US20040004003A1 - Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid - Google Patents
Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid Download PDFInfo
- Publication number
- US20040004003A1 US20040004003A1 US10/332,586 US33258603A US2004004003A1 US 20040004003 A1 US20040004003 A1 US 20040004003A1 US 33258603 A US33258603 A US 33258603A US 2004004003 A1 US2004004003 A1 US 2004004003A1
- Authority
- US
- United States
- Prior art keywords
- aluminum
- acid
- electrolyte
- weight
- alkanesulfonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 49
- 239000000203 mixture Substances 0.000 title claims abstract description 20
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 title description 3
- 238000009472 formulation Methods 0.000 title description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 title 1
- 239000002253 acid Substances 0.000 claims abstract description 87
- 230000008569 process Effects 0.000 claims abstract description 85
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000003792 electrolyte Substances 0.000 claims abstract description 68
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 67
- 238000002048 anodisation reaction Methods 0.000 claims abstract description 53
- 230000003647 oxidation Effects 0.000 claims abstract description 30
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 30
- 238000010276 construction Methods 0.000 claims abstract description 8
- 238000005265 energy consumption Methods 0.000 claims abstract description 5
- 238000004806 packaging method and process Methods 0.000 claims abstract description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 78
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 36
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 24
- 150000007513 acids Chemical class 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 14
- 235000006408 oxalic acid Nutrition 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000000654 additive Substances 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 6
- 238000004381 surface treatment Methods 0.000 claims description 6
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- 150000001879 copper Chemical class 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 22
- 238000005868 electrolysis reaction Methods 0.000 description 10
- 239000011148 porous material Substances 0.000 description 9
- 238000004040 coloring Methods 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 239000011133 lead Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- -1 aliphatic sulfonic acids Chemical class 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RYKLZUPYJFFNRR-UHFFFAOYSA-N 3-hydroxypiperidin-2-one Chemical compound OC1CCCNC1=O RYKLZUPYJFFNRR-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910006069 SO3H Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 2
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical compound [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- 150000004345 1,2-dihydroxyanthraquinones Chemical class 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- APCLRHPWFCQIMG-UHFFFAOYSA-N 4-(5,6-dimethoxy-1-benzothiophen-2-yl)-4-oxobutanoic acid Chemical compound C1=C(OC)C(OC)=CC2=C1SC(C(=O)CCC(O)=O)=C2 APCLRHPWFCQIMG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000208225 Rhus Species 0.000 description 1
- 235000014220 Rhus chinensis Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000004532 chromating Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- MYHXWQZHYLEHIU-UHFFFAOYSA-N oxalic acid;sulfuric acid Chemical compound OS(O)(=O)=O.OC(=O)C(O)=O MYHXWQZHYLEHIU-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
- C25D11/10—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
- C25D11/20—Electrolytic after-treatment
- C25D11/22—Electrolytic after-treatment for colouring layers
Definitions
- the invention relates to a process for the surface treatment of aluminum or aluminum alloys by anodic oxidation of the aluminum or aluminum alloy (anodization) and to the use of an alkanesulfonic acid in a process for the anodic oxidation of aluminum or aluminum alloys, an electrolyte composition for the anodic oxidation of aluminum or aluminum alloys and the use of workpieces based on aluminum or aluminum alloys and produced by the process of the present invention.
- the surface oxidation of the aluminum surface or the surface of aluminum alloys can be carried out by electrochemical means by dipping the workpieces into solutions of slightly aggressive agents or by chromating and phosphating.
- anodic oxidation by electrochemical means is generally more advantageous, since thicker oxide coatings can be obtained in this way than by chemical treatment
- anodic oxidation processes e.g. aluminum coil coating (for can manufacture) which is generally carried out by passing an aluminum strip through a sulfuric acid electrolyte.
- layer thicknesses of from 2 to 3 ⁇ m are desired.
- This process should be suitable both for anodization by dipping and for continuous anodization, e.g. of strip or wire by means of an electrolytic pull-through process.
- the process should, in hard anodization, make it possible to achieve a greater maximum layer thickness than is possible using the processes of the prior art, e.g. the DS process.
- the electrolyte preferably contains from 10 to 30% by weight, particularly preferably from 10 to 25% by weight, of an alkanesulfonic acid.
- the electrolyte may further comprise other acids, in particular acids selected from among sulfuric acid, phosphoric acid and oxalic acid.
- the electrolyte comprises sulfuric acid in addition to an alkanesulfonic acid.
- an electrolyte based exclusively on an alkanesulfonic acid is used.
- alkanesulfonic acids in the surface treatment of aluminum or aluminum alloys is already known from the prior art.
- these known processes concern essentially the use of alkanesulfonic acids in the electrolytic metal salt coloring of aluminum, where an alkanesulfonic acid is used as additive or basis of an acid electrolyte solution, and not the use of alkanesulfonic acid in anodic oxidation (anodization) of aluminum or an aluminum alloy.
- U.S. Pat. No. 4,128,460 relates to a process for coloring aluminum or aluminum alloys by electrolysis, comprising the anodization of aluminum or the aluminum alloys by customary methods and subsequent electrolysis in a bath comprising an aliphatic sulfonic acid and a metal salt, in particular a tin, copper, lead or silver salt, of the sulfonic acid.
- a bath comprising an aliphatic sulfonic acid and a metal salt, in particular a tin, copper, lead or silver salt, of the sulfonic acid.
- the stability of the electrolysis bath is increased by an increased oxidation stability of the metal salts used and a uniform coloration of the surface of the aluminum or the aluminum alloys achieved.
- the Brazilian patent applications BR 91001174, BR 9501255-9 and BR 9501280-0 also relate to processes for coloring the eloxidized aluminum by electrodipping, using electrolytes and metal salts which are mainly composed of pure methanesulfonic acid, methanesulfonates of tin or copper or methanesulfonates of nickels lead or other salts. According to these patent applications, an increase in the specific electrical conductivity of the solution, a reduction in the time for coloring in a simple manner and with reliable control, reproducibility of the color shade and low operating costs are achieved in this way.
- BR 9501255-9 discloses specific reaction conditions for anodization of the surface of aluminum, with the use of methanesulfonic acid as additive in an electrolyte based on sulfuric acid being mentioned.
- methanesulfonic acid is used in an amount of 10 parts by weight based on sulfuric acid, i.e. less than 2% by weight of the electrolyte.
- No further indication of the use of alkanesulfonic acids in the anodization step or advantages of such a use are disclosed in BR 9501255-9.
- the electrolysis time for achieving an aluminum oxide layer thickness optimum for a subsequent coloration step which is generally from 10 to 30 ⁇ m, preferably from 15 to 25 ⁇ m, is generally from 5 to 40 minutes, preferably from 10 to 30 minutes, with the precise time being dependent, inter alia, on the current density.
- alkanesulfonic acids have a significantly lower corrosive action on the aluminum oxide layer formed in the anodization than does, for example, the sulfuric acid customarily employed.
- the process of the present invention thus makes it possible, particularly in hard anodization, to achieve greater layer thicknesses in a shorter time than when using the processes of the prior art.
- a further great advantage of the process of the present invention is the significantly lower energy consumption during anodization, since a significantly lower voltage compared to the pure sulfuric acid electrolyte is established at the same current. As a consequence, the energy required for cooling the anodization bath is significantly lower.
- the process of the present invention is suitable both for anodization of aluminum or aluminum alloys by the electrodipping process and for continuous anodization, for example of strip, pipe or wire, by means of an electrolytic pull-through process, e.g. for producing aluminum sheets for can manufacture.
- the process of the present invention can be operated either using direct current or using alternating current; the process is preferably carried out using direct current.
- the electrolyte can farther comprise other acids, for example sulfuric acid, phosphoric acid or oxalic acid.
- the electrolyte comprises either an alkanesulfonic acid or a mixture of sulfuric acid and alkanesulfonic acid as only acid.
- the electrolyte preferably comprises from 20 to 100 parts by weight of an alkanesulfonic acid and from 80 to 0 parts by weight of a further acid selected from among sulfuric acid, phosphoric acid and oxalic acid, where the sum of alkanesulfonic acid and sulfuric acid, phosphoric acid or oxalic acid is 100 parts by weight and makes up from 3 to 30% by weight of the electrolyte.
- the electrolyte particularly preferably comprises from 20 to 90 parts by weight of an alkanesulfonic acid and from 80 to 10 parts by weight of sulfuric acid.
- alkanesulfonic acid as sole acid in the electrolyte is, however, likewise possible.
- alkanesulfonic acids are aliphatic sulfonic acids.
- the aliphatic radical of these may, if desired, be substituted by functional groups or heteroatoms, e.g. hydroxy groups. Preference is given to using alkanesulfonic acids of the formulae.
- R is a hydrocarbon radical which may be branched or unbranched and has from 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, particularly preferably an unbranched hydrocarbon radical having from 1 to 3 carbon atoms, very particularly preferably 1 carbon atom, i.e. methanesulfonic acid.
- R′ is a hydrocarbon radical which may be branched or unbranched and ha from 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, particularly preferably an unbranched hydrocarbon radical having from 2 to 4 carbon atoms, where the hydroxy group and the sulfonic acid group can be bound to any carbon atoms, with the restriction that they are not bound to the same carbon atom.
- Aluminum and aluminum alloys can be anodically oxidized by the process of the present invention
- Particularly suitable aluminum alloys are alloys of aluminum with silicon, manganese, zinc, copper and/or magnesium.
- silicon, manganese, zinc, copper and/or magnesium can be present in the alloy in a proportion of 15% by weight (Si), 4% by weight (Mn), 5% by weight (Zn), 5% by weight (Cu) and 5% by weight (Mg), with casting alloys also being included.
- the present invention accordingly also provides a process in which the anodic oxidation is carried out in two stages, comprising:
- preanodization of the aluminum or the aluminum alloy in an electrolyte comprising sulfuric acid as sole acid or a mixture of sulfuric acid and oxalic acid;
- the process conditions of the preanodization preferably correspond to the conditions of the classical DS (direct current sulfuric acid) or DSX (direct current sulfuric acid-oxalic acid) electrolysis known from the prior art.
- the anodic oxidation is preferably carried out at from 0 to 30° C. If excessively high temperatures are employed, irregular deposition of the oxide layer occurs, which is undesirable.
- hard anodization in which thick oxide layers having a low porosity and thus a high hardness and high protection of the aluminum surface are sought is carried out at low temperatures of generally from 0 to 5° C., preferably from 0 to 3° C.
- high thicknesses of the oxide layer of >30 ⁇ m, preferably from 40 to 100 ⁇ m, particularly preferably from 50 to 80 ⁇ m, are possible by means of the process of the present invention in shorter times than when using pure sulfuric acid as basis of the electrolyte.
- These aluminum oxide surfaces obtained by hard anodization are generally not used for a subsequent step to color the surface.
- the anodization according to the present invention for obtaining a porous aluminum oxide surface which is particularly well-suited for subsequent coloration of the surface is generally carried out at from 17 to 30° C., preferably from 18 to 28° C.
- the process of the present invention differs from processes of the prior art in that it can be carried out at a higher temperature than the processes of the prior art. Usually, temperatures above about 24° C. give unusable, nonuniform oxide layers, while the process of the present invention allows the anodization to be carried out at up to 30° C. The ability of the process to be carried out at higher temperatures saves energy costs. In general, cooling of the electrolyte solution during anodization is necessary, since the anodization is exothermic.
- This embodiment of the process of the present invention at generally from 17 to 30° C. gives, depending on the current density and the electrolysis time, layer thicknesses of from 5 to 40 ⁇ m, preferably from 10 to 30 ⁇ m.
- the process of the present invention leads to aluminum oxide surfaces which are optimally suited to subsequent coloration, so that uniformly colored aluminum oxide layers can be obtained.
- the process of the present invention is generally carried out at a current density of from 0.5 to 5 A/dm 2 , preferably from 0.5 to 3 A/dm 2 , particularly preferably from 1 to 2.5 A/dm 2 .
- the voltage is generally from 1 to 30 V, preferably from 2 to 20 V.
- the electrolyte generally further comprises water and, if necessary, further additives such as aluminum sulfate.
- Apparatuses suitable for carrying out the process of the present invention are generally all known apparatuses which are suitable for electrodipping or for continuous anodic oxidation of aluminum or aluminum alloys, e.g. by means of an electrolytic pull-through process. Particular preference is given to using apparatuses made of metals which are resistant to alkanesulfonic acids or apparatuses which are lined with plastic, e.g. polyethylene or polyproylene.
- the present invention further provides a process for the surface treatment of aluminum or aluminum alloys, comprising the following steps:
- step e) if desired, recovery of the alkanesulfonic acid used and/or its salts, where step e) can follow or be carried out in parallel with any step in which an alkanesulfonic acid can be used, in particular the steps b) and/or, if employed, c).
- the pretreatment of the aluminum or the aluminum alloys is a critical step since it determines the optical quality of the end product. Since the oxide layer produced in anodization is transparent and this transparency is retained during the coloration process in step c), every surface defect on the metallic workpiece remains visible on the finished part.
- the pretreatment is generally carried out by customary methods such as mechanical polishing or electropolishing, dewaxing using neutral surfactants or organic solvents, brightening or pickling. This is generally followed by rinsing with water.
- solutions comprising alkanesulfonic acids are preferably also used in step a) (e.g. in the case of brightening and electropolishing).
- Preferred alkanesulfonic acids have already been mentioned above for use in the anodizing step (step b)). Particular preference is given to using methanesulfonic acid.
- Step b) is the anodization process according to the present invention which follows the pretreatment of the aluminum or the aluminum alloy. This process according to the present invention has been described in detail above.
- the aluminum oxide layer obtained in step b) can be colored.
- Coloration of the aluminum oxide layer occurs by uptake of organic or inorganic dyes into the capillary-shaped pores of the oxide layer obtained by anodization in step b).
- anodized aluminum or aluminum alloy is colored in the aqueous phase by means of suitable organic or inorganic compounds in the absence of an electric current.
- Organic dyes eloxal dyes, e.g. dyes from the alizarin series or indigo dyes
- Inorganic dyes can, in a chemical coloration step, be deposited in the pores by precipitation reactions ox by hydrolysis of heavy metal salts.
- the processes which occur here are difficult to control and there are frequently reproducibility problems, i.e. problems in obtaining constant color shades For this reason, electrolytic processes for coloring aluminum oxide layers have become increasingly established for some time.
- Step c) of the process of the present invention is therefore preferably carried out by an electrolytic method in an electrolyte comprising metal salts.
- the aluminum oxide layers obtained after step b) of the process of the present invention are colored in an electrolyte comprising metal salts by means of direct or alternating current, preferably by means of alternating current.
- metal is deposited in the bottom of the pores of the oxide layer from the metal salt solution.
- Suitable metal salts are generally salts selected from among tin, copper, silver, cobalt, nickel, bismuth, chromium, palladium and lead and mixtures of two or more of these metal salts. Preference is given to using tin, copper or silver salts or Yes thereof in the process of the present invention.
- the sulfates of the abovementioned metals are used and electrolyte solutions based on sulfuric acid are used.
- Additives can be additionally added to the electrolyte to improve the scatter and reduce oxidation of the metal ions used, e.g. the oxidation of tin(II) to the insoluble tin(IV).
- the electrolyte comprises from 20 to 100 parts by weight of an alkanesulfonic acid and from 80 to 0 parts by weight of sulfuric acid, where the sum of alkanesulfonic acid and sulfuric acid is 100 parts by weight and makes up from 0.1 to 20% by weight, preferably from 0.1 to 15% by weight, of the electrolyte.
- the electrolyte very particularly preferably comprises 100 parts by weight of an alkanesulfonic acid
- Alkanesulfonic acids suitable for step c) of the process have been disclosed above for use in the anodization (step b)). Particular preference is given to methanesulfonic acid.
- electrolytes based on alkanesulfonic acids have a higher electrical conductivity, bring about more rapid coloration and display a reduced oxidation action, as a result of which the precipitation of, for example, tin(IV) salts from electrolytes comprising tin(II) salts is prevented and the addition of additives such as environmentally harmful phenolsulfonic or toluenesulfonic acid is not necessary.
- the metal salts are generally used in a concentration of from 0.1 to 50 g/l, preferably from 0.5 to 20 g/l, particularly preferably from 0.2 to 10 g/l, based on the metal used, in the electrolyte.
- the electrolyte In addition to the appropriate acid, preferably sulfuric acid or an alkanesulfonic acid or a mixture of the two acids, and the metal salt used or a mixture of a plurality of metal salts, the electrolyte generally firer comprises water and, if necessary, further additives such as scattering improvers. However, particularly when using electrolytes comprising alkanesulfonic acids, the addition of additives is generally not necessary.
- the electrolysis time in step c) is generally from 0.1 to 10 minutes, preferably from 0.5 to 8 minutes, particularly preferably from 0.5 to 5 minutes, with the electrolysis time depending on the metal salts used and the desired depth of color.
- the electrolytic coloration in step c) is usually carried out using alternating current.
- the current density is generally from 0.1 to 2 A/dm 2 , preferably from 0.2 to 1 A/dm 2 .
- the voltage is generally from 3 to 30 V, preferably from 5 to 20 V.
- Suitable electrodes are the electrodes which are usually suitable in a process for the electrolytic coloration of aluminum oxide layers, for example stainless steel or graphite electrodes. It is also possible to use one electrode made of the metal to be deposited, e.g. tin, silver or copper.
- a gold color of the oxidized surface of the aluminum or the aluminum alloys is achieved in an electrolyte comprising silver salts, if desired in admixture with tin salts and/or copper salts.
- Such gold-colored aluminum workpieces are of particular interest for producing decorative objects, since the demand for gold-colored aluminum objects is great.
- These gold-colored aluminum oxide surfaces are preferably obtained by carrying out the coloration process in step c) at a concentration of an alkanesulfonate of silver, calculated as Ag + , of from 2 to 50 g/l, preferably from 3 to 20 g/l, and a product of current density and voltage of from 0.5 to 10 AV/dm 2 , preferably from 1 to 5 AV/dm 2 , for a period of generally from 0.05 to 4 minutes, preferably from 0.3 to 3 minutes.
- a precise description of the production of gold-colored aluminum oxide layers may be found in the patent application DE-A . . . having the title “Production of gold-colored surfaces of aluminum or aluminum alloys by means of silver-con ng formulations”, which was filed at the same time.
- the workpieces are generally rinsed with water, in particular with running water. This rinsing step follows both step b) and step c) if this is carried out.
- step b) Subsequent to step b), if step c) is not carried out, or subsequent to step c) if this is carried out, the pores of the oxide layer produced are generally sealed to provide good corrosion protection, This sealing can be achieved by dipping the workpieces into boiling distilled water for from about 30 to 60 minutes. This causes swelling of the oxide layer, as a result of which the pores are closed.
- the water can also contain additives.
- the workpieces are after-treated in pressurized steam of from 4 to 6 bar instead of in boiling water.
- sealing is preferably carried out by means of water or steam.
- the alkanesulfonic acid used and/or its salts can be recovered.
- This recovery can follow or be carried out in parallel with any step in which an alkanesulfonic acid can be used, Recovery can be carried out, for example, in combination with the rinsing step (d1) following step b) and, if it is carried out, step c).
- Such a recovery can be carried out, for example, by means of electrolytic membrane cells, by cascade rinsing, or by simple concentration, for example, of the rinsing solutions.
- the present invention further provides for the use of an alkanesulfonic acid in a process for the anodic oxidation of aluminum or aluminum alloys (anodization) for increasing the rate of the anodic oxidation
- an alkanesulfonic acid in a process for the anodic oxidation of aluminum or aluminum alloys (anodization) for increasing the rate of the anodic oxidation
- This makes it possible to achieve more rapid aluminum oxide deposition than when using the processes of the prior art.
- thicker layers can be obtained in a shorter time when using alkanesulfonic acids as basis of the electrolyte than when using pure sulfuric acid as electrolyte basis.
- the energy consumption is significantly lower since a lower voltage is established and less cooling has to be employed.
- an electrolyte composition containing from 3 to 30% by weight of an alkanesulfonic acid for the anodic oxidation of alumina or aluminum alloys is claimed.
- Preference is given to an electrolyte composition comprising from 20 to 100 parts by weight of an alkanesulfonic acid and from 80 to 0 parts by weight of sumac acid, where the sun of alkanesulfonic acid and sulfuric acid is 100 parts by weight and makes up from 3 to 30% by weight of the electrolyte.
- Suitable alkanesulfonic acids have already been mentioned above.
- the alkanesulfonic acid used is particularly preferably methanesulfonic acid.
- electrolyte compositions are very suitable for use in a process for the anodic oxidation of aluminum or aluminum alloys and lead to more rapid aluminum oxide deposition than the processes of the prior art and to a thicker aluminum oxide layer in a shorter time, which is of particular interest in hard anodization, and to a reduced energy consumption.
- the workpieces based on aluminum or aluminum alloys produced according to the present invention can be used, for example, in building and construction in particular for producing window profiles or exterior wall components, in automobile or aircraft construction, both for producing body parts and for producing aluminum pressure castings, e.g. in engine construction, and in the packaging industry, in particular for producing cans, for example by a continuous electrolytic pull-through process, e.g. continuous coil anodization
- Anodization electrolytes comprising, in each case, 18% by weight of an acid or an acid mixture and 8 g/l of aluminum were used.
- the electrolytes were used for the anodization of pure aluminum sheets which had in each case been preanodied for 2 minutes by the classical DS method.
- Anodization was in each case carried out at a current density of 1.2 A/dm 2 for 30 minutes.
- the anodization bath was in each case thermostated at 20° C.
- the thickness of the aluminum oxide layer, the porosity or microstructure of the surface and the microhardness were determined on the anodized workpieces.
- Table 1 below shows the thicknesses of the oxide layer obtained as a function of the electrolyte used and the anodization voltage and any cooling necessary: TABLE 1 Thickness of the Anodization Cooling Electrolyte oxide layer in ⁇ m voltage in V necessary 1. 1) H 2 SO 4 12 ca. 12 Strong 2. 1) H 2 SO 4 /oxalic acid 11 ca. 11 Strong (90:10) 3. MSA 2) 16 ca. 2.5 Slight 4. MSA/H 2 SO 4 (50:50) 14 ca. 2.5 Slight
- the layers all displayed a significantly lower porosity and an increased hardness compared to Example 1.
- the aluminum sheets anodized in MSA methanesulfonic acid
- a coloring electrolyte was made up from 19 g/l of silver methanesulfonate (10 g/l of Ag + ) and 57 g/l of methanesulfonic acid. At a current density of 0.2 A/dm 2 and a voltage of about 8 V, the aluminum sheets anodized as indicated for No. 3 and 4 in Table 1 were colored for different periods of time. For both aluminum sheets, the colors indicated in Table 2 below were obtained, TABLE 2 Color at 0.2 Time [sec] A/dm 2 15 Pale gold 30 Light gold 60 Gold 120 Gold 180 Deep gold
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- ing And Chemical Polishing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10033435A DE10033435A1 (de) | 2000-07-10 | 2000-07-10 | Verfahren zur Oberflächenbehandlung von Aluminium oder Aluminium-Legierungen mittels alkansulfonsäurehaltigen Formulierungen |
DE10033435.0 | 2000-07-10 | ||
PCT/EP2001/007932 WO2002004716A1 (de) | 2000-07-10 | 2001-07-10 | Verfahren zur oberflächenbehandlung von aluminium oder aluminium-legierungen mittels alkansulfonsäurehaltigen formulierungen |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040004003A1 true US20040004003A1 (en) | 2004-01-08 |
Family
ID=7648388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/332,586 Abandoned US20040004003A1 (en) | 2000-07-10 | 2001-07-10 | Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid |
Country Status (14)
Country | Link |
---|---|
US (1) | US20040004003A1 (pt) |
EP (1) | EP1301656B1 (pt) |
JP (1) | JP2004502877A (pt) |
CN (1) | CN1192128C (pt) |
AT (1) | ATE287977T1 (pt) |
AU (1) | AU2001281971A1 (pt) |
BR (1) | BR0112434A (pt) |
CA (1) | CA2415556A1 (pt) |
DE (2) | DE10033435A1 (pt) |
ES (1) | ES2234870T3 (pt) |
MX (1) | MXPA03000233A (pt) |
PL (1) | PL360817A1 (pt) |
TW (1) | TWI243864B (pt) |
WO (1) | WO2002004716A1 (pt) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060280956A1 (en) * | 2005-06-10 | 2006-12-14 | Rainer Seufferlein | Process for treating a surface |
US20080261033A1 (en) * | 2007-03-16 | 2008-10-23 | Suddeutsche Aluminium Manufaktur Gmbh | Motor vehicle component comprising sol-gel coating |
WO2016164015A1 (en) * | 2015-04-03 | 2016-10-13 | Apple Inc. | Process to mitigate grain texture differential growth rates in mirror-finish anodized aluminum |
US9869623B2 (en) | 2015-04-03 | 2018-01-16 | Apple Inc. | Process for evaluation of delamination-resistance of hard coatings on metal substrates |
US9869030B2 (en) | 2014-08-29 | 2018-01-16 | Apple Inc. | Process to mitigate spallation of anodic oxide coatings from high strength substrate alloys |
US9970080B2 (en) | 2015-09-24 | 2018-05-15 | Apple Inc. | Micro-alloying to mitigate the slight discoloration resulting from entrained metal in anodized aluminum surface finishes |
US10174436B2 (en) | 2016-04-06 | 2019-01-08 | Apple Inc. | Process for enhanced corrosion protection of anodized aluminum |
IT201700080501A1 (it) * | 2017-07-17 | 2019-01-17 | Tramec S R L | Riduttore. |
US10316420B2 (en) | 2015-12-02 | 2019-06-11 | Aqua Metals Inc. | Systems and methods for continuous alkaline lead acid battery recycling |
US10340561B2 (en) | 2013-11-19 | 2019-07-02 | Aqua Metals Inc. | Devices and method for smelterless recycling of lead acid batteries |
US10689769B2 (en) | 2015-05-13 | 2020-06-23 | Aqua Metals Inc. | Electrodeposited lead composition, methods of production, and uses |
US10711363B2 (en) | 2015-09-24 | 2020-07-14 | Apple Inc. | Anodic oxide based composite coatings of augmented thermal expansivity to eliminate thermally induced crazing |
US10760176B2 (en) | 2015-07-09 | 2020-09-01 | Apple Inc. | Process for reducing nickel leach rates for nickel acetate sealed anodic oxide coatings |
US10793957B2 (en) | 2015-05-13 | 2020-10-06 | Aqua Metals Inc. | Closed loop systems and methods for recycling lead acid batteries |
US11028460B2 (en) | 2015-05-13 | 2021-06-08 | Aqua Metals Inc. | Systems and methods for recovery of lead from lead acid batteries |
US11111594B2 (en) | 2015-01-09 | 2021-09-07 | Apple Inc. | Processes to reduce interfacial enrichment of alloying elements under anodic oxide films and improve anodized appearance of heat treatable alloys |
US11242614B2 (en) | 2017-02-17 | 2022-02-08 | Apple Inc. | Oxide coatings for providing corrosion resistance on parts with edges and convex features |
US11352708B2 (en) | 2016-08-10 | 2022-06-07 | Apple Inc. | Colored multilayer oxide coatings |
US11549191B2 (en) | 2018-09-10 | 2023-01-10 | Apple Inc. | Corrosion resistance for anodized parts having convex surface features |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006052170A1 (de) * | 2006-11-02 | 2008-05-08 | Steinert Elektromagnetbau Gmbh | Anodische Oxidschicht für elektrische Leiter, insbesondere Leiter aus Aluminium, Verfahren zur Erzeugung einer anodischen Oxidschicht und elektrischer Leiter mit anodischer Oxidschicht |
CN101765753B (zh) * | 2007-07-27 | 2011-12-28 | 三菱电机株式会社 | 热交换器以及其制造方法 |
CN103374742A (zh) * | 2012-04-18 | 2013-10-30 | 靖江先锋半导体科技有限公司 | 铝镁合金的增强型阳极氧化表面处理工艺 |
CN104152969B (zh) * | 2014-08-04 | 2016-07-27 | 石狮市星火铝制品有限公司 | 一种铝合金交流电解沉积银铜的着色方法 |
CN104651905B (zh) * | 2015-01-28 | 2017-11-07 | 永保纳米科技(深圳)有限公司 | 一种阳极铝匀染缓染助剂及其操作液,和阳极铝匀染缓染处理工艺 |
CN105239133A (zh) * | 2015-10-08 | 2016-01-13 | 昆明理工大学 | 一种钛及钛合金表面阳极氧化着色方法 |
JP6579520B2 (ja) * | 2016-03-01 | 2019-09-25 | 松田製綱株式会社 | ワイヤーロープ圧縮止め用アルミ製クランプ管の製造方法及び玉掛けワイヤーロープにおけるアルミ製クランプ管の製造方法並びに曳網用ワイヤーロープ |
CN107815716B (zh) * | 2017-09-12 | 2019-09-20 | 广东长盈精密技术有限公司 | 对工件的表面进行处理的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4128460A (en) * | 1976-09-13 | 1978-12-05 | Daiwa Kasei Kenkyujo Kabushiki Kaisha | Coloring by electrolysis of aluminum or aluminum alloys |
US5747216A (en) * | 1990-06-15 | 1998-05-05 | Fuji Photo Film Co, Ltd. | Presensitized plate comprising two photosensitive layers wherein the layer adjacent to the support has a lower concentration of dye than the other layer |
US5980723A (en) * | 1997-08-27 | 1999-11-09 | Jude Runge-Marchese | Electrochemical deposition of a composite polymer metal oxide |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1426423A (en) * | 1974-12-04 | 1976-02-25 | Fujisash Ind Ltd | Method of producing coloured anodic coating on aluminum and its alloys |
JPS57126993A (en) * | 1981-01-29 | 1982-08-06 | Daiwa Kasei Kenkyusho:Kk | Coloring anodic oxidation treatment bath and method of aluminum or aluminum alloy |
-
2000
- 2000-07-10 DE DE10033435A patent/DE10033435A1/de not_active Withdrawn
-
2001
- 2001-07-10 MX MXPA03000233A patent/MXPA03000233A/es not_active Application Discontinuation
- 2001-07-10 JP JP2002509566A patent/JP2004502877A/ja not_active Withdrawn
- 2001-07-10 US US10/332,586 patent/US20040004003A1/en not_active Abandoned
- 2001-07-10 AT AT01960487T patent/ATE287977T1/de not_active IP Right Cessation
- 2001-07-10 TW TW090116875A patent/TWI243864B/zh active
- 2001-07-10 ES ES01960487T patent/ES2234870T3/es not_active Expired - Lifetime
- 2001-07-10 CN CNB018139329A patent/CN1192128C/zh not_active Expired - Fee Related
- 2001-07-10 CA CA002415556A patent/CA2415556A1/en not_active Abandoned
- 2001-07-10 AU AU2001281971A patent/AU2001281971A1/en not_active Abandoned
- 2001-07-10 EP EP01960487A patent/EP1301656B1/de not_active Expired - Lifetime
- 2001-07-10 WO PCT/EP2001/007932 patent/WO2002004716A1/de active IP Right Grant
- 2001-07-10 BR BR0112434-0A patent/BR0112434A/pt not_active IP Right Cessation
- 2001-07-10 DE DE50105209T patent/DE50105209D1/de not_active Expired - Fee Related
- 2001-07-10 PL PL36081701A patent/PL360817A1/xx not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4128460A (en) * | 1976-09-13 | 1978-12-05 | Daiwa Kasei Kenkyujo Kabushiki Kaisha | Coloring by electrolysis of aluminum or aluminum alloys |
US5747216A (en) * | 1990-06-15 | 1998-05-05 | Fuji Photo Film Co, Ltd. | Presensitized plate comprising two photosensitive layers wherein the layer adjacent to the support has a lower concentration of dye than the other layer |
US5980723A (en) * | 1997-08-27 | 1999-11-09 | Jude Runge-Marchese | Electrochemical deposition of a composite polymer metal oxide |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090061110A1 (en) * | 2005-06-10 | 2009-03-05 | Rainer Seufferlein | Process for treating a surface |
US20060280956A1 (en) * | 2005-06-10 | 2006-12-14 | Rainer Seufferlein | Process for treating a surface |
US8313813B2 (en) | 2005-06-10 | 2012-11-20 | Decoma (Germany) Gmbh | Process for treating a surface |
US8747641B2 (en) | 2007-03-16 | 2014-06-10 | Suddeutsche Aluminium Manufaktur Gmbh | Partial pigmentation of a coating layer to prevent interference on aluminum components or components comprising aluminum |
EP1970256A3 (de) * | 2007-03-16 | 2011-01-26 | Süddeutsche Aluminium Manufaktur GmbH | Kraftfahrzeug-Bauteil mit Sol-Gel-Beschichtung |
EP1970214A3 (de) * | 2007-03-16 | 2011-03-02 | Süddeutsche Aluminium Manufaktur GmbH | Teilpigmentierung einer Deckschicht zur Vermeidung von Interferenzen bei Aluminiumbauteilen oder Aluminium aufweisenden Bauteilen |
US20080311362A1 (en) * | 2007-03-16 | 2008-12-18 | Suddeutsche Aluminium Manufaktur Gmbh | Partial pigmentation of a coating layer to prevent interference on aluminum components or components comprising aluminum |
US8377561B2 (en) | 2007-03-16 | 2013-02-19 | Suddeutsche Aluminium Manufaktur Gmbh | Motor vehicle component comprising sol-gel coating |
US20080261033A1 (en) * | 2007-03-16 | 2008-10-23 | Suddeutsche Aluminium Manufaktur Gmbh | Motor vehicle component comprising sol-gel coating |
US10665907B2 (en) | 2013-11-19 | 2020-05-26 | Aqua Metals Inc. | Devices and method for smelterless recycling of lead acid batteries |
US10340561B2 (en) | 2013-11-19 | 2019-07-02 | Aqua Metals Inc. | Devices and method for smelterless recycling of lead acid batteries |
US11239507B2 (en) | 2013-11-19 | 2022-02-01 | Aqua Metals Inc. | Devices and method for smelterless recycling of lead acid batteries |
US9869030B2 (en) | 2014-08-29 | 2018-01-16 | Apple Inc. | Process to mitigate spallation of anodic oxide coatings from high strength substrate alloys |
US11111594B2 (en) | 2015-01-09 | 2021-09-07 | Apple Inc. | Processes to reduce interfacial enrichment of alloying elements under anodic oxide films and improve anodized appearance of heat treatable alloys |
US9869623B2 (en) | 2015-04-03 | 2018-01-16 | Apple Inc. | Process for evaluation of delamination-resistance of hard coatings on metal substrates |
WO2016164015A1 (en) * | 2015-04-03 | 2016-10-13 | Apple Inc. | Process to mitigate grain texture differential growth rates in mirror-finish anodized aluminum |
US11028460B2 (en) | 2015-05-13 | 2021-06-08 | Aqua Metals Inc. | Systems and methods for recovery of lead from lead acid batteries |
US10793957B2 (en) | 2015-05-13 | 2020-10-06 | Aqua Metals Inc. | Closed loop systems and methods for recycling lead acid batteries |
US10689769B2 (en) | 2015-05-13 | 2020-06-23 | Aqua Metals Inc. | Electrodeposited lead composition, methods of production, and uses |
US10760176B2 (en) | 2015-07-09 | 2020-09-01 | Apple Inc. | Process for reducing nickel leach rates for nickel acetate sealed anodic oxide coatings |
US10711363B2 (en) | 2015-09-24 | 2020-07-14 | Apple Inc. | Anodic oxide based composite coatings of augmented thermal expansivity to eliminate thermally induced crazing |
US9970080B2 (en) | 2015-09-24 | 2018-05-15 | Apple Inc. | Micro-alloying to mitigate the slight discoloration resulting from entrained metal in anodized aluminum surface finishes |
US10316420B2 (en) | 2015-12-02 | 2019-06-11 | Aqua Metals Inc. | Systems and methods for continuous alkaline lead acid battery recycling |
US11072864B2 (en) | 2015-12-02 | 2021-07-27 | Aqua Metals Inc. | Systems and methods for continuous alkaline lead acid battery recycling |
US10174436B2 (en) | 2016-04-06 | 2019-01-08 | Apple Inc. | Process for enhanced corrosion protection of anodized aluminum |
US11352708B2 (en) | 2016-08-10 | 2022-06-07 | Apple Inc. | Colored multilayer oxide coatings |
US11242614B2 (en) | 2017-02-17 | 2022-02-08 | Apple Inc. | Oxide coatings for providing corrosion resistance on parts with edges and convex features |
EP3431819A1 (en) * | 2017-07-17 | 2019-01-23 | Tramec S.R.L. | Reduction gear unit |
IT201700080501A1 (it) * | 2017-07-17 | 2019-01-17 | Tramec S R L | Riduttore. |
US11549191B2 (en) | 2018-09-10 | 2023-01-10 | Apple Inc. | Corrosion resistance for anodized parts having convex surface features |
Also Published As
Publication number | Publication date |
---|---|
DE10033435A1 (de) | 2002-01-24 |
CN1192128C (zh) | 2005-03-09 |
CN1446273A (zh) | 2003-10-01 |
ATE287977T1 (de) | 2005-02-15 |
CA2415556A1 (en) | 2003-01-09 |
ES2234870T3 (es) | 2005-07-01 |
JP2004502877A (ja) | 2004-01-29 |
EP1301656B1 (de) | 2005-01-26 |
AU2001281971A1 (en) | 2002-01-21 |
MXPA03000233A (es) | 2003-08-20 |
DE50105209D1 (de) | 2005-03-03 |
PL360817A1 (en) | 2004-09-20 |
WO2002004716A1 (de) | 2002-01-17 |
BR0112434A (pt) | 2003-07-15 |
EP1301656A1 (de) | 2003-04-16 |
TWI243864B (en) | 2005-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040004003A1 (en) | Methods for treating the surfaces of aluminium alloys by means of formulations containing alkane sulfonic acid | |
USRE29739E (en) | Process for forming an anodic oxide coating on metals | |
CA2028107A1 (en) | Process for surface treatment of aluminum or aluminum alloy | |
US4042468A (en) | Process for electrolytically coloring aluminum and aluminum alloys | |
CN1041446C (zh) | 经阳极极化处理的铝表面进行电解金属盐染色的方法 | |
US7097756B2 (en) | Method for producing gold-colored surfaces pertaining to aluminum or aluminum alloys, by means of formulations containing silver salt | |
JP2015232155A (ja) | アルマイト部材、アルマイト部材の製造方法及び処理剤 | |
CA1061280A (en) | Method for producing green-colored anodic oxide film on aluminum or aluminum base alloy articles | |
US3717555A (en) | Method of producing an electrolytic coating on aluminum and the product thereof | |
US4023986A (en) | Chemical surface coating bath | |
US2469015A (en) | Method and compositions for producing surface conversion coatings on zinc | |
US3785940A (en) | Method for electrolytically treating the surface of a steel plate with a chromate solution | |
US3275537A (en) | Process of anodizing aluminum | |
AU609320B2 (en) | Colour anodizing of aluminium surfaces with p-toluenesulfonic acid | |
JPH10147899A (ja) | アルミニウム材の電解着色法及びそれにより得られるグレー着色アルミニウム材 | |
EP0936288A2 (en) | A process for producing colour variations on electrolytically pigmented anodized aluminium | |
US4042471A (en) | Process for electrolytically coloring aluminum and aluminum alloys | |
US4031027A (en) | Chemical surface coating bath | |
US3891517A (en) | Process for electrolytic coloring of aluminum cr aluminum alloy articles | |
KR870008059A (ko) | 크롬합금의 전해 착색법 | |
JPH0770791A (ja) | アルミニウムまたはアルミニウム合金の電解着色方法 | |
JPS6357511B2 (pt) | ||
JPS636638B2 (pt) | ||
JPS5967391A (ja) | アルミニウムまたはアルミニウム合金の電解着色方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HESSE, WERNER;REEL/FRAME:014329/0825 Effective date: 20021111 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |