[go: up one dir, main page]

WO2017110012A1 - 耐空気透過性フィルム及び空気入りタイヤの製造方法 - Google Patents

耐空気透過性フィルム及び空気入りタイヤの製造方法 Download PDF

Info

Publication number
WO2017110012A1
WO2017110012A1 PCT/JP2016/003628 JP2016003628W WO2017110012A1 WO 2017110012 A1 WO2017110012 A1 WO 2017110012A1 JP 2016003628 W JP2016003628 W JP 2016003628W WO 2017110012 A1 WO2017110012 A1 WO 2017110012A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
rubber
rubber composition
thermoplastic resin
resistant film
Prior art date
Application number
PCT/JP2016/003628
Other languages
English (en)
French (fr)
Inventor
竜也 遠藤
敏喜 清水
哲也 坪井
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Publication of WO2017110012A1 publication Critical patent/WO2017110012A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • Embodiments of the present invention relate to an air permeation-resistant film and a pneumatic tire using the same.
  • Patent Document 1 discloses air permeation resistance made of a dynamic cross-linked body of a thermoplastic resin as a continuous phase and an elastomer as a dispersed phase. Sex films have been proposed.
  • This type of air permeation-resistant film particularly a film used for an inner liner, is required to have improved durability.
  • Patent Document 2 discloses that the fatigue resistance is improved by bringing the melt viscosity of the thermoplastic resin and the rubber closer to finely disperse the rubber and increasing the amount of the rubber to reduce the elastic modulus. Therefore, it has been proposed to increase the viscosity by adding a filler or the like to rubber and to blend an appropriate amount of a low viscosity component into the thermoplastic resin. However, it is conceivable that the strength is reduced by adding a low-viscosity component to the thermoplastic resin, and cracks are caused by adding a filler to the rubber.
  • Patent Document 3 discloses that a modified ethylene vinyl alcohol copolymer is used as a resin constituting a continuous phase, and that rubber is highly dispersed as a low modulus viscoelastic material to improve durability. However, it can only be applied to specific polymers.
  • An object of the embodiment of the present invention is to obtain an air-permeable film having excellent durability.
  • the method for producing an air permeable resistant film according to the present embodiment includes a thermoplastic resin, a melt viscosity lower at 230 ° C. than that of the thermoplastic resin, and a vulcanization rate at 200 ° C. of 0.70 dN ⁇ m / min. It includes melt-kneading and dynamically crosslinking the rubber composition as described above to obtain a dynamically crosslinked product having the thermoplastic resin as a continuous phase and the rubber composition as a dispersed phase.
  • the melt viscosity of the rubber composition is a melt viscosity measured excluding the crosslinking agent.
  • the method for manufacturing a pneumatic tire according to the present embodiment uses an air-permeable-resistant film obtained by the manufacturing method as an inner liner or other air permeation suppression layer.
  • thermoplastic resin having a higher melt viscosity than the rubber composition and a rubber composition having a high vulcanization rate, an air-permeable resistant film having excellent durability can be obtained. Can do.
  • the air permeable resistant film according to the present embodiment is composed of a dynamic cross-linked body having a sea-island structure in which a thermoplastic resin is a continuous phase (matrix phase) and a rubber composition is a dispersed phase (domain phase).
  • a thermoplastic resin a high-viscosity resin having a higher melt viscosity at 230 ° C. than the rubber composition is used, and as the rubber composition, the vulcanization rate at 200 ° C. is 0.70 dN ⁇ m / min or more. It is characterized by using a faster one than before.
  • the thermoplastic resin when the melt viscosity of the thermoplastic resin is lower than that of the rubber composition, the thermoplastic resin can be a continuous phase and the rubber composition can be a dispersed phase.
  • the thermoplastic resin has a low viscosity, the durability is generally low and it does not become a highly durable air-permeable film.
  • a general-purpose rubber composition having a low vulcanization rate is used as the rubber composition, the rubber composition becomes a continuous phase at the initial stage of mixing with the thermoplastic resin, and a high shear force necessary for high dispersion is obtained. I can't.
  • the continuous phase and the dispersed phase are unlikely to reverse, and the rubber composition tends to become the continuous phase in the finished composite.
  • the rubber composition is a continuous phase, it is difficult to form as a film and the air permeability resistance is poor.
  • the viscosity of the rubber composition is increased at the initial stage of mixing, so The plastic resin can be a continuous phase. Thereby, sufficient shearing force can be given also to a rubber composition, and a rubber dispersed phase can be refined.
  • a thermoplastic resin having a higher viscosity (higher durability) than that of the conventional one can be used for the continuous phase while making the rubber dispersed phase highly dispersed, high durability can be expressed.
  • thermoplastic resin examples include nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6/66 copolymer, and nylon 6/66/610 copolymer.
  • Aliphatic polyamide resin such as coalescence, nylon MXD6, nylon 6T, nylon 6 / 6T copolymer; ethylene-vinyl alcohol copolymer (EVOH), ethylene-vinyl acetate copolymer (EVA), polyvinyl Polyvinyl resins such as alcohol (PVA), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC); polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene isophthalate (PEI), polyarylate (PAR), Polybuchi Polyester resins such as nonaphthalate (PBN); Polynitrile resins such as polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile-styrene copolymer, and nylon 6/
  • the thermoplastic resin may be at least one selected from the group consisting of aliphatic polyamide resins and polyvinyl resins, or selected from the group consisting of aliphatic polyamide resins and ethylene-vinyl alcohol copolymers. It may be at least one kind.
  • thermoplastic resin it is preferable to use an air permeable thermoplastic resin having an air permeability coefficient at 80 ° C. of 5 ⁇ 10 13 fm 2 / Pa ⁇ s or less, and imparts excellent air permeability resistance to the film. can do.
  • the air permeability coefficient of the thermoplastic resin may be 0.05 ⁇ 10 13 to 2 ⁇ 10 13 fm 2 / Pa ⁇ s.
  • the air permeability coefficient is a value measured at a test gas: air and at a test temperature: 80 ° C. according to JIS K7126-1 “Plastics—Films and Sheets—Gas Permeability Test Method—Part 1: Differential Pressure Method”. is there.
  • thermoplastic resin forming the continuous phase requires additives such as a plasticizer, a softener, a filler, a reinforcing agent, a processing aid, a stabilizer, and an antioxidant as long as the effects of the present embodiment are not impaired. You may mix
  • NR natural rubber
  • EMR epoxidized natural rubber
  • IR isoprene rubber
  • SBR styrene butadiene rubber
  • BR butadiene rubber
  • NBR nitrile rubber
  • H-NBR hydrogenated nitrile rubber
  • Diene rubber such as hydrogenated styrene butadiene rubber and its hydrogenated rubber
  • EPDM ethylene propylene rubber
  • IIR maleic acid modified ethylene butylene rubber
  • ACM acrylic rubber
  • Halogenated butyl rubber for example, brominated butyl rubber (Br-IIR), chlorinated butyl rubber (Cl-IIR)), chloroprene rubber (CR), halogen-containing rubber such as chlorosulfonated polyethylene; Fluoro rubber, police Fidogomu and the like.
  • halogenated butyl rubber such as butyl rubber (IIR) and brominated butyl rubber (Br-IIR), nitrile rubber (NBR) and hydrogenated nitrile rubber (H-NBR) are selected. It is preferable to use at least one kind.
  • the rubber composition forming the dispersed phase is blended with a crosslinking agent for dynamically crosslinking the rubber component. That is, the rubber composition contains at least a rubber component and a crosslinking agent.
  • the crosslinking agent include vulcanizing agents such as sulfur and sulfur-containing compounds, vulcanization accelerators, and phenol resins.
  • a phenol resin is used from the viewpoint of heat resistance and the like.
  • the phenol resin include resins obtained by condensation reaction of phenols and formaldehyde, and examples thereof include alkylphenol-formaldehyde resins.
  • a halogenated phenol resin such as a brominated alkylphenol-formaldehyde resin.
  • the amount of the crosslinking agent is not particularly limited as long as it can appropriately crosslink the rubber component, but may be 0.1 to 10 parts by mass, or 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber component. But you can.
  • the rubber composition forming the dispersed phase may contain only the rubber component and the crosslinking agent described above, but in addition to these, the rubber composition generally includes a filler, a softening agent, an anti-aging agent, a processing aid, and the like.
  • Various additives to be blended may be blended.
  • blend a filler from the meaning which eliminates the factor of crack generation as much as possible, for example, it is preferable that it is 20 mass parts or less with respect to 100 mass parts of rubber components, More preferably, it is 10 mass parts or less. Yes, more preferably 5 parts by mass or less.
  • the blending ratio of the thermoplastic resin and the rubber composition is not particularly limited, and is, for example, a mass ratio (thermoplasticity).
  • Resin / rubber composition which may be 90/10 to 30/70, 70/30 to 40/60, or 60/40 to 40/60.
  • thermoplastic resin having a higher melt viscosity at 230 ° C. than the rubber composition is used as the thermoplastic resin. That is, a thermoplastic resin and a rubber composition satisfying ⁇ 1 > ⁇ 2 are used, where ⁇ 1 is the melt viscosity of the thermoplastic resin at 230 ° C. and ⁇ 2 is the melt viscosity of the rubber composition at 230 ° C.
  • the ratio of these melt viscosities satisfies ⁇ 1 / ⁇ 2 ⁇ 1.20, that is, the ratio ⁇ 1 / ⁇ 2 is 1.20 or more, and more preferably the ratio ⁇ 1 / ⁇ 2 Is 1.40 or more, and may be 1.50 or more.
  • the higher the melt viscosity the better the durability of the thermoplastic resin. Therefore, the durability of the air permeation-resistant film can be improved by using a thermoplastic resin having a high melt viscosity.
  • the upper limit of the melt viscosity ratio ⁇ 1 / ⁇ 2 is not particularly limited, and may be 10.0 or less, or 7.0 or less, for example.
  • the melt viscosity ⁇ 1 of the thermoplastic resin is not particularly limited, but is preferably 70 to 400 Pa ⁇ s, more preferably 100 to 300 Pa ⁇ s, and further preferably 150 to 300 Pa ⁇ s from the viewpoint of durability. s.
  • the melt viscosity ⁇ 2 of the rubber composition is not particularly limited as long as it is smaller than the melt viscosity ⁇ 1 of the thermoplastic resin, and may be, for example, 40 to 250 Pa ⁇ s or 50 to 170 Pa ⁇ s.
  • the melt viscosity of a thermoplastic resin can be adjusted with additives, such as the kind of resin, molecular weight, and a plasticizer, for example.
  • the melt viscosity of the rubber composition can be adjusted by, for example, the type and molecular weight of the rubber component, and additives such as softeners and fillers.
  • the melt viscosity is a value measured using a capillary rheometer at a cylinder temperature of 230 ° C. and an extrusion speed of 800 s ⁇ 1 .
  • the melt viscosity ⁇ 1 of the thermoplastic resin is a value measured for the additive containing the additive when the additive is added to the thermoplastic resin as described above. However, the additive does not include a compatibilizer described later. Further, the melt viscosity ⁇ 2 of the rubber composition is a value measured excluding the crosslinking agent.
  • a rubber composition having a vulcanization rate (also referred to as a crosslinking rate) at 200 ° C. of 0.70 dN ⁇ m / min or more is used.
  • the vulcanization rate of the rubber composition is more preferably 0.80 dN ⁇ m / min or more.
  • the upper limit of the vulcanization rate of the rubber composition is not particularly limited, and may be, for example, 2.5 dN ⁇ m / min or less, or 1.7 dN ⁇ m / min or less.
  • rate can be adjusted with the kind and quantity of a crosslinking agent, for example.
  • the vulcanization speed of the rubber composition is a value obtained by measuring the viscosity at a test temperature of 200 ° C. using a rheometer and obtaining a torque increase gradient for 1 minute from the minimum viscosity ML.
  • a compatibilizing agent may be blended together with the thermoplastic resin and the rubber composition.
  • the compatibilizing agent lowers the interfacial tension between the thermoplastic resin and the rubber composition and makes them compatible.
  • a compatibilizing agent as one embodiment, an ethylene-glycidyl (meth) acrylate copolymer (that is, an ethylene-glycidyl methacrylate copolymer and / or an ethylene-glycidyl acrylate copolymer) may be used.
  • the compounding amount of the compatibilizer is not particularly limited, but may be 0.5 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin and the rubber composition (amount as a polymer excluding additives), It may be 0.5 to 5 parts by mass.
  • the thermoplastic resin and the rubber composition are melt-kneaded and the rubber composition is dynamically crosslinked (TPV) with a crosslinking agent.
  • TPV dynamically crosslinked
  • the timing of addition of the various additives (for example, fillers, crosslinking agents, etc.) to these resin compositions and rubber compositions may be added and mixed in advance before the melt kneading, for example. It may be added inside.
  • a rubber composition (masterbatch) pellet is prepared by adding a crosslinking agent or the like to the rubber component, and the pellet is put into a kneader together with a thermoplastic resin and a compatibilizer, and melt kneaded to operate. Dynamically crosslinked pellets may be obtained by mechanical crosslinking.
  • the kneader used for kneading is not particularly limited, and examples thereof include a twin screw extruder, a screw extruder, a kneader, and a Banbury mixer.
  • the kneading temperature should just be more than the temperature which a thermoplastic resin fuse
  • An air permeation-resistant film can be obtained by forming the dynamic cross-linked product thus obtained into a film.
  • the method of forming the dynamically crosslinked pellets into a film is not particularly limited.
  • a method of forming a normal thermoplastic resin into a film such as extrusion molding or calendar molding, can be used.
  • the air permeation-resistant film according to the present embodiment preferably has an air permeability coefficient at 80 ° C. of 5 ⁇ 10 13 fm 2 / Pa ⁇ s or less, and the weight of the tire is reduced by thinning the inner liner. Can do.
  • the air permeability coefficient may be 0.1 ⁇ 10 13 to 4 ⁇ 10 13 fm 2 / Pa ⁇ s, or may be 0.1 ⁇ 10 13 to 1.0 ⁇ 10 13 fm 2 / Pa ⁇ s.
  • the thickness of the air permeable resistant film is not particularly limited, and may be, for example, 0.02 to 1.0 mm, 0.05 to 0.5 mm, or 0.1 to 0.3 mm.
  • the air permeable resistant film according to the present embodiment is applied to various pneumatic tires such as tires for passenger cars, various automobile tires including heavy load tires such as trucks and buses, and motorcycle tires including bicycles. can do.
  • FIG. 1 is a cross-sectional view of a pneumatic tire 1 according to an embodiment.
  • a pneumatic tire 1 includes a pair of bead portions 2 and 2 that are assembled to a rim, a pair of sidewall portions 3 and 3 that extend outward from the bead portion 2 in the tire radial direction, and the pair of sidewalls. And a tread portion 4 that contacts the road surface provided between the portions 3 and 3.
  • a ring-shaped bead core 5 is embedded in each of the pair of bead portions 2 and 2.
  • a carcass ply 6 using an organic fiber cord is folded around the bead cores 5 and 5 and locked between the left and right bead portions 2 and 2.
  • a belt 7 made of two belt plies using a tire cord such as a steel cord is provided on the outer peripheral side of the tread portion 4 of the carcass ply 6.
  • An inner liner 8 is provided inside the carcass ply 6 over the entire inner surface of the tire.
  • the air permeable resistant film is used as the inner liner 8.
  • the inner liner 8 is bonded to the inner surface of the carcass ply 6 that is a rubber layer on the inner surface of the tire, and more specifically, a topping rubber that covers the cord of the carcass ply 6. Affixed to the inner surface of the layer.
  • an air-permeable film is used as an inner liner, and the inner liner is attached to the outer periphery of the molding drum in a cylindrical shape.
  • a green tire (unvulcanized tire) is produced by attaching a carcass ply on the inner liner and further attaching and inflating each tire member such as a belt, tread rubber, and sidewall rubber.
  • a pneumatic tire is obtained by vulcanizing the green tire in a mold.
  • the air permeation-resistant film is provided on the inner surface side of the carcass ply.
  • the air pressure from the inside of the tire can be prevented and the air pressure of the tire can be maintained, that is, the internal pressure.
  • the air permeation-resistant film can be provided at various positions such as the outer surface side of the carcass ply.
  • IIR Butyl rubber, “IIR268” manufactured by ExxonMobil Chemical ⁇ NBR: Nitrile rubber, "JSR N230S” manufactured by JSR Corporation Nylon-A: Nylon 6/66 copolymer, “Novamid 2010J” manufactured by DSM Nylon-B: Nylon 6/66 copolymer, “Novamid 2020J” manufactured by DSM ⁇ Nylon-C: nylon 6/66 copolymer, “Amilan CM6041XF” manufactured by Toray Industries, Inc.
  • Nylon-D 50 parts by mass of Nylon-A pellets and 50 parts by mass of Nylon-B pellets were dry blended and melted in a twin-screw extruder set at 220 ° C (Plastics Engineering Laboratory Co., Ltd.) Kneaded and pelletized (nylon blend 50/50)
  • Nylon-E 25 parts by mass of Nylon-A pellets and 75 parts by mass of Nylon-B pellets were dry blended and melted in a twin-screw extruder set at 220 ° C (Plastics Engineering Laboratory Co., Ltd.) Kneaded and pelletized (nylon blend 25/75)
  • EVOH-A ethylene-vinyl alcohol copolymer, “Soarnol 3203RB” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • EVOH-B ethylene-vinyl alcohol copolymer, “Soarnol 3212B” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • Compatibilizer “Bond First E” manufactured by Sumitomo Chemical Co., Ltd., ethylene-glycidyl methacrylate copolymer
  • Carbon black “Seast 3” manufactured by Tokai Carbon Co., Ltd.
  • Zinc flower "Zinc flower 3” manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Stearic acid “Lunac S-20” manufactured by Kao Corporation
  • Sulfur “Powder sulfur” manufactured by Tsurumi Chemical Co., Ltd.
  • Vulcanization accelerator “Soxinol CZ” manufactured by Sumitomo Chemical Co., Ltd.
  • Crosslinking agent-1 Alkylphenol-formaldehyde resin, "Tactrol 201” manufactured by Taoka Chemical Co., Ltd.
  • Crosslinking agent-2 Brominated alkylphenol-formaldehyde resin, “Tactrol 201-III” manufactured by Taoka Chemical Co., Ltd.
  • Retarder “Kyowa Mug 150” manufactured by Kyowa Chemical Industry Co., Ltd.
  • evaluation measurement method The evaluation measurement methods in the following examples are as follows.
  • Vulcanization rate The rubber composition mixed in a lab plast mill (manufactured by Toyo Seiki Seisakusho) was tested at 200 ° C. for 60 minutes using a rheometer “MDR2000” (manufactured by Alpha Technology Co., Ltd.). The vulcanization speed was determined from the slope of the torque increase for 1 minute from the minimum viscosity ML.
  • test piece (dumbbell-shaped No. 3 test piece), and use a tensile tester to make the test piece 3 cm between chucks. Then, the film was repeatedly stretched by 50% at a frequency of 5 Hz at an ambient temperature of 40 ° C. The number of test pieces is 10, 50% elongation is repeated 1,000,000 times, and when the number of breaks in the film is 3 or less, the pass is “ ⁇ ”, and when it is 4 or more, it is “fail”. did.
  • melt viscosity of thermoplastic resin and rubber components The melt viscosity at 230 ° C. of the thermoplastic resin and the rubber component and the air permeability coefficient of the thermoplastic resin were as shown in Table 1.
  • the air permeability coefficient of a thermoplastic resin is the value measured about the film shape
  • melt viscosity of the thermoplastic resin is higher than the melt viscosity of the rubber composition ( ⁇ 1 / ⁇ 2 > 1), and the initial vulcanization rate of the rubber composition is 0.70 dN ⁇ m / min or more.
  • the phase image was confirmed by SPM (scanning probe microscope), it is a sea-island structure which uses a thermoplastic resin as a continuous phase and a crosslinked (vulcanized) rubber composition as a dispersed phase. Yes, the dispersed phase was made finer than in Comparative Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tyre Moulding (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

実施形態に係る耐空気透過性フィルムの製造方法は、熱可塑性樹脂と、前記熱可塑性樹脂よりも230℃での溶融粘度が低くかつ200℃での加硫速度が0.70dN・m/分以上であるゴム組成物と、を溶融混練し動的架橋させることにより、前記熱可塑性を連続相とし、前記ゴム組成物を分散相とした動的架橋体を得ることを含むものである。これにより、耐久性に優れた耐空気透過性フィルムが得られる。

Description

耐空気透過性フィルム及び空気入りタイヤの製造方法
 本発明の実施形態は、耐空気透過性フィルム、及びそれを用いた空気入りタイヤに関するものである。
 空気入りタイヤの内側面には、タイヤの空気圧を一定に保持するために空気透過抑制層としてインナーライナーが設けられている。タイヤの軽量化等を目的として、インナーライナーの薄肉化を図るべく、例えば、特許文献1には、連続相である熱可塑性樹脂と分散相であるエラストマーとの動的架橋体からなる耐空気透過性フィルムが提案されている。
 この種の耐空気透過性フィルム、とりわけインナーライナーに用いられるフィルムにおいては、耐久性を向上することが求められる。
 そこで、特許文献2では、熱可塑性樹脂とゴムの溶融粘度を近づけてゴムを微分散化させるとともに、ゴム配合量を増加させて弾性率を低減することで、耐疲労性を向上することが開示されており、そのために、ゴムに充填剤等を加えて粘度を増加させるとともに、熱可塑性樹脂に低粘度成分を適量ブレンドすることが提案されている。しかしながら、熱可塑性樹脂に低粘度成分を添加することによる強度低下や、ゴムに充填剤を添加することによる亀裂発生の要因となることが考えられる。
 一方、特許文献3には、連続相を構成する樹脂として変性エチレンビニルアルコール共重合体を用い、これにモジュラスの低い粘弾性体としてゴムを高分散化させて、耐久性を向上することが開示されているが、特定のポリマーにしか適用できない。
日本国特開平08-259741号公報 日本国特開2003-026931号公報 日本国特開2009-263653号公報
 本発明の実施形態は、耐久性に優れた耐空気透過性フィルムを得ることを目的とする。
 本実施形態に係る耐空気透過性フィルムの製造方法は、熱可塑性樹脂と、前記熱可塑性樹脂よりも230℃での溶融粘度が低くかつ200℃での加硫速度が0.70dN・m/分以上であるゴム組成物と、を溶融混練し動的架橋させることにより、前記熱可塑性樹脂を連続相とし、前記ゴム組成物を分散相とした動的架橋体を得ることを含むものである。ここで、ゴム組成物の溶融粘度は、架橋剤を除いて測定される溶融粘度である。
 本実施形態に係る空気入りタイヤの製造方法は、該製造方法により得られた耐空気透過性フィルムを、インナーライナー又はその他の空気透過抑制層として用いるものである。
 本実施形態によれば、ゴム組成物よりも高い溶融粘度を持つ熱可塑性樹脂と、加硫速度の速いゴム組成物と、を組み合わせることにより、耐久性に優れた耐空気透過性フィルムを得ることができる。
一実施形態に係る空気入りタイヤの断面図である。
 以下、本発明の実施に関連する事項について詳細に説明する。
 本実施形態に係る耐空気透過性フィルムは、熱可塑性樹脂を連続相(マトリックス相)とし、ゴム組成物を分散相(ドメイン相)とした海島構造を持つ動的架橋体からなるものである。該熱可塑性樹脂として、ゴム組成物よりも230℃での溶融粘度が高い高粘度の樹脂を使用するとともに、ゴム組成物として、200℃での加硫速度が0.70dN・m/分以上と従来よりも速いものを用いることを特徴とする。
 これにより、耐空気透過性フィルムの耐久性を向上することができるが、その理由は次のように考えられる。
 すなわち、熱可塑性樹脂の溶融粘度がゴム組成物よりも低い場合、熱可塑性樹脂を連続相とし、ゴム組成物を分散相とすることができる。しかしながら、熱可塑性樹脂が低粘度であるが故に一般に耐久性が低く、高耐久な耐空気透過性フィルムにはならない。耐久性を向上するために、ゴム組成物よりも溶融粘度の大きな熱可塑性樹脂を使用することが考えられる。しかし、その場合に、ゴム組成物として加硫速度の遅い汎用のゴム組成物を用いると、熱可塑性樹脂との混合初期にゴム組成物が連続相となり、高分散に必要な高いせん断力が得られない。また、この場合、加硫によるゴム組成物の粘度上昇が遅いため、連続相と分散相の反転が起こりにくく、できあがった複合体においてゴム組成物が連続相となりやすい。ゴム組成物が連続相では、フィルムとしての成形が難しく、耐空気透過性に劣るものになってしまう。
 これに対し、本実施形態によれば、高粘度の熱可塑性樹脂を用いながら加硫速度の速いゴム組成物を用いることにより、混合初期にゴム組成物の粘度を上昇させて、高粘度の熱可塑性樹脂を連続相にすることができる。また、これにより、ゴム組成物にも十分なせん断力を与えることができ、ゴム分散相を微細化することができる。このように、ゴム分散相を高分散としつつ、連続相に従来よりも高粘度(高耐久)の熱可塑性樹脂を用いることができるので、高い耐久性を発現することができる。
 本実施形態において、熱可塑性樹脂としては、例えば、ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6/66共重合体、ナイロン6/66/610共重合体、ナイロンMXD6、ナイロン6T、ナイロン6/6T共重合体などの脂肪族ポリアミド系樹脂(ナイロン樹脂); エチレン-ビニルアルコール共重合体(EVOH)、エチレン-酢酸ビニル共重合体(EVA)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)などのポリビニル系樹脂; ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、ポリアリレート(PAR)、ポリブチレンナフタレート(PBN)などのポリエステル系樹脂; ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル-スチレン共重合体(AS)などのポリニトリル系樹脂; 酢酸セルロース、酢酸酪酸セルロースなどのセルロース系樹脂; ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリクロルフルオロエチレン(PCTFE)などのフッ素系樹脂; 芳香族ポリイミド(PI)などのイミド系樹脂が挙げられ、これらはそれぞれ単独又は2種以上組み合わせて用いることができる。一実施形態において、熱可塑性樹脂としては、脂肪族ポリアミド系樹脂及びポリビニル系樹脂からなる群から選択される少なくとも一種でもよく、脂肪族ポリアミド系樹脂及びエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも一種でもよい。
 熱可塑性樹脂としては、80℃での空気透過係数が5×1013fm2/Pa・s以下である耐空気透過性熱可塑性樹脂を用いることが好ましく、フィルムに優れた耐空気透過性を付与することができる。熱可塑性樹脂の空気透過係数は、0.05×1013~2×1013fm2/Pa・sでもよい。空気透過係数は、JIS K7126-1「プラスチック-フィルム及びシート-ガス透過度試験方法-第1部:差圧法」に準じて、試験気体:空気、試験温度:80℃にて測定される値である。
 連続相を形成する熱可塑性樹脂には、本実施形態による効果を損なわない限り、可塑剤、軟化剤、充填剤、補強剤、加工助剤、安定剤、酸化防止剤などの添加剤を必要に応じて適宜配合してもよい。
 本実施形態において、分散相に用いられる未架橋のゴム組成物に含まれるゴム成分としては、一般に架橋(加硫)して使用される各種の未架橋(未加硫)ゴムポリマーが用いられる。例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、水素化スチレンブタジエンゴムなどのジエン系ゴム及びその水素添加ゴム; エチレンプロピレンゴム(EPDM)、マレイン酸変性エチレンプロピレンゴム、マレイン酸変性エチレンブチレンゴム、ブチルゴム(IIR)、アクリルゴム(ACM)などのオレフィン系ゴム; ハロゲン化ブチルゴム(例えば、臭素化ブチルゴム(Br-IIR)、塩素化ブチルゴム(Cl-IIR))、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンなどの含ハロゲンゴム; その他、シリコーンゴム、フッ素ゴム、ポリスルフィドゴムなどが挙げられる。これらはいずれか1種を単独で用いても、2種以上を併用してもよい。これらの中でも、耐空気透過性の点から、ブチルゴム(IIR)、臭素化ブチルゴム(Br-IIR)などのハロゲン化ブチルゴム、ニトリルゴム(NBR)及び水素化ニトリルゴム(H-NBR)から選択される少なくとも1種を用いることが好ましい。
 分散相を形成するゴム組成物には、上記ゴム成分を動的架橋するための架橋剤が配合される。すなわち、該ゴム組成物は、少なくともゴム成分と架橋剤を含むものである。架橋剤としては、硫黄や硫黄含有化合物等などの加硫剤、加硫促進剤の他、フェノール樹脂などが挙げられる。好ましくは、耐熱性等の点から、フェノール樹脂を用いることである。フェノール樹脂としては、フェノール類とホルムアルデヒドとの縮合反応により得られる樹脂が挙げられ、例えば、アルキルフェノール-ホルムアルデヒド樹脂が挙げられる。また、加硫速度を速くすることができる点から、臭素化アルキルフェノール-ホルムアルデヒド樹脂などのハロゲン化フェノール樹脂を用いることが好ましい。架橋剤の配合量は、ゴム成分を適切に架橋できるものであれば、特に限定されないが、ゴム成分100質量部に対して、0.1~10質量部でもよく、0.5~5質量部でもよい。
 分散相を形成するゴム組成物は、上記のゴム成分及び架橋剤のみを含むものでもよいが、これらに加えて、充填剤や軟化剤、老化防止剤、加工助剤などの一般にゴム組成物に配合される各種添加剤を配合してもよい。なお、充填剤は、亀裂発生の要因を極力排除する趣旨より配合しないことが好ましく、例えば、ゴム成分100質量部に対して20質量部以下であることが好ましく、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。
 本実施形態に係る耐空気透過性フィルムにおいて、上記の熱可塑性樹脂とゴム組成物との配合比(添加剤を除いたポリマーとしての比率)は、特に限定されず、例えば、質量比(熱可塑性樹脂/ゴム組成物)で、90/10~30/70でもよく、70/30~40/60でもよく、60/40~40/60でもよい。
 本実施形態では、上記のように、熱可塑性樹脂として、ゴム組成物よりも230℃での溶融粘度が高い高粘度の樹脂を使用する。すなわち、熱可塑性樹脂の230℃での溶融粘度をη1とし、ゴム組成物の230℃での溶融粘度をη2として、η1>η2を満足する熱可塑性樹脂及びゴム組成物を用いる。より好ましくは、これら溶融粘度の比がη1/η2≧1.20を満足すること、即ち、比η1/η2が1.20以上であり、更に好ましくは、比η1/η2が1.40以上であり、1.50以上でもよい。一般に、熱可塑性樹脂は溶融粘度が高いほど耐久性に優れるので、溶融粘度の高い熱可塑性樹脂を用いることにより、耐空気透過性フィルムの耐久性を向上することができる。なお、溶融粘度の比η1/η2の上限は、特に限定されず、例えば10.0以下でもよく、7.0以下でもよい。
 熱可塑性樹脂の溶融粘度η1は、特に限定されないが、耐久性の観点より、70~400Pa・sであることが好ましく、より好ましくは100~300Pa・sであり、更に好ましくは150~300Pa・sである。ゴム組成物の溶融粘度η2は、熱可塑性樹脂の溶融粘度η1よりも小さい限り、特に限定されず、例えば、40~250Pa・sでもよく、50~170Pa・sでもよい。なお、熱可塑性樹脂の溶融粘度は、例えば、樹脂の種類や分子量、可塑剤などの添加剤により調整することができる。また、ゴム組成物の溶融粘度は、例えば、ゴム成分の種類や分子量、軟化剤や充填剤等の添加剤により調整することができる。
 ここで、溶融粘度は、キャピラリーレオメータを用いて、シリンダー温度230℃、押出速度800s-1で測定される値である。なお、熱可塑性樹脂の溶融粘度η1は、上記のように熱可塑性樹脂に添加剤が配合される場合、添加剤を含んだものについて測定される値である。但し、該添加剤には、後述する相溶化剤は含まれない。また、ゴム組成物の溶融粘度η2は、架橋剤を除いて測定される値である。
 本実施形態では、また、上記のように、ゴム組成物として、200℃での加硫速度(架橋速度とも称される。)が0.70dN・m/分以上であるものを用いる。ゴム組成物の加硫速度は、より好ましくは0.80dN・m/分以上である。ゴム組成物の加硫速度の上限は、特に限定されず、例えば2.5dN・m/分以下でもよく、1.7dN・m/分以下でもよい。なお、加硫速度は、例えば、架橋剤の種類や量により調整することができる。
 ここで、ゴム組成物の加硫速度は、レオメータを用いて試験温度200℃で粘度を測定し、最低粘度MLから1分間のトルク上昇の傾きにより求められる値である。
 本実施形態においては、熱可塑性樹脂及びゴム組成物とともに、相溶化剤を配合してもよい。相溶化剤は、熱可塑性樹脂とゴム組成物との界面張力を低下させて、両者を相溶化させるものである。相溶化剤としては、一実施形態として、エチレン-グリシジル(メタ)アクリレート共重合体(即ち、エチレン-グリシジルメタクリレート共重合体、及び/又は、エチレン-グリシジルアクリレート共重合体)を用いてもよい。該相溶化剤の配合量は特に限定されないが、熱可塑性樹脂とゴム組成物の合計量(添加剤を除いたポリマーとしての量)100質量部に対して0.5~10質量部でもよく、0.5~5質量部でもよい。
 本実施形態において、耐空気透過性フィルムを製造するに際しては、上記熱可塑性樹脂とゴム組成物とを溶融混練し、架橋剤でゴム組成物を動的架橋(TPV)させる。これらの樹脂組成物及びゴム組成物への上記各種添加剤(例えば、充填剤、架橋剤等)の添加時期は、例えば、該溶融混練前に予め添加混合しておいてもよく、該溶融混練中に添加してもよい。一実施形態として、ゴム成分に架橋剤等を添加してゴム組成物(マスターバッチ)のペレットを作製し、該ペレットを熱可塑性樹脂及び相溶化剤とともに混練機に投入し、溶融混練して動的架橋することにより動的架橋体のペレットを得てもよい。
 混練に使用する混練機としては、特に限定されず、例えば、二軸押出機、スクリュー押出機、ニーダー、バンバリーミキサーなどが挙げられる。混練温度は、熱可塑性樹脂が溶融する温度以上であればよい。
 このようにして得られた動的架橋体をフィルム化することにより、耐空気透過性フィルムが得られる。動的架橋体のペレットをフィルム化する方法は特に限定されず、例えば押し出し成形やカレンダー成形など、通常の熱可塑性樹脂をフィルム化する方法を用いることができる。
 本実施形態に係る耐空気透過性フィルムは、80℃での空気透過係数が5×1013fm2/Pa・s以下であることが好ましく、インナーライナーの薄肉化によるタイヤの軽量化を図ることができる。該空気透過係数は、0.1×1013~4×1013fm2/Pa・sでもよく、0.1×1013~1.0×1013fm2/Pa・sでもよい。
 耐空気透過性フィルムの厚みは、特に限定されず、例えば、0.02~1.0mmでもよく、0.05~0.5mmでもよく、0.1~0.3mmでもよい。
 本実施形態に係る耐空気透過性フィルムは、例えば、乗用車用タイヤ、トラックやバスなどの重荷重用タイヤを含む各種の自動車用タイヤ、また自転車を含む二輪車用タイヤなど、各種の空気入りタイヤに適用することができる。
 図1は、一実施形態に係る空気入りタイヤ1の断面図である。図示するように、空気入りタイヤ1は、リム組みされる一対のビード部2,2と、該ビード部2からタイヤ径方向外側に延びる一対のサイドウォール部3,3と、該一対のサイドウォール部3,3間に設けられた路面に接地するトレッド部4とから構成される。一対のビード部2,2には、それぞれリング状のビードコア5が埋設されている。有機繊維コードを用いたカーカスプライ6が、ビードコア5,5の周りを折り返して係止されるとともに、左右のビード部2,2間に架け渡して設けられている。また、カーカスプライ6のトレッド部4における外周側には、スチールコードなどのタイヤコードを用いた2枚のベルトプライからなるベルト7が設けられている。
 カーカスプライ6の内側にはタイヤ内面の全体にわたってインナーライナー8が設けられている。本実施形態では、このインナーライナー8として上記耐空気透過性フィルムが用いられている。インナーライナー8は、図1中の拡大図に示すように、タイヤ内面側のゴム層であるカーカスプライ6の内面に貼り合わされており、より詳細には、カーカスプライ6のコードを被覆するトッピングゴム層の内面に貼り合わされている。
 かかる空気入りタイヤの製造方法としては、例えば、耐空気透過性フィルムをインナーライナーとして用いて、成形ドラムの外周にインナーライナーを筒状に装着する。該インナーライナーの上にカーカスプライを貼り付け、更にベルト、トレッドゴム及びサイドウォールゴムなどの各タイヤ部材を貼り重ね、インフレートすることによりグリーンタイヤ(未加硫タイヤ)が作製される。該グリーンタイヤをモールド内で加硫成形することにより、空気入りタイヤが得られる。なお、図1に示す例では、耐空気透過性フィルムをカーカスプライの内面側に設けたが、タイヤ内部からの空気の透過を防止して、タイヤの空気圧を保持することができる態様、即ち内圧保持のための空気透過抑制層として設けられるものであれば、特に限定されない。耐空気透過性フィルムは、例えば、カーカスプライの外面側などの種々の位置に設けることができる。
 以下に、本発明を実施例に基づき具体的に説明するが、本発明はこれら実施例により限定されるものではない。
 [使用原材料]
 以下の実施例で使用した原材料の詳細は以下の通りである。
 ・IIR:ブチルゴム、エクソンモービルケミカル社製「IIR268」
 ・NBR:ニトリルゴム、JSR(株)製「JSR N230S」
 ・ナイロン-A:ナイロン6/66共重合体、DSM社製「Novamid 2010J」
 ・ナイロン-B:ナイロン6/66共重合体、DSM社製「Novamid 2020J」
 ・ナイロン-C:ナイロン6/66共重合体、東レ(株)製「アミランCM6041XF」
 ・ナイロン-D:50質量部のナイロン-Aのペレットと50質量部のナイロン-Bのペレットをドライブレンドし、220℃に設定した2軸押出機((株)プラスチック工学研究所)にて溶融混練しペレット化したもの(ナイロンブレンド50/50)
 ・ナイロン-E:25質量部のナイロン-Aのペレットと75質量部のナイロン-Bのペレットをドライブレンドし、220℃に設定した2軸押出機((株)プラスチック工学研究所)にて溶融混練しペレット化したもの(ナイロンブレンド25/75)
 ・EVOH-A:エチレン-ビニルアルコール共重合体、日本合成化学工業(株)製「ソアノール3203RB」
 ・EVOH-B:エチレン-ビニルアルコール共重合体、日本合成化学工業(株)製「ソアノール3212B」
 ・相溶化剤:住友化学(株)製「ボンドファーストE」、エチレン-グリシジルメタクリレート共重合体
 ・カーボンブラック:東海カーボン(株)製「シースト3」
 ・亜鉛華:三井金属鉱業(株)製「亜鉛華3号」
 ・ステアリン酸:花王(株)製「ルナックS-20」
 ・硫黄:鶴見化学工業(株)製「粉末硫黄」
 ・加硫促進剤:住友化学(株)製「ソクシノールCZ」
 ・架橋剤-1:アルキルフェノール-ホルムアルデヒド樹脂、田岡化学工業(株)製「タッキロール201」
 ・架橋剤-2:臭素化アルキルフェノール-ホルムアルデヒド樹脂、田岡化学工業(株)製「タッキロール201-III」
 ・リターダー:協和化学工業(株)製「キョウワマグ150」
 [評価測定方法]
 以下の実施例での評価測定方法は以下の通りである。
 ・溶融粘度:キャピラリーレオメータ((株)安田精機製作所製)を用い、シリンダー温度=230℃、押出速度=800s-1、ダイ径=1mm、ダイ長=1cmでの溶融粘度を算出した。
 ・加硫速度:ラボプラストミル((株)東洋精機製作所製)にて混合したゴム組成物をレオメータ「MDR2000」(アルファテクノロジー社製)を用いて200℃60分で試験した。加硫速度は、最低粘度MLから1分間のトルク上昇の傾きより求めた。
 ・耐久性:JIS K6270を参考にして、耐空気透過性フィルムを配向方向に打ち抜き試験片(ダンベル状3号形試験片)を作製し、引張試験機を用いて、試験片をチャック間3cmにて挟み込み、雰囲気温度40℃にて、5Hzの振動数で50%の繰り返し伸張をかけた。試験片の数は10個とし、50%伸張を100万回繰り返し、フィルムの破断が起こったものが3個以下の場合を合格「○」とし、4個以上の場合を不合格「×」とした。
 ・耐空気透過性:JIS K7126-1「プラスチック-フィルム及びシート-ガス透過度試験方法-第1部:差圧法」に準じて、試験気体:空気、試験温度:80℃にて空気透過係数を測定した。数値が小さいほど、空気が透過しにくく、耐空気透過性に優れる。
 [熱可塑性樹脂及びゴム成分の溶融粘度]
 熱可塑性樹脂及びゴム成分の230℃での溶融粘度、及び熱可塑性樹脂の空気透過係数は表1に示す通りであった。なお、熱可塑性樹脂の空気透過係数は、厚み0.2mmに成形したフィルムについて測定した値である。
Figure JPOXMLDOC01-appb-T000001
 [耐空気透過性フィルムの作製・評価]
 下記表2~4に示す配合(質量部)に従い、熱可塑性樹脂と相溶化剤をドライブレンドしたものと、予めマスターバッチ化したゴム組成物のペレットとを、220℃に設定した2軸押出機((株)プラスチック工学研究所製)にて溶融混練し、動的架橋体のペレットを作製した。得られた動的架橋体ペレットを単軸押出機にて幅14cm×厚み0.2mmに成形し、得られたフィルムの耐久性及び耐空気透過性を評価した。結果を表2~4に示す。なお、表2~4には、各耐空気透過性フィルムの作製に用いたゴム組成物の加硫速度も示す。
 表2~4に示すように、ゴム組成物の溶融粘度よりも熱可塑性樹脂の溶融粘度が低い場合(比較例1~3、17~19及び21~23)、耐空気透過性フィルムの耐久性が低かった。また、ゴム組成物の溶融粘度よりも熱可塑性樹脂の溶融粘度が高い場合において、ゴム組成物の初期の加硫速度が0.70dN・m/分未満である場合、比較例9~16のようにゴム組成物が連続相となってフィルム成形が困難となり、均一なフィルムは作製できなかった。そのため、比較例9~16では耐久性と耐空気透過性は評価しなかった。また、比較例4~8,20及び24のように、均一なフィルムが成形できた場合でも、耐久性に劣っていた。
 これに対し、ゴム組成物の溶融粘度よりも熱可塑性樹脂の溶融粘度が高く(η1/η2>1)、かつゴム組成物の初期の加硫速度が0.70dN・m/分以上である実施例1~13では、耐空気透過性に優れ、かつ高耐久性のフィルムが得られた。なお、実施例2のフィルムについて、SPM(走査型プローブ顕微鏡)により位相像を確認したところ、熱可塑性樹脂を連続相とし、架橋(加硫)されたゴム組成物を分散相とする海島構造であり、比較例5よりも分散相が微細化されていた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
1…空気入りタイヤ、6…カーカスプライ、8…インナーライナー

Claims (9)

  1.  熱可塑性樹脂と、前記熱可塑性樹脂よりも230℃での溶融粘度が低くかつ200℃での加硫速度が0.70dN・m/分以上であるゴム組成物と、を溶融混練し動的架橋させることにより、前記熱可塑性樹脂を連続相とし、前記ゴム組成物を分散相とした動的架橋体を得ることを含む、
     耐空気透過性フィルムの製造方法。
  2.  前記熱可塑性樹脂の230℃での溶融粘度η1と前記ゴム組成物の230℃での溶融粘度η2の比が、η1/η2≧1.20を満足する、
     請求項1記載の耐空気透過性フィルムの製造方法。
  3.  前記熱可塑性樹脂が、脂肪族ポリアミド系樹脂及びポリビニル系樹脂からなる群から選択される少なくとも一種を含み、前記ゴム組成物が、ブチルゴム、ハロゲン化ブチルゴム、ニトリルゴム及び水素化ニトリルゴムからなる群から選択される少なくとも1種のゴム成分を含む、
     請求項1又は2に記載の耐空気透過性フィルムの製造方法。
  4.  前記ゴム組成物が架橋剤を含み、前記架橋剤がフェノール樹脂を含む、
     請求項1~3のいずれか1項に記載の耐空気透過性フィルムの製造方法。
  5.  前記架橋剤がハロゲン化フェノール樹脂を含む、
     請求項4に記載の耐空気透過性フィルムの製造方法。
  6.  前記ゴム組成物は、充填剤を含まないか、又は、充填剤をゴム成分100質量部に対して20質量部以下含む、
     請求項1~5のいずれか1項に記載の耐空気透過性フィルムの製造方法。
  7.  前記ゴム組成物の200℃での加硫速度が0.80dN・m/分以上である、
     請求項1~6のいずれか1項に記載の耐空気透過性フィルムの製造方法。
  8.  前記熱可塑性樹脂及び前記ゴム組成物とともに、相溶化剤を加えて溶融混練する、
     請求項1~7のいずれか1項に記載の耐空気透過性フィルムの製造方法。
  9.  請求項1~8のいずれか1項に記載の製造方法により得られた耐空気透過性フィルムを、インナーライナー又はその他の空気透過抑制層として用いる、空気入りタイヤの製造方法。
PCT/JP2016/003628 2015-12-22 2016-08-05 耐空気透過性フィルム及び空気入りタイヤの製造方法 WO2017110012A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015250047A JP6676366B2 (ja) 2015-12-22 2015-12-22 耐空気透過性フィルム及び空気入りタイヤの製造方法
JP2015-250047 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110012A1 true WO2017110012A1 (ja) 2017-06-29

Family

ID=59089842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003628 WO2017110012A1 (ja) 2015-12-22 2016-08-05 耐空気透過性フィルム及び空気入りタイヤの製造方法

Country Status (2)

Country Link
JP (1) JP6676366B2 (ja)
WO (1) WO2017110012A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996902B2 (ja) * 2017-08-17 2022-01-17 Toyo Tire株式会社 熱可塑性エラストマー組成物の製造方法、タイヤ用耐空気透過性フィルムの製造方法、及び空気入りタイヤの製造方法
JP6909097B2 (ja) * 2017-08-17 2021-07-28 Toyo Tire株式会社 熱可塑性エラストマー組成物、タイヤ用耐空気透過性フィルム、及びこれを用いた空気入りタイヤ
JP7353844B2 (ja) * 2019-07-23 2023-10-02 古河電気工業株式会社 ゴム組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240010A (ja) * 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd ポリアミド樹脂組成物の調製方法
WO2006057333A1 (ja) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. 熱可塑性重合体組成物および熱可塑性重合体組成物の製造方法
WO2007100157A1 (ja) * 2006-03-03 2007-09-07 The Yokohama Rubber Co., Ltd. エラストマー組成物並びにその製造方法及びそれを用いた空気入りタイヤ
JP2011021146A (ja) * 2009-07-17 2011-02-03 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物の製造方法
JP2013237760A (ja) * 2012-05-14 2013-11-28 Tokyo Univ Of Agriculture & Technology ゴム−ポリオレフィン複合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240010A (ja) * 1993-02-19 1994-08-30 Mitsubishi Petrochem Co Ltd ポリアミド樹脂組成物の調製方法
WO2006057333A1 (ja) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. 熱可塑性重合体組成物および熱可塑性重合体組成物の製造方法
WO2007100157A1 (ja) * 2006-03-03 2007-09-07 The Yokohama Rubber Co., Ltd. エラストマー組成物並びにその製造方法及びそれを用いた空気入りタイヤ
JP2011021146A (ja) * 2009-07-17 2011-02-03 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物の製造方法
JP2013237760A (ja) * 2012-05-14 2013-11-28 Tokyo Univ Of Agriculture & Technology ゴム−ポリオレフィン複合体の製造方法

Also Published As

Publication number Publication date
JP6676366B2 (ja) 2020-04-08
JP2017114974A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
US7019063B2 (en) Rubber composition for inner liner
JP4862954B1 (ja) 熱可塑性樹脂組成物の製造方法
WO2015072489A1 (ja) フィルムとゴム組成物との積層体、及びそれを含むタイヤ
CN104395378A (zh) 热塑性聚酯类树脂构件与橡胶构件的硫化粘接体及其制造方法
CN1744998A (zh) 具有改进的耐久性的充气轮胎
JP6062622B2 (ja) タイヤ層及びそれに接着されたdvaバリア層を有する空気入りタイヤ及びその製造法
JP5873291B2 (ja) タイ層を有する空気入りタイヤ及びその製造法
JP5663956B2 (ja) 熱可塑性エラストマー組成物およびその製造方法
JP2004506540A (ja) 配向性熱可塑性加硫ゴム
WO2017110012A1 (ja) 耐空気透過性フィルム及び空気入りタイヤの製造方法
JP2013189526A (ja) 熱可塑性エラストマー組成物
WO2014030541A1 (ja) 熱可塑性エラストマー組成物の製造方法
CN105829128A (zh) 轮胎内衬层及充气轮胎
JP4524965B2 (ja) 熱可塑性エラストマー組成物及びそれを用いた空気入りタイヤ
JP6076776B2 (ja) タイヤ
JP6996902B2 (ja) 熱可塑性エラストマー組成物の製造方法、タイヤ用耐空気透過性フィルムの製造方法、及び空気入りタイヤの製造方法
JP2006315339A (ja) 熱可塑性エラストマーフィルム
JP6694079B2 (ja) タイヤ用耐空気透過性フィルム
JP2003128844A (ja) ビードフィラーゴム組成物及びこれを用いた空気入りタイヤ
JP6813352B2 (ja) ポリアミド系樹脂部材とゴム部材との加硫接着体及びその製造方法
JP6909097B2 (ja) 熱可塑性エラストマー組成物、タイヤ用耐空気透過性フィルム、及びこれを用いた空気入りタイヤ
JP2010031117A (ja) トレッド用ゴム組成物
JP7017339B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP6837830B2 (ja) 動的架橋物の製造方法
JP2018104574A (ja) 動的架橋物の製造方法、及びタイヤ用耐空気透過性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877917

Country of ref document: EP

Kind code of ref document: A1