[go: up one dir, main page]

RU2425056C2 - Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него - Google Patents

Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него Download PDF

Info

Publication number
RU2425056C2
RU2425056C2 RU2008119429/04A RU2008119429A RU2425056C2 RU 2425056 C2 RU2425056 C2 RU 2425056C2 RU 2008119429/04 A RU2008119429/04 A RU 2008119429/04A RU 2008119429 A RU2008119429 A RU 2008119429A RU 2425056 C2 RU2425056 C2 RU 2425056C2
Authority
RU
Russia
Prior art keywords
ptfe
polytetrafluoroethylene
emulsion
porous material
aqueous
Prior art date
Application number
RU2008119429/04A
Other languages
English (en)
Other versions
RU2008119429A (ru
Inventor
Синиа ХИГУТИ (JP)
Синиа ХИГУТИ
Хироки КАМИЯ (JP)
Хироки КАМИЯ
Дзун ХОСИКАВА (JP)
Дзун ХОСИКАВА
Ясухико МАЦУОКА (JP)
Ясухико МАЦУОКА
Original Assignee
Асахи Гласс Компани, Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37962438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2425056(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Асахи Гласс Компани, Лимитед filed Critical Асахи Гласс Компани, Лимитед
Publication of RU2008119429A publication Critical patent/RU2008119429A/ru
Application granted granted Critical
Publication of RU2425056C2 publication Critical patent/RU2425056C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

Изобретение относится к новой водной политетрафторэтиленовой эмульсии, полученной с использованием специального фторированного эмульгатора, и к политетрафторэтиленовому мелкодисперсному порошку и пористому материалу, полученному из него. Описан пористый материал из политетрафторэтилена, получаемый экструзией пасты политетрафторэтиленового мелкодисперсного порошка, получаемого коагуляцией водной политетрафторэтиленовой эмульсии, полученной при проведении эмульсионной полимеризации тетрафторэтилена в водной среде, где используется фторированный эмульгатор формулы (I): CF3CF2OCF2CF2OCF2COOA, в которой А представляет собой атом щелочного металла или группу NH4, в количестве от 1500 до 20000 ч./млн по отношению к конечному выходу политетрафторэтилена, с последующим растяжением. Технический результат - получение пористого материала, превосходного по различным характеристикам, из политетрафторэтилена, обладающего прекрасной перерабатываемостью в процессе экструзии пасты. 4 з.п. ф-лы, 1 ил., 1 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к новой водной политетрафторэтиленовой эмульсии, полученной с использованием специального фторированного эмульгатора, и к политетрафторэтиленовому мелкодисперсному порошку и пористому материалу, полученному из него.
Предпосылки создания изобретения
Когда фторированный полимер, такой как политетрафторэтилен (далее именуемый как ПТФЭ), получают с использованием способа эмульсионной полимеризации, обычно используется фторированный эмульгатор, так как он не препятствует реакции полимеризации фторированного мономера с передачей цепи в водной среде.
Водная эмульсия ПТФЭ получается эмульсионной полимеризацией тетрафторэтилена (далее именуемого ТФЭ). При коагулировании водной эмульсии с последующей сушкой получают мелкодисперсный порошок ПТФЭ. Мелкодисперсный порошок формуется экструзией пасты и затем используется для различных целей. С другой стороны, водная дисперсия ПТФЭ, полученная путем концентрирования или обработки для придания стабильности самой водной эмульсии, как это требуется, используется для различных применений, таких как применение для покрытия или применение для пропитки при введении различных добавок.
Для эмульсионной полимеризации фторированного мономера в качестве фторированного эмульгатора обычно используется аммонийперфторооктаноат (структурная формула: CF3(CF2)6COONH4, далее называемый АПФО (APFO)). В последние годы, с точки зрения экологии, было предложено регулировать выброс АПФО, поскольку АПФО не присутствует в природе и с трудом разлагается. Кроме того, было отмечено, что АПФО имеет высокую способность к биоаккумулированию.
Однако в эмульсионной полимеризации ТФЭ трудно снизить количество используемого фторированного эмульгатора. Кроме того, для того чтобы извлечь фторированный эмульгатор из водной эмульсии ПТФЭ, водной дисперсии ПТФЭ или сточных вод от коагуляции после эмульсионной полимеризации, необходимо новое дополнительное оборудование, и стоимость получения ПТФЭ будет увеличиваться.
Поэтому был предложен фторированный эмульгатор, иной чем АПФО, который используется для сополимеризации фторированного мономера в отдельности или фторированного мономера и другого мономера (патентные документы 1, 2, 3 и 4).
Патентный документ 1 рассматривает примеры, в которых используется фторированный эмульгатор формулы
F-(CF 2 ) p -O-(CF(Y)-CF 2 -O-) q -CF(Y)COOB,
в которой Y представляет собой атом фтора или перфторметильную группу, р составляет от 1 до 5, q составляет от 0 до 10, и В представляет собой атом водорода или одновалентную соль. Среди примеров имеется случай, в котором фторированный эмульгатор структурной формулы CF3CF2OCF2CF2OCF2COONH4 используется для сополимеризации ТФЭ и гексафторпропилена (далее именуемого ГФП (HFP)). В данном случае подсчитано, что количество используемого фторированного эмульгатора составляет 1040 ч./млн по отношению к количеству окончательно образованного сополимера.
Однако патентный документ 1 не рассматривает случай полимеризации ТФЭ в отдельности при использовании фторированного эмульгатора. Кроме того, когда ТФЭ полимеризуется в отдельности при использовании фторированного эмульгатора в количестве 1040 ч./млн по отношению к количеству окончательно образованного ПТФЭ (далее называемому также конечным выходом ПТФЭ), скорость полимеризации показывает аномальную величину, и образуется большое количество затвердевшего продукта, поэтому было установлено, что трудно проводить эмульсионную полимеризацию стабильно.
Кроме того, стандартная относительная плотность сополимера ТФЭ и ГФП, который был получен в примере патентного документа 1, составляет 2,200. Данное значение стандартной относительной плотности показывает, что молекулярная масса сополимера является низкой. А именно, это показывает, что имеется такая проблема, что даже если ТФЭ и ГФП сополимеризуются при использовании фторированного эмульгатора, можно получить только сополимер ТФЭ/ГФП, имеющий низкую молекулярную массу.
Кроме того, сополимер ТФЭ и ГФП в водной эмульсии, который получается в примере патентного документа 1, имеет исходный средний размер частиц 0,176 мкм, т.е. размер частиц является небольшим. Вообще, в том случае, когда экструзия пасты выполняется при использовании мелкодисперсного порошка, полученного из частиц, имеющих небольшой исходный средний размер частиц, имеется та проблема недостаточной технологичности экструзии, что давление экструзии пасты увеличивается и внешний вид формованного продукта ухудшается. Кроме того, в случае, когда, в применении для покрытия, используется водная дисперсия ПТФЭ, полученная при введении различных добавок в водную дисперсию ПТФЭ, имеется та проблема, что, если исходный средний размер частиц является небольшим, на нанесенной пленке вероятно образуются трещины.
Кроме того, обычно известно, что в эмульсионной полимеризации ТФЭ, если количество фторированной эмульсии увеличивается, то исходный средний размер частиц получаемого ПТФЭ становится небольшим. В случае примера патентного документа 1 ожидается, что, если количество используемого фторированного эмульгатора увеличивается, исходный средний размер частиц будет меньше.
В примере патентного документа 2 в качестве эмульгатора полимеризации используется CF3CF2CF2 C(CF3)CF2OCF(CF3)COONH4, и установлено, что эмульгатор имеет более высокую способность к биоаккумулированию, чем АПФО.
В примере патентного документа 3 в качестве эмульгатора полимеризации рассматривается CF3CF2CF2 C(CF3)2CF2(CH2)2COONH4 и т.д. Вообще, во фторированном эмульгаторе, если атомы водорода вводятся в молекулу фторированного эмульгатора, в процессе полимеризации фторированного мономера, вероятно, имеет место передача цепи, поэтому имеется та проблема, что молекулярная масса получаемого фторированного полимера не будет достаточно высокой.
В примерах патентного документа 4 в качестве эмульгаторов полимеризации рассматриваются F(CF2)5OCF(CF3)COONH4 и т.д.
Патентный документ 1: JP-B-39-24263.
Патентный документ 2: JP-A-2003-119204.
Патентный документ 3: JP-A-2002-308914.
Патентный документ 4: JP-A-2002-317003.
Рассмотрение целей изобретения, достигаемых изобретением
Целью настоящего изобретения является создание водной эмульсии ПТФЭ, которая по существу не содержит АПФО, которая способна обеспечить ПТФЭ, имеющий высокую молекулярную массу, которая способна увеличить исходный средний размер частиц до относительно крупных на уровне от 0,18 до 0,50 мкм и которую получают эмульсионной полимеризацией. Кроме того, другой целью настоящего изобретения является получение мелкодисперсного порошка ПТФЭ, который получается из такой водной эмульсии ПТФЭ и который имеет превосходную перерабатываемость экструзией пасты, и, кроме того, создание пористого материала, получаемого из мелкодисперсного порошка ПТФЭ.
Средства достижения целей
Авторами настоящего изобретения установлено, что в эмульсионной полимеризации ТФЭ при использовании фторированного эмульгатора формулы (1) в количестве от 1500 до 20000 ч./млн по отношению к конечному выходу ПТФЭ полимеризация может быть проведена плавно, даже если ТФЭ полимеризуется в отдельности или сополимеризуется с небольшим количеством фторированного сомономера. Кроме того, ими установлено, что можно увеличить исходный средний размер частиц полученного ПТФЭ до относительно крупного на уровне от 0,18 до 0,50 мкм; можно получить высокомолекулярный ПТФЭ, имеющий стандартную относительную плотность от 2,14 до 2,20; и мелкодисперсный порошок ПТФЭ, полученный из водной эмульсии ПТФЭ, является превосходным в экструзии пасты. Настоящее изобретение выполнено на основе указанных открытий.
А именно, настоящим изобретением предусматривается следующее:
1. Водная эмульсия ПТФЭ, полученная при проведении эмульсионной полимеризации ТФЭ в отдельности или вместе с другим сополимеризующимся мономером в водной среде, где фторированный эмульгатор формулы (1):
XCF 2 CF 2 (O) m CF 2 CF 2 OCF 2 COOA,
в которой Х представляет собой атом водорода или атом фтора, А представляет собой атом водорода, щелочной металл или NH4 и m представляет собой целое число 0 или 1,
используется в количестве от 1500 до 20000 ч./млн по отношению к конечному выходу ПТФЭ.
2. Водная эмульсия ПТФЭ по п.1, в которой исходный средний размер частиц ПТФЭ в водной эмульсии ПТФЭ составляет от 0,18 до 0,50 мкм.
3. Водная эмульсия ПТФЭ по п.1 или 2, в которой количество фторированного эмульгатора формулы (1) составляет от 2000 до 20000 ч./млн по отношению к конечному выходу ПТФЭ.
4. Водная эмульсия ПТФЭ по любому из пп.1-3, в которой фторированным эмульгатором формулы (1) является соединение
CF3CF2OCF2CF2OCF2COONH4.
5. Мелкодисперсный порошок ПТФЭ, получаемый коагуляцией водной эмульсии ПТФЭ по любому из пп.1-4.
6. Мелкодисперсный порошок ПТФЭ по п.5, который имеет стандартную относительную плотность от 2,14 до 2,20.
7. Пористый материал ПТФЭ, получаемый экструзией пасты мелкодисперсного порошка ПТФЭ по п.5 или 6 с последующим растяжением.
Эффекты изобретения
Водная эмульсия ПТФЭ по настоящему изобретению не имеет проблемы с экологией, которая может быть внесена перфторооктановой кислотой или ее солью. Кроме того, водная эмульсия по настоящему изобретению способна обеспечить ПТФЭ, имеющий высокую молекулярную массу, и она способна увеличить исходный средний размер его частиц до относительно крупного на уровне от 0,18 до 0,50 мкм. Кроме того, мелкодисперсный порошок ПТФЭ по настоящему изобретению является превосходным по различным характеристикам, таким как перерабатываемость экструзией пасты. Пористый материал ПТФЭ по настоящему изобретению является превосходным по различным характеристикам.
Наилучший вариант осуществления изобретения
В настоящем изобретении эмульсионная полимеризация проводится при использовании ТФЭ в отдельности или ТФЭ вместе с другим сополимеризующимся мономером (далее называемым сомономером).
Сомономером могут быть, например, ГФП, простой перфторо(алкилвиниловый эфир) ((ПФАВЭ)(PFAVE)), хлоротрифтороэтилен ((ХТФЭ)(CTFE)), (перфтороалкил)этилен, винилиденфторид ((ВдФ) (VdF)), простой перфторо(алкенилвиниловый эфир), ВДФ (VDF), перфторо-(2,2-диметил-1,3-диоксол) или перфторо-(4-алкил-1,3-диоксол). Такие сомономеры могут использоваться в отдельности или в комбинации как смесь двух или более из них.
В настоящем изобретении ПТФЭ, получаемый эмульсионной полимеризацией, включает как гомополимер ТФЭ, так и модифицированный ПТФЭ. Как гомополимер ТФЭ, так и модифицированный ПТФЭ являются полимерами, перерабатываемыми не из расплава.
Модифицированный ПТФЭ представляет собой полимер, имеющий ТФЭ, сополимеризованный с сомономером в такой степени, что перерабатываемостью из расплава они не обладают. Содержание составляющих звеньев на основе сомономера в модифицированном ПТФЭ составляет, предпочтительно, самое большое 0,5 мас.%, более предпочтительно, самое большое 0,4 мас.%, по отношению ко всем составляющим звеньям.
Количество сомономера, вводимого в начале полимеризации при получении модифицированного ПТФЭ, варьируется в зависимости от типа сомономера. Однако, чем больше количество введенного сомономера, тем выше становится стабильность получаемой водной эмульсии, так что исходный средний размер частиц будет снижаться. В настоящем изобретении количество сомономера, вводимого вначале, устанавливается таким, чтобы довести исходный средний размер частиц до уровня от 0,18 до 0,50 мкм.
Количество сомономера, вводимого вначале, составляет предпочтительно от 0 до 0,5 мас.%, более предпочтительно от 0 до 0,4 мас.%, по отношению к конечному выходу ПТФЭ.
Подходящим для использования является фторированный эмульгатор формулы (1), так как он обеспечивает хорошую функцию по стабилизации полимеризации ПТФЭ. В формуле (1) Х предпочтительно представляет собой атом фтора с точки зрения стабильности. Кроме того, значение m составляет предпочтительно 1 с точки зрения стабильности полимеризации и механической стабильности водной эмульсии ПТФЭ.
А может представлять собой, например, H, Li, Na, K или NH4. NH4 является особенно предпочтительным, потому что он имеет хорошую растворимость в воде, и компонент иона металла не остается в мелкодисперсном порошке ПТФЭ в качестве примеси.
Среди фторированных эмульгаторов формулы (1) особенно предпочтительным является, например, CF3CF2CF2CF2OCF2COONH4 или CF3CF2OCF2CF2OCF2COONH4 (далее обозначаемый ЕЕА), и ЕЕА является более предпочтительным.
Фторированный эмульгатор формулы (1) получают известным способом фторирования, таким как жидкофазный способ фторирования, в котором используют соответствующий нефторированный эмульгатор или сложный эфир частично фторированного соединения, и он взаимодействует с фтором в жидкой фазе, причем в способе фторирования используют фторид кобальта или используют способ электрохимического фторирования, и получаемая фторированная сложноэфирная связь гидролизуется с последующей очисткой и затем нейтрализацией аммиаком.
Когда проводится эмульсионная полимеризация ТФЭ, фторированный эмульгатор формулы (1) используется в количестве от 1500 до 20000 ч./млн по отношению к конечному выходу ПТФЭ, и предпочтительно - от 2000 до 20000 ч./млн по отношению к конечному выходу ПТФЭ. Если количество используемого фторированного эмульгатора формулы (1) является слишком большим, форма исходных частиц имеет тенденцию быть стержнеобразной и водная эмульсия будет нестабильной.
В эмульсионной полимеризации настоящего изобретения в процессе полимеризации ТФЭ или ТФЭ вместе с другим сомономером используются водная среда, фторированный эмульгатор формулы (1), стабилизатор, инициатор полимеризации и т.д. Кроме того, в качестве условий полимеризации температура полимеризации составляет предпочтительно от 10 до 95°C, давление полимеризации составляет предпочтительно от 0,5 до 4,0 МПа, и время полимеризации составляет от 90 до 520 мин.
Стабилизатором может быть, например, парафиновый воск, фторсодержащее масло, фторсодержащий растворитель или силиконовое масло. Такие стабилизаторы могут использоваться в отдельности или в комбинации как смесь двух или более из них. В качестве стабилизатора предпочтительным является парафиновый воск. Парафиновый воск может быть жидким, полутвердым или твердым при комнатной температуре, и предпочтительным является насыщенный углеводород, имеющий по меньшей мере 12 углеродных атомов. Температура плавления парафинового воска составляет обычно предпочтительно от 40 до 65°C, более предпочтительно - от 50 до 65°C. Количество используемого стабилизатора составляет предпочтительно от 0,1 до 12 мас.%, более предпочтительно от 0,1 до 8 мас.% по отношению к массе используемой воды.
В качестве инициатора полимеризации в подходящем случае используется, например, водорастворимый радикальный инициатор или водорастворимый катализатор окисления-восстановления. В качестве водорастворимого радикального инициатора предпочтительным является персульфат, такой как персульфат аммония или персульфат калия, или водорастворимый органический пероксид, такой как пероксид диянтарной кислоты, пероксид бис-глутаровой кислоты или трет-бутилгидропероксид. Такие инициаторы полимеризации могут использоваться в отдельности или в комбинации как смесь двух или более из них. Кроме того, таким же образом может также использоваться маслорастворимый инициатор. В качестве инициатора полимеризации более предпочтительным является пероксид диянтарной кислоты.
Количество используемого инициатора полимеризации обычно составляет предпочтительно от 0,01 до 0,20 мас.%, более предпочтительно - от 0,01 до 0,15 мас.%, по отношению к конечному выходу ПТФЭ.
В эмульсионной полимеризации настоящего изобретения можно использовать регулятор степени полимеризации, такой как спирт, например, метанол или этанол, для того, чтобы регулировать молекулярную массу ПТФЭ и увеличивать стабильность водной эмульсии. В качестве регулятора степени полимеризации более предпочтительным является метанол.
Количество используемого регулятора степени полимеризации обычно составляет предпочтительно от 0 до 1·10-4 мас.% и более предпочтительно - от 0 до 5·10-5 мас.% по отношению к конечному выходу ПТФЭ.
Согласно настоящему изобретению исходный средний размер частиц исходных частиц ПТФЭ в водной эмульсии ПТФЭ, полученной эмульсионной полимеризацией, может находиться в интервале от 0,18 до 0,50 мкм, в частности в интервале от 0,19 до 0,40 мкм. В настоящем изобретении исходный средний размер частиц представляет собой средний размер, измеренный анализатором распределения частиц по размеру лазерным рассеянием.
Концентрация ПТФЭ в водной эмульсии ПТФЭ, полученной эмульсионной полимеризацией, составляет предпочтительно от 10 до 45 мас.%. Если концентрация ПТФЭ является слишком низкой, будет трудно коагулировать исходные частицы ПТФЭ из водной эмульсии. Если концентрация ПТФЭ является слишком высокой, будут оставаться некоагулированные исходные частицы ПТФЭ, и жидкость после коагуляции будет мутной. Концентрация ПТФЭ составляет, более предпочтительно, от 15 до 45 мас.%, еще более предпочтительно - от 20 до 40 мас.%.
В качестве способа получения мелкодисперсного порошка ПТФЭ из водной эмульсии ПТФЭ может использоваться известный способ. Например, может быть указан способ, в котором водная эмульсия ПТФЭ разбавляется водой до концентрации от 8 до 20 мас.% с последующим интенсивным перемешиванием для коагуляции исходных частиц ПТФЭ. Может корректироваться рН или может вводиться коагулятор, такой как электролит или водорастворимый органический растворитель. Затем при надлежащем перемешивании мелкодисперсный порошок ПТФЭ, имеющий коагулированные его исходные частицы, отделяется от воды с последующим гранулированием, регулированием размера частиц и сушкой с получением мелкодисперсного порошка ПТФЭ.
Фторированный эмульгатор формулы (1), содержащийся в водной среде после коагулирования ПТФЭ, отделяется, извлекается при использовании способа адсорбирования его ионообменной смолой или способа концентрирования, например выпариванием воды.
Сушка мелкодисперсного порошка ПТФЭ обычно проводится в состоянии, вызывающем небольшое течение мокрого порошка, полученного обычно коагуляцией, предпочтительно в состоянии, оставляющем его неподвижным, с помощью вакуума, высокочастотных волн, горячего воздуха или тому подобного. Сушка проводится при температуре предпочтительно от 10 до 250°C, особенно предпочтительно - от 100 до 230°C.
Фторированный эмульгатор формулы (1), адсорбированный на мелкодисперсном порошке ПТФЭ, извлекается введением воздуха, выходящего в процессе сушки, в щелочную водную жидкость.
По настоящему изобретению можно довести относительную плотность мелкодисперсного порошка ПТФЭ до интервала от 2,14 до 2,20, и можно получить ПТФЭ, имеющий высокую молекулярную массу. Кроме того, изменением условий эмульсионной полимеризации можно довести относительную плотность до интервала более 2,20 и до 2,25.
Кроме того, средний размер частиц мелкодисперсного порошка ПТФЭ настоящего изобретения составляет предпочтительно от 350 до 650 мкм, более предпочтительно - от 400 до 600 мкм. Кроме того, объемная плотность составляет предпочтительно от 0,35 до 0,65 г/мл, более предпочтительно - от 0,40 до 0,60 г/мл.
Когда средний размер частиц находится в указанном интервале, мелкодисперсный порошок ПТФЭ имеет превосходную перерабатываемость методом экструзии пасты, и формованный продукт имеет превосходную гладкость поверхности.
Мелкодисперсный порошок ПТФЭ может быть использован для экструзии пасты. Экструзия пасты проводится таким образом, что мелкодисперсный порошок ПТФЭ смешивается с замасливателем, что позволяет мелкодисперсному порошку ПТФЭ иметь текучесть при формовании продукта, такого как пленка или труба. Степень смешения замасливателя может быть установлена надлежащим образом, чтобы позволить мелкодисперсному порошку ПТФЭ иметь текучесть, и она составляет обычно от 10 до 30 мас.%, особенно предпочтительно - от 15 до 20 мас.%. В качестве замасливателя предпочтительно использовать лигроин или нефтяной углеводород, имеющий точку конца кипения по меньшей мере 100°C.
Кроме того, может вводиться добавка, такая как пигмент для окрашивания или различные наполнители для придания прочности и электрической проводимости.
ПТФЭ настоящего изобретения имеет свое время релаксации напряжения предпочтительно по меньшей мере 500 с, более предпочтительно - по меньшей мере 530 с, особенно предпочтительно - по меньшей мере 550 с.
Форма продукта экструзии пасты мелкодисперсного порошка ПТФЭ может быть различной, такой как трубообразная, листообразная, пленкообразная или волокнообразная. Его применениями могут быть, например, трубы, покрытия проволоки, уплотнительные материалы, пористые мембраны или фильтры.
Продукт экструзии пасты мелкодисперсного порошка ПТФЭ затем подвергается растяжению с получением пористого ПТФЭ-материала. В качестве условий растяжения используются надлежащая скорость, например 5-1000%/с, и надлежащая степень растяжения, например по меньшей мере 500%.
Пористость пористого материала специально не ограничивается, но пористость обычно находится предпочтительно в интервале от 50 до 99%, особенно предпочтительно - от 70 до 98%. Изделие, состоящее из пористого материала, может быть различных форм, например трубообразной, листообразной, пленкообразной или волокнообразной.
Примеры
Теперь настоящее изобретение будет описано подробно посредством примеров и сравнительных примеров, но должно быть понятно, что настоящее изобретение не ограничивается ими. Методы определения характеристик мелкодисперсного порошка ПТФЭ являются следующими:
(А) Исходный средний размер частиц (единица: мкм) ПТФЭ, полученного эмульсионной полимеризацией: определяется с использованием анализатора распределения частиц по размеру лазерным рассеянием (торговая марка: “LA-920”, изготовитель - HORIBA, Ltd.).
(В) Стандартная относительная плотность (далее указываемая также как «СОП» (“SSG”)): определяется в соответствии с ASTM D1457-91a и D4895-91a. Взвешивают 12,0 г ПТФЭ и выдерживают в цилиндрической пресс-форме с внутренним диаметром 28,6 мм под давлением 34,5 МПа в течение 2 мин. Пресс-форму помещают в печь при 290°C, и повышают температуру со скоростью 120°C/ч. Ее выдерживают при 380°C в течение 30 мин, затем понижают температуру со скоростью 60°C/ч, и выдерживают пресс-форму при 294°C в течение 24 мин. Формованный продукт выдерживают в эксикаторе при 23°C в течение 12 ч. Затем определяют относительную плотность формованного продукта в воде при 23°C и принимают как стандартную относительную плотность.
(С) Средний размер частиц (единца: мкм) мелкодисперсного порошка ПТФЭ: определяется в соответствии с JIS K6891. Стандартные сита 20, 30, 40 и 60 меш устанавливают в пакет в указанном порядке сверху вниз. Порошок насыпают на сито 20 меш и просеивают, определяют массу ПТФЭ-порошка, оставшегося на каждом сите. Размер 50% частиц, рассчитанный по логарифмической вероятности на основе вышеуказанной массы, принимается как средний размер частиц.
(D) Кажущаяся плотность (единица: г/мл): определяется в соответствии с JIS K6891. Во взвешенную бутыль из нержавеющей стали с внутренним объемом 100 мл загружают образец из воронки, установленной выше, и часть образца, выступающую из взвешенной бутыли, соскабливают плоской пластиной. Затем определяют массу образца, оставшегося во взвешенной бутыли, и значение, полученное при делении массы образца на внутренний объем взвешенной бутыли, принимают как кажущуюся плотность.
(Е) Оценка давления экструзии и растяжимости
100 г мелкодисперсного порошка ПТФЭ, который был выдержан при комнатной температуре в течение 2 ч, загружают в стеклянную бутыль, имеющую внутреннюю емкость 900 см3, и добавляют 21,7 г замасливателя Isopar H (зарегистрированная торговая марка; изготовитель - Exxon Corporation) с последующим смешением в течение 3 мин с получением ПТФЭ-смеси. Полученную ПТФЭ-смесь выдерживают при постоянной комнатной температуре в течение 2 ч, экструдируют через фильеру, имеющую диаметр 2,5 см, длину 1,1 см и угол введения 30°, при 25°C в условиях степени вытяжки (отношение поперечного сечения на входе к поперечному сечению на выходе фильеры) 100 и скорости экструзии 51 см/мин с получением валика экструзией пасты. Определяют давление, требуемое для экструзии в это время, и обозначают его как давление экструзии. Полученный валик сушат при 230°C в течение 30 мин для удаления замасливателя. Затем валик режут на надлежащие отрезки, каждый конец зажимают так, что длина между зажимами составляет 3,8 см или 5,1 см, и нагревают его при 300°C в печи с воздушной циркуляцией. Затем его растягивают с заданной скоростью до тех пор, пока длина между зажимами не станет равной заданной длине.
Указанный способ растяжения представляет собой по существу способ, рассмотренный в патенте США 4576869, за исключением различной скорости экструзии (51 см/мин). «Растяжение» представляет собой увеличение длины, и оно обычно представляет собой отношение к исходной длине.
(F) Определение прочности на разрыв
Образец для определения прочности на разрывной получают растяжением валика таким же образом, как при определении растяжимости, в условиях длины между зажимами 5,1 см, скорости растяжения 100%/с и общего растяжения 2400%. Прочность на разрыв определяется как минимальная нагрузка при растяжении до разрыва среди трех образцов, полученных из растягиваемого валика, т.е. один образец с каждого конца растягивающегося валика (если между зажимами имело место образование шейки, то его пропускали) и один образец из его центра. Образец крепко зажимается подвижным зажимом с величиной зазора 5,0 см, и подвижный зажим отводится со скоростью 300 мм/мин, и за счет этого определяют прочность на разрыв при комнатной температуре при использовании TENSILON (A&D Co., LTD.).
G. Определение времени релаксации напряжения
Образец для определения времени релаксации напряжения получают растяжением валика таким же образом, как при определении растяжимости, в условиях длины между зажимами 3,8 см, скорости растяжения 1000%/с и общего растяжения 2400%. Каждый конец данного образца из растягивающегося валика крепят в зажимном приспособлении, и образец растягивают до общей длины 25 см. Время релаксации напряжения представляет собой время, которое требуется для разрушения данного образца, когда он выдерживается в печи при 390°C. Данная температура соответствует более высокой температуре, чем 380°C, которая является температурой, рассмотренной в описании патента США 5470655 и при которой растянутая цепная форма плавится. Образец, закрепленный зажимным приспособлением, устанавливается в печь через щель (закрываемую), выполненную сбоку, поэтому в процессе введения образца температура не снижается. Поэтому нет необходимости затрачивать время на восстановление температуры, как рассмотрено в описании патента США 4576869.
Ссылочный пример 1
Получение образца CF 3 CF 2 OCF(CF 3 )CF 2 OCF(CF 3 )COONH 4
2,58 г CsF и 13,06 г тетраглима загружают в автоклав из сплава хастеллой, имеющий емкость 200 мл, с последующей дегазацией и затем вводят 20,83 г CF3COF. Затем автоклав охлаждают до температуры -20°C и в герметичных условиях и при перемешивании вводят 57,5 г гексафторпропиленоксида в течение периода времени около 1 ч. Начальное давление составляет 0,6 МПа. Реакция продолжается в течение примерно 1 ч до тех пор, пока давление больше не снижается, и затем автоклав возвращают к комнатной температуре с получением 78,57 г неочищенной реакционной жидкости. Данную жидкость анализируют методом ГХ, в результате которого находят, что помимо целевого продукта 49,7% CF3CF2OCF(CF3)CF2OCF(CF3)COF в ней содержится 19,1% CF3CF2OCF(CF3)COF и 12,8% CF3CF2O(CF(CF3)CF2O)2CF(CF3)COF.
Такую же реакцию проводят при использовании 32,26 г CF3COF. Дистилляцию и очистку осуществляют при объединении 2 партий реакционной неочищенной жидкости, содержащей полученный целевой продукт. При использовании 30 см дистилляционной колонны, обеспеченной дефлегматором и заполненной набивкой Helipack №1, получают 52,47 г целевого продукта, имеющего точку кипения 71°C/400 торр. Целевой продукт загружают в реактор, выполненный из ПТФЭ, и добавляют по каплям 2,32 г воды с перемешиванием для проведения гидролиза. Затем при барботировании азота удаляют HF с получением 50,45 г неочищенной жидкости CF3CF2OCF(CF3)CF2OCF(CF3)COOH. Неочищенную жидкость подвергают простой перегонке с помощью аппарата простой перегонки, выполненного из стекла, с получением 40 г CF3CF2OCF(CF3)CF2OCF(CF3)COOH.
Затем с использованием 40 г CF3CF2OCF(CF3)CF2OCF(CF3)COOH осуществляют ее конверсию в аммониевую соль. А именно, при использовании реактора, выполненного из стекла, 40 г вышеуказанной карбоновой кислоты растворяют в 150 г CClF2CF2CHClF и затем 10,89 г 28% аммиачной воды добавляют по каплям при комнатной температуре с образованием аммониевой соли. После этого отгоняют растворитель CClF2CF2CHClF с последующей сушкой при пониженном давлении с получением 39,4 г CF3CF2OCF(CF3)CF2OCF(CF3)COONH4 в виде белого твердого вещества.
Ссылочный пример 2
Определение коэффициента распределения 1-октанол/вода
(lg POW)
В соответствии с OECD нормативным документом по испытаниям 117 коэффициент распределения 1-октанол/вода (lg POW) фторированного эмульгатора определяют с использованием ВЭЖХ (HPLC) (высокоэффективной жидкостной хроматографии).
Условия определения являются следующими: колонка: колонка TOSOH ODS-120T (диаметр 4,6 ммЧ250 мм), растворитель для элюирования: ацетонитрил/0,6 мас.% водный раствор HClO4=1:1 (об.%/об.%), скорость потока: 1,0 мл/мин, количество образца: 300 мкл, температура колонки: 40°C, и свет детектирования УФ 210 нм (WO 2005-42593).
ВЭЖХ выполняют на стандартных веществах (гептановая кислота, октановая кислота, нонановая кислота и декановая кислота), имеющих известные коэффициенты распределения 1-октанол/вода, и калибровочную кривую получают по соответствующим временам элюирования и коэффициентам распределения соответствующих стандартных веществ. На основе данной калибровочной кривой рассчитывают значение коэффициента распределения (lg POW) между 1-октанолом и водой по времени элюирования по ВЭЖХ фторированного эмульгатора. Результаты показаны в таблице.
ЕЕА имеет небольшое значение lg POW по сравнению с аммонийперфторооктаноатом (АПФО), таким образом показывая, что его способность к биоаккумулированию является низкой. С другой стороны, CF3CF2OCF(CF3)CF2OCF(CF3)COONH4, который был синтезирован в ссылочном примере 1, имеет структуру, подобную ЕЕА, но его значение lg POW больше, чем у АПФО, способность к биоаккумулированию которого вызывает беспокойство, таким образом показывая, что его аккумулирование в живом организме является высоким.
Кроме того, в общем случае, для того чтобы судить о том, аккумулируется или нет химическое вещество в живом организме, оговаривается метод испытания для определения коэффициента распределения (lg POW) между 1-октанолом и водой. В дополнение к «Методу определения коэффициента распределения (1-октанол/ вода) встряхиванием колбы», как оговорено в нормативном документе OECD по испытаниям 107 и в Японских промышленных стандартах Z 7260-107 (2000), используется метод ВЭЖХ (высокоэффективной жидкостной хроматографии), как оговорено и опубликовано в нормативном документе OECD по испытаниям 117. Соединение, имеющее большое значение коэффициента распределения, имеет большую тенденцию к биоаккумулированию, а соединение, имеющее небольшое значение коэффициента распределения, имеет низкую тенденцию к биоаккумулированию. В том случае, когда значение lg POW составляет меньше 3,5, это рассматривается как достаточная величина для того, чтобы решить, что это не является высокой концентрацией, и считается также, что биоаккумулирование является небольшим.
ТАБЛИЦА 1
Фторированный эмульгатор lg PO
CF3CF2OCF2CF2OCF2COONH4 3,13
CF3(CF2)6COONH4 3,67
CF3CF2OCF(CF3)CF2OCF(CF3)COONH4 4,03
Пример 1
В 100 л автоклав из нержавеющей стали, оборудованный отражательной перегородкой и мешалкой, загружают 38 г ЕЕА, 776 г парафинового воска и 68 л деионизированной воды. Воздух в автоклаве замещают азотом, затем понижают давление и загружают 0,6 г метанола. Затем повышают давление введением ТФЭ, и температура повышается до 66°C при перемешивании. Затем введением ТФЭ повышают давление до 1,765 МПа, 29,4 г пероксида диянтарной кислоты (концентрация: 80 мас.%, остальное - вода) растворяют в 1 л теплой воды при примерно 70°C и вводят в автоклав. Внутреннее давление снижается до 1,746 МПа примерно в течение 1,5 мин.
Полимеризация проводится при введении ТФЭ с поддержанием внутреннего давления автоклава при 1,765 МПа. Реакция заканчивается в тот момент, когда количество веденного ТФЭ достигает 16,66 кг, и ТФЭ из автоклава сбрасывается в атмосферу. Время полимеризации составляет 98 мин. Полученную водную эмульсию ПТФЭ охлаждают, и всплывший парафиновый воск удаляют. Водная эмульсия имеет концентрацию твердых веществ 19 мас.%. Используемый ЕЕА составляет 2270 ч./млн по отношению к конечному выходу ПТФЭ. Кроме того, исходный средний размер частиц ПТФЭ составляет 0,239 мкм. Агрегаты в реакторе были определены примерно в следовых количествах.
Указанную водную эмульсию разбавляют чистой водой до концентрации 10 мас.% и доводят до 20°C с последующим перемешиванием и коагуляцией, с получением в результате мелкодисперсного порошка ПТФЭ. Затем указанный мелкодисперсный порошок ПТФЭ сушат при 120°C. Средний размер частиц составляет 560 мкм, кажущаяся плотность составляет 0,49 г/мл, и стандартная относительная плотность составляет 2,219.
Сравнительный пример 1
Полимеризация проводится таким же образом, как в примере 1, при введении ТФЭ с поддержанием внутреннего давления автоклава при 1,765 МПа, за исключением того, что используется 19 г ЕЕА. Скорость полимеризации составляет величину примерно на 20% медленней, чем в примере 1, и, когда количество введенного ТФЭ достигает 15,7 кг, имеет место аномальная реакция, т.е. скачкообразно превышающая количество введенного ПТФЭ. Поэтому реакцию прекращают после периода полимеризации 119 мин. Когда ТФЭ из автоклава сбрасывают в атмосферу и автоклав открывают, извлекают около 4 кг агрегатов. Считается, что в результате реакции при аномальной скорости реакции и извлечения большого количества агрегатов стабильная эмульсионная полимеризация нарушается и получается водная эмульсия с разрушением коагуляции, в результате чего полимеризация сдвигается к суспензионной полимеризации, имеющей агрегаты как ядра.
Водная эмульсия имеет концентрацию твердых веществ 14 мас.%. Используемый ЕЕА составляет 1210 ч./млн по отношению к общему количеству введенного ТФЭ. Кроме того, исходный средний размер частиц составляет 0,268 мкм. Указанную водную эмульсию разбавляют чистой водой до концентрации 10 мас.% и доводят до 20°C с последующим перемешиванием и коагуляцией, с получением в результате мелкодисперсного порошка ПТФЭ. Затем указанный мелкодисперсный порошок ПТФЭ сушат при 120°C. Стандартная относительная плотность составляет 2,219.
Пример 2
В 100 л автоклав из нержавеющей стали, оборудованный отражательной перегородкой и мешалкой, загружают 36 г ЕЕА, 555 г парафинового воска и 60 л деионизированной воды. Воздух в автоклаве замещают азотом, и затем давление снижают. Повышают давление введением ТФЭ, и температура повышается до 62°C при перемешивании. Затем введением ТФЭ повышают давление до 1,765 МПа, 26,3 г пероксида диянтарной кислоты (концентрация: 80 мас.%, остальное - вода) растворяют в теплой воде при примерно 70°C и вводят в автоклав. Внутреннее давление снижается до 1,746 МПа примерно в течение примерно 3 мин.
Полимеризация проводится при введении ТФЭ с поддержанием внутреннего давления автоклава при 1,765 МПа. ЕЕА растворяют в теплой воде, и всего 53 г ЕЕА вводят в процессе полимеризации. Температура повышается до 72°C на полпути. Реакцию заканчивают в тот момент, когда количество веденного ТФЭ достигает 22 кг, и ТФЭ из автоклава сбрасывают в атмосферу. Время полимеризации составляет 103 мин. Полученную водную эмульсию ПТФЭ охлаждают, и всплывший парафиновый воск удаляют. Водная эмульсия имеет концентрацию твердых веществ 25 мас.%. Используемый ЕЕА составляет 4050 ч./млн по отношению к конечному выходу ПТФЭ. Кроме того, исходный средний размер частиц ПТФЭ составляет 0,262 мкм. Агрегаты в реакторе были определены примерно в следовых количествах.
Указанную водную эмульсию разбавляют чистой водой до концентрации 10 мас.% и доводят до 20°C с последующим перемешиванием и коагуляцией, с получением в результате мелкодисперсного порошка ПТФЭ. Затем указанный мелкодисперсный порошок ПТФЭ сушат при 120°C. Средний размер частиц составляет 560 мкм, кажущаяся плотность составляет 0,48 г/мл, и стандартная относительная плотность составляет 2,213.
Пример 3
В 100 л автоклав из нержавеющей стали, оборудованный отражательной перегородкой и мешалкой, загружают 70 г ЕЕА, 872 г парафинового воска и 59 л деионизированной воды. Воздух в автоклаве замещают азотом, и затем давление снижают. Повышают давление введением ТФЭ, и температура повышается до 70°C при перемешивании. Затем введением ТФЭ повышают давление до 1,765 МПа, 5,0 г пероксида диянтарной кислоты (концентрация: 80 мас.%, остальное - вода) растворяют в 1 л теплой воды при примерно 70°C и вводят в автоклав. Внутреннее давление снижается до 1,746 МПа в течение примерно 3 мин.
Полимеризация проводится при введении ТФЭ с поддержанием внутреннего давления автоклава при 1,765 МПа. ЕЕА растворяют в теплой воде, и всего в процессе полимеризации вводят 125 г ЕЕА. Кроме того, сульфит аммония растворяют в воде, и всего в процессе полимеризации вводят 4 г сульфита аммония. Температура снижается до 64°C в середине процесса, и она повышается до 80°C в конце полимеризации. Реакцию заканчивают в тот момент, когда количество веденного ТФЭ достигает 23 кг, и ТФЭ из автоклава сбрасывают в атмосферу. Время полимеризации составляет 155 мин. Полученную водную эмульсию ПТФЭ охлаждают, и всплывший парафиновый воск удаляют. Водная эмульсия имеет концентрацию твердых веществ 26 мас.%. Используемый ЕЕА составляет 8555 ч./млн по отношению к конечному выходу ПТФЭ. Кроме того, исходный средний размер частиц ПТФЭ составляет 0,275 мкм. Агрегаты в реакторе были определены примерно в следовых количествах.
Указанную водную эмульсию разбавляют чистой водой до концентрации 10 мас.% и доводят до 20°C с последующим перемешиванием и коагуляцией с получением в результате мелкодисперсного порошка ПТФЭ. Затем указанный мелкодисперсный порошок ПТФЭ сушат при 220°C. Средний размер частиц составляет 580 мкм, кажущаяся плотность составляет 0,49 г/мл, и стандартная относительная плотность составляет 2,151. Кроме того, в соответствии с методом измерения (Е) получают экструдированный из пасты валик. Давление экструзии составляет 21,3 МПа. Указанный растянутый валик представляет собой пористый материал, не имеющий образованных разрывов и пустот, и разрывная прочность составляет 29,4 Н. Время релаксации напряжения составляет 564 с.
Методика получения пористого материала
Пористый материал из ПТФЭ согласно настоящему изобретению получают посредством следующих стадий.
Пасту получают посредством смешивания мелкодисперсного порошка полимера ПТФЭ со смазывающим агентом, таким как очищенные (дезодорированные) уайт-спириты, и затем осуществляют формование, при котором полимер подвергают воздействию высоких усилий сдвига, тем самым придавая частицам материала когезионную способность.
Далее осуществляют экструзию пасты с различной формой поперечного сечения, как например в форме стержня или ленты, с получением соответствующих экструдатов. Для формования пасты используются и другие операции, такие как каландрование.
Смазывающий агент удаляют из полученных экструдатов сушкой.
Полученный не спеченный продукт подвергают нагреву при температуре около 300°С и увеличивают в объеме посредством его растяжения в одном или нескольких направлениях, так что он становится более прочным, а его пористость значительно повышается.
При этом использование при получении пористого материала модифицированного порошка ПТФЭ согласно настоящему изобретению обеспечивает превосходные экструзионные свойства при высокой степени измельчения порошка, в частности высокую прочность при формовании.
На чертеже показана структура полученного таким образом пористого материала. Чертеж также наглядно иллюстрирует водоотталкивающие свойства материала, который не пропускает капли жидкости внутрь, однако пропускает водяные пары наружу.
Применимость в промышленности
Настоящее изобретение предусматривает водную эмульсию ПТФЭ, которая по существу не содержит перфторооктановой кислоты или ее соли и не имеет экологических проблем; мелкодисперсный порошок ПТФЭ, который имеет превосходную перерабатываемость экструзией пасты; и пористый материал. Применениями могут быть, например, различные трубы, покрытия проволоки, уплотнительные материалы, пористые мембраны или фильтры. Кроме того, продуктом экструзии пасты может быть, например, продукт в различных формах, таких как трубообразная, листообразная, пленкообразная, волокнообразная или блочная.
Полное описание японской заявки на патент №2005-302340 от 17 октября 2005 г, включая описание, формулу изобретения и реферат, приводится здесь в качестве ссылки во всей его полноте.

Claims (5)

1. Пористый материал из политетрафторэтилена, получаемый экструзией пасты политетрафторэтиленового мелкодисперсного порошка, получаемого коагуляцией водной политетрафторэтиленовой эмульсии, полученной при проведении эмульсионной полимеризации тетрафторэтилена в водной среде, где используется фторированный эмульгатор формулы (I):
CF3CF2OCF2CF2OCF2COOA,
в которой А представляет собой атом щелочного металла или группу NH4, в количестве от 1500 до 20000 ч./млн по отношению к конечному выходу политетрафторэтилена, с последующим растяжением.
2. Пористый материал по п.1, в котором первичный средний размер частиц политетрафторэтилена в водной политетрафторэтиленовой эмульсии составляет от 0,18 до 0,50 мкм.
3. Пористый материал по п.1, в котором количество фторированного эмульгатора формулы (1) составляет от 2000 до 20000 ч./млн по отношению к конечному выходу политетрафторэтилена.
4. Пористый материал по п.1, в котором фторированным эмульгатором формулы (1) является соединение CF3CF2OCF2CF2OCF2COONH4.
5. Пористый материал по п.1, в котором политетрафторэтиленовый мелкодисперсный порошок имеет стандартную относительную плотность от 2,14 до 2,25.
RU2008119429/04A 2005-10-17 2006-10-16 Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него RU2425056C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005302340 2005-10-17
JP2005-302340 2005-10-17

Publications (2)

Publication Number Publication Date
RU2008119429A RU2008119429A (ru) 2009-11-27
RU2425056C2 true RU2425056C2 (ru) 2011-07-27

Family

ID=37962438

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008119429/04A RU2425056C2 (ru) 2005-10-17 2006-10-16 Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него

Country Status (6)

Country Link
US (1) US7851573B2 (ru)
EP (1) EP1939222B2 (ru)
JP (1) JP5141255B2 (ru)
CN (1) CN100558753C (ru)
RU (1) RU2425056C2 (ru)
WO (1) WO2007046345A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2772431C2 (ru) * 2017-09-28 2022-05-19 ЭйДжиСи Инк. Способ получения модифицированного политетрафторэтилена, способ получения порошка модифицированного политетрафторэтилена и способ получения растянутого пористого материала
US11512151B2 (en) 2017-09-28 2022-11-29 AGC Inc. Method for producing modified polytetrafluoroethylene, method for producing modified polytetrafluoroethylene powder, and method for producing stretched porous material

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375095B2 (ja) * 2006-08-31 2013-12-25 旭硝子株式会社 ペルフルオロカルボン酸塩の製造方法、ペルフルオロカルボン酸塩水溶液の製造方法、テトラフルオロエチレンの単独重合体または共重合体の製造方法
ATE512165T1 (de) 2006-11-09 2011-06-15 Du Pont Wässrige polymerisation von fluorierten monomeren unter verwendung eines polymerisationsmittels, das fluorpolyethersäure oder -salz und kohlenwasserstofftensid umfasst
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
WO2009001894A1 (ja) * 2007-06-28 2008-12-31 Daikin Industries, Ltd. ポリテトラフルオロエチレン水性分散液及びその製造方法
JP5228524B2 (ja) * 2007-11-20 2013-07-03 旭硝子株式会社 環境負荷の小さな蓄電素子電極形成用水性ペースト
US20090281241A1 (en) 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts
JP5732850B2 (ja) 2008-05-21 2015-06-10 旭硝子株式会社 ポリテトラフルオロエチレンファインパウダーの製造方法
WO2009157416A1 (ja) 2008-06-24 2009-12-30 旭硝子株式会社 含フッ素化合物の精製方法
US9416085B2 (en) 2008-07-08 2016-08-16 Solvay Specialty Polymers Italy S.P.A. Process for the manufacture of fluorosurfactants
US8058376B2 (en) 2008-12-23 2011-11-15 E. I. Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated lonomer produced in situ
US8436053B2 (en) 2008-12-23 2013-05-07 E.I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8835547B2 (en) 2008-12-23 2014-09-16 E I Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
US8436054B2 (en) 2008-12-23 2013-05-07 E I Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer produced in situ
WO2010075495A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8153738B2 (en) 2008-12-23 2012-04-10 E I Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
CN102348724B (zh) 2009-03-12 2013-07-17 大金工业株式会社 含氟种子聚合物颗粒的水性分散液的制造方法、和水性涂料组合物以及涂装物品
US8658707B2 (en) 2009-03-24 2014-02-25 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expanded functional products obtained therefrom and reaction of the expanded products
US9139669B2 (en) * 2009-03-24 2015-09-22 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expandable functional products obtained therefrom and reaction of the expanded products
CN102356095B (zh) * 2009-03-30 2015-12-02 大金工业株式会社 聚四氟乙烯及其制造方法
CN101538395B (zh) * 2009-04-23 2010-12-08 宁波登天氟材有限公司 一种防油污的聚四氟乙烯微孔薄膜及其加工方法
WO2011024856A1 (ja) 2009-08-28 2011-03-03 ダイキン工業株式会社 含フッ素重合体の製造方法
EP2471825B1 (en) 2009-08-28 2014-11-26 Daikin Industries, Ltd. Method for producing fluorine-containing polymer
WO2011055824A1 (ja) * 2009-11-09 2011-05-12 旭硝子株式会社 ポリテトラフルオロエチレン水性乳化液及びその製造方法、該水性乳化液を用いて得られるポリテトラフルオロエチレン水性分散液、ポリテトラフルオロエチレンファインパウダー並びに延伸多孔体
US8394882B2 (en) * 2010-03-22 2013-03-12 Zancy VonHooks Emulsion polymerization of fluoropolymers using europium III chloride
GB201007043D0 (en) 2010-04-28 2010-06-09 3M Innovative Properties Co Process for producing ptfe and articles thereof
CN103210003B (zh) 2010-11-09 2016-09-07 纳幕尔杜邦公司 减弱含烃表面活性剂在含氟单体含水分散体聚合反应中的调聚性能
JP6109073B2 (ja) 2010-11-09 2017-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 炭化水素界面活性剤を用いたフルオロモノマーの水性重合
EP3533811B1 (en) 2010-11-09 2021-08-11 The Chemours Company FC, LLC Nucleation in aqueous polymerization of fluoromonomer
GB201021790D0 (en) 2010-12-23 2011-02-02 3M Innovative Properties Co Fluoropolymer compostions and purification methods thereof
WO2013027850A1 (ja) * 2011-08-25 2013-02-28 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2013115278A1 (ja) * 2012-02-02 2013-08-08 旭硝子株式会社 ポリテトラフルオロエチレンファインパウダーの製造方法
CN107088369A (zh) 2012-04-20 2017-08-25 大金工业株式会社 混合粉末和成型用材料在多孔膜的制造中的应用以及多孔膜
WO2014084400A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
CN113717401A (zh) * 2012-11-30 2021-11-30 大金工业株式会社 聚四氟乙烯水性分散液和聚四氟乙烯细粉
WO2014084397A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
JP6341633B2 (ja) * 2013-05-17 2018-06-13 ダイキン工業株式会社 パーフルオロゴム水性分散液の製造方法
EP3061512B1 (en) 2013-10-23 2020-12-09 Daikin Industries, Ltd. Embossed filter medium for air filter, filter pack, air filter unit, and production method for embossed filter medium for air filter
CN106414510B (zh) 2013-11-26 2018-11-30 得凯莫斯公司弗罗里达有限公司 采用聚环氧烷在含氟单体的水相聚合中成核
JP6218723B2 (ja) 2013-11-29 2017-10-25 ダイキン工業株式会社 二軸延伸多孔質膜
TWI586689B (zh) * 2013-11-29 2017-06-11 Daikin Ind Ltd Modified polytetrafluoroethylene powder and uniaxially stretched porous body
CN105829415B (zh) 2013-11-29 2020-06-05 大金工业株式会社 多孔质体、高分子电解质膜、过滤器用滤材和过滤器单元
CA2932016C (en) 2013-11-29 2019-06-11 Asahi Kasei Kabushiki Kaisha Polymer electrolyte membrane
KR102112645B1 (ko) 2013-11-29 2020-05-19 아사히 가세이 가부시키가이샤 고분자 전해질막
EP3156449A4 (en) 2014-06-04 2017-09-06 Daikin Industries, Ltd. Polytetrafluoroethylene aqueous dispersion
EP3153532B1 (en) * 2014-06-04 2019-11-20 Daikin Industries, Ltd. Polytetrafluoroethylene powder
JP6065967B2 (ja) * 2014-12-12 2017-01-25 ダイキン工業株式会社 ポリテトラフルオロエチレン組成物
JPWO2017094801A1 (ja) * 2015-12-01 2018-10-25 Agc株式会社 テトラフルオロエチレン共重合体水性分散液の製造方法
CN106366230B (zh) * 2016-08-23 2018-11-23 金华永和氟化工有限公司 一种用于控制含氟聚合物乳液粒径的混合表面活性剂及其制备含氟聚合物的方法
JP6673230B2 (ja) 2017-01-12 2020-03-25 ダイキン工業株式会社 エアフィルタ濾材
CN108250337A (zh) * 2017-12-23 2018-07-06 江苏梅兰化工有限公司 一种聚四氟乙烯乳液的制备方法
WO2019131633A1 (ja) 2017-12-25 2019-07-04 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末の製造方法
JP6939916B2 (ja) 2018-02-08 2021-09-22 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
EP4317214A3 (en) 2018-03-01 2024-05-01 Daikin Industries, Ltd. Method for manufacturing fluoropolymer
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
EP3828208A4 (en) 2018-07-23 2022-07-13 Daikin Industries, Ltd. POLYTETRAFLUOROETHYLENE AND STRETCHED BODY
JP7029099B2 (ja) 2018-10-03 2022-03-03 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
EP3862370A4 (en) 2018-10-03 2022-06-29 Daikin Industries, Ltd. Polytetrafluoroethylene production method
US12195617B2 (en) 2018-11-19 2025-01-14 Daikin Industries, Ltd. Composition and stretched body
JP7174272B2 (ja) 2018-11-19 2022-11-17 ダイキン工業株式会社 変性ポリテトラフルオロエチレンの製造方法及び組成物
US20220119561A1 (en) 2019-02-01 2022-04-21 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene
US20220119556A1 (en) 2019-02-07 2022-04-21 Daikin Industries, Ltd. Composition, stretched body and method of manufacturing thereof
EP3957656A4 (en) 2019-04-16 2022-12-28 Daikin Industries, Ltd. FLUOROPOLYMER POWDER PRODUCTION PROCESS
EP3960774A4 (en) 2019-04-26 2023-01-04 Daikin Industries, Ltd. METHOD FOR PRODUCING AN AQUEOUS FLUOROPOLYMER DISPERSION
WO2020218622A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
JP7389366B2 (ja) 2019-04-26 2023-11-30 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
EP3960713A4 (en) 2019-04-26 2023-01-18 Daikin Industries, Ltd. Water treatment method and composition
JP7352804B2 (ja) 2019-05-09 2023-09-29 ダイキン工業株式会社 中空微粒子の製造方法及び中空微粒子
JP6822598B1 (ja) 2019-07-16 2021-01-27 ダイキン工業株式会社 含フッ素エラストマーの製造方法および組成物
EP4006063A4 (en) 2019-07-23 2023-10-25 Daikin Industries, Ltd. METHOD FOR PRODUCING A FLUROPOLYMER, POLYTETRAFLUORETHYLENE COMPOSITION AND POLYTETRAFLUORETHYLENE POWDER
WO2021045228A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液
EP4026856A4 (en) 2019-09-05 2023-09-27 Daikin Industries, Ltd. METHOD FOR MANUFACTURING PERFLUOROELASTOMER, AND COMPOSITION
JP7231868B2 (ja) 2019-09-05 2023-03-02 ダイキン工業株式会社 組成物およびその製造方法
CN114514253B (zh) 2019-10-03 2024-12-06 大金工业株式会社 聚四氟乙烯及其制造方法
JP7352110B2 (ja) 2019-11-19 2023-09-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
CN119285816A (zh) 2019-11-19 2025-01-10 大金工业株式会社 含氟聚合物的制造方法
JP7417131B2 (ja) 2019-11-19 2024-01-18 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
JP6989792B2 (ja) 2019-12-25 2022-01-12 ダイキン工業株式会社 フルオロポリマーの製造方法
CN114829425B (zh) 2019-12-27 2023-10-24 大金工业株式会社 含氟聚合物的制造方法、含氟弹性体和水性分散液
CN116171291A (zh) 2020-07-22 2023-05-26 大金工业株式会社 含氟弹性体水性分散液的制造方法和含氟弹性体水性分散液
CN116157430A (zh) 2020-07-28 2023-05-23 大金工业株式会社 含氟弹性体水性分散液的制造方法和含氟弹性体水性分散液
WO2022025190A1 (ja) 2020-07-30 2022-02-03 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび水性分散液
EP4190827A4 (en) 2020-07-30 2024-09-04 Daikin Industries, Ltd. PROCESS FOR PRODUCING AQUEOUS DISPERSION OF FLUORINE-CONTAINING ELASTOMER, FLUORINE-CONTAINING ELASTOMER AND AQUEOUS DISPERSION
JP7425371B2 (ja) 2020-08-05 2024-01-31 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法
CN111925554B (zh) * 2020-08-28 2023-01-31 盐城工学院 聚四氟乙烯海绵及其制备方法
CN115956091A (zh) 2020-09-07 2023-04-11 大金工业株式会社 改性聚四氟乙烯水性分散液
WO2022107889A1 (ja) 2020-11-19 2022-05-27 ダイキン工業株式会社 フルオロポリマーおよびその製造方法
WO2022107891A1 (ja) 2020-11-19 2022-05-27 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法および組成物
JPWO2022107888A1 (ru) 2020-11-19 2022-05-27
CN116457376A (zh) 2020-11-19 2023-07-18 大金工业株式会社 聚四氟乙烯的制造方法和含有聚四氟乙烯的组合物
WO2022107890A1 (ja) 2020-11-19 2022-05-27 ダイキン工業株式会社 パーフルオロエラストマー水性分散液の製造方法、組成物、架橋性組成物および架橋物
EP4286425A4 (en) 2021-01-28 2024-12-04 Daikin Industries, Ltd. Method for producing fluoropolymer composition
WO2022163815A1 (ja) 2021-01-28 2022-08-04 ダイキン工業株式会社 フルオロポリマー組成物の製造方法
JPWO2022191273A1 (ru) 2021-03-10 2022-09-15
WO2022196804A1 (ja) 2021-03-18 2022-09-22 ダイキン工業株式会社 フッ素樹脂の製造方法、フッ素樹脂および水性分散液
CN117043264A (zh) 2021-03-31 2023-11-10 大金工业株式会社 氟树脂组合物和成型体
EP4317220A1 (en) 2021-03-31 2024-02-07 Daikin Industries, Ltd. Fluororesin composition and molded body
JP7323833B2 (ja) 2021-03-31 2023-08-09 ダイキン工業株式会社 フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体
CN117043258A (zh) 2021-03-31 2023-11-10 大金工业株式会社 氟树脂组合物和成型体
EP4317219A1 (en) 2021-03-31 2024-02-07 Daikin Industries, Ltd. Fluorine resin composition and molded body
WO2022244785A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマー、水溶液およびコーティング組成物
WO2022244784A1 (ja) 2021-05-19 2022-11-24 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
EP4353344A4 (en) 2021-06-04 2024-08-21 Daikin Industries, Ltd. AIR FILTER MEDIA, PLEATED FILTER MEDIA, AIR FILTER UNIT, MASK FILTRATION MEDIA, AND METHOD FOR RECYCLING AIR FILTER MEDIA
WO2022260139A1 (ja) 2021-06-11 2022-12-15 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法、組成物および水性分散液
JP7636695B2 (ja) 2021-06-11 2025-02-27 ダイキン工業株式会社 含フッ素エラストマー水性分散液の製造方法
EP4365211A1 (en) 2021-06-30 2024-05-08 Daikin Industries, Ltd. Method for producing high-purity fluoropolymer-containing composition, and high-purity fluoropolymer-containing composition
CN117500848A (zh) 2021-06-30 2024-02-02 大金工业株式会社 含氟聚合物组合物的制造方法和含氟聚合物组合物
EP4365223A1 (en) 2021-06-30 2024-05-08 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene particles
WO2023277137A1 (ja) 2021-06-30 2023-01-05 ダイキン工業株式会社 ポリテトラフルオロエチレンパウダーの製造方法およびポリテトラフルオロエチレンパウダー
WO2023182228A1 (ja) 2022-03-23 2023-09-28 ダイキン工業株式会社 フルオロポリマー、水溶液、コーティング組成物およびフルオロポリマーの製造方法
JPWO2023182229A1 (ru) 2022-03-23 2023-09-28
JP2023153081A (ja) 2022-03-31 2023-10-17 ダイキン工業株式会社 フッ素樹脂組成物、及び、成形体
EP4516819A1 (en) 2022-04-28 2025-03-05 Daikin Industries, Ltd. Method for producing fluoropolymer
WO2023210818A1 (ja) 2022-04-28 2023-11-02 ダイキン工業株式会社 フッ素ゴムを含有する組成物
WO2023210820A1 (ja) 2022-04-28 2023-11-02 ダイキン工業株式会社 フッ素樹脂を含有する組成物の製造方法およびフッ素樹脂を含有する組成物
CN118946642A (zh) 2022-05-02 2024-11-12 陶氏环球技术有限责任公司 耐生物结垢的屋顶涂料
WO2024024917A1 (ja) 2022-07-27 2024-02-01 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、フルオロポリマー水性分散液および塗料組成物
CN119630712A (zh) 2022-07-27 2025-03-14 大金工业株式会社 含有低分子量聚四氟乙烯的粒子的粉体及其制造方法
CN119630715A (zh) 2022-07-27 2025-03-14 大金工业株式会社 含有含氟聚合物的粒子的粉体及其制造方法、粉体涂料以及液状涂料组合物
WO2024024891A1 (ja) 2022-07-27 2024-02-01 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、フルオロポリマー水性分散液および塗料組成物
JP7560797B2 (ja) 2023-01-18 2024-10-03 ダイキン工業株式会社 電気化学デバイス用合剤自立膜、電極、及び、電気化学デバイス
WO2024154803A1 (ja) 2023-01-18 2024-07-25 ダイキン工業株式会社 テトラフルオロエチレン系ポリマー組成物、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池
WO2024154805A1 (ja) 2023-01-18 2024-07-25 ダイキン工業株式会社 テトラフルオロエチレン系ポリマー組成物、固体二次電池用バインダー、電解質層用合剤、電極合剤、電極、及び、固体二次電池
EP4481860A1 (en) 2023-01-18 2024-12-25 Daikin Industries, Ltd. Mixture for electrochemical device, mixture sheet for electrochemical device, electrode, and electrochemical device
WO2024154804A1 (ja) 2023-01-18 2024-07-25 ダイキン工業株式会社 ポリテトラフルオロエチレン組成物
JP2025010042A (ja) 2023-06-30 2025-01-20 ダイキン工業株式会社 ポリテトラフルオロエチレン組成物、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池
JP2025010043A (ja) 2023-06-30 2025-01-20 ダイキン工業株式会社 ポリテトラフルオロエチレン、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
CA962021A (en) * 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
FR2484422A1 (fr) * 1980-05-14 1981-12-18 Ugine Kuhlmann Procede de traitement de dispersions aqueuses de polytetrafluorethylene preparees en presence du sel de lithium d'un acide perfluoroalcanesulfonique
US4380618A (en) 1981-08-21 1983-04-19 E. I. Du Pont De Nemours And Company Batch polymerization process
JPS6289713A (ja) 1985-10-12 1987-04-24 Daikin Ind Ltd 新規フルオロエラストマー
RU2124986C1 (ru) 1993-01-25 1999-01-20 Дайкин Индастриз Лтд. Пористая политетрафторэтиленовая пленка и способ ее получения
EP0847407B1 (en) 1995-08-31 2002-10-23 E.I. Du Pont De Nemours And Company Tetrafluorethylene polymerization process
FR2779436B1 (fr) * 1998-06-03 2000-07-07 Atochem Elf Sa Polymeres hydrophiles fluores
US7276287B2 (en) * 2003-12-17 2007-10-02 Eidgenössische Technische Hochschule Zürich Melt-processible poly(tetrafluoroethylene)
US6429258B1 (en) 1999-05-20 2002-08-06 E. I. Du Pont De Nemours & Company Polymerization of fluoromonomers
IT1318594B1 (it) 2000-06-23 2003-08-27 Ausimont Spa Processo di polimerizzazione di monomeri solfonici.
JP2002308914A (ja) 2001-04-17 2002-10-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2002317003A (ja) 2001-04-19 2002-10-31 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
US7045571B2 (en) * 2001-05-21 2006-05-16 3M Innovative Properties Company Emulsion polymerization of fluorinated monomers
US7279522B2 (en) * 2001-09-05 2007-10-09 3M Innovative Properties Company Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant
JP3900883B2 (ja) 2001-10-05 2007-04-04 ダイキン工業株式会社 含フッ素重合体ラテックスの製造方法
JP4207442B2 (ja) * 2002-03-20 2009-01-14 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液組成物の製造方法
US7589234B2 (en) 2003-07-02 2009-09-15 Daikin Industries, Ltd. Fluoroalkyl carboxylic acid derivative, method for producing fluorine-containing polymer, and aqueous dispersion of fluorine-containing polymer
EP1688441B1 (en) 2003-10-31 2019-12-18 Daikin Industries, Ltd. Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
JP2005165054A (ja) 2003-12-03 2005-06-23 Tdk Corp 光学部品、光記録媒体及びその製造方法
JP5061446B2 (ja) * 2005-03-04 2012-10-31 旭硝子株式会社 含フッ素エラストマーラテックス、その製造方法、含フッ素エラストマーおよび含フッ素ゴム成形品
JP5087732B2 (ja) * 2005-06-06 2012-12-05 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液およびその製造方法
US7514484B2 (en) 2005-06-06 2009-04-07 Asahi Glass Company, Limited Aqueous dispersion of polytetrafluoroethylene and process for its production
JP4956925B2 (ja) * 2005-07-13 2012-06-20 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液およびその製造方法
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20080015304A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Aqueous emulsion polymerization process for producing fluoropolymers
ITMI20051397A1 (it) 2005-07-21 2007-01-22 Solvay Solexis Spa Polveri fini di fluoropolimeri
JP5050442B2 (ja) 2006-07-12 2012-10-17 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2772431C2 (ru) * 2017-09-28 2022-05-19 ЭйДжиСи Инк. Способ получения модифицированного политетрафторэтилена, способ получения порошка модифицированного политетрафторэтилена и способ получения растянутого пористого материала
US11512151B2 (en) 2017-09-28 2022-11-29 AGC Inc. Method for producing modified polytetrafluoroethylene, method for producing modified polytetrafluoroethylene powder, and method for producing stretched porous material
RU2819636C1 (ru) * 2020-11-19 2024-05-22 Дайкин Индастриз, Лтд. Способ получения водной дисперсии фторсодержащего эластомера и композиция

Also Published As

Publication number Publication date
EP1939222A4 (en) 2009-06-10
EP1939222B1 (en) 2011-06-29
JPWO2007046345A1 (ja) 2009-04-23
CN101287766A (zh) 2008-10-15
RU2008119429A (ru) 2009-11-27
US20080200571A1 (en) 2008-08-21
JP5141255B2 (ja) 2013-02-13
EP1939222B2 (en) 2019-09-04
US7851573B2 (en) 2010-12-14
CN100558753C (zh) 2009-11-11
WO2007046345A1 (ja) 2007-04-26
EP1939222A1 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
RU2425056C2 (ru) Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него
RU2478653C2 (ru) Способ получения тонкодисперсного порошка политетрафторэтилена
RU2478654C2 (ru) Способ получения тонкодисперсного порошка политетрафторэтилена
EP2749576B1 (en) Method for producing aqueous polytetrafluoroethylene dispersion
RU2409592C2 (ru) Фторсодержащий полимер с низким остаточным содержанием фторированного эмульгатора и способ его получения
CN102356095B (zh) 聚四氟乙烯及其制造方法
RU2713209C2 (ru) Способы производства водной эмульсии, тонкодисперсного порошка и растянутого пористого тела из модифицированного политетрафторэтилена
US9376520B2 (en) Polytetrafluoroethylene aqueous emulsion and process for its production, polytetrafluoroethylene aqueous dispersion obtainable by using such an aqueous emulsion, polytetrafluoroethylene fine powder, and stretched porous material
JP5983633B2 (ja) ポリテトラフルオロエチレンファインパウダーの製造方法
EP3750925A1 (en) Polytetrafluoroethylene fine powder
WO2020105651A1 (ja) 変性ポリテトラフルオロエチレンの製造方法及び組成物
CN111040058A (zh) 聚四氟乙烯水性分散液的制造方法
JP3669172B2 (ja) テトラフルオロエチレン系共重合体、その製造方法およびその用途
RU2448982C2 (ru) Способ получения фторполимера с использованием производного фторкарбоновой кислоты
CN114127131A (zh) 含氟聚合物的制造方法、聚四氟乙烯组合物和聚四氟乙烯粉末
WO2020158940A1 (ja) ポリテトラフルオロエチレンの製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner