemical composition) or a different type.
  • a crosslinkable elastomer (C) is halogenated from the viewpoint of processability and durability. It is preferably selected from the group consisting of butyl rubber, halogenated isoolefin-paramethylstyrene copolymer, and combinations thereof.
  • polyamide resin (D) examples include nylon 6 (N6), nylon 66 (N66), nylon 46 (N46), nylon 11 (N11), nylon 12 (N12), nylon 610 (N610), nylon 612 ( N612), nylon 6/66 copolymer (N6 / 66), nylon 6/66/610 copolymer (N6 / 66/610), nylon MXD6, nylon 6T, nylon 6 / 6T copolymer, nylon 66 / PP copolymer and nylon 66 / PPS copolymer are mentioned.
  • nylon 6 nylon 66, nylon 6/66 copolymer, nylon 11, nylon 12, and nylon MXD6 are preferably used from the viewpoint of processability and durability.
  • the amount of the crosslinkable elastomer (C) is typically 70 to 180 parts by mass, preferably 75 to 145 parts by mass with respect to 100 parts by mass of the polyamide resin (D). . If the amount of the crosslinkable elastomer (C) is less than 70 parts by mass relative to 100 parts by mass of the polyamide resin (D), sufficient durability cannot be obtained, and if it exceeds 180 parts by mass, crosslinking is possible.
  • the elastomer (C) forms a co-continuous phase with the polyamide resin (D), or the crosslinkable elastomer (C) forms a continuous phase and the polyamide resin (D) forms a dispersed phase.
  • the second resin composition does not exhibit thermoplasticity, and thereafter it becomes difficult to melt and mix with the first resin composition.
  • the crosslinked elastomer particles dispersed in the polyamide resin (D) typically have an average particle diameter of about 1 to 5 ⁇ m.
  • the second resin composition is prepared by crosslinking the crosslinkable elastomer (C) while melt kneading the crosslinkable elastomer (C) and the polyamide resin (D) in the presence of a crosslinking agent and optional additives.
  • Such a process is known in the art as a dynamic cross-linking method and can be cross-linked because a cross-linkable elastomer and a thermoplastic polyamide resin are melt kneaded with a cross-linking agent above the temperature at which cross-linking by the cross-linking agent occurs.
  • a cross-linkable elastomer can be cross-linked and the cross-linkable elastomer can be finely dispersed in the polyamide resin.
  • the crosslinked elastomer particles derived from the crosslinkable elastomer (C) are finely dispersed in the polyamide resin constituting the continuous phase, it is molded in the same manner as a normal thermoplastic resin. It is possible to process.
  • Crosslinked elastomer particles typically have an average particle size of about 1-5 ⁇ m.
  • the second resin composition is prepared using a known kneader such as a kneader, a Banbury mixer, a uniaxial kneading extruder, or a biaxial kneading extruder, as described above for the first resin composition.
  • a twin-screw kneading extruder because of its high productivity.
  • the lower limit of the dynamic crosslinking temperature may be at least the melting temperature of the polyamide resin (C) and the crosslinking temperature of the crosslinkable elastomer (C), and the dynamic crosslinking temperature is typically about 200 ° C.
  • the dynamic crosslinking time is typically about 30 seconds to about 10 minutes.
  • the type and blending amount of the crosslinking agent (or vulcanizing agent) used for the preparation of the second resin composition are appropriately selected by those skilled in the art according to the type of the crosslinkable elastomer and the dynamic crosslinking conditions. be able to.
  • Examples of cross-linking agents include zinc oxide, stearic acid, zinc stearate, sulfur, organic peroxide cross-linking agents, and compounds having two or more amino groups.
  • the amount of the crosslinking agent is typically 0.1 to 10 parts by mass with respect to 100 parts by mass of the crosslinkable elastomer (C).
  • the second resin composition in order to increase the compatibility of the crosslinkable elastomer (C) with the polyamide resin (D), for example, maleic anhydride-modified ethylene ethyl acrylate copolymer, ethylene propylene copolymer, ethylene Kneading of polyamide resin (D), crosslinkable elastomer (C) and nylon resin (B) using a modified polyolefin such as butene copolymer, ethylenehexene copolymer and anhydrous maleated ethylene octene copolymer as a compatibilizing agent Sometimes it may be blended.
  • a modified polyolefin such as butene copolymer, ethylenehexene copolymer and anhydrous maleated ethylene octene copolymer
  • the amount of the modified polyolefin is not particularly limited, but it is typically 2 to 20% by mass based on the total mass of the crosslinkable elastomer (C).
  • any additive such as a phase may be used as long as the object of the present invention is not impaired.
  • a solubilizer, an antioxidant, a vulcanization accelerator, a vulcanization acceleration aid, a vulcanization retarder, a plasticizer, a filler, a colorant, and a processing aid may be used as necessary.
  • the thermoplastic resin composition of the present invention can be obtained by melt-mixing the first resin composition and the second resin composition separately prepared as described above.
  • the first resin composition and the second resin composition are typically melted at a mass ratio of about 90:10 to about 10:90, preferably about 80:20 to about 20:80 by mass ratio.
  • the first ratio is such that the mass ratio of the modified rubber (A) and the crosslinkable elastomer (C) is about 90:10 to about 10:90, more preferably about 70:30 to about 30:70.
  • the resin composition and the second resin composition are melt mixed.
  • the melt kneading of the first resin composition and the second resin composition can be performed using a known kneader such as a kneader, a Banbury mixer, a uniaxial kneading extruder, a biaxial kneading extruder, It is preferable to use a twin-screw kneading extruder because of its high productivity.
  • a known kneader such as a kneader, a Banbury mixer, a uniaxial kneading extruder, a biaxial kneading extruder, It is preferable to use a twin-screw kneading extruder because of its high productivity.
  • the first resin composition and It is preferable that the second resin composition is molded into a shape such as a pellet or a granule, respectively.
  • the melt mixing of the first resin composition and the second resin composition involves the use of EVOH resin (B), acid anhydride-modified or epoxy-modified rubber (A), polyamide resin (D) and crosslinkable elastomer Although it depends on the type and amount of (C), generally, it constitutes the second resin composition at a temperature equal to or higher than the melting temperature of the ethylene-vinyl alcohol copolymer (A) constituting the first resin composition.
  • the temperature of the polyamide resin (E) to be melted is not lower than the melting temperature, and is typically about 200 ° C. to about 250 ° C. for about 30 seconds to about 5 minutes (residence time).
  • thermoplastic resin composition melt-kneaded as described above is then formed into a film-like, sheet-like, or tube-like shape from the die attached to the discharge port of the twin-screw kneading extruder in the molten state by an ordinary method.
  • Extrude or extrude into a strand shape, and once pelletized with a resin pelletizer, the resulting pellet is formed into a film according to the intended use by ordinary resin molding methods such as inflation molding, calendar molding, extrusion molding, It can be formed into a desired shape such as a sheet or tube.
  • the thermoplastic resin composition of the present invention can be used for various applications, such as pneumatic tires, gas or fluid transportation hoses, and the like.
  • thermoplastic resin composition of the present invention exhibits excellent low temperature durability and fatigue resistance in addition to excellent gas barrier properties, it can be suitably used for applications such as inner liners and hoses for pneumatic tires.
  • a conventional method can be used as a method for producing a pneumatic tire using a film made of the thermoplastic resin composition of the present invention as an inner liner.
  • the thermoplastic resin composition of the present invention is formed into a film having a predetermined width and thickness, and is attached in a cylindrical shape on a tire molding drum, on which a carcass layer, a belt layer, a tread layer, etc. The tire members are sequentially laminated and the green tire is removed from the tire molding drum.
  • thermoplastic resin composition of the present invention is extruded on a mandrel previously coated with a release agent by a crosshead extrusion method using an extruder to form an inner tube, and then a braiding machine is used on the inner tube.
  • a reinforcing layer is formed by braiding reinforcing yarn or reinforcing steel wire, and a thermoplastic resin is further extruded onto the reinforcing layer to form an outer tube.
  • a thermoplastic resin is further extruded onto the reinforcing layer to form an outer tube.
  • other thermoplastic resin and / or adhesive layers may be provided between the inner tube and the reinforcing layer and between the outer tube of the reinforcing layer.
  • Comparative Examples 1-7 The raw materials shown in Table 1 are introduced into the cylinder from the raw material supply port of a twin-screw kneading extruder (manufactured by Nippon Steel Works, Ltd.), conveyed to a kneading zone set at a temperature of 230 ° C. and a residence time of 2 minutes, and melted. After kneading, the melt-kneaded product was extruded in a strand form from a die attached to the discharge port.
  • a twin-screw kneading extruder manufactured by Nippon Steel Works, Ltd.
  • the obtained strand-like extrudate was pelletized with a resin pelletizer to obtain a pellet of a thermoplastic resin composition.
  • Examples 1-7 (1) Preparation of first resin composition: The modified rubber, EVOH resin and crosslinking agent shown in Table 2 were melt-kneaded (kneading zone temperature: 230 ° C., residence time: about 2 minutes) using a twin-screw kneading extruder as in Comparative Examples 1-7. The melt-kneaded product was extruded in a strand form from a die attached to the discharge port, and the obtained strand-shaped extrudate was pelletized with a resin pelletizer to obtain a pellet of the first resin composition.
  • Second resin composition The crosslinkable elastomer, polyamide resin, compatibilizing agent, zinc oxide, stearic acid and zinc stearate shown in Table 2 were melt-kneaded (in the kneading zone) using a twin-screw kneading extruder as in Comparative Examples 1-7. Temperature: 230 ° C., residence time: about 2 minutes), the molten kneaded product is extruded into a strand form from a die attached to the discharge port, and the obtained strand-shaped extrudate is pelletized with a resin pelletizer to obtain a second resin. A pellet of the composition was obtained.
  • thermoplastic resin compositions of Comparative Examples 1 to 7 and Examples 1 to 7 were evaluated by the following test methods.
  • a JIS No. 3 dumbbell-shaped test piece was punched out, and the obtained test piece was repeatedly stretched at ⁇ 35 ° C. at an elongation rate of 40%. Five measurements were performed, and the average value of the number of breaks was calculated.
  • a raw material other than the vulcanizing agent was kneaded with a 1.7 liter Banbury mixer at a set temperature of 70 ° C. for 5 minutes to obtain a master batch, and then added with an 8-inch roll.
  • the sulfurizing agent was kneaded and formed into a 0.5 mm thick film.
  • the obtained unvulcanized rubber composition film was laminated with the dried thermoplastic resin composition film and vulcanized at 180 ° C. for 10 minutes.
  • the obtained laminate was cut to prepare a test piece having a length of 11 cm and a width of 11 cm.
  • (B) Permeability change rate after fatigue About the test piece produced as described above, air as a test gas in accordance with JIS K7126-1 “Method for testing gas permeability of plastic film and sheet (differential pressure method)” The air permeability (air permeability before fatigue) of the thermoplastic resin composition film was measured at a test temperature of 30 ° C. Next, the test piece was fatigued by repeatedly stretching 1 million times at room temperature under a condition of 20% elongation and 400 times per minute. For the test piece after fatigue, the air permeability of the thermoplastic resin composition film is measured in the same manner as the air permeability of the thermoplastic resin composition film before fatigue, and the air permeability of the thermoplastic resin composition film after fatigue is measured before fatigue.
  • Table 1 and Table 2 footnotes: (1) Maleic anhydride-modified ethylene-propylene rubber (Tuffmer MH7020 manufactured by Mitsui Chemicals, Inc.) (2) Brominated isobutylene-paramethylstyrene copolymer (Exxpro MDX89-4 manufactured by ExxonMobil Chemical) (3) Ethylene-vinyl alcohol copolymer (H4815B manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) (4) Nylon 6/66 copolymer (5013B manufactured by Ube Industries, Ltd.) (5) Maleic acid-modified ethylene-ethyl acrylate copolymer (HPR AR201 manufactured by Mitsui DuPont Polychemical Co., Ltd.) (6) 3,3′-diaminodiphenyl sulfone (manufactured by Konishi Chemical
  • thermoplastic resin composition prepared according to the present invention exhibits excellent low temperature durability and fatigue resistance in addition to excellent gas barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

(I)酸無水物変性またはエポキシ変性ゴム(A)をエチレン-ビニルアルコール共重合体樹脂(B)と溶融混練することによって、エチレン-ビニルアルコール共重合体樹脂(B)中に酸無水物変性またはエポキシ変性ゴム(A)が分散した第1の樹脂組成物を調製する工程と、(II)架橋可能なエラストマー(C)をポリアミド樹脂(D)と溶融混練しながら架橋させることによって、ポリアミド樹脂(D)中に架橋エラストマー粒子が分散した第2の樹脂組成物を調製する工程と、(III)第1の樹脂組成物と第2の樹脂組成物とを溶融混合する工程を含む、熱可塑性樹脂組成物の製造方法。当該熱可塑性樹脂組成物は優れた気体遮断性、低温耐久性および耐疲労性を有する。

Description

熱可塑性樹脂組成物の製造方法
 本発明は、熱可塑性樹脂組成物の製造方法に関し、より詳細には、優れた気体遮断性に加えて優れた低温耐久性および耐疲労性を有する熱可塑性樹脂組成物の製造方法、並びに当該方法により製造された熱可塑性樹脂組成物および当該熱可塑性樹脂組成物から得られる製品に関する。
 従来より、気体の透過を防止することが求められる用途(例えば、空気入りタイヤ、気体もしくは流体輸送用ホースなど)に使用される気体遮断性構造体の軽量化を図ることが求められている。例えば、空気入りタイヤの内圧を保持するためにタイヤ内面に気体透過防止層として配設されるインナーライナーには、ブチルゴムやハロゲン化ブチルゴム等のブチル系ゴムを主成分とするゴム組成物が使用されているが、ブチル系ゴムを主成分とするゴム組成物は気体遮断性が低いため、かかるゴム組成物を使用してインナーライナーを形成する場合には、インナーライナーの厚さを厚くする必要があった。そのため、ブチル系ゴムを主成分とするゴム組成物の使用は、自動車の燃費の向上を図るためにタイヤを軽量化する上で問題であった。
 空気入りタイヤの内圧保持性能の向上と軽量化を図るために、気体遮断性に優れることが知られているエチレン−ビニルアルコール共重合体(EVOH)からなるフィルムを弾性表面層または接着層と積層したものをタイヤの内面に設けることが、例えば特許文献1並びに特許文献2に提案されている。しかしながら、空気入りタイヤ用のインナーライナーを構成する層としてEVOH層を用いた場合には、EVOHは空気入りタイヤに通常用いられているゴムに比べて弾性率が著しく高いため、EVOH層がタイヤ走行時に繰り返しの屈曲や引張変形を受けると、疲労によりEVOH層の気体遮断性が低下し、その結果、タイヤの内圧保持性能が低下するという問題があった。この問題を解決する手段として、特許文献3には、エチレン含有量20~70モル%、ケン化度85%以上のエチレン−ビニルアルコール共重合体60~99重量%及び疎水性可塑剤1~40重量%からなる樹脂組成物を空気入りタイヤのインナーライナーに使用する技術が開示されている。更に、特許文献4には、エチレン含有量25~50モル%のエチレン−ビニルアルコール共重合体100重量部に対してエポキシ化合物1~50重量部を反応させて得られる変性エチレン−ビニルアルコール共重合体を空気入りタイヤのインナーライナーに使用する技術が開示されている。また、特許文献5には、上記エポキシ化合物により変性されたエチレン−ビニルアルコール共重合体からなるマトリックス中に、23℃におけるヤング率が当該変性エチレン−ビニルアルコール共重合体より小さい軟質樹脂を分散させた樹脂組成物からなる相を含むタイヤ用インナーライナーを使用する技術が開示されている。
 しかしながら、上記の技術により得られる空気入りタイヤ用インナーライナーは、疲労後(タイヤ走行後)の内圧保持性能は十分でなく、耐疲労性をよりいっそう改善して疲労による気体遮断性の低下を低減することが依然として求められている。気体もしくは液体輸送用ホースにおいても、同様に、軽量化を図るとともに、疲労による気体遮断性の低下を低減することが求められている。さらに、EVOHは、特に低温で脆いという欠点があることも知られており、EVOHを配合した樹脂組成物において、EVOHの優れた気体遮断性を生かしつつ低温での耐久性を改善することが求められている。
特開平1−314164号公報 特開平6−40207号公報 特開2002−52904号公報 特開2004−176048号公報 特開2008−24217号公報
 従って、本発明の目的は、優れた気体遮断性に加えて優れた低温耐久性および耐疲労性を有する熱可塑性樹脂組成物の製造方法を提供することにある。
 本発明者は、2種類の樹脂組成物、すなわち、酸無水物変性またはエポキシ変性ゴムをエチレン−ビニルアルコール共重合体樹脂中に分散させることにより得られた樹脂組成物と、架橋可能なエラストマーをポリアミド樹脂中で溶融混練しながら架橋(動的架橋)させることにより得られた樹脂組成物とを溶融混合することによって、優れた気体遮断性に加えて優れた低温耐久性を有し、しかも、疲労による気体遮断性の低下が低減された熱可塑性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、
 (I)酸無水物変性またはエポキシ変性ゴム(A)をエチレン−ビニルアルコール共重合体樹脂(B)と溶融混練することによって、エチレン−ビニルアルコール共重合体樹脂(B)中に酸無水物変性またはエポキシ変性ゴム(A)が分散した第1の樹脂組成物を調製する工程と、
 (II)架橋可能なエラストマー(C)をポリアミド樹脂(D)と溶融混練しながら架橋させることによって、ポリアミド樹脂(D)中に架橋エラストマー粒子が分散した第2の樹脂組成物を調製する工程と、
 (III)第1の樹脂組成物と第2の樹脂組成物とを溶融混合する工程、
を含む、熱可塑性樹脂組成物の製造方法が提供される。
 本発明によれば、さらに、かかる方法により得られる熱可塑性樹脂組成物、並びに当該熱可塑性樹脂組成物から製造される各種製品、例えば、当該熱可塑性樹脂組成物から成るフィルムをインナーライナーに用いた空気入りタイヤ、および当該熱可塑性樹脂組成物から成るフィルムを気体遮断層に用いたホースが提供される。
 本発明の熱可塑性樹脂組成物の製造方法は、上記のとおり、第1および第2の樹脂組成物を別々に調製(工程(I)および(II))した後、得られた第1および第2の樹脂組成物を溶融混合(工程(III))するという2段階の混練・混合操作を行うことを特徴とする。このように2段階の混練・混合操作を行うことによって、1段階の混練・混合操作を行う従来の方法に比べ、より疲労前後の通気度変化率を抑えることが可能となった。
 工程(I)において第1の樹脂組成物の調製に使用される酸無水物変性またはエポキシ変性ゴム(A)は、ゴム分子の側鎖および/または末端に酸無水物基またはエポキシ含有基を有するゴムである。変性ゴム(A)に酸無水物基またはエポキシ含有基が存在することにより、変性ゴム(A)は、エチレン−ビニルアルコール共重合体(EVOH)樹脂(B)に対して相溶性を示し、変性ゴム(A)をEVOH樹脂(B)中に分散させることができる。変性ゴム(A)中に存在しうる酸無水物基の例としては、例えば無水マレイン酸基などのカルボン酸無水物基が挙げられ、エポキシ含有基の例としては、エポキシエチル基、グリシジル基、グリシジルエーテル基などが挙げられる。変性ゴム(A)は、公知の方法に従って調製でき、例えば、酸無水物基を有する変性ゴムは、例えば、酸無水物とペルオキシドをゴムと反応させることにより製造することができる。また、エポキシ基を有する変性ゴムは、例えば、グリシジルメタクリレートをゴムと共重合させることにより製造することができる。共重合比率は、限定するものではないが、ゴム100質量部に対し、グリシジルメタクリレート10~50質量部である。変性ゴム(A)の好ましい例としては、エチレン−α−オレフィン共重合体およびそれらの誘導体の酸無水物変性物およびエポキシ変性物(例えば、エチレン−プロピレン共重合体の酸無水物変性物、エチレン−ブテン共重合体の酸無水物変性物)、エチレン−不飽和カルボン酸共重合体およびそれらの誘導体の酸無水物変性物およびエポキシ変性物(例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−メタクリル酸メチル共重合体などが挙げられる。上記変性ゴムのうちの1種を使用しても、2種以上を併用してもよい。
 本発明の熱可塑性樹脂組成物の製造方法において使用されるエチレン−ビニルアルコール共重合体(EVOH)樹脂(B)は公知の方法により調製でき、例えばエチレンと酢酸ビニルとを重合してエチレン−酢酸ビニル共重合体(EVA)を調製し、得られたEVAを加水分解することによって製造することができる。EVOH樹脂は、耐疲労性および溶融成形性の観点から、25~50モル%のエチレン含有量を有することが好ましい。また、EVOH樹脂は、ガスバリア性および成形時の熱安定性の観点から、好ましくは95%以上、より好ましくは98%以上のケン化度を有する。EVOH樹脂の市販されているものの例としては、例えば日本合成化学株式会社製のソアノールH4815B(エチレン単位含有量:48モル%)、ソアノールH4412B(エチレン単位含有量:44モル%)、ソアノールE3808B(エチレン単位含有量:38モル%)およびソアノールD2908(エチレン単位含有量:29モル%)、株式会社クラレ製のEVAL−G156B(エチレン単位含有量:48モル%)、EVAL−E171B(エチレン単位含有量:44モル%)、EVAL−H171B(エチレン単位含有量:38モル%)、EVAL−F171B(エチレン単位含有量:32モル%)およびEVAL−L171B(エチレン単位含有量:27モル%)が挙げられる。1種のEVOH樹脂を使用しても、2種以上のEVOH樹脂を併用してもよい。
 変性ゴム(A)をEVOH樹脂(B)と溶融混練して変性ゴム(A)をEVOH樹脂(B)中に分散させることにより得られる第1の樹脂組成物では、分散相を構成している変性ゴム(A)に対して、熱可塑性であるEVOH樹脂(B)が連続相(マトリックス相)を構成しているために、第1の樹脂組成物は熱可塑性を示し、第1の樹脂組成物は通常の熱可塑性樹脂と同様に成形加工することが可能である。変性ゴム(A)の量は、EVOH樹脂(B)100質量部に対して、典型的には70~180質量部、好ましくは75~145質量部である。酸無水物変性またはエポキシ変性ゴム(A)の量が、EVOH樹脂(B)100質量部に対して70質量部未満であると、十分な耐久性を得ることができず、180質量部を超えると、変性ゴム(A)がEVOH樹脂(B)と共連続相を形成するか、あるいは、変性ゴム(A)が連続相を形成して、EVOH樹脂(B)が分散相を形成するため、得られる第1の樹脂組成物は熱可塑性を示さず、その後、第2の樹脂組成物と溶融混合することが困難になる。第1の樹脂組成物において、EVOH樹脂(B)中に分散された変性ゴム(A)は、典型的には、約1~7μmの平均粒径を有する。
 第1の樹脂組成物には、上記変性ゴム(A)およびEVOH樹脂(B)に加えて、本発明の目的を損なわない範囲で、任意の添加剤、例えば相溶化剤、老化防止剤、架橋剤、加硫促進剤、加硫促進助剤、加硫遅延剤、可塑剤、充填剤、着色剤、加工助剤を必要に応じて使用してもよい。例えば、第1の樹脂組成物に、架橋剤(または加硫剤)を加えることにより、低温耐久性をよりいっそう向上させることができる。第1の樹脂組成物の調製に使用される架橋剤(または加硫剤)の種類および配合量は、上記の変性ゴムの種類および動的架橋条件に応じて、当業者が適宜選択することができる。架橋剤の例としては、二つ以上のアミノ基を有する化合物、例えば2,2−ジチオジアニリン、4,4−ジチオジアニリン、2,2−ジアミノジフェニルエーテル、3,3−ジアミノジフェニルエーテル、4,4−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルホンなどが挙げられる。架橋剤の配合量は、典型的には、変性ゴム(A)100質量部に対して0.1~10質量部である。
 第1の樹脂組成物は、変性ゴム(A)、EVOH樹脂(B)および任意の添加剤を、例えばニーダー、バンバリーミキサー、一軸混練押出機、二軸混練押出機等の公知の混練機を使用して溶融混練することによって調製できるが、その生産性の高さから二軸混練押出機を使用して行うことが好ましい。混練条件は、使用される変性ゴム(A)、EVOH樹脂(B)、および任意の添加剤のタイプおよび配合量などに応じるが、溶融混練は、一般的には、約200~約250℃の温度で約1分間~約10分間行う。溶融混練温度の下限は、少なくともEVOH樹脂(B)の溶融温度以上であればよく、典型的には約140℃~約250℃である。動的架橋時間(滞留時間)は、典型的には約30秒間~約10分間である。
 第1の樹脂組成物とは別に、架橋可能なエラストマー(C)をポリアミド樹脂(D)と溶融混練しながら架橋(動的架橋)させることによって、ポリアミド樹脂(D)中に架橋エラストマー粒子が分散した第2の樹脂組成物を調製する(工程(II))。
 第2の樹脂組成物の調製に使用される架橋可能なエラストマー(C)の例としては、ジエン系ゴム及びその水添物(例えば天然ゴム(NR)、イソプレンゴム(IR)、エポキシ化天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)(高シスBR及び低シスBR)、ニトリルゴム(NBR)、水素化NBR、水素化SBR)、オレフィン系ゴム(例えばエチレンプロピレンゴム(EPDM、EPM)、マレイン酸変性エチレンプロピレンゴム(M−EPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニル又はジエン系モノマー共重合体、アクリルゴム(ACM)、含ハロゲンゴム(例えば臭素化ブチルゴム(Br−IIR)、塩素化ブチルゴム(Cl−IIR)、イソブチレンパラメチルスチレン共重合体の臭素化物(Br−IPMS)、クロロプレンゴム(CR)、ヒドリンゴム(CHR・CHC);クロロスルホン化ポリエチレン(CSM)、塩素化ポリエチレン(CM)、マレイン酸変性塩素化ポリエチレン(M−CM))、シリコンゴム(例えばメチルビニルシリコンゴム、ジメチルシリコンゴム、メチルフェニルビニルシリコンゴム)、含イオウゴム(例えばポリスルフィドゴム)、フッ素ゴム(例えばビニリデンフルオライド系ゴム、含フッ素ビニルエーテル系ゴム、テトラフルオロエチレン−プロピレン系ゴム、含フッ素シリコーン系ゴム、含フッ素ホスファゼン系ゴム)、熱可塑性エラストマー(例えばスチレン系エラストマー、オレフィン系エラストマー、ポリアミド系エラストマー)などの架橋可能なエラストマーが挙げられる。架橋可能なエラストマー(C)は上記の変性ゴム(A)と同じ種類のもの(すなわち同じ化学組成を有するもの)であっても、異なる種類のものであってもよい。上記の架橋可能なエラストマーのうちの1種を使用しても、2種以上を併用してもよい。架橋可能なエラストマー(C)は、加工性と耐久性の観点から、架橋可能なエラストマー(C)は、ハロゲン化ブチルゴム、ハロゲン化イソオレフィン−パラメチルスチレン共重合体およびこれらの組み合わせから成る群から選ばれることが好ましい。
 ポリアミド樹脂(D)の例としては、例えばナイロン6(N6)、ナイロン66(N66)、ナイロン46(N46)、ナイロン11(N11)、ナイロン12(N12)、ナイロン610(N610)、ナイロン612(N612)、ナイロン6/66共重合体(N6/66)、ナイロン6/66/610共重合体(N6/66/610)、ナイロンMXD6、ナイロン6T、ナイロン6/6T共重合体、ナイロン66/PP共重合体、ナイロン66/PPS共重合体が挙げられる。これらのポリアミド樹脂のうち、加工性と耐久性の観点から、ナイロン6、ナイロン66、ナイロン6/66共重合体、ナイロン11、ナイロン12、ナイロンMXD6が好ましく使用される。上記ポリアミド樹脂のうちの1種を使用しても、2種以上を併用してもよい。
 第2の樹脂組成物において、架橋可能なエラストマー(C)の量は、ポリアミド樹脂(D)100質量部に対して、典型的には70~180質量部、好ましくは75~145質量部である。架橋可能なエラストマー(C)の量が、ポリアミド樹脂(D)100質量部に対して70質量部未満であると、十分な耐久性を得ることができず、180質量部を超えると、架橋可能なエラストマー(C)がポリアミド樹脂(D)と共連続相を形成するか、あるいは、架橋可能なエラストマー(C)が連続相を形成して、ポリアミド樹脂(D)が分散相を形成するため、第2の樹脂組成物は熱可塑性を示さず、その後、第1の樹脂組成物と溶融混合することが困難になる。第2の樹脂組成物において、ポリアミド樹脂(D)中に分散された架橋エラストマー粒子は、典型的には、約1~5μmの平均粒径を有する。
 第2の樹脂組成物は、架橋可能なエラストマー(C)およびポリアミド樹脂(D)を架橋剤および任意の添加剤の存在下で溶融混練しながら架橋可能なエラストマー(C)を架橋させることにより調製される。かかるプロセスは、当該技術分野で動的架橋法として知られており、架橋可能なエラストマーと熱可塑性であるポリアミド樹脂を架橋剤とともに、架橋剤による架橋が起こる温度以上で溶融混練するため、架橋可能なエラストマーを架橋させ、しかも架橋可能なエラストマーをポリアミド樹脂中に微細に分散させることができる。第2の樹脂組成物では、連続相を構成するポリアミド樹脂中に、架橋可能なエラストマー(C)に由来する架橋エラストマー粒子が微細に分散して存在するため、通常の熱可塑性樹脂と同様に成形加工することが可能である。架橋エラストマー粒子は、典型的には、約1~5μmの平均粒径を有する。第2の樹脂組成物の調製は、第1の樹脂組成物について先に記載したのと同様に、ニーダー、バンバリーミキサー、一軸混練押出機、二軸混練押出機等の公知の混練機を使用して行うことができるが、その生産性の高さから二軸混練押出機を使用して行うことが好ましい。動的架橋の温度の下限は、少なくともポリアミド樹脂(C)の溶融温度以上かつ架橋可能なエラストマー(C)の架橋可能温度以上であればよく、動的架橋の温度は典型的には約200℃~約250℃である。動的架橋時間(滞留時間)は典型的には約30秒間~約10分間である。
 第2の樹脂組成物の調製に使用される架橋剤(または加硫剤)の種類および配合量は、上記の架橋可能なエラストマーの種類および動的架橋条件に応じて、当業者が適宜選択することができる。架橋剤の例としては、酸化亜鉛、ステアリン酸、ステアリン酸亜鉛、硫黄、有機過酸化物架橋剤、2つ以上のアミノ基を有する化合物が挙げられる。架橋剤の配合量は、典型的には、架橋可能なエラストマー(C)100質量部に対して0.1~10質量部である。さらに、第2の樹脂組成物において、ポリアミド樹脂(D)に対する架橋可能なエラストマー(C)の相溶性を高めるために、例えば無水マレイン酸変性エチレンエチルアクリレート共重合体、エチレンプロピレン共重合体、エチレンブテン共重合体、エチレンヘキセン共重合体およびエチレンオクテン共重合体の無水マレイン化物などの変性ポリオレフィンを相溶化剤としてポリアミド樹脂(D)と架橋可能なエラストマー(C)とナイロン樹脂(B)の混練時に配合してもよい。かかる変性ポリオレフィンの配合量には特に制限はないが、架橋可能なエラストマー(C)の総質量を基準として典型的には2~20質量%である。
 第2の樹脂組成物の調製には、上記の架橋可能なエラストマー(C)、ポリアミド樹脂(D)および架橋剤に加えて、本発明の目的を損なわない範囲で、任意の添加剤、例えば相溶化剤、老化防止剤、加硫促進剤、加硫促進助剤、加硫遅延剤、可塑剤、充填剤、着色剤、加工助剤を必要に応じて使用してもよい。
 上記のように別々に調製された第1の樹脂組成物と第2の樹脂組成物とを溶融混合することにより本発明の熱可塑性樹脂組成物が得られる。第1の樹脂組成物と第2の樹脂組成物とを、典型的には、質量比で約90:10~約10:90、好ましくは質量比で約80:20~約20:80で溶融混合する。より好ましくは、変性ゴム(A)と架橋可能なエラストマー(C)の質量比が約90:10~約10:90、さらに好ましくは約70:30~約30:70になるように第1の樹脂組成物と第2の樹脂組成物とを溶融混合する。第1の樹脂組成物と第2の樹脂組成物との溶融混練は、ニーダー、バンバリーミキサー、一軸混練押出機、二軸混練押出機等の公知の混練機を使用して行うことができるが、その生産性の高さから二軸混練押出機を使用して行うことが好ましい。第1の樹脂組成物と第2の樹脂組成物とが溶融混合しやすいように、第1の樹脂組成物と第2の樹脂組成物とを溶融混合する前に、第1の樹脂組成物および第2の樹脂組成物をそれぞれペレット状、顆粒状等の形状に成形することが好ましい。第1の樹脂組成物と第2の樹脂組成物との溶融混合は、使用されるEVOH樹脂(B)、酸無水物変性またはエポキシ変性ゴム(A)、ポリアミド樹脂(D)および架橋可能なエラストマー(C)の種類および量に応じるが、一般的には、第1の樹脂組成物を構成するエチレン−ビニルアルコール共重合体(A)の溶融温度以上、かつ、第2の樹脂組成物を構成するポリアミド樹脂(E)の溶融温度以上であればよく、典型的には約200℃~約250℃の温度で約30秒間~約5分間の時間(滞留時間)で行う。
 上記のように溶融混練した熱可塑性樹脂組成物は、次に、溶融状態で二軸混練押出機の吐出口に取り付けられたダイから通常の方法によりフィルム状、シート状またはチューブ状等の形状に押し出すか、あるいは、ストランド状に押し出し、樹脂用ペレタイザーで一旦ペレット化した後、得られたペレットを、インフレーション成形、カレンダー成形、押出成形などの通常の樹脂成形法により、用途に応じてフィルム状、シート状またはチューブ状の所望の形状に成形することができる。
 本発明の熱可塑性樹脂組成物は、様々な用途に使用でき、例えば、空気入りタイヤ、気体もしくは流体輸送用ホースなどの用途に使用できる。本発明の熱可塑性樹脂組成物は、優れた気体遮断性に加えて優れた低温耐久性および耐疲労性を示すため、空気入りタイヤのインナーライナー、ホースなどの用途に好適に使用できる。
 本発明の熱可塑性樹脂組成物から成るフィルムをインナーライナーに用いた空気入りタイヤの製造方法としては、慣用の方法を用いることができる。例えば、本発明の熱可塑性樹脂組成物を所定の幅と厚さを有するフィルムに成形し、それをタイヤ成型用ドラム上に円筒状に貼り着け、その上にカーカス層、ベルト層、トレッド層等のタイヤ部材を順次貼り重ね、タイヤ成型用ドラムからグリーンタイヤを取り外す。次いで、このグリーンタイヤを常法に従って加硫することにより、本発明の熱可塑性樹脂組成物から成るフィルムをインナーライナーに用いた所望の空気入りタイヤを製造することができる。
 本発明の熱可塑性樹脂組成物から成るフィルムを気体遮断層に用いたホースの製造方法としては、慣用の方法を用いることができる。たとえば、本発明の熱可塑性樹脂組成物を、予め離型剤を塗布したマンドレル上に、押出機によりクロスヘッド押出方式で押出し、内管を形成した後、内管上に、編組機を使用して補強糸もしくは補強鋼線を編組して補強層を形成し、この補強層上にさらに熱可塑性樹脂を押出して外管を形成する。内管と補強層の間および補強層の外管の間に、必要に応じて他の熱可塑性樹脂および/または接着剤の層を設けてもよい。最後にマンドレルを引き抜くと、ホースが得られる。
 以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。
比較例1~7
 表1に示す原料を、二軸混練押出機(株式会社日本製鋼所製)の原料供給口からシリンダー内に導入し、温度230℃および滞留時間2分間に設定された混練ゾーンに搬送して溶融混練し、溶融混練物を吐出口に取り付けられたダイからストランド状に押出した。得られたストランド状押出物を樹脂用ペレタイザーでペレット化し、熱可塑性樹脂組成物のペレットを得た。
実施例1~7
 (1)第1の樹脂組成物の調製:
 表2に示す変性ゴム、EVOH樹脂及び架橋剤を、比較例1~7と同様に二軸混練押出機を使用して溶融混練(混練ゾーンの温度:230℃、滞留時間:約2分間)し、溶融混練物を吐出口に取り付けられたダイからストランド状に押出し、得られたストランド状押出物を樹脂用ペレタイザーでペレット化し、第1の樹脂組成物のペレットを得た。
 (2)第2の樹脂組成物の調製:
 表2に示す架橋可能なエラストマー、ポリアミド樹脂、相溶化剤、酸化亜鉛、ステアリン酸およびステアリン酸亜鉛を、比較例1~7と同様に二軸混練押出機を使用して溶融混練(混練ゾーンの温度:230℃、滞留時間:約2分間)し、溶融混練物を吐出口に取り付けられたダイからストランド状に押出し、得られたストランド状押出物を樹脂用ペレタイザーでペレット化し、第2の樹脂組成物のペレットを得た。
 (3)第1の樹脂組成物と第2の樹脂組成物の溶融混合:
 上記のように得られた第1および第2の樹脂組成物のペレットを二軸混練押出機(株式会社日本製鋼製)の原料供給口からシリンダー内に導入し、温度230℃および滞留時間約2分間に設定された混練ゾーンに搬送して溶融混練し、溶融混練物を吐出口に取り付けられたダイからストランド状に押出した。得られたストランド状押出物を樹脂用ペレタイザーでペレット化し、本発明に係る熱可塑性樹脂組成物のペレットを得た。
 上記の比較例1~7および実施例1~7の熱可塑性樹脂組成物の特性を下記の試験法により評価した。
(1)低温耐久性
 ペレット状の熱可塑性エラストマー組成物を、200mm幅T型ダイス付40mmφ単軸押出機(株式会社プラ技研製)を用いて、熱可塑性エラストマーの融点より20℃高い温度設定とした一定の条件で押し出し、平均厚み1mmのシートに成形した。次いでJIS3号ダンベル形状の試験片を打ち抜き、得られた試験片に−35℃で伸張率40%で繰り返し伸張させた。5回の測定を行い、破断した回数の平均値を算出した。
(2)耐疲労性
 ペレット状の熱可塑性樹脂組成物から下記(a)に示すようにフィルムを作製し、下記(b)に示すように通気度の変化率を求めることによって耐疲労性を評価した。
 (a)通気度測定用フィルムの作製
 ペレット状の熱可塑性樹脂組成物を、400mm幅T型ダイス付40mmφ単軸押出機(株式会社プラ技研)を用いて、押出温度C1/C2/C3/C4/ダイ=200/210/230/235/235℃、冷却ロール温度50℃、引き取り速度3m/分の押出条件で、平均厚み0.15mmのフィルムに成形した。次に、このフィルムを長さ20cmおよび幅20cmの寸法に切断し、150℃で3時間以上乾燥させた。次に、表3に示す配合において、加硫剤以外の原料を1.7リットルのバンバリーミキサーにて、設定温度70℃にて5分間混練してマスターバッチを得た後、8インチロールで加硫剤を混練し、0.5mm厚のフィルムに成形した。得られた未加硫ゴム組成物フィルムを、上記の乾燥させた熱可塑性樹脂組成物フィルムと積層し、180℃で10分間加硫させた。得られた積層体を切断して、長さ11cmおよび幅11cmの試験片を作製した。
 (b)疲労後の通気度変化率
 上記のようにして作製された試験片について、JIS K7126−1「プラスチックフィルムおよびシートの気体透過度試験方法(差圧法)」に準じて、試験気体として空気を用い、試験温度30℃で熱可塑性樹脂組成物フィルムの通気度(疲労前の通気度)を測定した。次に、試験片を、室温で伸張率20%および毎分400回の条件のもとで100万回繰り返し伸張させることにより疲労させた。疲労後の試験片について、疲労前の熱可塑性樹脂組成物フィルムの通気度と同様に熱可塑性樹脂組成物フィルムの通気度を測定し、疲労後の熱可塑性樹脂組成物フィルムの通気度を疲労前の熱可塑性樹脂組成物フィルムの通気度に対する百分率(%)で表した。
 試験結果を下記表1および2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1および表2脚注:
 (1)無水マレイン酸変性エチレン−プロピレンゴム(三井化学(株)製のタフマーMH7020)
 (2)臭素化イソブチレン−パラメチルスチレン共重合体(エクソンモービルケミカル社製のExxpro MDX89−4)
 (3)エチレン−ビニルアルコール共重合体(日本合成化学工業株式会社製のH4815B)
 (4)ナイロン6/66共重合体(宇部興産(株)製の5013B)
 (5)マレイン酸変性エチレン−エチルアクリレート共重合体(三井デュポンポリケミカル(株)製のHPR AR201)
 (6)3,3’−ジアミノジフェニルスルホン(小西化学工業株式会社製)
 (7)トリス(2−ヒドロキシエチル)イソシアヌレート(日星産業株式会社製のタナック)
 (8)正同化学(株)製の亜鉛華3号
 (9)日本油脂(株)製のビーズステアリン酸
 (10)堺化学工業(株)製
Figure JPOXMLDOC01-appb-T000003
脚注:
 (1)LANXESS Rubber社製BROMOBUTYLX2
 (2)新日化カーボン株式会社製HTC#G
 (3)Rhodia社製Zeosil(登録商標)165GR
 (4)昭和シェル石油株式会社製エキストラクト4号S
 (5)正同化学工業株式会社製酸化亜鉛3種
 (6)日油株式会社製ビーズステアリン酸YR
 (7)鶴見化学工業株式会社製金華印微粉硫黄150メッシュ
 (8)大内新興化学工業株式会社製ノクセラーDM
 表1および2の試験結果を比較することにより、本発明に従って調製された熱可塑性樹脂組成物が優れた気体遮断性に加えて優れた低温耐久性および耐疲労性を示すことが分かる。

Claims (10)

  1.  (I)酸無水物変性またはエポキシ変性ゴム(A)をエチレン−ビニルアルコール共重合体樹脂(B)と溶融混練することによって、エチレン−ビニルアルコール共重合体樹脂(B)中に酸無水物変性またはエポキシ変性ゴム(A)が分散した第1の樹脂組成物を調製する工程と、
     (II)架橋可能なエラストマー(C)をポリアミド樹脂(D)と溶融混練しながら架橋させることによって、ポリアミド樹脂(D)中に架橋エラストマー粒子が分散した第2の樹脂組成物を調製する工程と、
     (III)第1の樹脂組成物と第2の樹脂組成物とを溶融混合する工程、
    を含む、熱可塑性樹脂組成物の製造方法。
  2.  酸無水物変性またはエポキシ変性ゴム(A)が、エチレン−α−オレフィン共重合体およびそれらの誘導体の酸無水物変性物およびエポキシ変性物、エチレン−不飽和カルボン酸共重合体およびそれらの誘導体の酸無水物変性物およびエポキシ変性物、並びにこれらの組み合わせからなる群から選ばれる、請求項1に記載の熱可塑性樹脂組成物の製造方法。
  3.  架橋可能なエラストマー(C)が、ハロゲン化ブチルゴム、ハロゲン化イソオレフィン−パラアルキルスチレン共重合体およびこれらの組み合わせから成る群から選ばれる、請求項1または2に記載の熱可塑性樹脂組成物の製造方法。
  4.  ポリアミド樹脂(D)が、ナイロン6、ナイロン66、ナイロン6/66共重合体、ナイロン11、ナイロン12、ナイロンMXD6およびこれらの組み合わせから成る群から選ばれる、請求項1~3のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
  5.  熱可塑性樹脂組成物中に含まれる酸無水物変性またはエポキシ変性ゴム(A)の量が、エチレン−ビニルアルコール共重合体樹脂(B)100質量部に対して70~180質量部である、請求項1~4のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
  6.  熱可塑性樹脂組成物中に含まれる架橋可能なエラストマー(C)の量が、ポリアミド樹脂(D)100質量部に対して70~180質量部である、請求項1~5のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
  7.  第1の樹脂組成物と第2の樹脂組成物とを質量比90:10~10:90で溶融混合する、請求項1~6のいずれか一項に記載の熱可塑性樹脂組成物の製造方法。
  8.  請求項1~7のいずれか一項に記載の方法により製造される熱可塑性樹脂組成物。
  9.  請求項8に記載の熱可塑性樹脂組成物から成るフィルムをインナーライナーに用いた空気入りタイヤ。
  10.  請求項8に記載の熱可塑性樹脂組成物から成るフィルムを気体遮断層に用いたホース。
PCT/JP2011/061920 2010-09-13 2011-05-18 熱可塑性樹脂組成物の製造方法 WO2012035828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11824840.0A EP2474570B1 (en) 2010-09-13 2011-05-18 Manufacturing method for thermoplastic resin composition
US13/504,268 US20130156982A1 (en) 2010-09-13 2011-05-18 Method for producing thermoplastic resin composition
CN2011800045948A CN102639633B (zh) 2010-09-13 2011-05-18 热塑性树脂组合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010204312A JP4862954B1 (ja) 2010-09-13 2010-09-13 熱可塑性樹脂組成物の製造方法
JP2010-204312 2010-09-13

Publications (1)

Publication Number Publication Date
WO2012035828A1 true WO2012035828A1 (ja) 2012-03-22

Family

ID=45604576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061920 WO2012035828A1 (ja) 2010-09-13 2011-05-18 熱可塑性樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20130156982A1 (ja)
EP (1) EP2474570B1 (ja)
JP (1) JP4862954B1 (ja)
CN (1) CN102639633B (ja)
WO (1) WO2012035828A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147148A1 (ja) * 2014-03-26 2015-10-01 横浜ゴム株式会社 熱可塑性エラストマー組成物
EP2857451A4 (en) * 2012-05-28 2016-01-20 Yokohama Rubber Co Ltd TIRE
JPWO2014030541A1 (ja) * 2012-08-21 2016-07-28 横浜ゴム株式会社 熱可塑性エラストマー組成物の製造方法
WO2017006827A1 (ja) * 2015-07-07 2017-01-12 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ
JP2018123247A (ja) * 2017-02-01 2018-08-09 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906783B2 (ja) * 2012-02-14 2016-04-20 横浜ゴム株式会社 熱可塑性樹脂組成物およびそれを用いたタイヤ
JP6155792B2 (ja) * 2013-04-19 2017-07-05 大日本印刷株式会社 粘着シートおよびその製造方法
JP6186985B2 (ja) * 2013-07-25 2017-08-30 横浜ゴム株式会社 熱可塑性樹脂組成物の製造方法
JP6115386B2 (ja) * 2013-07-31 2017-04-19 横浜ゴム株式会社 熱可塑性樹脂組成物並びにそれを用いたタイヤ及びホース
CN106715573A (zh) * 2014-10-02 2017-05-24 埃克森美孚化学专利公司 动态硫化的共混胶
CN104448815B (zh) * 2014-11-27 2018-02-16 上海金发科技发展有限公司 一种热塑性树脂组合物及其制备方法
JP6602647B2 (ja) * 2015-11-04 2019-11-06 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、積層体及び成形品
JP6591868B2 (ja) * 2015-11-04 2019-10-16 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、積層体及び成形品
JP2021046490A (ja) * 2019-09-18 2021-03-25 横浜ゴム株式会社 冷媒輸送配管用熱可塑性樹脂組成物および冷媒輸送配管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646043A (en) * 1987-06-29 1989-01-10 Nippon Zeon Co Thermoplastic elastomeric composition
JP2006514140A (ja) * 2003-03-06 2006-04-27 エクソンモービル ケミカル パテンツ,インコーポレイティド 熱可塑性エラストマー組成物
WO2007083785A1 (ja) * 2006-01-17 2007-07-26 The Yokohama Rubber Co., Ltd. 低透過性ゴム積層体及びそれを用いた空気入りタイヤ
WO2009123229A1 (ja) * 2008-03-31 2009-10-08 株式会社ブリヂストン フィルム、タイヤ用インナーライナー及びそれを用いたタイヤ
JP2010132850A (ja) * 2008-11-05 2010-06-17 Yokohama Rubber Co Ltd:The 熱可塑性樹脂組成物、それを用いた積層体およびタイヤ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422154A (en) * 1966-06-16 1969-01-14 Du Pont Process for producing dinitrodiphenyl ethers
US6079465A (en) * 1995-01-23 2000-06-27 The Yokohama Rubber Co., Ltd. Polymer composition for tire and pneumatic tire using same
JP2865598B2 (ja) * 1995-10-02 1999-03-08 横浜ゴム株式会社 熱可塑性エラストマー組成物
KR100267881B1 (ko) * 1995-11-02 2001-04-02 하기와라 세이지 열가소성 탄성중합체 조성물 및 제조방법 및 그것을 사용한 저투과성호스
US6359071B1 (en) * 1998-01-13 2002-03-19 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition, process for producing the same, and pneumatic tire and hose made with the same
JP2002241546A (ja) * 2001-02-22 2002-08-28 Toray Ind Inc 燃料取扱用部材
JP2003238757A (ja) * 2002-02-22 2003-08-27 Kuraray Co Ltd ガスバリア性熱可塑性重合体組成物
US7709575B2 (en) * 2003-03-06 2010-05-04 The Yokohama Rubber Co., Ltd. Method for controlling dispersion size of elastomer in thermoplastic elastomer composition
DE602004018664D1 (de) * 2003-09-30 2009-02-05 Kaneka Corp Thermoplastische elastomerzusammensetzung
US7608668B2 (en) * 2004-03-17 2009-10-27 Dow Global Technologies Inc. Ethylene/α-olefins block interpolymers
DE102004058063A1 (de) * 2004-12-02 2006-06-08 Lanxess Deutschland Gmbh Mischungen aus Ethylen-Vinylalkohol-Copolymerisaten und vernetzbaren Kautschuken mit reaktiven Gruppierungen sowie deren Verwendung zur Herstellung von geformten Artikeln mit guten Barriere-Eigenschaften
JP5328358B2 (ja) * 2005-10-27 2013-10-30 エクソンモービル ケミカル パテンツ,インコーポレイティド 低透過性熱可塑性エラストマー組成物
US8691373B2 (en) * 2006-01-10 2014-04-08 The Yokohama Rubber Co., Ltd. Laminate or thermoplastic polymer composition having low air permeability and pneumatic tire using same as inner liner
WO2007100157A1 (ja) * 2006-03-03 2007-09-07 The Yokohama Rubber Co., Ltd. エラストマー組成物並びにその製造方法及びそれを用いた空気入りタイヤ
CN101541530B (zh) * 2006-10-26 2015-09-09 埃克森美孚化学专利公司 低湿气渗透性层压结构
ATE529251T1 (de) * 2007-02-06 2011-11-15 Yokohama Rubber Co Ltd Verfahren zur herstellung eines luftreifens mit lichtabweisender schutzschicht auf der oberfläche der luftdurchdringungsschutzschicht
GB2462617A (en) * 2008-08-13 2010-02-17 Hexcel Composites Ltd Curing agents and means of production using kaolin clay

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646043A (en) * 1987-06-29 1989-01-10 Nippon Zeon Co Thermoplastic elastomeric composition
JP2006514140A (ja) * 2003-03-06 2006-04-27 エクソンモービル ケミカル パテンツ,インコーポレイティド 熱可塑性エラストマー組成物
WO2007083785A1 (ja) * 2006-01-17 2007-07-26 The Yokohama Rubber Co., Ltd. 低透過性ゴム積層体及びそれを用いた空気入りタイヤ
WO2009123229A1 (ja) * 2008-03-31 2009-10-08 株式会社ブリヂストン フィルム、タイヤ用インナーライナー及びそれを用いたタイヤ
JP2010132850A (ja) * 2008-11-05 2010-06-17 Yokohama Rubber Co Ltd:The 熱可塑性樹脂組成物、それを用いた積層体およびタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2474570A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969873B2 (en) 2012-05-28 2018-05-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
EP2857451A4 (en) * 2012-05-28 2016-01-20 Yokohama Rubber Co Ltd TIRE
JPWO2014030541A1 (ja) * 2012-08-21 2016-07-28 横浜ゴム株式会社 熱可塑性エラストマー組成物の製造方法
US9605119B2 (en) 2012-08-21 2017-03-28 The Yokohama Rubber Co., Ltd. Method for producing thermoplastic elastomer composition
WO2015147148A1 (ja) * 2014-03-26 2015-10-01 横浜ゴム株式会社 熱可塑性エラストマー組成物
US10350943B2 (en) 2014-03-26 2019-07-16 The Yokohama Rubber Co., Ltd. Thermoplastic elastomer composition
JPWO2015147148A1 (ja) * 2014-03-26 2017-04-13 横浜ゴム株式会社 熱可塑性エラストマー組成物
WO2017006827A1 (ja) * 2015-07-07 2017-01-12 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ
CN107735449A (zh) * 2015-07-07 2018-02-23 横滨橡胶株式会社 热塑性树脂组合物、内衬层及充气轮胎
JP2017019891A (ja) * 2015-07-07 2017-01-26 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ
CN107735449B (zh) * 2015-07-07 2020-03-20 横滨橡胶株式会社 热塑性树脂组合物、内衬层及充气轮胎
US10889709B2 (en) 2015-07-07 2021-01-12 The Yokohama Rubber Co., Ltd. Thermoplastic resin composition, inner liner and pneumatic tire
JP2018123247A (ja) * 2017-02-01 2018-08-09 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ
WO2018142973A1 (ja) * 2017-02-01 2018-08-09 横浜ゴム株式会社 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ

Also Published As

Publication number Publication date
EP2474570A1 (en) 2012-07-11
EP2474570B1 (en) 2013-11-20
CN102639633B (zh) 2013-10-02
CN102639633A (zh) 2012-08-15
US20130156982A1 (en) 2013-06-20
JP2012057127A (ja) 2012-03-22
EP2474570A4 (en) 2013-01-30
JP4862954B1 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4862954B1 (ja) 熱可塑性樹脂組成物の製造方法
EP2683558B1 (en) Dynamically vulcanized thermoplastic elastomer film
JP4525824B2 (ja) 熱可塑性を示さないエラストマー組成物及びそれを用いた空気入りタイヤ
JP5644332B2 (ja) 熱可塑性エラストマー組成物の製造方法
WO2015072489A1 (ja) フィルムとゴム組成物との積層体、及びそれを含むタイヤ
WO2012026167A1 (ja) 熱可塑性エラストマー組成物およびそれを用いた空気入りタイヤ
EP2607406B1 (en) Method for producing thermoplastic resin compositions
JP5663956B2 (ja) 熱可塑性エラストマー組成物およびその製造方法
JP6229498B2 (ja) 熱可塑性エラストマー組成物の製造方法
US10889709B2 (en) Thermoplastic resin composition, inner liner and pneumatic tire
WO2018142973A1 (ja) 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ
JP2013189526A (ja) 熱可塑性エラストマー組成物
US8933172B2 (en) Thermoplastic elastomer composition and manufacturing method therefor
US20150045511A1 (en) Method for producing thermoplastic elastomer composition
WO2015147148A1 (ja) 熱可塑性エラストマー組成物
JP2006315339A (ja) 熱可塑性エラストマーフィルム
WO2017110012A1 (ja) 耐空気透過性フィルム及び空気入りタイヤの製造方法
JP6996902B2 (ja) 熱可塑性エラストマー組成物の製造方法、タイヤ用耐空気透過性フィルムの製造方法、及び空気入りタイヤの製造方法
JP2019019183A (ja) タイヤインナーライナー用熱可塑性樹脂組成物
JP2012046560A (ja) 熱可塑性樹脂組成物およびそれを用いた空気入りタイヤ
WO2018123192A1 (ja) 熱可塑性樹脂組成物、インナーライナーおよび空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004594.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011824840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504268

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE