[go: up one dir, main page]

WO2011034032A1 - 金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料 - Google Patents

金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料 Download PDF

Info

Publication number
WO2011034032A1
WO2011034032A1 PCT/JP2010/065775 JP2010065775W WO2011034032A1 WO 2011034032 A1 WO2011034032 A1 WO 2011034032A1 JP 2010065775 W JP2010065775 W JP 2010065775W WO 2011034032 A1 WO2011034032 A1 WO 2011034032A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin powder
metal oxide
mass
dispersion
less
Prior art date
Application number
PCT/JP2010/065775
Other languages
English (en)
French (fr)
Inventor
浩和 松下
真吾 細田
千明 片山
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US13/395,562 priority Critical patent/US20120177707A1/en
Priority to KR1020127006734A priority patent/KR101708082B1/ko
Priority to CN201080041119.3A priority patent/CN102498169B/zh
Priority to EP10817145.5A priority patent/EP2479213B1/en
Priority to JP2011531923A priority patent/JP5834916B2/ja
Publication of WO2011034032A1 publication Critical patent/WO2011034032A1/ja
Priority to US14/613,921 priority patent/US20150147370A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/624Coated by macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/95Involves in-situ formation or cross-linking of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to a metal oxide-encapsulating resin powder, a dispersion containing the same, an aqueous dispersion, a method for producing the metal oxide-encapsulating resin powder, and a cosmetic, and more particularly, skin care cosmetics, makeup cosmetics, and body care.
  • the present invention relates to a dispersion, an aqueous dispersion, a method for producing a metal oxide-containing resin powder, and a cosmetic.
  • metal oxides used in cosmetics are added as pigments to have a specific color tone, or added as functional materials to have functions such as ultraviolet shielding properties, infrared shielding properties, and antibacterial properties.
  • functions such as ultraviolet shielding properties, infrared shielding properties, and antibacterial properties.
  • examples of the metal oxide that is an inorganic ultraviolet shielding material that shields ultraviolet rays in a wide wavelength region including near ultraviolet rays include zinc oxide and titanium oxide, and these are also important as white pigments.
  • these metal oxides have a dispersed particle diameter of 0.1 ⁇ m or less when dispersed in a base material, they can transmit almost all visible light and absorb almost all ultraviolet rays.
  • zinc oxide which is particularly added to the sunscreen and exhibits an effect
  • Zinc oxide has long been known to absorb oil, and zinc ions generated when dissolved in water react with fatty acids to produce metal soap, which is secreted from the skin. It is used as a sebum absorbent and a deodorant that absorbs body odor components. Furthermore, since zinc ions have physiological effects, they have been used as astringents for a long time.
  • the resin contains at least one of zinc oxide, titanium oxide and cerium oxide in an amount of 1 to 80% by mass of the total weight, and the particle size is 30 ⁇ m or less.
  • Spherical resin powder having an ultraviolet shielding function Patent Document 1
  • resin powder obtained by dispersing a metal oxide having an ultraviolet shielding function in a resin monomer and performing suspension polymerization or emulsion polymerization Patent Document 2
  • zinc oxide and titanium oxide that shield ultraviolet rays in a wide wavelength region including conventional near ultraviolet rays have a refractive index of zinc oxide as high as 1.9 and a refractive index of titanium oxide as high as 2.5.
  • the dispersed particle size is 0.1 ⁇ m or more, there is a problem that the cosmetic is whitened to impair transparency and cannot have a natural finish.
  • Requires advanced dispersion technology which is very difficult at present.
  • such fine particles of zinc oxide or titanium oxide may be absorbed into the body from the sweat glands of the skin, and there is a concern that safety may arise in terms of safety to the human body.
  • Zinc oxide has the property of being dissolved in water in a trace amount and is sometimes used as a deodorant agent or astringent that absorbs body odor components due to the action of the eluted zinc ions. Because it may react with other components such as oils, fragrances, colorants, organic ultraviolet absorbers, water-soluble polymers, etc., to induce changes in viscosity, generation of off-flavors, discoloration, coloring, gelation, etc.
  • the content of water in the cosmetics cannot be increased, and there is a problem that the degree of freedom of formulation as cosmetics is reduced.
  • the problem to be solved is that conventional dispersions such as cosmetics containing metal oxide particles such as zinc oxide and titanium oxide that shield ultraviolet rays are whitened and transparent when the dispersed particle diameter is 0.1 ⁇ m or more. In this case, visible light is hardly absorbed and cannot be transmitted, and in particular, the degree of freedom of formulation as a cosmetic is reduced.
  • the present inventor has encapsulated metal oxide particles having ultraviolet shielding ability in a (meth) acrylic resin to form a resin powder.
  • the average particle diameter is 0.1 ⁇ m or more and 1 ⁇ m or less, and the metal oxide particles include one or more selected from the group of zinc oxide, titanium oxide, cerium oxide, and iron oxide, and the average particle diameter is The particles are 0.003 ⁇ m or more and 0.1 ⁇ m or less, and the content of the metal oxide particles in the resin powder is 1% by mass or more and 80% by mass or less. If the resin powder is dispersed in the resin powder without being exposed, the resin powder is excellent in ultraviolet absorption and can be obtained by transmitting it with almost no visible light absorption. This resin powder In the case of using the cosmetics also excellent in transparency, it found that an excellent feeling without roughness, or the like, thereby completing the present invention.
  • the metal oxide particle-containing resin powder of the present invention is a resin powder obtained by encapsulating metal oxide particles having ultraviolet shielding ability in a (meth) acrylic resin, and is an average particle of the resin powder.
  • the diameter is 0.1 ⁇ m or more and 1 ⁇ m or less
  • the metal oxide particles include one or more selected from the group consisting of zinc oxide, titanium oxide, cerium oxide, and iron oxide, and the average particle diameter is 0. 0.003 ⁇ m or more and 0.1 ⁇ m or less
  • the content of the metal oxide particles in the resin powder is 1% by mass or more and 80% by mass or less, and the metal oxide particles are the resin powder.
  • the resin powder is characterized by being dispersed in the resin powder without being exposed on the surface.
  • the elution amount of the metal element in the pure water is 0.05 ppm or less, and when the resin powder is immersed in the acetic acid aqueous solution, The amount of elution is preferably 1.5 ppm or less.
  • the metal oxide particle-containing resin powder dispersion of the present invention is a dispersion obtained by dispersing the metal oxide particle-containing resin powder of the present invention in a dispersion medium, and the metal oxide in the dispersion liquid.
  • the adjusted dispersion has a transmittance T 600 for light with a wavelength of 600 nm of 60% or more and a transmittance T 375 for light with a wavelength of 375 nm and a wavelength of 600 nm.
  • the metal oxide particle-containing resin powder aqueous dispersion of the present invention contains the metal oxide particle-containing resin powder of the present invention in an amount of 1 to 80% by mass and alcohol in an amount of 5 to 20% by mass. It is characterized by becoming.
  • the water-soluble polymer may be contained in an amount of 0.01% by mass to 10% by mass.
  • a metal oxide particle having an average particle diameter of 0.003 ⁇ m or more and 0.1 ⁇ m or less and having an ultraviolet shielding ability is 1 to the metal oxide particle.
  • the (meth) acrylic resin monomer dispersion is dispersed in a (meth) acrylic resin monomer containing a dispersant of not less than 50% by mass and not more than 50% by mass, and then this (meth) acrylic resin monomer dispersion is used.
  • a metal initiator-encapsulated resin powder is produced by adding a polymerization initiator of 01% by mass or more and 1% by mass or less to perform suspension polymerization or emulsion polymerization.
  • the cosmetic of the present invention is a group of the metal oxide particle-containing resin powder of the present invention, the metal oxide particle-containing resin powder dispersion of the present invention, and the metal oxide particle-containing resin powder aqueous dispersion of the present invention. 1 type or 2 types or more selected from 1 to 50 mass% in conversion of the said metal oxide particle inclusion resin powder.
  • the resin powder has an average particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less, and the metal oxide particles are a group of zinc oxide, titanium oxide, cerium oxide, and iron oxide. 1 type or 2 types or more selected from the above, and the average particle size is 0.003 ⁇ m or more and 0.1 ⁇ m or less, and the content of the metal oxide particles in the resin powder is 1% by mass or more and 80% by mass Since the metal oxide particles are dispersed in the resin powder without being exposed on the surface of the resin powder, the powder itself can be made into fine particles and absorb ultraviolet rays. The transparency to visible light can be improved.
  • the metal oxide particles are not exposed on the surface of the resin powder, even when the resin powder is dispersed in the solvent, the metal oxide, which is a component of the particles, is eluted into the solvent. Can be suppressed. Therefore, when cosmetics are formulated using this resin powder, not only water-in-oil type (W / O type) but also oil-in-water type (O / W type) can be formulated. The degree of freedom of prescription can be further increased. In addition, since the average particle size of the resin powder is 0.1 ⁇ m or more and 1 ⁇ m or less, even when used in cosmetics, there is no feeling of roughness and the feeling of use is excellent.
  • the adjusted dispersion has a transmittance T 600 for light with a wavelength of 600 nm of 60% or more, a transmittance T 375 for light with a wavelength of 375 nm, and a wavelength of 600 nm.
  • the metal oxide particle-containing resin powder of the present invention is 1% by mass to 80% by mass, and the alcohol is 5% by mass to 20% by mass. Since it contained below, the transparency with respect to visible light can be improved.
  • the metal oxide particle-containing resin powder of the present invention can be easily produced.
  • the metal oxide particle-containing resin powder of the present invention the metal oxide particle-containing resin powder dispersion of the present invention, the metal oxide particle-containing resin powder aqueous dispersion of the present invention, 1 type or 2 types or more selected from the group consisting of 1% by mass and 50% by mass or less in terms of the metal oxide particle-containing resin powder are contained, so that a sufficient transparency can be ensured without fear of whitening. be able to. Moreover, there is no rough feeling etc. and it is excellent in usability.
  • FIG. 3 is a graph showing spectral transmittances of dispersions A to C of Example 1 and dispersions D and E of Comparative Examples 1 and 2 according to the present invention.
  • the metal oxide-encapsulating resin powder of the present invention a dispersion containing the same, an aqueous dispersion, a method for producing the metal oxide-encapsulating resin powder, and a mode for carrying out cosmetics will be described.
  • This embodiment is specifically described for better understanding of the gist of the invention and does not limit the present invention unless otherwise specified.
  • the metal oxide-encapsulating resin powder of this embodiment is a resin in which (meth) acrylic resin encapsulates metal oxide particles having an average particle diameter of 0.003 ⁇ m or more and 0.1 ⁇ m or less and having ultraviolet shielding ability.
  • This resin powder has an average particle diameter of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the metal oxide particles are powders dispersed in the resin powder without being exposed on the surface of the resin powder. is there.
  • the state in which the metal oxide particles are dispersed in the resin powder without being exposed on the surface of the resin powder means that the metal oxide particles dispersed in the resin powder are completely contained in the resin powder. Further, the surface of the resin powder is completely covered with the resin, and the metal oxide particles are not exposed at all on the surface of the covered resin.
  • the metal oxide-encapsulating resin powder of the present embodiment has a small amount of zinc (Zn) elution even though the average particle size is small. Moreover, the elution amount of zinc (Zn) decreases as the average particle diameter of the resin powder is smaller (see Tables 1 and 2 described later). Generally, as the particle diameter of the powder is smaller, that is, as the specific surface area of the resin powder is larger, the elution amount of zinc tends to increase.
  • the metal oxide-encapsulating resin powder of this embodiment can suppress the elution amount of zinc (Zn) despite a large specific surface area, the periphery of the zinc oxide particles is sufficiently covered with the resin, Moreover, it can be said that the zinc oxide fine particles are not exposed on the surface of the metal oxide-encapsulating resin powder.
  • (Meth) acrylic resins include acrylic esters, methacrylic esters, acrylic styrene copolymers, acrylamide copolymers, acrylic epoxy copolymers, acrylic urethane copolymers, acrylic polyester polymers, and silicon acrylic copolymers.
  • a resin obtained by polymerizing one kind selected from the group of resins alone or polymerizing two or more kinds is suitably used.
  • (Meth) acrylic monomers include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, dodecyl acrylate , Lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl ⁇ -chloroacrylate, trifluoroethyl acrylate, tetrafluoropropyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, N-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacryl
  • Examples of monomers to be polymerized with acrylic include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4 -Dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn- Dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene,
  • the metal oxide particles are particles having an ultraviolet shielding ability including one or more selected from the group consisting of zinc oxide, titanium oxide, cerium oxide, and iron oxide, and have an average particle diameter of 0.003 ⁇ m or more and 0 0.1 ⁇ m or less, more preferably 0.01 ⁇ m or more and 0.05 ⁇ m or less, and further preferably 0.02 ⁇ m or more and 0.04 ⁇ m or less.
  • the average particle diameter of the metal oxide particles is less than 0.003 ⁇ m, the degree of crystallinity is lowered and the ultraviolet shielding function is not exhibited.
  • the metal oxide particles may be those that have been surface-treated with an organopolysiloxane.
  • the content of the metal oxide particles in the resin powder is preferably 1% by mass to 80% by mass, more preferably 30% by mass to 80% by mass, and still more preferably 50% by mass to 80% by mass. It is as follows.
  • the content of the metal oxide particles in the resin powder is less than 1% by mass, the amount of the metal oxide particles is too small to fully develop the ultraviolet shielding function of the metal oxide particles. Therefore, in order to fully exhibit the ultraviolet shielding function, a large amount of resin powder is required, and the material design for producing cosmetics becomes extremely difficult.
  • the content exceeds 80% by mass, The amount of the oxide particles is relatively high with respect to the resin. As a result, the dispersibility of the metal oxide particles in the resin is lowered, and the uniformity of the composition is impaired, which is not preferable.
  • the dispersed particle diameter of the metal oxide particles in the resin powder is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and still more preferably 0.03 ⁇ m or less.
  • the dispersed particle diameter of the metal oxide particles in the resin powder exceeds 0.1 ⁇ m, the scattering coefficient of the resin powder with respect to visible light is large, and the transparency is remarkably lowered. Is lowered, and in some cases, devitrification may occur.
  • the average particle size of the resin powder is preferably 0.1 ⁇ m or more and 1 ⁇ m or less, more preferably 0.2 ⁇ m or more and 0.8 ⁇ m or less, and further preferably 0.3 ⁇ m or more and 0.6 ⁇ m or less.
  • the average particle diameter of the resin powder is less than 0.1 ⁇ m, the dehydration process becomes difficult and the resin powder is easily aggregated.
  • the average particle diameter exceeds 1 ⁇ m when used as a cosmetic, elongation and slippage in the skin are reduced, resulting in a feeling of roughness and the like. It is not preferable because the feeling of use becomes worse, such as worsening of the quality.
  • the elution amount of the metal element in the pure water is 0.05 ppm or less, preferably 0.01 ppm or less, and the resin powder is immersed in an acetic acid aqueous solution.
  • the elution amount of the metal element in the aqueous acetic acid solution is 1.5 ppm or less, preferably 1.0 ppm or less.
  • this range is a component of the resin powder when the resin powder is used as a cosmetic. This is because the metal oxide can suppress elution into a solvent such as pure water.
  • the surface of the resin powder may be treated with 1% by mass or more and 20% by mass or less of organosiloxane based on the resin powder.
  • organosiloxane include a dialkylalkoxysilane compound.
  • an organopolysiloxane or an organopolysiloxane selected from the group consisting of an alkyl group, an isocyanate group, an epoxy group, an acrylic group, and an alkyl silicon compound or Modified organopolysiloxanes modified by two or more types are preferably used, and in particular, dimethylpolysiloxane (silicone oil) and modified dimethylpolysiloxane (modified silicone oil) obtained by modifying this dimethylpolysiloxane (silicone oil) are preferably used. It is done.
  • organosiloxane elution of the metal oxide, which is a component of the resin powder, into a solvent such as pure water can be further suppressed.
  • the metal oxide particle-containing resin powder dispersion of this embodiment is a dispersion obtained by dispersing the metal oxide particle-containing resin powder in a dispersion medium.
  • Such a dispersion medium may be any solvent that can disperse the above-mentioned metal oxide particle-containing resin powder, and in addition to water, for example, alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol.
  • the above metal oxide particle-containing resin powder is mixed with a dispersion medium, and if necessary, a dispersant and a water-soluble binder are mixed. Then, a sand mill, a bead mill using zirconia beads in this mixture, It can be obtained by performing a dispersion treatment using a dispersing machine such as a ball mill or a homogenizer, and dispersing the metal oxide particle-containing resin powder in a dispersion medium.
  • the time required for the dispersion treatment is not particularly limited as long as it is sufficient for the metal oxide particle-containing resin powder to be dispersed in the dispersion medium.
  • the transmittance T 600 of the adjusted dispersion with respect to light having a wavelength of 600 nm is 60% or more, and light having a wavelength of 375 nm.
  • the ratio T 350 / T 600 is 0.15 or less.
  • the metal oxide particles having an average particle diameter of 0.003 ⁇ m or more and 0.1 ⁇ m or less having an ultraviolet shielding ability are applied to the metal oxide particles.
  • a metal oxide particle-containing resin powder is produced by adding 0.01% by mass or more and 1% by mass or less of a polymerization initiator to the suspension or emulsion to perform suspension polymerization or emulsion poly
  • metal oxide particles having an average particle diameter of 0.003 ⁇ m or more and 0.1 ⁇ m or less having an ultraviolet shielding ability are dispersed in a (meth) acrylic resin monomer containing a dispersant, and a (meth) acrylic resin monomer is obtained.
  • a dispersion is obtained.
  • the dispersant those having high affinity with the resin monomer and high hydrophobicity are preferable. That is, the dispersing agent promotes the dispersion with respect to the resin monomer by coating the metal oxide, and at the same time, the metal oxide particles are almost monodispersed in a relatively short time, and the average dispersed particle diameter is 0.
  • the metal oxide particles do not come out of the polymer and help to be taken into the resin without moving to the aqueous phase.
  • Examples of such a dispersant include carboxylic acids such as sodium carboxymethyl cellulose or salts thereof, sulfonic acids such as sodium alkanesulfonate or salts thereof, sulfate esters such as polyoxyethylene nonylphenyl ether sodium sulfate or salts thereof, Examples thereof include phosphoric acid esters such as oxyethylene alkylphenyl ether phosphoric acid and polyoxyethylene alkyl ether phosphoric acid or salts thereof, and phosphonic acids such as sodium lauryl phosphate or salts thereof.
  • carboxylic acids such as sodium carboxymethyl cellulose or salts thereof
  • sulfonic acids such as sodium alkanesulfonate or salts thereof
  • sulfate esters such as polyoxyethylene nonylphenyl ether sodium sulfate or salts thereof
  • Examples thereof include phosphoric acid esters such as oxyethylene alkylphenyl ether phosphoric acid and polyoxyethylene alkyl ether phospho
  • the metal oxide particle-containing resin powder of this embodiment when used in cosmetics, these dispersants must be recognized as raw materials for cosmetics at the same time.
  • the addition ratio of the dispersant to the metal oxide particles is preferably 1% by mass or more and 50% by mass or less. If the addition rate is less than 1% by mass, it is too small to cover the surface of the metal oxide particles, and a sufficient dispersion state of the metal oxide particles cannot be obtained. Even if the rate is increased, the dispersibility cannot be further improved, and the dispersant is wasted.
  • the dispersing device used is not particularly limited as long as it can impart sufficient dispersion energy to the dispersion system, and examples thereof include a ball mill, a sand mill, an ultrasonic disperser, and a homogenizer.
  • the dispersion time is preferably about 30 minutes to 3 hours, but an appropriate time may be selected in consideration of the dispersion state and production cost.
  • a (meth) acrylic resin monomer dispersion having an average dispersed particle diameter of metal oxide particles of 0.003 ⁇ m or more and 0.1 ⁇ m or less can be obtained.
  • this (meth) acrylic resin monomer dispersion is suspended or emulsified in pure water containing a suspension protective agent, a silicone antifoaming agent and a crosslinking agent, and a suspended particle diameter of 0.1 ⁇ m to 1 ⁇ m is suspended.
  • a suspension protective agent such as polyoxyethylene alkyl ethers and polyoxyethylene alkylphenyl ethers, or anionic interfaces such as alkylbenzene sulfonates, alkyl sulfates, and alkylphenyl sulfates.
  • the addition amount of the suspension protective agent is 0.1% by mass or more and 10% by mass or less, more preferably 0.1% by mass or more and 2% by mass or less with respect to the (meth) acrylic resin monomer dispersion. It is.
  • silicone antifoaming agent examples include an oil type, an oil compound type, a solution type, a powder type, a solid type, an emulsion type, and a self-emulsifying type.
  • an oil compound type is preferable.
  • Silicone antifoaming agent can significantly increase the stirring speed of a disperser or a mixer by adding 0.01% by mass or more and 5% by mass or less to the (meth) acrylic resin monomer dispersion.
  • the resin powder can be reduced to about 100 nm, and when blended in a cosmetic or the like, it is possible to provide a cosmetic that is more transparent and has no feeling of roughness and is excellent in use feeling. Is possible.
  • the stirring speed of the disperser or the mixer can be greatly increased, and as a result, the production efficiency of the metal oxide particle-containing resin powder can be improved, so that the production cost can be greatly reduced.
  • the crosslinking agent is not particularly limited as long as it is a monomer having two or more unsaturated double bonds, and is not limited to a polyfunctional vinyl monomer or a polyfunctional (meth) acrylic acid ester derivative. Etc. can be appropriately selected and used. More specifically, divinylbenzene, divinylbiphenyl, divinylnaphthalene, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, (poly) tetramethylene glycol di (meth) acrylate, etc. (Poly) alkylene glycol type
  • Polymerization initiators include persulfates such as potassium persulfate and ammonium persulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, benzoyl peroxide, cumene hydroperoxide, and other organic peroxides.
  • persulfates such as potassium persulfate and ammonium persulfate
  • hydrogen peroxide hydrogen peroxide
  • benzoyl peroxide lauroyl peroxide
  • t-butyl hydroperoxide benzoyl peroxide
  • benzoyl peroxide cumene hydroperoxide
  • other organic peroxides and other organic peroxides.
  • azo initiators such as azobisdiisobutyronitrile and 2,2-azobis (2-amidinopropane) dihydrochloride, among which persulfate is preferred.
  • the average particle diameter of the obtained metal oxide particle-containing resin powder is 0.1 ⁇ m or more and 1 ⁇ m.
  • the following can be controlled.
  • the stirring speed of the disperser or mixer can be significantly increased.
  • the production efficiency of the metal oxide particle-containing resin powder can be improved, and as a result, the production cost can be greatly reduced.
  • a polymerization initiator is added to said suspension or emulsion, and suspension polymerization or emulsion polymerization is performed.
  • a method is preferred in which the above suspension or emulsion is heated while stirring in a nitrogen atmosphere and in the presence of a polymerization initiator to initiate polymerization.
  • the polymerization initiation temperature is preferably 50 to 80 ° C.
  • the polymerization time while maintaining this temperature is preferably about 1 to 5 hours, and an appropriate time may be selected in consideration of the time when the unreacted residual monomer is minimized, the polymerization state, and the production cost. Thereafter, the polymerization reaction is stopped by cooling with ice or natural cooling.
  • the alcohol is not particularly limited as long as it is soluble in pure water and can be easily washed away, and examples thereof include ethanol, 2-propanol and the like, and 2-propanol is particularly preferable.
  • the washing method is not particularly limited as long as residual monomers can be removed, but washing is performed by pressure filtration, suction filtration, filter press, centrifugation, ultrafiltration, decantation, or the like. Washing is performed until the concentration becomes 1% or less with a 2-propanol densitometer and 20 ⁇ S / cm or less with a conductivity meter.
  • the obtained polymer is dried at 80 to 100 ° C. to remove alcohol and pure water, and then the obtained polymer is pulverized.
  • the drying method is not particularly limited as long as it is a method capable of removing alcohol and pure water, and examples thereof include drying in atmospheric pressure and vacuum drying.
  • the pulverization method is not particularly limited as long as it can be pulverized to a size of 0.1 ⁇ m or more and 1 ⁇ m or less, and examples thereof include a pin mill, a hammer mill, a jet mill, and an impeller mill.
  • the metal oxide particle-containing resin powder aqueous dispersion is 1% by mass to 80% by mass, more preferably 20% by mass to 70% by mass. More preferably, it is an aqueous dispersion containing 30% by mass or more and 60% by mass or less and containing 5% by mass or more and 20% by mass or less of alcohol.
  • the water-soluble polymer is further added in an amount of 0.001% by mass to 10% by mass, more preferably 0.005% by mass and 5% by mass, and still more preferably 0.01% by mass and more. It is good also as containing 3 mass% or less. In this case, it is necessary to adjust the content of each component so that the total content of the components of the metal oxide particle-containing resin powder, the alcohol, and the water-soluble polymer does not exceed 100% by mass.
  • Examples of the alcohol include monohydric alcohols or polyhydric alcohols having 1 to 6 carbon atoms such as ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, glycerin, 1,3-butylene glycol, propylene glycol, sorbitol and the like. Among them, monohydric alcohols, particularly ethanol is preferable.
  • the alcohol content is preferably 5% by mass or more and 20% by mass or less, more preferably 10% by mass or more and 20% by mass or less.
  • the alcohol content is 10% by mass or more and 20% by mass or less, the dispersibility and temporal stability of the metal oxide particle-containing resin powder can be improved, which is preferable.
  • the water-soluble polymer is not particularly limited as long as it can be used for cosmetics, but is not limited to gum arabic, sodium alginate, casein, carrageenan, galactan, carboxy. Vinyl polymer, carboxymethylcellulose, sodium carboxymethylcellulose, carboxymethyl starch, agar, xanthan gum, quince seed, guar gum, collagen, gelatin, cellulose, dextran, dextrin, tragacanth gum, hydroxyethylcellulose, hydroxypropylcellulose, sodium hyaluronate pectin, pullulan, methylcellulose And methyl hydroxypropyl cellulose.
  • the water-soluble polymer has a role of a dispersant and viscosity adjustment, and when added, the dispersibility and stability over time of the metal oxide particle-containing resin powder are also improved.
  • the alcohol content when the aqueous dispersion contains a water-soluble polymer is preferably 5% by mass or more and 20% by mass or less, and more preferably 15% by mass or more and 20% by mass or less.
  • the reason why the alcohol content when the aqueous dispersion contains a water-soluble polymer is 5% by mass or more and 20% by mass or less is that when the content is less than 5% by mass, the alcohol is too little.
  • the water-soluble polymer cannot uniformly infiltrate with alcohol and swells non-uniformly with moisture. As a result, the dispersibility of the metal oxide particle-containing resin powder is reduced, making it difficult to handle and stable over time. This is not preferable because the properties are lowered.
  • the content exceeds 20% by mass the viscosity of the entire aqueous dispersion increases, and the dispersion stability of the metal oxide particle-containing resin powder decreases and the stability over time also decreases.
  • This metal oxide particle-containing resin powder aqueous dispersion is obtained by mixing the above-mentioned metal oxide particle-containing resin powder into a solvent containing alcohol or a mixture containing alcohol and a water-soluble polymer, and then mixing water. Then, it can be obtained by dispersing.
  • the amount of water may be appropriately adjusted, but is preferably in the range of 15% by mass to 94% by mass.
  • the cosmetic of the present embodiment is one or more selected from the group consisting of the above-described metal oxide-containing resin powder, metal oxide particle-containing resin powder dispersion, and metal oxide particle-containing resin powder aqueous dispersion. It is a cosmetic containing 1% by mass or more and 50% by mass or less in terms of metal oxide particle-containing resin powder, and by including this metal oxide particle-containing resin powder within the above range, There is no fear of whitening and a sufficient transparency can be ensured. Moreover, there is no roughness and the like, and the feeling of use is excellent.
  • the cosmetic is one or more selected from the group consisting of the above-described metal oxide-containing resin powder, metal oxide particle-containing resin powder dispersion, and metal oxide particle-containing resin powder aqueous dispersion.
  • the metal oxide-containing resin powder, the metal oxide particle-containing resin powder dispersion, and the metal oxide particle-containing resin described above are applied to water-based cosmetics such as skin lotion and sunscreen gel, which have been difficult to formulate conventionally.
  • water-based cosmetics such as skin lotion and sunscreen gel
  • elution of the metal oxide is suppressed, and a cosmetic excellent in ultraviolet shielding function, transparency, and feeling of use can be obtained.
  • an organic ultraviolet absorber is added to any one or more of the above-described metal oxide-encapsulating resin powder, metal oxide particle-encapsulating resin powder dispersion, and metal oxide particle-encapsulating resin powder aqueous dispersion,
  • an azo dye such as azobenzene
  • various cosmetics such as skin care cosmetics, makeup cosmetics, body care cosmetics and the like excellent in transparency and feeling of use can be provided by using the cosmetics of the present embodiment as cosmetic ingredients.
  • cosmetics of the present embodiment when used for whitening skin care cosmetics that require UV shielding ability, base makeup for makeup cosmetics, sunscreens for body care cosmetics, etc., it provides cosmetics with excellent UV shielding ability, transparency and feeling of use. be able to.
  • Example 1 "Preparation of resin monomer dispersion" 200 parts by mass of zinc oxide fine particles (average particle size: 0.02 ⁇ m), 188 parts by mass of methyl methacrylate (MMA: resin monomer), 12 parts by mass of a phosphate type surfactant (dispersant) are mixed, and a sand mill is used. Then, a dispersion treatment was performed for 2 hours to obtain a resin monomer dispersion liquid in which zinc oxide fine particles were dispersed in methyl methacrylate (MMA).
  • MMA methyl methacrylate
  • the dispersed particle size was 85.0 nm.
  • the volume particle size distribution and the cumulative volume particle size distribution are shown in FIG.
  • Preparation of emulsion 105.0 parts by mass of the above resin monomer dispersion, 229.5 parts by mass of pure water, 0.5 part by mass of sodium dodecylbenzenesulfonate, 14.0 parts by mass of ethylene glycol dimethacrylate, 1.0 part by mass of silicone-based antifoaming agent The parts were mixed and stirred using a homogenizer to obtain an emulsion. The particle size of the emulsion was controlled by controlling the number of revolutions and time during the stirring.
  • the dispersed particle sizes of the obtained emulsions A to C were measured using a dynamic light scattering type particle size distribution analyzer LB-550 (manufactured by Horiba, Ltd.). As a result, the dispersed particle size of emulsion A was 300 nm, the dispersed particle size of emulsion B was 600 nm, and the dispersed particle size of emulsion C was 900 nm.
  • the volume particle size distribution and cumulative volume particle size distribution of emulsion A are shown in FIG. 2, the volume particle size distribution and cumulative volume particle size distribution of emulsion B are shown in FIG. 3, and the volume particle size distribution and cumulative volume particle size distribution of emulsion C are shown in FIG. .
  • the dispersed particle sizes of these resin powders A, B, and C were measured using a dynamic light scattering particle size distribution measuring instrument -LB-550 (manufactured by Horiba, Ltd.).
  • a dynamic light scattering particle size distribution measuring instrument -LB-550 manufactured by Horiba, Ltd.
  • 5 parts by mass of resin powder 10 parts by mass of polyether-modified silicone (dispersant), and 85 parts by mass of decamethylcyclopentasiloxane (cyclic silicone)
  • Each dispersion was prepared by adding to a solution dissolved in, and dispersed using a disperser, and the dispersed particle size of the resin powder in each dispersion was measured.
  • the dispersed particle size of the zinc oxide particle-containing resin powder A derived from the emulsion A is 200 nm
  • the dispersed particle size of the zinc oxide particle-containing resin powder B derived from the emulsion B is 500 nm
  • the zinc oxide particle-containing resin derived from the emulsion C was 800 nm.
  • FIG. 5 shows the volume particle size distribution and cumulative volume particle size distribution of the zinc oxide particle-containing resin powder A
  • FIG. 6 shows the volume particle size distribution and cumulative volume particle size distribution of the zinc oxide particle-containing resin powder B
  • FIG. The volume particle size distribution and cumulative volume particle size distribution of the body C are shown in FIG. Further, a transmission electron microscope (TEM) image of the zinc oxide particle-containing resin powder B is shown in FIG. 8, and a scanning electron microscope (SEM) image is shown in FIG.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Polymerization was performed using the emulsion D according to Example 1 to obtain a resin powder D containing zinc oxide particles derived from the emulsion D.
  • a resin powder D containing zinc oxide particles derived from the emulsion D As a result of measuring the dispersed particle size of the resin powder D according to Example 1, it was 1300 nm.
  • Polymerization was performed according to Example 1 using the above-mentioned emulsion E to obtain a resin powder E derived from the emulsion E.
  • a resin powder E derived from the emulsion E As a result of measuring the dispersed particle size of the resin powder E according to Example 1, it was 500 nm.
  • Zinc Elution Test Test Method A Elution into Pure Water (PH7.4) 0.5 g each of zinc oxide particle-containing resin powders A, B, and C obtained in Example 1 was added to pure water (PH7.4). ) Dispersed in 199.5 g with a magnetic stirrer, stirred for 5 minutes, and allowed to stand for 1 hour to prepare three types of samples. Thereafter, the cloudy supernatant of each of these three types of samples was collected, and subjected to sedimentation separation at 21000 rpm for 1 hour using a centrifuge, and the transparent supernatant was collected. The collected supernatant was filtered using a filter (aperture: 0.025 ⁇ m), and the eluted zinc in the filtrate was quantified by atomic absorption spectrometry.
  • the zinc oxide particle-containing resin powder D obtained in Comparative Example 1 untreated zinc oxide, and surface-treated zinc oxide treated with silica / silicone were treated in the same manner as described above. Then, the eluted zinc was quantified. Table 1 shows the measurement results.
  • Test method B Elution into dilute acetic acid (PH5.0) 0.5 g each of zinc oxide particle-containing resin powders A, B, and C obtained in Example 1 was added to 199.5 g of dilute acetic acid (PH5.0). After dispersing with a tic stirrer and stirring for 5 minutes, the mixture was allowed to stand for 1 hour to prepare three types of samples. Thereafter, the cloudy supernatant of each of these three types of samples was collected, and subjected to sedimentation separation at 21000 rpm for 1 hour using a centrifuge, and the transparent supernatant was collected.
  • the collected supernatant was filtered using a filter (aperture: 0.025 ⁇ m), and the eluted zinc in the filtrate was quantified by atomic absorption spectrometry.
  • a filter aperture: 0.025 ⁇ m
  • the zinc oxide particle-containing resin powder D obtained in Comparative Example 1 untreated zinc oxide, and surface-treated zinc oxide treated with silica / silicone were treated in the same manner as described above. Then, the eluted zinc was quantified.
  • Table 2 shows the measurement results.
  • Example 2 "Preparation of resin monomer dispersion" 120 parts by mass of titanium oxide fine particles (average particle size: 0.02 ⁇ m), 256 parts by mass of methyl methacrylate (MMA: resin monomer), 24 parts by mass of a phosphate type surfactant (dispersant) are mixed, and a sand mill is used. Then, a dispersion treatment was performed for 2 hours to obtain a resin monomer dispersion in which titanium oxide fine particles were dispersed in methyl methacrylate (MMA). As a result of measuring the dispersed particle size of this dispersion using a dynamic light scattering particle size distribution measuring apparatus, the dispersed particle size was 55 nm. The volume particle size distribution and cumulative volume particle size distribution of this resin monomer dispersion are shown in FIG.
  • the dispersion particle diameter of the titanium oxide particle-containing resin powder E was measured according to Example 1 and found to be 280 nm.
  • the volume particle size distribution and cumulative volume particle size distribution of the titanium oxide particle-containing resin powder E are shown in FIG. Further, a transmission electron microscope (TEM) image of the titanium oxide particle-containing resin powder E is shown in FIG. 14, and a scanning electron microscope (SEM) image is shown in FIG.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Example 3 "Preparation of resin monomer dispersion" 160 parts by mass of cerium oxide fine particles (average particle size: 0.03 ⁇ m), 228 parts by mass of methyl methacrylate (MMA: resin monomer), and 12 parts by mass of a phosphoric acid ester type surfactant (dispersant) are mixed, and a sand mill is used. Then, a dispersion treatment was performed for 2 hours to obtain a resin monomer dispersion in which cerium oxide fine particles were dispersed in methyl methacrylate (MMA). As a result of measuring the dispersed particle size of this dispersion according to Example 1, the dispersed particle size was 80.0 nm.
  • Example 4 "Preparation of resin monomer dispersion" Iron oxide fine particles (average particle diameter: 0.05 ⁇ m) 160 parts by mass, methyl methacrylate (MMA: resin monomer) 228 parts by mass, phosphate ester type surfactant (dispersant) 12 parts by mass are mixed, and a sand mill is used. Then, a dispersion treatment was performed for 2 hours to obtain a resin monomer dispersion liquid in which iron oxide fine particles were dispersed in methyl methacrylate (MMA). As a result of measuring the dispersed particle size of this dispersion according to Example 1, the dispersed particle size was 95.0 nm.
  • Example 5 "Preparation of resin monomer dispersion" Zinc oxide fine particles (average particle size: 0.02 ⁇ m) 120 parts by mass, titanium oxide fine particles (average particle size: 0.04 ⁇ m) 80 parts by mass, methyl methacrylate (MMA: resin monomer) 188 parts by mass, phosphate ester type interface 12 parts by mass of an activator (dispersant) was mixed and subjected to a dispersion treatment for 2 hours using a sand mill to obtain a resin monomer dispersion liquid in which zinc oxide fine particles and titanium oxide fine particles were dispersed in methyl methacrylate (MMA). .
  • the dispersed particle size was 80.0 nm.
  • Example 6 "Preparation of aqueous dispersion of resin powder" 150 parts by mass of ethanol, 450 parts by mass of pure water and 400 parts by mass of the zinc oxide particle-containing resin powder B of Example 1 were sufficiently mixed using a homomixer to mix the zinc oxide fine particle-containing resin powder aqueous dispersion. The spectral transmittance of this aqueous dispersion was measured according to Example 1. The spectral transmittance of this resin powder aqueous dispersion is shown in FIG.
  • Example 7 After adding 20 parts by mass of carboxymethyl cellulose and 50 parts by mass of ethanol to 530 parts by mass of pure water and stirring sufficiently with a Ken mixer, 400 parts by mass of the zinc oxide particle-containing resin powder B of Example 1 was obtained. In addition, the mixture was sufficiently stirred and mixed again using a Ken mixer to obtain an aqueous dispersion of zinc oxide fine particle-containing resin powder. Subsequently, the spectral transmittance of this aqueous dispersion was measured according to Example 1. The spectral transmittance of this resin powder aqueous dispersion is shown in FIG. Subsequently, the viscosity of this resin powder aqueous dispersion was measured according to Example 6. As a result, the rate of change in viscosity between immediately after mixing of the resin powder aqueous dispersion and after 120 hours was 24.2%. The measurement results of the viscosity are shown in FIG.
  • Example 3 A zinc oxide fine particle aqueous dispersion of Comparative Example 3 according to Example 6 except that zinc oxide fine particles (average particle size: 0.02 ⁇ m) were used instead of the zinc oxide particle-containing resin powder B in Example 6. Got. Next, the viscosity of the zinc oxide fine particle aqueous dispersion was measured according to Example 6. As a result, the rate of change in the viscosity between immediately after mixing the zinc oxide fine particle aqueous dispersion and after 120 hours was as large as 96.5%. The measurement results of the viscosity are shown in FIG.
  • Example 4 A zinc oxide fine particle aqueous dispersion of Comparative Example 4 according to Example 7 except that zinc oxide fine particles (average particle size: 0.02 ⁇ m) were used instead of the zinc oxide particle-containing resin powder B in Example 7. Got. Next, the viscosity of the zinc oxide fine particle aqueous dispersion was measured according to Example 6. As a result, the rate of change in the viscosity between immediately after mixing of the zinc oxide fine particle aqueous dispersion and after 120 hours was as extremely high as 94.4%. The measurement results of the viscosity are shown in FIG.
  • the metal oxide particle-containing resin powder of the present invention can be finely divided into powder itself, can improve ultraviolet absorption performance, can improve transparency to visible light, Since the oxide particles are not exposed on the surface of the resin powder, even when the resin powder is dispersed in the solvent, the elution of the metal oxide as a component of the particles into the solvent is suppressed. It can be applied to oil-in-water (O / W) cosmetics as well as water-in-oil (W / O) types.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明の金属酸化物粒子内包樹脂粉体は、(メタ)アクリル系樹脂に紫外線遮蔽能を有する金属酸化物粒子を内包してなる樹脂粉体であり、この樹脂粉体の平均粒子径は0.1μm以上かつ1μm以下であり、金属酸化物粒子は、酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含みかつ平均粒子径が0.003μm以上かつ0.1μm以下の粒子であり、この樹脂粉体における金属酸化物粒子の含有率は1質量%以上かつ80質量%以下であり、この金属酸化物粒子は、樹脂粉体の表面にて露出することなく樹脂粉体中に分散してなる。この金属酸化物粒子内包樹脂粉体によれば、粉体自体を微粒子化することができ、紫外線の吸収性能を向上させることができ、可視光線に対する透明性を向上させることができる。

Description

金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料
 本発明は、金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料に関し、更に詳しくは、スキンケア化粧品、メイクアップ化粧品、ボディケア化粧品等の各種化粧品、特に、紫外線遮蔽能が必要とされるスキンケア化粧品のホワイトニング、メイクアップ化粧品のベースメイク、ボディケア化粧品のサンスクリーンに用いて好適な金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料に関するものである。
 本願は、2009年9月15日に、日本に出願された特願2009-213235号に基づき優先権を主張し、その内容をここに援用する。
 従来、化粧品に用いられる金属酸化物としては、特定の色調を有するために顔料として添加されるもの、あるいは、紫外線遮蔽性、赤外線遮蔽性、あるいは抗菌性等の機能を有するために機能材料として添加されるもの等がある。
 中でも、近紫外線を含む巾広い波長領域の紫外線を遮蔽する無機系紫外線遮蔽材料である金属酸化物としては、酸化亜鉛、酸化チタン等が挙げられ、これらは白色顔料としても重要である。これらの金属酸化物は、基材中に分散させたときの分散粒子径を0.1μm以下とすることにより、可視光線をほとんど吸収せずに透過させ、紫外線をほぼ吸収することができる。
 また、化粧品の中でも特にサンスクリーンに添加されて効果を発揮する酸化亜鉛は、両性酸化物であるために、水に微量溶解する性質がある。
 酸化亜鉛は、古くから油分を吸収する性質があることが知られており、また、水中に溶解した際に生じる亜鉛イオンは、脂肪酸と反応して金属石鹸を生成することから、皮膚から分泌される皮脂吸収剤、体臭成分を吸収するデオドラント剤として利用されている。さらに、亜鉛イオンは生理作用があることから、古くから収斂剤としても利用されている。
 紫外線遮蔽性を有する化粧料に用いられる粉体としては、樹脂中に、酸化亜鉛、酸化チタン及び酸化セリウムのうち少なくとも1種類を全重量のうち1~80質量%含み、粒径が30μm以下の紫外線遮蔽機能を有する球状樹脂粉体(特許文献1)、紫外線遮蔽機能を有する金属酸化物を樹脂モノマー中に分散させ、懸濁重合または乳化重合を行って得られた樹脂粉体(特許文献2)等が提案されている。
 しかしながら、従来の近紫外線を含む巾広い波長領域の紫外線を遮蔽する酸化亜鉛や酸化チタンは、酸化亜鉛の屈折率が1.9、酸化チタンの屈折率が2.5と大きく、したがって、これらを化粧料中に含有させた場合に分散粒子径が0.1μm以上になると、化粧料が白化して透明感を損ない、自然な仕上がりにすることができないという問題点があった。
 このような問題点を解消するためには、酸化亜鉛や酸化チタンの分散粒子径を0.1μm以下にする必要があるが、酸化亜鉛や酸化チタンの分散粒子径を0.1μm以下にするためには、高度な分散技術が必要となり、現状では非常に難しい。さらに、このような酸化亜鉛や酸化チタンの微粒子は、皮膚の汗腺等から体内に吸収される虞があり、人体に対する安全性等の点で懸念が生じる虞がある。
 一方、酸化亜鉛や酸化チタンの粒子径を1μm以上とした場合、化粧料に用いた際に透明感を損なうと同時にざらつき感等が生じ、感触が悪化する原因になるので、化粧料への利用が難しいという問題点があった。
 また、酸化亜鉛は、水に微量溶解する性質があり、その溶出した亜鉛イオンによる作用で体臭成分を吸収するデオドラント剤または収斂剤として利用されることもあるが、同時に溶出した亜鉛イオンが化粧品の他の成分である油剤、香料、色料、有機紫外線吸収剤、水溶性高分子等と反応して、粘度の変化、異臭の発生、変色、着色、ゲル化等を誘起する虞があるために、化粧料中の水の含有率を高めることができず、化粧料としての処方の自由度が低下するという問題点もある。
特許第3469641号公報 特許第3205249号公報
 解決しようとする問題点は、従来の紫外線を遮蔽する酸化亜鉛や酸化チタン等の金属酸化物粒子を含む化粧料等の分散体は、分散粒子径が0.1μm以上では白化して透明感を損なうために、可視光線をほとんど吸収せずに透過させることができず、特に化粧料としての処方の自由度が低下する点である。
 本発明者は、上記の課題を解決するために鋭意検討を重ねた結果、(メタ)アクリル系樹脂に紫外線遮蔽能を有する金属酸化物粒子を内包させて樹脂粉体とし、この樹脂粉体の平均粒子径を0.1μm以上かつ1μm以下とし、この金属酸化物粒子を、酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含みかつ平均粒子径が0.003μm以上かつ0.1μm以下の粒子とし、樹脂粉体における金属酸化物粒子の含有率を1質量%以上かつ80質量%以下とし、さらに、この金属酸化物粒子を、樹脂粉体の表面にて露出することなく該樹脂粉体中に分散させれば、紫外線の吸収性に優れ、可視光線をほとんど吸収せずに透過させることにより透明性にも優れた樹脂粉体を得ることができ、この樹脂粉体を化粧料に用いた場合においても、透明感に優れ、ざらつき感等もなく使用感に優れていることを見出し、本発明を完成するに至った。
 すなわち、本発明の金属酸化物粒子内包樹脂粉体は、(メタ)アクリル系樹脂に紫外線遮蔽能を有する金属酸化物粒子を内包してなる樹脂粉体であって、前記樹脂粉体の平均粒子径は0.1μm以上かつ1μm以下であり、前記金属酸化物粒子は、酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含みかつ平均粒子径が0.003μm以上かつ0.1μm以下の粒子であり、前記樹脂粉体における前記金属酸化物粒子の含有率は1質量%以上かつ80質量%以下であり、前記金属酸化物粒子は、前記樹脂粉体の表面にて露出することなく該樹脂粉体中に分散してなることを特徴とする。
 前記樹脂粉体を純水中に浸漬した場合の前記純水への金属元素の溶出量は0.05ppm以下、前記樹脂粉体を酢酸水溶液中に浸漬した場合の前記酢酸水溶液への金属元素の溶出量は1.5ppm以下であることが好ましい。
 本発明の金属酸化物粒子内包樹脂粉体分散液は、本発明の金属酸化物粒子内包樹脂粉体を分散媒中に分散してなる分散液であって、この分散液中の前記金属酸化物粒子内包樹脂粉体の含有率を5質量%に調整したときの、調整後の分散液の波長600nmの光に対する透過率T600が60%以上、波長375nmの光に対する透過率T375と波長600nmの光に対する透過率T600との比T375/T600が0.3以下、かつ波長350nmの光に対する透過率T350と波長600nmの光に対する透過率T600との比T350/T600が0.15以下であることを特徴とする。
 本発明の金属酸化物粒子内包樹脂粉体水系分散体は、本発明の金属酸化物粒子内包樹脂粉体を1質量%以上かつ80質量%以下、アルコールを5質量%以上かつ20質量%以下含有してなることを特徴とする。
 さらに、水溶性高分子を0.01質量%以上かつ10質量%以下含有してなることとしてもよい。
 本発明の金属酸化物粒子内包樹脂粉体の製造方法は、平均粒子径が0.003μm以上かつ0.1μm以下の紫外線遮蔽能を有する金属酸化物粒子を、この金属酸化物粒子に対して1質量%以上かつ50質量%以下の分散剤を含む(メタ)アクリル系樹脂モノマー中に分散させて(メタ)アクリル系樹脂モノマー分散液とし、次いで、この(メタ)アクリル系樹脂モノマー分散液を、この(メタ)アクリル系樹脂モノマー分散液に対して0.1質量%以上かつ10質量%以下の懸濁保護剤、0.01質量%以上かつ5質量%以下のシリコーン系消泡剤及び0.1質量%以上かつ10質量%以下の架橋剤を含む純水中に懸濁または乳化させて懸濁液または乳化液とし、次いで、この懸濁液または乳化液に、この懸濁液または乳化液に対して0.01質量%以上かつ1質量%以下の重合開始剤を添加して懸濁重合または乳化重合を行い、金属酸化物粒子内包樹脂粉体を生成することを特徴とする。
 本発明の化粧料は、本発明の金属酸化物粒子内包樹脂粉体、本発明の金属酸化物粒子内包樹脂粉体分散液、本発明の金属酸化物粒子内包樹脂粉体水系分散体、の群から選択される1種または2種以上を、前記金属酸化物粒子内包樹脂粉体換算で1質量%以上かつ50質量%以下含有してなることを特徴とする。
 本発明の金属酸化物粒子内包樹脂粉体によれば、樹脂粉体の平均粒子径を0.1μm以上かつ1μm以下とし、金属酸化物粒子を酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含みかつ平均粒子径が0.003μm以上かつ0.1μm以下の粒子とし、樹脂粉体における金属酸化物粒子の含有率を1質量%以上かつ80質量%以下とし、金属酸化物粒子を、樹脂粉体の表面にて露出することなく該樹脂粉体中に分散してなることとしたので、粉体自体を微粒子化することができ、紫外線の吸収性能を向上させることができ、可視光線に対する透明性を向上させることができる。
 また、金属酸化物粒子が樹脂粉体の表面に露出することがないので、この樹脂粉体を溶媒中に分散した場合においても、この粒子の成分である金属酸化物の溶媒中への溶出を抑制することができる。したがって、この樹脂粉体を用いて化粧品を処方する場合、油中水型(W/O型)はもちろんのこと、水中油型(O/W型)に対しても処方することができ、化粧品の処方の自由度をさらに高めることができる。
 また、樹脂粉体の平均粒子径を0.1μm以上かつ1μm以下としたので、化粧品に用いた場合においても、ざらつき感等がなく、使用感に優れている。
 本発明の金属酸化物粒子内包樹脂粉体分散液によれば、調整後の分散液の波長600nmの光に対する透過率T600を60%以上、波長375nmの光に対する透過率T375と波長600nmの光に対する透過率T600との比T375/T600を0.3以下、かつ波長350nmの光に対する透過率T350と波長600nmの光に対する透過率T600との比T350/T600を0.15以下としたので、可視光線に対する透明性を向上させることができる。
 本発明の金属酸化物粒子内包樹脂粉体水系分散体によれば、本発明の金属酸化物粒子内包樹脂粉体を1質量%以上かつ80質量%以下、アルコールを5質量%以上かつ20質量%以下含有したので、可視光線に対する透明性を向上させることができる。
 本発明の金属酸化物粒子内包樹脂粉体の製造方法によれば、本発明の金属酸化物粒子内包樹脂粉体を、容易に作製することができる。
 本発明の化粧料によれば、本発明の金属酸化物粒子内包樹脂粉体、本発明の金属酸化物粒子内包樹脂粉体分散液、本発明の金属酸化物粒子内包樹脂粉体水系分散体、の群から選択される1種または2種以上を、前記金属酸化物粒子内包樹脂粉体換算で1質量%以上かつ50質量%以下含有したので、白化の虞もなく透明感を十分に確保することができる。また、ざらつき感等が無く、使用感に優れている。
本発明の実施例1の樹脂モノマー分散液の体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1のエマルジョンAの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1のエマルジョンBの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1のエマルジョンCの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1の酸化亜鉛粒子内包樹脂粉体Aの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1の酸化亜鉛粒子内包樹脂粉体Bの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1の酸化亜鉛粒子内包樹脂粉体Cの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例1の酸化亜鉛粒子内包樹脂粉体Bの透過電子顕微鏡(TEM)像である。 本発明の実施例1の酸化亜鉛粒子内包樹脂粉体Bの走査型電子顕微鏡(SEM)像である。 本発明の実施例1の分散液A~C及び比較例1、2の分散液D、Eそれぞれの分光透過率を示す図である。 本発明の実施例2の樹脂モノマー分散液の体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例2のエマルジョンEの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例2の酸化チタン粒子内包樹脂粉体Eの体積粒度分布及び累積体積粒度分布を示す図である。 本発明の実施例2の酸化チタン粒子内包樹脂粉体Eの透過電子顕微鏡(TEM)像である。 本発明の実施例2の酸化チタン粒子内包樹脂粉体Eの走査型電子顕微鏡(SEM)像である。 本発明の実施例6及び実施例7の酸化亜鉛粒子内包樹脂粉体水系分散体それぞれの分光透過率を示す図である。 本発明の実施例6及び比較例3の水系分散体それぞれの粘度変化を示す図である。 本発明の実施例7及び比較例4の水系分散体それぞれの粘度変化を示す図である。
 本発明の金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料を実施するための形態について説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[金属酸化物内包樹脂粉体]
 本実施形態の金属酸化物内包樹脂粉体は、(メタ)アクリル系樹脂に、平均粒子径が0.003μm以上かつ0.1μm以下の紫外線遮蔽能を有する金属酸化物粒子を内包してなる樹脂粉体であり、この樹脂粉体の平均粒子径は0.1μm以上かつ1μm以下、この金属酸化物粒子は、樹脂粉体の表面にて露出することなく樹脂粉体中に分散した粉体である。
 ここで、金属酸化物粒子が樹脂粉体の表面にて露出することなく樹脂粉体中に分散した状態とは、樹脂粉体中に分散した金属酸化物粒子が、この樹脂粉体中に完全に埋め込まれており、しかも、この樹脂粉体の表面は樹脂により完全に覆われた状態で、この覆われた樹脂の表面には金属酸化物粒子が全く露出していない状態のことである。
 本実施形態の金属酸化物内包樹脂粉体は、平均粒子径が小さいにもかかわらず亜鉛(Zn)溶出量が少ない。しかも、亜鉛(Zn)の溶出量は、樹脂粉体の平均粒子径が小さいほど減少している(後述する表1、2参照)。
 一般的に、粉体の粒子径が小さいほど、即ち樹脂粉体の比表面積が大きいほど、亜鉛の溶出量は増加する傾向にある。したがって、本実施形態の金属酸化物内包樹脂粉体は、比表面積が大きいにもかかわらず亜鉛(Zn)の溶出量を少なく抑えられることから、酸化亜鉛粒子の周囲が樹脂で充分に被覆され、しかも、この金属酸化物内包樹脂粉体の表面に酸化亜鉛微粒子が露出していないということができる。
 (メタ)アクリル系樹脂としては、アクリル酸エステル、メタクリル酸エステル、アクリルスチレン共重合体、アクリルアミド共重合体、アクリルエポキシ共重合体、アクリルウレタン共重合体、アクリルポリエステル重合体、シリコンアクリル共重合体の樹脂の群から選択された1種を単独で重合、または2種以上を重合してなる樹脂が好適に用いられる。
 (メタ)アクリル系モノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-クロロエチル、アクリル酸フェニル、α-クロロアクリル酸メチル、アクリル酸トリフルオロエチル、アクリル酸テトラフルオロプロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸ラウリル、メタクリル酸ステアリル等が挙げられる。
 また、アクリルと重合させるモノマーとしては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル、N-ビニルピロビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、ブタジエン、イソプレン等が挙げられる。
 これらのモノマーは、1種のみを単独で重合してもよく、2種以上を組み合わせて重合してもよい。
 金属酸化物粒子は、酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含む紫外線遮蔽能を有する粒子であり、平均粒子径が0.003μm以上かつ0.1μm以下、より好ましくは0.01μm以上かつ0.05μm以下、さらに好ましくは0.02μm以上かつ0.04μm以下である。
 金属酸化物粒子の平均粒子径が0.003μm未満では、結晶化度が低下して紫外線遮蔽機能を発現しなくなり、また、平均粒子径が0.1μmを超えると、粒子の可視光線に対する散乱係数が大きくなるために、透明性が著しく低下し、その結果、可視光線に対する光透過性が低下し、透明性が悪くなるので、好ましくない。
 この金属酸化物粒子は、オルガノポリシロキサンにより表面処理したものを用いてもよい。
 この金属酸化物粒子の樹脂粉体における含有率は、1質量%以上かつ80質量%以下が好ましく、より好ましくは30質量%以上かつ80質量%以下、さらに好ましくは50質量%以上かつ80質量%以下である。
 ここで、金属酸化物粒子の樹脂粉体における含有率が1質量%未満では、金属酸化物粒子の量が少なすぎて、金属酸化物粒子が有する紫外線遮蔽機能を十分に発現することができなくなり、したがって、紫外線遮蔽機能を十分に発現させようとすると、大量の樹脂粉体が必要となり、化粧品を作製する際の材料設計が極めて難しくなり、一方、含有率が80質量%を超えると、金属酸化物粒子の量が樹脂に対して相対的に高くなり、その結果、樹脂中における金属酸化物粒子の分散性が低下し、組成の均一性が損なわれるので、好ましくない。
 この金属酸化物粒子の樹脂粉体中の分散粒子径は、0.1μm以下が好ましく、より好ましくは0.05μm以下、さらに好ましくは0.03μm以下である。
 ここで、金属酸化物粒子の樹脂粉体中の分散粒子径が0.1μmを超えると、樹脂粉体の可視光線に対する散乱係数が大きく、透明性が著しく低下することとなり、その結果、透明性が低下し、場合によっては失透する虞があるので、好ましくない。
 この樹脂粉体の平均粒子径は、0.1μm以上かつ1μm以下が好ましく、より好ましくは0.2μm以上かつ0.8μm以下、さらに好ましくは0.3μm以上かつ0.6μm以下である。
 ここで、樹脂粉体の平均粒子径が0.1μm未満では、脱水処理が難しくなって凝集し易くなり、その結果、樹脂粉体同士の凝集性が強くなって分散性が低下し、紫外線遮蔽機能を十分に発現することができなくなり、一方、平均粒子径が1μmを超えると、化粧料として用いた場合に、肌における伸びや滑りが低下し、その結果、ざらつき感等が生じて肌触り等が悪化する等、使用感が悪くなるので好ましくない。
 樹脂粉体を純水中に浸漬した場合の純水への金属元素の溶出量は0.05ppm以下、好ましくは0.01ppm以下であり、また、この樹脂粉体を酢酸水溶液中に浸漬した場合の酢酸水溶液への金属元素の溶出量は1.5ppm以下、好ましくは1.0ppm以下である。
 ここで、純水及び酢酸水溶液への金属元素の溶出量を上記の範囲に限定した理由は、この範囲が、この樹脂粉体を化粧料として用いた場合に、この樹脂粉体の成分である金属酸化物が純水等の溶媒中への溶出を抑制することができる範囲だからである。金属元素の溶出量を上記の範囲に限定することで、溶出した金属イオンが化粧料の他の成分と反応して、成分が変化したり、変色したり等の不具合を防止することができる。
 この樹脂粉体では、必要に応じて、その表面を、その樹脂粉体に対して1質量%以上かつ20質量%以下のオルガノシロキサンにより処理したこととしてもよい。
 このオルガノシロキサンとしては、ジアルキルアルコキシシラン化合物が挙げられ、中でも、オルガノポリシロキサン、あるいは、オルガノポリシロキサンをアルキル基、イソシアネート基、エポキシ基、アクリル基、アルキル珪素化合物の群から選択された1種または2種以上により変性した変性オルガノポリシロキサンが好適に用いられ、特に、ジメチルポリシロキサン(シリコーンオイル)、このジメチルポリシロキサン(シリコーンオイル)を変性した変性ジメチルポリシロキサン(変性シリコーンオイル)が好適に用いられる。
 この樹脂粉体の表面をオルガノシロキサンにより処理することにより、この樹脂粉体の成分である金属酸化物の純水等の溶媒中への溶出を、さらに抑制することができる。
[金属酸化物粒子内包樹脂粉体分散液]
 本実施形態の金属酸化物粒子内包樹脂粉体分散液は、上記の金属酸化物粒子内包樹脂粉体を分散媒中に分散してなる分散液である。
 このような分散媒としては、上記の金属酸化物粒子内包樹脂粉体を分散させることができる溶媒であればよく、水の他、例えば、メタノール、エタノール、2-プロパノール、ブタノール、オクタノール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等のエステル類、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン等の環状ポリシロキサン類、アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等の変性ポリシロキサン類が好適に用いられ、これらの溶媒のうち1種のみ、または2種以上を混合して用いることができる。
 この分散液は、上記の金属酸化物粒子内包樹脂粉体を分散媒と混合し、必要に応じて分散剤や水溶性バインダーを混合し、次いで、この混合物にサンドミル、ジルコニアビーズを用いたビーズミル、ボールミル、ホモジナイザー等の分散機や混合機を用いて分散処理を施し、この金属酸化物粒子内包樹脂粉体を分散媒中に分散させることにより、得ることができる。
 また、分散処理に要する時間は、金属酸化物粒子内包樹脂粉体が分散媒中に分散するのに十分な時間であればよく、特に制限はされない。
 この分散液中の金属酸化物粒子内包樹脂粉体の含有率を5質量%に調整したときの、調整後の分散液の波長600nmの光に対する透過率T600は60%以上、波長375nmの光に対する透過率T375と波長600nmの光に対する透過率T600との比T375/T600は0.3以下、かつ波長350nmの光に対する透過率T350と波長600nmの光に対する透過率T600との比T350/T600は0.15以下である。
 分散液の光透過率を上記の範囲とすることにより、可視光線に対する透明性を確保することができる。
[金属酸化物粒子内包樹脂粉体の製造方法]
 本実施形態の金属酸化物粒子内包樹脂粉体の製造方法は、平均粒子径が0.003μm以上かつ0.1μm以下の紫外線遮蔽能を有する金属酸化物粒子を、この金属酸化物粒子に対して1質量%以上かつ50質量%以下の分散剤を含む(メタ)アクリル系樹脂モノマー中に分散させて(メタ)アクリル系樹脂モノマー分散液とし、次いで、この(メタ)アクリル系樹脂モノマー分散液を、この(メタ)アクリル系樹脂モノマー分散液に対して、0.1質量%以上かつ10質量%以下の懸濁保護剤、0.01質量%以上かつ5質量%以下のシリコーン系消泡剤及び0.1質量%以上かつ10質量%以下の架橋剤を含む純水中に懸濁または乳化させて分散粒子径が0.1μm~1μmの懸濁液または乳化液とし、次いで、この懸濁液または乳化液に、この懸濁液または乳化液に対して0.01質量%以上かつ1質量%以下の重合開始剤を添加して懸濁重合または乳化重合を行うことにより、金属酸化物粒子内包樹脂粉体を生成する方法である。
 ここで、この金属酸化物粒子内包樹脂粉体の製造方法について詳細に説明する。
 まず、平均粒子径が0.003μm以上かつ0.1μm以下の紫外線遮蔽能を有する金属酸化物粒子を、分散剤を含む(メタ)アクリル系樹脂モノマー中に分散させ、(メタ)アクリル系樹脂モノマー分散液とする。
 分散剤としては、樹脂モノマーとの親和性に富み、疎水性の高いものがよい。すなわち、分散剤は金属酸化物を被覆することで樹脂モノマーに対する分散を促し、同時に金属酸化物の粒子は比較的に短時間のうちに、ほとんどが単分散状態となり、平均分散粒子径は0.003μm以上かつ0.1μm以下となる。
 また、分散剤は金属酸化物粒子に疎水性を与えるので、金属酸化物粒子が重合体の外に出ず、水相に移行することなく樹脂中に取り込まれるのを助ける。
 このような分散剤としては、例えば、カルボキシメチルセルロースナトリウム等のカルボン酸またはその塩、アルカンスルホン酸ナトリウム等のスルホン酸またはその塩、ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウム等の硫酸エステルまたはその塩、ポリオキシエチレンアルキルフェニルエーテルリン酸やポリオキシエチレンアルキルエーテルリン酸等のリン酸エステルまたはその塩、ラウリルリン酸ナトリウム等のフォスフォン酸またはその塩が挙げられる。
 特に、本実施形態の金属酸化物粒子内包樹脂粉体を化粧料に用いる場合には、これらの分散剤は、同時に化粧料の原料として認められるものでなくてはならない。
 分散剤の金属酸化物粒子に対する添加率は、1質量%以上かつ50質量%以下が好ましい。添加率が1質量%未満では、金属酸化物粒子の表面を覆うには少なすぎて十分な金属酸化物粒子の分散状態を得ることができず、一方、50質量%を超えると、これ以上添加率を上げても、さらに分散性を改善することができず、分散剤が無駄になるからである。
 用いられる分散装置としては、分散系に十分な分散エネルギーを与えられるものであればよく、特に限定されるものではないが、例えば、ボールミル、サンドミル、超音波分散機、ホモジナイザー等が挙げられる。
 分散時間としては、30分~3時間程度が好ましいが、分散状態と製造コストとの兼ね合いで適切な時間を選べばよい。
 以上により、金属酸化物粒子の平均分散粒子径が0.003μm以上かつ0.1μm以下の(メタ)アクリル系樹脂モノマー分散液を得ることができる。
 次いで、この(メタ)アクリル系樹脂モノマー分散液を、懸濁保護剤、シリコーン系消泡剤及び架橋剤を含む純水中に懸濁または乳化させ、分散粒子径が0.1μm~1μmの懸濁液または乳化液とする。
 懸濁保護剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等の非イオン性界面活性剤、あるいはアルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルフェニル硫酸エステル塩等の陰イオン性界面活性剤等が挙げられ、これらの中でも、陰イオン性界面活性剤が好ましく、この陰イオン性界面活性剤としては、アルキルベンゼンスルホン酸塩が好ましい。
 懸濁保護剤の添加量は、上記の(メタ)アクリル系樹脂モノマー分散液に対して0.1質量%以上かつ10質量%以下、より好ましくは、0.1質量%以上かつ2質量%以下である。
 シリコーン系消泡剤としては、オイル型、オイルコンパウンド型、溶液型、粉末型、固形型、エマルジョン型、自己乳化型等が挙げられ、これらの中でも、オイルコンパウンド型が好ましい。
 シリコーン系消泡剤は、上記(メタ)アクリル系樹脂モノマー分散液に対して0.01質量%以上かつ5質量%以下添加することにより、分散機や混合機の攪拌速度を大幅に上げることができ、その結果、樹脂粉体を100nm程度まで小さくすることができ、化粧料等に配合した時に、より透明性にすぐれた、ざらつき感等がない使用感に優れた化粧料を提供することが可能である。また、分散機や混合機の攪拌速度を大幅に上げることができ、その結果金属酸化物粒子内包樹脂粉体の製造効率を向上させることができるので、製造コストを大幅に削減することができる。
 架橋剤としては、2個以上の不飽和二重結合を有する単量体であればよく、特に限定されるものではないが、多官能ビニル単量体や多官能( メタ) アクリル酸エステル酸誘導体等の中から適宜選択して用いることができる。
 より具体的には、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコール系ジ(メタ)アクリレートが挙げられる。
 また、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ( メタ)アクリレート、1,10- デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3-メチル-1,7-オクタンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等のアルカンジオール系ジ(メタ)アクリレートが挙げられる。
 また、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタンジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルプロパントリアクリレート、ジアリルフタレートおよびその異性体、トリアリルイソシアヌレートおよびその誘導体等が挙げられる。
 これらの中でも特に(ポリ) エチレングリコールジ( メタ) アクリレートが好ましい。
 重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、過酸化ベンゾイル、過酸化ラウロイル、t-ブチルハイドロパーオキサイド、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物、アゾビスジイソブチロニトリル、2,2-アゾビス(2-アミジノプロパン)ジハイドロクロライド等のアゾ系開始剤等が挙げられるが、これらの中でも、過硫酸塩が好ましい。
 これら懸濁保護剤、シリコーン系消泡剤及び重合開始剤の含有率を上記の範囲に限定することにより、得られた金属酸化物粒子内包樹脂粉体の平均粒子径を0.1μm以上かつ1μm以下に制御することができる。
 また、(メタ)アクリル系樹脂モノマー分散液に対してシリコーン系消泡剤を0.01質量%以上かつ5質量%以下添加することにより、分散機や混合機の撹拌速度を大幅に上げることができ、その結果、金属酸化物粒子内包樹脂粉体の製造効率を向上させることができ、その結果、製造コストを大幅に削減することができる。
 次いで、上記の懸濁液または乳化液に重合開始剤を添加し、懸濁重合または乳化重合を行う。
 重合方法としては、上記の懸濁液または乳化液を窒素雰囲気下、かつ重合開始剤の存在下にて、攪拌しながら昇温して重合を開始させる方法が好ましい。
 この重合開始温度は50~80℃とするのが好ましい。そして、この温度を保持しながら重合させる時間としては、1~5時間程度が好ましく、未反応の残留モノマーが最小となる時間および重合状態、製造コストとの兼ね合いで適当な時間を選べばよい。
 その後、氷冷または自然冷却し、重合反応を停止させる。
 次いで、得られた重合物から、残留しているモノマー、重合開始剤、界面活性剤を除去するために、アルコールにて十分に洗浄したのち、純水にて洗浄する。
 アルコールは、純水に可溶なもので容易に洗い流せるものであればよく、例えば、エタノール、2-プロパノール等がなどがあげられ、特に2-プロパノールが好ましい。
 洗浄方法は、残留モノマー等を除去できれば特に限定されないが、加圧ろ過や、吸引ろ過、フィルタープレス、遠心分離、限外ろ過、デカンテーション等により洗浄する。洗浄は2-プロパノール濃度計で1%以下、導電率計で20μS/cm以下になるまで行う。
 洗浄終了後、得られた重合物を80℃~100℃で乾燥してアルコールや純水を除去し、次いで得られた重合物を粉砕する。乾燥方法としては、アルコールや純水を除去することのできる方法であればよく、特に限定されないが、大気圧中の乾燥、真空乾燥等が挙げられる。
 粉砕方法は、0.1μm以上かつ1μm以下の大きさに粉砕することができる方法であれば特に限定されないが、ピンミル、ハンマーミル、ジェットミル、インペラーミル等が挙げられる。
 以上により、金属酸化物粒子内包樹脂粉体を生成することができる。
 この金属酸化物粒子内包樹脂粉体は、粉砕工程を経ることにより、乾燥により凝集した各粒子を粉砕し、化粧料に使用した場合の使用感を向上させることができる。
[金属酸化物粒子内包樹脂粉体水系分散体]
 本実施形態の金属酸化物粒子内包樹脂粉体水系分散体は、上記の金属酸化物粒子内包樹脂粉体を1質量%以上かつ80質量%以下、より好ましくは20質量%以上かつ70質量%以下、さらに好ましくは30質量%以上かつ60質量%以下含有するとともに、アルコールを5質量%以上かつ20質量%以下含有してなる水系分散体である。
 この水系分散体では、さらに、水溶性高分子を0.001質量%以上かつ10質量%以下、より好ましくは0.005質量%以上かつ5質量%以下、さらに好ましくは0.01質量%以上かつ3質量%以下含有してなることとしてもよい。この場合、金属酸化物粒子内包樹脂粉体、アルコール及び水溶性高分子各々の成分の含有率の合計が100質量%を超えないように、各成分の含有率を調整する必要がある。
 アルコールとしては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、グリセリン、1,3-ブチレングリコール、プロピレングリコール、ソルビトール等の炭素数1~6の1価アルコールまたは多価アルコールが挙げられ、中でも1価アルコール、特にエタノールが好ましい。
 この水系分散体が水溶性高分子を含まない場合、このアルコールの含有率は、5質量%以上かつ20質量%以下が好ましく、より好ましくは10質量%以上かつ20質量%以下である。
 特に、アルコールの含有率を10質量%以上かつ20質量%以下とした場合、金属酸化物粒子内包樹脂粉体の分散性及び経時安定性を向上させることができるので好ましい。
 また、この水系分散体が水溶性高分子を含む場合、この水溶性高分子としては、化粧品用途で使用できるものであれば特に限定されないが、アラビアゴム、アルギン酸ナトリウム、カゼイン、カラギーナン、ガラクタン、カルボキシビニルポリマー、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、カルボキシメチルデンプン、寒天、キサンタンガム、クインスシード、グアーガム、コラーゲン、ゼラチン、セルロース、デキストラン、デキストリン、トラガカントガム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒアルロン酸ナトリウムペクチン、プルラン、メチルセルロース、メチルヒドロキシプロピルセルロース等が挙げられる。
 水溶性高分子は分散剤、粘度調整の役割を有し、添加することによって金属酸化物粒子内包樹脂粉体の分散性及び経時安定性も向上する。
 この水系分散体が水溶性高分子を含む場合のアルコールの含有率は、5質量%以上かつ20質量%以下が好ましく、15質量%以上かつ20質量%以下がより好ましい。
 ここで、水系分散体が水溶性高分子を含む場合のアルコールの含有率を5質量%以上かつ20質量%以下とした理由は、含有率が5質量%未満では、アルコールが少なすぎるために、水溶性高分子が均一にアルコール浸潤できずに水分にて不均一に膨潤することとなり、その結果、金属酸化物粒子内包樹脂粉体の分散性が低下して取扱いが困難となり、さらには経時安定性が低下するので、好ましくない。また、含有率が20質量%を超えると、水系分散体全体の粘性が高くなり、金属酸化物粒子内包樹脂粉体の分散安定性が低下するとともに、経時安定性も低下するので、好ましくない。
 この金属酸化物粒子内包樹脂粉体水系分散体は、アルコールを含む溶媒またはアルコールと水溶性高分子とを含む混合物に、上記の金属酸化物粒子内包樹脂粉体を混合し、次いで、水を混合して分散させることにより、得ることができる。水の量は適宜調整すればよいが、15質量%以上かつ94質量%以下の範囲が好ましい。
[化粧料]
 本実施形態の化粧料は、上述した金属酸化物内包樹脂粉体、金属酸化物粒子内包樹脂粉体分散液、金属酸化物粒子内包樹脂粉体水系分散体、の群から選択される1種または2種以上を、金属酸化物粒子内包樹脂粉体換算で1質量%以上かつ50質量%以下含有した化粧料であり、この金属酸化物粒子内包樹脂粉体を上記の範囲内で含むことにより、白化の虞もなく透明感を十分に確保することができ、しかも、ざらつき感等が無く、使用感に優れている。
 この化粧料は、上述した金属酸化物内包樹脂粉体、金属酸化物粒子内包樹脂粉体分散液、金属酸化物粒子内包樹脂粉体水系分散体、の群から選択される1種または2種以上を、乳液、クリーム、ファンデーション、口紅、頬紅、アイシャドー等に従来通りに配合することにより得ることができる。
 また、従来では処方が困難であった化粧水や日焼け止めジェル等の水系化粧料に、上述した金属酸化物内包樹脂粉体、金属酸化物粒子内包樹脂粉体分散液及び金属酸化物粒子内包樹脂粉体水系分散体のいずれか1種または2種以上を配合することにより、金属酸化物の溶出が抑制され、紫外線遮蔽機能、透明感、使用感に優れた化粧料を得ることができる。
 また、上述した金属酸化物内包樹脂粉体、金属酸化物粒子内包樹脂粉体分散液及び金属酸化物粒子内包樹脂粉体水系分散体のいずれか1種または2種以上に有機系紫外線吸収剤、例えば、アゾベンゼン等のアゾ染料を添加することにより、紫外線吸収能及び使用感に優れた化粧料を提供することができる。
 さらに、本実施形態の化粧料を化粧品の成分として用いることにより、透明感及び使用感に優れたスキンケア化粧品、メイクアップ化粧品、ボディケア化粧品等の各種化粧品を提供することができる。特に、紫外線遮蔽能が必要とされるスキンケア化粧品のホワイトニング、メイクアップ化粧品のベースメイク、ボディケア化粧品のサンスクリーン等に用いた場合、紫外線遮蔽能、透明感及び使用感に優れた化粧品を提供することができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
[実施例1]
「樹脂モノマー分散液の作製」
 酸化亜鉛微粒子(平均粒子径:0.02μm)200質量部、メタクリル酸メチル(MMA:樹脂モノマー)188質量部、リン酸エステル型界面活性剤(分散剤)12質量部を混合し、サンドミルを用いて2時間分散処理を行い、酸化亜鉛微粒子をメタクリル酸メチル(MMA)中に分散させた樹脂モノマー分散液を得た。この分散液の分散粒子径を動的光散乱式粒度分布測定装置 LB-550(堀場製作所社製)を用いて測定した結果、分散粒子径は85.0nmであった。体積粒度分布及び累積体積粒度分布を図1に示す。
「エマルジョンの作製」
 上記の樹脂モノマー分散液105.0質量部、純水229.5質量部、ドデシルベンゼンスルホン酸ナトリウム0.5質量部、エチレングリコールジメタクリレート14.0質量部、シリコーン系消泡剤1.0質量部を混合し、ホモジナイザーを用いて攪拌し、エマルジョンを得た。
 この撹拌の際の回転数と時間を制御することにより、エマルジョンの粒子径を制御した。ここでは、(a)10000rpmにて20分撹拌、(b)4500rpmにて20分撹拌、(c)1500rpmにて20分撹拌、の3条件にて制御することにより、エマルジョンA(10000rpm)、エマルジョンB(4500rpm)及びエマルジョンC(1500rpm)を得た。
 得られたエマルジョンA~Cの分散粒子径を動的光散乱式粒度分布測定装置 LB-550(堀場製作所社製)を用いて測定した。その結果、エマルジョンAの分散粒子径は300nm、エマルジョンBの分散粒子径は600nm、エマルジョンCの分散粒子径は900nmであった。エマルジョンAの体積粒度分布及び累積体積粒度分布を図2に、エマルジョンBの体積粒度分布及び累積体積粒度分布を図3に、エマルジョンCの体積粒度分布及び累積体積粒度分布を図4に、それぞれ示す。
「樹脂粉体の作製」
 上記のエマルジョンA、B、Cそれぞれを1000.0質量部、純水249.7質量部、過硫酸カリウム0.3質量部を混合し、得られた3種類の混合物を攪拌機及び温度計を備えた反応装置に移して窒素置換を1時間行った。次いで、65℃に昇温し、この65℃にて3時間保持し、重合反応を行った。その後、氷冷して重合反応を停止させ、得られた重合物を2-プロパノールにて洗浄し、さらに純水にて洗浄した後、90℃にて乾燥させた。このようにして得られた乾燥物をハンマーミルにて粉砕し、エマルジョンA、B及びCそれぞれを由来とする3種類の酸化亜鉛粒子内包樹脂粉体A、B及びCを得た。
 これら樹脂粉体A、B及びCの分散粒子径を動的光散乱式粒度分布測定装置 LB-550(堀場製作所社製)を用いて測定した。ここでは、酸化亜鉛粒子内包樹脂粉体A、B及びC各々について、樹脂粉体5質量部を、ポリエーテル変性シリコーン(分散剤)10質量部をデカメチルシクロペンタシロキサン(環状シリコーン)85質量部に溶解した溶液に投入し、分散機を用いて分散させて各分散液を作製し、各分散液中の樹脂粉体の分散粒子径を測定した。
 その結果、エマルジョンA由来の酸化亜鉛粒子内包樹脂粉体Aの分散粒子径は200nm、エマルジョンB由来の酸化亜鉛粒子内包樹脂粉体Bの分散粒子径は500nm、エマルジョンC由来の酸化亜鉛粒子内包樹脂粉体Cの分散粒子径は800nmであった。酸化亜鉛粒子内包樹脂粉体Aの体積粒度分布及び累積体積粒度分布を図5に、酸化亜鉛粒子内包樹脂粉体Bの体積粒度分布及び累積体積粒度分布を図6に、酸化亜鉛粒子内包樹脂粉体Cの体積粒度分布及び累積体積粒度分布を図7に、それぞれ示す。
 また、酸化亜鉛粒子内包樹脂粉体Bの透過電子顕微鏡(TEM)像を図8に、走査型電子顕微鏡(SEM)像を図9に、それぞれ示す。
[比較例1]
 実施例1で得られた樹脂モノマー分散液105.0質量部、純水229.5質量部、ドデシルベンゼンスルホン酸ナトリウム0.5質量部、エチレングリコールジメタクリレート14.0質量部を混合し、ホモジナイザーを用いて、1500rpmにて20分撹拌し、エマルジョンDを得た。
 なお、撹拌条件のうち、10000rpmにて20分撹拌、4500rpmにて20分撹拌の2条件では、泡立ちしてしまったためにエマルジョンを得ることができなかった。
 得られたエマルジョンDの分散粒子径を動的光散乱式粒径分布測定装置を用いて測定した結果、1400nmであった。
 上記のエマルジョンDを用いて、実施例1に準じて重合を行い、エマルジョンDを由来とする酸化亜鉛粒子内包樹脂粉体Dを得た。
 この樹脂粉体Dの分散粒子径を実施例1に準じて測定した結果、1300nmであった。
[比較例2]
 純水229.5質量部、ドデシルベンゼンスルホン酸ナトリウム0.5質量部、メタクリル酸メチル(MMA:樹脂モノマー)105.0質量部、エチレングリコールジメタクリレート14.0質量部、シリコーン系消泡剤1.0質量部を混合し、ホモジナイザーを用いて、4500rpmにて20分撹拌し、エマルジョンEを得た。
 得られたエマルジョンEの分散粒子径を実施例1に準じて測定した結果、600nmであった。
 上記のエマルジョンEを用いて、実施例1に準じて重合を行い、エマルジョンEを由来とする樹脂粉体Eを得た。
 この樹脂粉体Eの分散粒子径を実施例1に準じて測定した結果、500nmであった。
[樹脂粉体の評価]
(1)亜鉛溶出試験
 試験方法A:純水(PH7.4)への溶出
 実施例1で得られた酸化亜鉛粒子内包樹脂粉体A、B、Cそれぞれ0.5gを純水(PH7.4)199.5gにマグネチックスターラーにて分散させ、5分間攪拌を行った後、1時間静置し、3種類の試料を作製した。その後、これら3種類の試料各々の白濁した上澄みを採取し、遠心分離機を用いて、21000rpmにて1時間沈降分離を行い、透明な上澄みを回収した。この回収した上澄みをフィルター(目開き:0.025μm)を用いて濾過し、濾過液の溶出亜鉛の定量を原子吸光法にて行った。
 ここでは、比較例として、比較例1で得られた酸化亜鉛粒子内包樹脂粉体Dと、未処理の酸化亜鉛と、シリカ・シリコーン処理を施した表面処理酸化亜鉛を、上記と同様に処理し、溶出亜鉛の定量を行った。
 表1に、測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 試験方法B:希酢酸(PH5.0)への溶出
 実施例1で得られた酸化亜鉛粒子内包樹脂粉体A、B、Cそれぞれ0.5gを希酢酸(PH5.0)199.5gにマグネチックスターラーにて分散させ、5分間攪拌を行った後、1時間静置し、3種類の試料を作製した。その後、これら3種類の試料各々の白濁した上澄みを採取し、遠心分離機を用いて、21000rpmにて1時間沈降分離を行い、透明な上澄みを回収した。この回収した上澄みをフィルター(目開き:0.025μm)を用いて濾過し、濾過液の溶出亜鉛の定量を原子吸光法にて行った。
 ここでは、比較例として、比較例1で得られた酸化亜鉛粒子内包樹脂粉体Dと、未処理の酸化亜鉛と、シリカ・シリコーン処理を施した表面処理酸化亜鉛を、上記と同様に処理し、溶出亜鉛の定量を行った。
 表2に、測定結果を示す。
Figure JPOXMLDOC01-appb-T000002
(2)分光透過率
 実施例1で得られた酸化亜鉛粒子内包樹脂粉体A、B及びC、及び比較例1、2で得られた樹脂粉体D、E各々を、樹脂粉体5.0質量部、デカメチルシクロペンタシロキサン(環状シリコーン)90.0質量部、ポリエーテル変性シリコーン5.0質量部の割合で混合し、サンドミルを用いて2500rpmで2時間分散処理を行い、樹脂粉体A~E各々の分散液A~Eを得た。
 次いで、これら分散液A~E各々を50μmの分光光度計用セルに収納し、分光光度計を用いて分光透過率の測定を行った。
 図10に、分散液A~Eそれぞれの分光透過率を示す。
[実施例2]
「樹脂モノマー分散液の作製」
 酸化チタン微粒子(平均粒子径:0.02μm)120質量部、メタクリル酸メチル(MMA:樹脂モノマー)256質量部、リン酸エステル型界面活性剤(分散剤)24質量部を混合し、サンドミルを用いて2時間分散処理を行い、酸化チタン微粒子をメタクリル酸メチル(MMA)中に分散させた樹脂モノマー分散液を得た。この分散液の分散粒子径を動的光散乱式粒径分布測定装置を用いて測定した結果、分散粒子径は55nmであった。この樹脂モノマー分散液の体積粒度分布及び累積体積粒度分布を図11に示す。
「エマルジョンの作製」
 上記の樹脂モノマー分散液105.0質量部、純水229.5質量部、ドデシルベンゼンスルホン酸ナトリウム0.5質量部、エチレングリコールジメタクリレート14.0質量部、シリコーン系消泡剤1.0質量部を混合し、ホモジナイザーを用いて4500rpmにて20分撹拌し、エマルジョンEを得た。
 このエマルジョンEの分散粒子径を動的光散乱式粒径分布測定装置を用いて測定した結果、350nmであった。エマルジョンEの体積粒度分布及び累積体積粒度分布を図12に示す。
「樹脂粉体の作製」
 上記のエマルジョンEを1000.0質量部、純水249.7質量部、過硫酸カリウム0.3質量部を混合し、得られた混合物を攪拌機及び温度計を備えた反応装置に移して窒素置換を1時間行った。次いで、65℃に昇温し、この65℃にて3時間保持し、重合反応を行った。その後、氷冷して重合反応を停止させ、得られた重合物を2-プロパノールにて洗浄し、さらに純水にて洗浄した後、90℃にて乾燥させた。このようにして得られた乾燥物をハンマーミルにて粉砕し、酸化チタン粒子内包樹脂粉体Eを得た。
 この酸化チタン粒子内包樹脂粉体Eの分散粒子径を実施例1に準じて測定した結果、280nmであった。この酸化チタン粒子内包樹脂粉体Eの体積粒度分布及び累積体積粒度分布を図13に、それぞれ示す。
 また、酸化チタン粒子内包樹脂粉体Eの透過電子顕微鏡(TEM)像を図14に、走査型電子顕微鏡(SEM)像を図15に、それぞれ示す。
[実施例3]
「樹脂モノマー分散液の作製」
 酸化セリウム微粒子(平均粒子径:0.03μm)160質量部、メタクリル酸メチル(MMA:樹脂モノマー)228質量部、リン酸エステル型界面活性剤(分散剤)12質量部を混合し、サンドミルを用いて2時間分散処理を行い、酸化セリウム微粒子をメタクリル酸メチル(MMA)中に分散させた樹脂モノマー分散液を得た。この分散液の分散粒子径を実施例1に準じて測定した結果、分散粒子径は80.0nmであった。
「樹脂粉体の作製」
 上記の樹脂モノマー分散液を用いて、実施例1に準じてエマルジョンを得た。
 ここでは、4500rpmにて20分撹拌した。
 次いで、このエマルジョンを用いて、実施例1に準じて酸化セリウム粒子内包樹脂粉体を得た。
 この樹脂粉体の分散粒子径を実施例1に準じて測定した結果、400nmであった。
[実施例4]
「樹脂モノマー分散液の作製」
 酸化鉄微粒子(平均粒子径:0.05μm)160質量部、メタクリル酸メチル(MMA:樹脂モノマー)228質量部、リン酸エステル型界面活性剤(分散剤)12質量部を混合し、サンドミルを用いて2時間分散処理を行い、酸化鉄微粒子をメタクリル酸メチル(MMA)中に分散させた樹脂モノマー分散液を得た。この分散液の分散粒子径を実施例1に準じて測定した結果、分散粒子径は95.0nmであった。
「樹脂粉体の作製」
 上記の樹脂モノマー分散液を用いて、実施例1に準じてエマルジョンを得た。
 ここでは、4500rpmにて20分撹拌した。
 次いで、このエマルジョンを用いて、実施例1に準じて酸化鉄粒子内包樹脂粉体を得た。
 この樹脂粉体の分散粒子径を実施例1に準じて測定した結果、500nmであった。
[実施例5]
「樹脂モノマー分散液の作製」
 酸化亜鉛微粒子(平均粒子径:0.02μm)120質量部、酸化チタン微粒子(平均粒子径:0.04μm)80質量部、メタクリル酸メチル(MMA:樹脂モノマー)188質量部、リン酸エステル型界面活性剤(分散剤)12質量部を混合し、サンドミルを用いて2時間分散処理を行い、酸化亜鉛微粒子及び酸化チタン微粒子をメタクリル酸メチル(MMA)中に分散させた樹脂モノマー分散液を得た。この分散液の分散粒子径を動的光散乱式粒径分布測定装置を用いて測定した結果、分散粒子径は80.0nmであった。
「樹脂粉体の作製」
 上記の樹脂モノマー分散液を用いて、実施例1に準じてエマルジョンを得た。
 ここでは、4500rpmにて20分撹拌した。
 次いで、このエマルジョンを用いて、実施例1に準じて酸化亜鉛粒子及び酸化チタン粒子内包樹脂粉体を得た。
 この樹脂粉体の分散粒子径を実施例1に準じて測定した結果、500nmであった。
[実施例6]
「樹脂粉体水系分散体の作製」
 エタノール150質量部、純水450質量部、実施例1の酸化亜鉛粒子内包樹脂粉体B400質量部を、ホモミキサーを用いて十分攪拌して混合し、酸化亜鉛微粒子内包樹脂粉体水系分散体を得、この水系分散体の分光透過率を実施例1に準じて測定した。この樹脂粉体水系分散体の分光透過率を図16に示す。
 次いで、この樹脂粉体水系分散体の粘度を測定した。
 ここでは、得られた水系分散体25質量部、純水25質量部、クリスタルジェル(水系ジェル:株式会社ピノア社製)50質量部を、ホモミキサーにて十分混合し、混合直後の混合物の粘度をB型粘度計(東機産業株式会社製)にて測定した。その後、この混合物を25℃にて120時間静置し、120時間静置後の混合物の粘度をB型粘度計(東機産業株式会社製)にて測定した。この混合直後と120時間後との間の粘度の変化率は25.6%であった。粘度の測定結果を図17に示す。
[実施例7]
 カルボキシメチルセルロース20質量部及びエタノール50質量部を純水530質量部に加え、ケンミキサーを用いて攪拌して十分に溶解させた後、実施例1の酸化亜鉛粒子内包樹脂粉体Bを400質量部加え、再度ケンミキサーを用いて十分攪拌して混合し、酸化亜鉛微粒子内包樹脂粉体水系分散体を得た。次いで、この水系分散体の分光透過率を実施例1に準じて測定した。この樹脂粉体水系分散体の分光透過率を図16に示す。
 次いで、この樹脂粉体水系分散体の粘度を実施例6に準じて測定した。その結果、この樹脂粉体水系分散体の混合直後と120時間後との間の粘度の変化率は24.2%であった。粘度の測定結果を図18に示す。
[比較例3]
 実施例6にて、酸化亜鉛粒子内包樹脂粉体Bの代わりに酸化亜鉛微粒子(平均粒径0.02μm)を用いた以外は、実施例6に準じて比較例3の酸化亜鉛微粒子水系分散体を得た。
 次いで、この酸化亜鉛微粒子水系分散体の粘度を実施例6に準じて測定した。その結果、この酸化亜鉛微粒子水系分散体の混合直後と120時間後との間の粘度の変化率は96.5%と非常に大きかった。粘度の測定結果を図17に示す。
[比較例4]
 実施例7にて、酸化亜鉛粒子内包樹脂粉体Bの代わりに酸化亜鉛微粒子(平均粒径0.02μm)を用いた以外は、実施例7に準じて比較例4の酸化亜鉛微粒子水系分散体を得た。
 次いで、この酸化亜鉛微粒子水系分散体の粘度を実施例6に準じて測定した。その結果、この酸化亜鉛微粒子水系分散体の混合直後と120時間後との間の粘度の変化率は94.4%と非常に大きかった。粘度の測定結果を図18に示す。
 本発明の金属酸化物粒子内包樹脂粉体は、粉体自体を微粒子化することができ、紫外線の吸収性能を向上させることができ、可視光線に対する透明性を向上させることができ、また、金属酸化物粒子が樹脂粉体の表面に露出することがないので、この樹脂粉体を溶媒中に分散した場合においても、この粒子の成分である金属酸化物の溶媒中への溶出を抑制することができ、油中水型(W/O型)はもちろんのこと水中油型(O/W)の化粧品に対しても適用することができる。

Claims (7)

  1.  (メタ)アクリル系樹脂に紫外線遮蔽能を有する金属酸化物粒子を内包してなる樹脂粉体であって、
     前記樹脂粉体の平均粒子径は0.1μm以上かつ1μm以下であり、
     前記金属酸化物粒子は、酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄の群から選択される1種または2種以上を含みかつ平均粒子径が0.003μm以上かつ0.1μm以下の粒子であり、
     前記樹脂粉体における前記金属酸化物粒子の含有率は1質量%以上かつ80質量%以下であり、
     前記金属酸化物粒子は、前記樹脂粉体の表面にて露出することなく該樹脂粉体中に分散してなることを特徴とする金属酸化物粒子内包樹脂粉体。
  2.  前記樹脂粉体を純水中に浸漬した場合の前記純水への金属元素の溶出量は0.05ppm以下、前記樹脂粉体を酢酸水溶液中に浸漬した場合の前記酢酸水溶液への金属元素の溶出量は1.5ppm以下であることを特徴とする請求項1記載の金属酸化物粒子内包樹脂粉体。
  3.  請求項1または2記載の金属酸化物粒子内包樹脂粉体を分散媒中に分散してなる分散液であって、
     この分散液中の前記金属酸化物粒子内包樹脂粉体の含有率を5質量%に調整したときの、調整後の分散液の波長600nmの光に対する透過率T600が60%以上、波長375nmの光に対する透過率T375と波長600nmの光に対する透過率T600との比T375/T600が0.3以下、かつ波長350nmの光に対する透過率T350と波長600nmの光に対する透過率T600との比T350/T600が0.15以下であることを特徴とする金属酸化物粒子内包樹脂粉体分散液。
  4.  請求項1または2記載の金属酸化物粒子内包樹脂粉体を1質量%以上かつ80質量%以下、アルコールを5質量%以上かつ20質量%以下含有してなることを特徴とする金属酸化物粒子内包樹脂粉体水系分散体。
  5.  さらに、水溶性高分子を0.001質量%以上かつ10質量%以下含有してなることを特徴とする請求項4記載の金属酸化物粒子内包樹脂粉体水系分散体。
  6.  平均粒子径が0.003μm以上かつ0.1μm以下の紫外線遮蔽能を有する金属酸化物粒子を、この金属酸化物粒子に対して1質量%以上かつ50質量%以下の分散剤を含む(メタ)アクリル系樹脂モノマー中に分散させて(メタ)アクリル系樹脂モノマー分散液とし、
     次いで、この(メタ)アクリル系樹脂モノマー分散液を、この(メタ)アクリル系樹脂モノマー分散液に対して0.1質量%以上かつ10質量%以下の懸濁保護剤、0.01質量%以上かつ5質量%以下のシリコーン系消泡剤及び0.1質量%以上かつ10質量%以下の架橋剤を含む純水中に懸濁または乳化させて懸濁液または乳化液とし、
     次いで、この懸濁液または乳化液に、この懸濁液または乳化液に対して0.01質量%以上かつ1質量%以下の重合開始剤を添加して懸濁重合または乳化重合を行い、金属酸化物粒子内包樹脂粉体を生成することを特徴とする金属酸化物粒子内包樹脂粉体の製造方法。
  7.  請求項1または2記載の金属酸化物粒子内包樹脂粉体、請求項3記載の金属酸化物粒子内包樹脂粉体分散液、請求項4または5記載の金属酸化物粒子内包樹脂粉体水系分散体、の群から選択される1種または2種以上を、前記金属酸化物粒子内包樹脂粉体換算で1質量%以上かつ50質量%以下含有してなることを特徴とする化粧料。
PCT/JP2010/065775 2009-09-15 2010-09-14 金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料 WO2011034032A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/395,562 US20120177707A1 (en) 2009-09-15 2010-09-14 Metallic oxide particle-containing resin powder, dispersion liquid and aqueous dispersion element including the same, method of manufacturing metallic oxide particle-containing resin powder, and cosmetic material
KR1020127006734A KR101708082B1 (ko) 2009-09-15 2010-09-14 금속 산화물 입자 내포 수지 분체와 이를 포함한 분산액 및 수계 분산체 및 금속 산화물 입자 내포 수지 분체의 제조 방법 및 화장료
CN201080041119.3A CN102498169B (zh) 2009-09-15 2010-09-14 金属氧化物粒子内包树脂粉体及其制造方法、包含金属氧化物粒子内包树脂粉体的分散液和水系分散体以及化妆料
EP10817145.5A EP2479213B1 (en) 2009-09-15 2010-09-14 Resin powder that contains metal oxide encapsulated therein, liquid dispersion and aqueous dispersion that contain same, process for production of resin powder that contains metal oxide encapsulated therein, and cosmetics
JP2011531923A JP5834916B2 (ja) 2009-09-15 2010-09-14 金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料
US14/613,921 US20150147370A1 (en) 2009-09-15 2015-02-04 Method of manufacturing metallic oxide particle-containing resin powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-213235 2009-09-15
JP2009213235 2009-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/395,562 A-371-Of-International US20120177707A1 (en) 2009-09-15 2010-09-14 Metallic oxide particle-containing resin powder, dispersion liquid and aqueous dispersion element including the same, method of manufacturing metallic oxide particle-containing resin powder, and cosmetic material
US14/613,921 Continuation US20150147370A1 (en) 2009-09-15 2015-02-04 Method of manufacturing metallic oxide particle-containing resin powder

Publications (1)

Publication Number Publication Date
WO2011034032A1 true WO2011034032A1 (ja) 2011-03-24

Family

ID=43758636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065775 WO2011034032A1 (ja) 2009-09-15 2010-09-14 金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料

Country Status (6)

Country Link
US (2) US20120177707A1 (ja)
EP (1) EP2479213B1 (ja)
JP (1) JP5834916B2 (ja)
KR (1) KR101708082B1 (ja)
CN (1) CN102498169B (ja)
WO (1) WO2011034032A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102296A1 (ja) * 2011-01-25 2012-08-02 住友大阪セメント株式会社 紫外線遮蔽複合粒子とその製造方法及び紫外線遮蔽複合粒子含有分散液及び水系分散体及び油系分散体並びに化粧料
WO2012102293A1 (ja) * 2011-01-25 2012-08-02 住友大阪セメント株式会社 有機系紫外線吸収剤含有樹脂粒子とその製造方法及び有機系紫外線吸収剤含有樹脂粒子分散液及び水系分散体及び油系分散体並びに化粧料
WO2012157757A1 (ja) 2011-05-18 2012-11-22 住友大阪セメント株式会社 紫外線遮蔽剤及びその製造方法、紫外線遮蔽剤含有分散液、並びに化粧料
JP2012240948A (ja) * 2011-05-18 2012-12-10 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽剤とそれを含有する紫外線遮蔽剤含有分散液、及び化粧料
JP2013155357A (ja) * 2012-01-31 2013-08-15 Sumitomo Osaka Cement Co Ltd 複合粒子と複合粒子含有分散液及び複合粒子含有樹脂組成物及び複合粒子含有樹脂膜並びに化粧料
JP2014101283A (ja) * 2012-11-16 2014-06-05 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽粒子と紫外線遮蔽分散液及び化粧料並びに紫外線遮蔽粒子の製造方法
WO2024237262A1 (ja) * 2023-05-15 2024-11-21 テイカ株式会社 酸化亜鉛粉体及びその製造方法、並びに表面処理酸化亜鉛粉体及びそれを含む組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435733B (zh) * 2013-08-23 2016-06-15 南京大学 一种亲水性高比表面积磁性树脂及其制备方法和应用于快速萃取水体中邻苯二甲酸酯的方法
CN107529715A (zh) * 2015-04-17 2018-01-02 住友化学株式会社 包衣水稻种子及其制备方法
US11497695B2 (en) * 2015-08-28 2022-11-15 Sumitomo Osaka Cement Co., Ltd. Zinc oxide powder, dispersion, composition, and cosmetic
FR3041528A1 (fr) * 2015-09-25 2017-03-31 Rhodia Operations Composition cosmetique photoprotectrice
EP3467061B1 (en) * 2016-06-02 2021-12-08 M. Technique Co., Ltd. Ultraviolet and/or near-infrared blocking agent composition for transparent material
US11141363B2 (en) * 2017-01-06 2021-10-12 Sumitomo Osaka Cement Co., Ltd. Ultraviolet-shielding particle coated with silicon oxide, aqueous composition containing ultraviolet-shielding particle coated with silicon oxide, and cosmetic
JP6747324B2 (ja) 2017-02-06 2020-08-26 三菱マテリアル株式会社 金属酸化物微粒子の製造方法
JP6933156B2 (ja) 2018-02-14 2021-09-08 三菱マテリアル株式会社 金属酸化物分散液の製造方法
JP7020223B2 (ja) * 2018-03-22 2022-02-16 三菱マテリアル株式会社 金属酸化物微粒子とその製造方法、赤外線遮蔽膜形成用分散液とその製造方法、赤外線遮蔽膜の形成方法並びに赤外線遮蔽膜付き基材
KR102342903B1 (ko) * 2019-02-28 2021-12-24 코스맥스 주식회사 세륨옥사이드를 포함하는 광차단용 화장료 조성물
CN115372117B (zh) * 2022-08-22 2024-12-06 芜湖天弋能源科技有限公司 一种碳表面粉末材料的粒径分布测试前处理分散剂及其使用方法
KR20240079847A (ko) 2022-11-29 2024-06-05 고등기술연구원연구조합 산화아연 입자 및 산화아연 입자를 포함하는 분산액 제조 방법
CN117511100A (zh) * 2023-11-22 2024-02-06 安徽新涛光电科技有限公司 紫外线屏蔽板及制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208864A (ja) * 1996-02-07 1997-08-12 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽性塗料及び紫外線遮蔽膜付き加工品
JPH09208437A (ja) * 1996-02-07 1997-08-12 Sumitomo Osaka Cement Co Ltd 化粧料
JP2003073407A (ja) * 2001-08-29 2003-03-12 Pacific Corp 紫外線散乱用無機/高分子複合粒子及びその製造方法
JP3469641B2 (ja) 1994-08-12 2003-11-25 住友大阪セメント株式会社 球状樹脂粉体およびその製造方法ならびに化粧料
JP2007008833A (ja) * 2005-06-29 2007-01-18 Pola Chem Ind Inc コーティング粉体及びそれを含有する組成物
JP2008239897A (ja) * 2007-03-28 2008-10-09 Hiroshima Univ ポリマー微粒子
JP2009155622A (ja) * 2007-12-07 2009-07-16 Nippon Shokubai Co Ltd ポリマー被覆金属酸化物微粒子水分散体およびそれを用いた化粧料
JP2009213235A (ja) 2008-03-04 2009-09-17 Hitachi Ltd 回転電機およびそれを用いたハイブリッド自動車

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116240A (ja) * 1997-10-15 1999-04-27 Nippon Shokubai Co Ltd 紫外線吸収性微粒子およびその用途
US7153573B2 (en) * 2002-08-08 2006-12-26 Kao Corporation Polymer composite particle comprising metal oxide and silicone and/or fluorine and method of producing the same
JP4593151B2 (ja) * 2004-03-31 2010-12-08 花王株式会社 化粧料
JP5137503B2 (ja) * 2006-09-15 2013-02-06 株式会社日本触媒 化粧料用紫外線カット剤およびそれを用いた化粧料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469641B2 (ja) 1994-08-12 2003-11-25 住友大阪セメント株式会社 球状樹脂粉体およびその製造方法ならびに化粧料
JPH09208864A (ja) * 1996-02-07 1997-08-12 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽性塗料及び紫外線遮蔽膜付き加工品
JPH09208437A (ja) * 1996-02-07 1997-08-12 Sumitomo Osaka Cement Co Ltd 化粧料
JP3205249B2 (ja) 1996-02-07 2001-09-04 住友大阪セメント株式会社 化粧料
JP2003073407A (ja) * 2001-08-29 2003-03-12 Pacific Corp 紫外線散乱用無機/高分子複合粒子及びその製造方法
JP2007008833A (ja) * 2005-06-29 2007-01-18 Pola Chem Ind Inc コーティング粉体及びそれを含有する組成物
JP2008239897A (ja) * 2007-03-28 2008-10-09 Hiroshima Univ ポリマー微粒子
JP2009155622A (ja) * 2007-12-07 2009-07-16 Nippon Shokubai Co Ltd ポリマー被覆金属酸化物微粒子水分散体およびそれを用いた化粧料
JP2009213235A (ja) 2008-03-04 2009-09-17 Hitachi Ltd 回転電機およびそれを用いたハイブリッド自動車

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102296A1 (ja) * 2011-01-25 2012-08-02 住友大阪セメント株式会社 紫外線遮蔽複合粒子とその製造方法及び紫外線遮蔽複合粒子含有分散液及び水系分散体及び油系分散体並びに化粧料
WO2012102293A1 (ja) * 2011-01-25 2012-08-02 住友大阪セメント株式会社 有機系紫外線吸収剤含有樹脂粒子とその製造方法及び有機系紫外線吸収剤含有樹脂粒子分散液及び水系分散体及び油系分散体並びに化粧料
US9168208B2 (en) 2011-01-25 2015-10-27 Sumitomo Osaka Cement Co., Ltd. Ultraviolet-shielding composite particles, method for manufacturing the same, ultraviolet-shielding composite particle-containing dispersion liquid, aqueous dispersion element, oil-based dispersion element and cosmetic material
WO2012157757A1 (ja) 2011-05-18 2012-11-22 住友大阪セメント株式会社 紫外線遮蔽剤及びその製造方法、紫外線遮蔽剤含有分散液、並びに化粧料
JP2012240948A (ja) * 2011-05-18 2012-12-10 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽剤とそれを含有する紫外線遮蔽剤含有分散液、及び化粧料
CN103547649A (zh) * 2011-05-18 2014-01-29 住友大阪水泥股份有限公司 紫外线遮蔽剂及其制造方法、含有紫外线遮蔽剂的分散液、以及化妆料
EP2711404A4 (en) * 2011-05-18 2014-11-19 Sumitomo Osaka Cement Co Ltd ULTRAVIOLET PROTECTIVE AGENT, PROCESS FOR PRODUCTION THEREOF, DISPERSION LIQUID CONTAINING THE ULTRAVIOLET PROTECTIVE AGENT, AND COSMETIC PREPARATION
US9326920B2 (en) 2011-05-18 2016-05-03 Sumitomo Osaka Cement Co., Ltd. Ultraviolet-shielding agent, method for producing the same, ultraviolet-shielding agent-containing dispersion liquid, and cosmetic preparation
CN103547649B (zh) * 2011-05-18 2017-04-26 住友大阪水泥股份有限公司 紫外线遮蔽剂及其制造方法、含有紫外线遮蔽剂的分散液、以及化妆料
JP2013155357A (ja) * 2012-01-31 2013-08-15 Sumitomo Osaka Cement Co Ltd 複合粒子と複合粒子含有分散液及び複合粒子含有樹脂組成物及び複合粒子含有樹脂膜並びに化粧料
JP2014101283A (ja) * 2012-11-16 2014-06-05 Sumitomo Osaka Cement Co Ltd 紫外線遮蔽粒子と紫外線遮蔽分散液及び化粧料並びに紫外線遮蔽粒子の製造方法
WO2024237262A1 (ja) * 2023-05-15 2024-11-21 テイカ株式会社 酸化亜鉛粉体及びその製造方法、並びに表面処理酸化亜鉛粉体及びそれを含む組成物

Also Published As

Publication number Publication date
CN102498169A (zh) 2012-06-13
US20150147370A1 (en) 2015-05-28
EP2479213B1 (en) 2019-02-13
CN102498169B (zh) 2015-08-26
JPWO2011034032A1 (ja) 2013-02-14
KR20120071389A (ko) 2012-07-02
EP2479213A1 (en) 2012-07-25
US20120177707A1 (en) 2012-07-12
EP2479213A4 (en) 2015-10-28
KR101708082B1 (ko) 2017-02-17
JP5834916B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5834916B2 (ja) 金属酸化物内包樹脂粉体とそれを含む分散液及び水系分散体及び金属酸化物内包樹脂粉体の製造方法並びに化粧料
EP2711404B1 (en) Ultraviolet shielding agent, method for producing same, ultraviolet shielding agent-containing dispersion liquid, and cosmetic preparation
JP5352920B2 (ja) シリコーン樹脂コーティング二酸化チタン複合粒子製造方法
JP6028570B2 (ja) 紫外線遮蔽複合粒子とその製造方法及び紫外線遮蔽複合粒子含有分散液及び水系分散体及び油系分散体並びに化粧料
KR101491863B1 (ko) 복합 구형 중합체 입자와 그의 제조방법 및 그를 이용한 화장품
JP6763304B2 (ja) 酸化ケイ素被覆酸化亜鉛とその製造方法および酸化ケイ素被覆酸化亜鉛含有組成物並びに化粧料
JP3469641B2 (ja) 球状樹脂粉体およびその製造方法ならびに化粧料
JP2004124045A (ja) 複合ポリマー粒子及びその製法
JP5895851B2 (ja) 有機系紫外線吸収剤含有樹脂粒子の製造方法
JP2016069521A (ja) 複合粒子、複合粒子の製造方法、及び、その用途
JP6859949B2 (ja) 酸化ケイ素被覆酸化亜鉛、酸化ケイ素被覆酸化亜鉛含有組成物、化粧料
JP6186704B2 (ja) 紫外線遮蔽粒子と紫外線遮蔽分散液及び化粧料並びに紫外線遮蔽粒子の製造方法
JP2013091658A (ja) 化粧料、油系化粧料、水系化粧料、乳化系化粧料
JP2013227266A (ja) 紫外線遮蔽剤と紫外線遮蔽剤含有分散液及び化粧料並びに紫外線遮蔽剤の製造方法
JP4593151B2 (ja) 化粧料
JP5970956B2 (ja) 紫外線遮蔽剤と紫外線遮蔽剤含有分散液及び化粧料並びに紫外線遮蔽剤の製造方法
JP5708377B2 (ja) 紫外線遮蔽ゲル状組成物及びその製造方法並びに化粧料
JP2014084448A (ja) 紫外線遮蔽複合粒子及び紫外線遮蔽複合粒子含有分散液並びに化粧料
JP2014101303A (ja) コアシェル型複合粒子の製造方法及びコアシェル型複合粒子
JP2012240948A (ja) 紫外線遮蔽剤とそれを含有する紫外線遮蔽剤含有分散液、及び化粧料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041119.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13395562

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127006734

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010817145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010817145

Country of ref document: EP