JP7323833B2 - フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体 - Google Patents
フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体 Download PDFInfo
- Publication number
- JP7323833B2 JP7323833B2 JP2022058836A JP2022058836A JP7323833B2 JP 7323833 B2 JP7323833 B2 JP 7323833B2 JP 2022058836 A JP2022058836 A JP 2022058836A JP 2022058836 A JP2022058836 A JP 2022058836A JP 7323833 B2 JP7323833 B2 JP 7323833B2
- Authority
- JP
- Japan
- Prior art keywords
- fluororesin
- less
- mass
- fluororesin composition
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
- C08F14/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/005—Processes for mixing polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/16—Powdering or granulating by coagulating dispersions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/205—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
- C08J3/21—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
- C08J3/215—Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F114/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F114/18—Monomers containing fluorine
- C08F114/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/14—Homopolymers or copolymers of vinyl fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2427/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2427/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
上記混合物を乾燥することによりフッ素樹脂組成物を得る工程を含む
フッ素樹脂組成物の製造方法を提供する。
上記混合物を乾燥することによりフッ素樹脂組成物を得る工程を含む
フッ素樹脂組成物の製造方法も提供する。
第1の製造方法では、固形分濃度が70質量%以下の水性分散液を用いるので、フッ素樹脂A1の粉末とフッ素樹脂B1の粒子とを均一に混合することができる。その結果、融点以上の温度に加熱した履歴のあるフッ素樹脂を含むにもかかわらず、着色が少なく引張特性(例えば、引張破断強度、引張破断歪)に優れるフッ素樹脂組成物を製造することができる。
下限は限定されないが、140℃であることがより好ましく、180℃以上であることが更に好ましい。
融点が上記範囲内にあることは、融点以上の温度に加熱した履歴があることを示す。
フッ素樹脂A1は、333℃以上の温度領域にも融点を有していてもよい。
本明細書において、溶融流動性を示さないとは、メルトフローレート(MFR)が0.25g/10分未満、好ましくは0.10g/10分未満、より好ましくは0.05g/10分以下であることを意味する。
本明細書において、MFRは、ASTM D1238に従って、メルトインデクサーを用いて、フッ素樹脂の種類によって定められた測定温度(例えば、PFAやFEPの場合は372℃、ETFEの場合は297℃)、荷重(例えば、PFA、FEP及びETFEの場合は5kg)において内径2.095mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。PTFEの場合は、PFAと同様の測定条件で測定して得られる値である。
本明細書において、上記変性モノマー単位とは、PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味する。
CF2=CF-ORf (A)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
CF2=CF-CF2-ORf1 (B)
(式中、Rf1は、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
本明細書において、溶融流動性を示すとは、MFRが0.25g/10分以上、好ましくは0.50g/10分以上、より好ましくは1.00g/10分以上であることを意味する。上記MFRは、100g/10分以下であってよく、80g/10分以下であることが好ましい。
また、TFE及びPAVE又はパーフルオロ(アルキルアリルエーテル)と共重合可能な単量体としては、更に、イタコン酸、無水イタコン酸、無水シトラコン酸、及び5-ノルボルネン-2,3-ジカルボン酸無水物等の、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸の酸無水物等も挙げられる。
また、TFE及びHFPと共重合可能な単量体としては、更に、イタコン酸、無水イタコン酸、無水シトラコン酸、及び5-ノルボルネン-2,3-ジカルボン酸無水物等の、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸の酸無水物等も挙げられる。
CH2=CX1Rf4、CF2=CFRf4、CF2=CFORf4、CH2=C(Rf4)2(式中、X1は水素原子又はフッ素原子、Rf4はエーテル結合を含んでいてもよいフルオロアルキル基を表す。)で表される単量体や式(III)で表される単量体が挙げられ、なかでも、CF2=CFRf4、CF2=CFORf4及びCH2=CX1Rf4で表される含フッ素ビニルモノマー、式(III)で表される単量体が好ましく、HFP、CF2=CF-ORf5(式中、Rf5は炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)、CF2=CF-CF2-O-Rf3(式中、Rf3は炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロアルキルアリルエーテル及びRf4が炭素数1~8のフルオロアルキル基であるCH2=CX1Rf4で表される含フッ素ビニルモノマーがより好ましい。また、TFE及びエチレンと共重合可能な単量体としては、イタコン酸、無水イタコン酸等の脂肪族不飽和カルボン酸であってもよい。TFE及びエチレンと共重合可能な単量体は、含フッ素重合体に対して0.1~10モル%が好ましく、0.1~5モル%がより好ましく、0.2~4モル%が特に好ましい。
上記低分子量PTFEは、380℃における溶融粘度(複素粘度)が1.0×101~1.0×107Pa・sであることが好ましい。
上記溶融粘度は、1.0×102以上であることがより好ましく、1.5×103Pa・s以上であることが更に好ましく、7.0×103Pa・s以上であることが特に好ましく、また、7.0×105以下であることがより好ましく、3.0×105Pa・s以下であることが更に好ましく、1.0×105Pa・s以下であることが特に好ましい。
本明細書において、「低分子量PTFE」とは、上記溶融粘度が上記の範囲内にあるPTFEを意味する。
上記平均二次粒子径は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の50%に対応する粒子径に等しいとする。
上記D90は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の90%に対応する粒子径に等しいとする。
圧縮成形の形状は特に問わない。焼成する温度はフッ素樹脂の融点以上であれば良い。粉砕機は特に限定されず、切削屑を粉砕(好ましくは微細化)することができるものであればよい。例えば、エアジェットミル、ハンマーミル、フォースミル、石臼型の粉砕機、凍結粉砕機等が挙げられる。
融点が上記範囲内にあることは、フッ素樹脂B1(好ましくは溶融流動性を示さないフッ素樹脂、より好ましくはPTFE)に、融点以上の温度に加熱した履歴がないことを示す。
上記融点とともに、333℃未満の温度領域にも融点を有していても構わない。
融点以上の温度に加熱した履歴のないPTFEについての「高分子量」とは、上記標準比重が上記の範囲内にあることを意味する。
本明細書において、「低分子量PTFE」とは、上記溶融粘度が上記の範囲内にあるPTFEを意味する。
上記溶融流動性を示さないフッ素樹脂としては、上記PTFE(高分子量PTFE)が好ましい。
上記溶融流動性を示すフッ素樹脂としては、PFA、FEP、ETFE、EFEP、PCTFE、CTFE/TFE共重合体、CTFE/TFE/PAVE共重合体、Et/CTFE共重合体、PVF、PVdF、VdF/TFE共重合体、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/ペンタフルオロプロピレン共重合体、VdF/PAVE/TFE共重合体、及び、低分子量PTFEからなる群より選択される少なくとも1種が好ましく、PFA、FEP、及び、低分子量PTFEからなる群より選択される少なくとも1種がより好ましく、PFA及びFEPからなる群より選択される少なくとも1種が更に好ましい。
上記平均一次粒子径は、固形分濃度を0.5質量%に調整した水性分散液をアルミ箔に滴下し、150℃、1時間の条件で水を乾燥除去したものの走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の粒子の直径の平均値である。
水性媒体は、水を含む液体を意味する。上記水性媒体は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。水性媒体は、水が90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
上記固形分濃度は、水性分散液約1g(Xg)を直径5cmのアルミカップにとり、110℃にて30分で加熱した加熱残分(Yg)、更に、得られた加熱残分(Yg)を300℃にて30分加熱した加熱残分(Zg)より、式:P=[Z/X]×100(質量%)から算出する。
具体的には、CH3-(CH2)n-L-M1(式中、nが、6~17の整数である。L及びM1が、上記と同じ)によって表されるものが挙げられる。
Rが、12~16個の炭素原子を有するアルキル基であり、Lが、硫酸塩又はドデシル硫酸ナトリウム(SDS)であるものの混合物も使用できる。
スルホサクシネート炭化水素系界面活性剤としては、スルホコハク酸ジイソデシルNa塩、(ClariantのEmulsogen(登録商標)SB10)、スルホコハク酸ジイソトリデシルNa塩(Cesapinia ChemicalsのPolirol(登録商標)TR/LNA)等が挙げられる。
上記非イオン性界面活性剤は、非フッ素化非イオン性界面活性剤であってよい。
上記低分子量含フッ素化合物の含有量は、試料をメタノールでソックスレー抽出した後、液体クロマトグラフ質量計(LC/MS/MS)により測定する。
なお、上記「アニオン性部分」は、上記含フッ素界面活性剤のカチオンを除く部分を意味する。例えば、後述する式(I)で表されるF(CF2)n1COOMの場合には、「F(CF2)n1COO」の部分である。
上記LogPOWは、カラム;TOSOH ODS-120Tカラム(φ4.6mm×250mm、東ソー(株)製)、溶離液;アセトニトリル/0.6質量%HClO4水=1/1(vol/vol%)、流速;1.0ml/分、サンプル量;300μL、カラム温度;40℃、検出光;UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
Xn0-Rfn0-Y0 (N0)
(式中、Xn0は、H、Cl又は及びFである。Rfn0は、炭素数3~20で、鎖状、分枝鎖状又は環状で、一部又は全てのHがFにより置換されたアルキレン基であり、該アルキレン基は1つ以上のエーテル結合を含んでもよく、一部のHがClにより置換されていてもよい。Y0はアニオン性基である。)で表される化合物が挙げられる。
Mは、H、金属原子、NR7 4、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R7は、H又は有機基である。
上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、例えば、Na、K又はLiである。
R7は、H又はC1-10の有機基であってよく、H又はC1-4の有機基であってよく、H又はC1-4のアルキル基であってよい。
Mは、H、金属原子又はNR7 4であってよく、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR7 4であってよく、H、Na、K、Li又はNH4であってよい。
Xn0-(CF2)m1-Y0 (N1)
(式中、Xn0は、H、Cl及びFであり、m1は3~15の整数であり、Y0は、上記定義したものである。)で表される化合物、下記一般式(N2):
Rfn1-O-(CF(CF3)CF2O)m2CFXn1-Y0 (N2)
(式中、Rfn1は、炭素数1~5のパーフルオロアルキル基であり、m2は、0~3の整数であり、Xn1は、F又はCF3であり、Y0は、上記定義したものである。)で表される化合物、下記一般式(N3):
Rfn2(CH2)m3-(Rfn3)q-Y0 (N3)
(式中、Rfn2は、炭素数1~13のエーテル結合及び/又は塩素原子を含み得る、部分又は完全フッ素化されたアルキル基であり、m3は、1~3の整数であり、Rfn3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基であり、qは0又は1であり、Y0は、上記定義したものである。)で表される化合物、下記一般式(N4):
Rfn4-O-(CYn1Yn2)pCF2-Y0 (N4)
(式中、Rfn4は、炭素数1~12のエーテル結合を含み得る直鎖状又は分枝鎖状の部分又は完全フッ素化されたアルキル基であり、Yn1及びYn2は、同一若しくは異なって、H又はFであり、pは0又は1であり、Y0は、上記定義したものである。)で表される化合物、及び、一般式(N5):
F(CF2)n1COOM (I)
(式中、n1は、3~14の整数であり、Mは、H、金属原子、NR7 4、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、R7は、H又は有機基である。)で表されるものである。
H(CF2)n2COOM (II)
(式中、n2は、4~15の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf1-O-(CF(CF3)CF2O)n3CF(CF3)COOM (III)
(式中、Rf1は、炭素数1~5のパーフルオロアルキル基であり、n3は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf2(CH2)n4Rf3COOM (IV)
(式中、Rf2は、炭素数1~5のパーフルオロアルキル基であり、Rf3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基、n4は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf4-O-CY1Y2CF2-COOM (V)
(式中、Rf4は、炭素数1~12のエーテル結合及び/又は塩素原子を含み得る直鎖状又は分枝鎖状の部分又は完全フッ素化されたアルキル基であり、Y1及びY2は、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
F(CF2)n5SO3M (VI)
(式中、n5は、3~14の整数であり、Mは、上記定義したものである。)で表されるものである。
H(CF2)n6SO3M (VII)
(式中、n6は、4~14の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf5(CH2)n7SO3M (VIII)
(式中、Rf5は、炭素数1~13のパーフルオロアルキル基であり、n7は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf6(CH2)n8COOM (IX)
(式中、Rf6は、炭素数1~13のエーテル結合を含み得る直鎖状または分岐鎖状の部分又は完全フッ素化されたアルキル基であり、n8は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
Rf7-O-Rf8-O-CF2-COOM (X)
(式中、Rf7は、炭素数1~6のエーテル結合及び/又は塩素原子を含み得る直鎖状又は分枝鎖状の部分又は完全フッ素化されたアルキル基であり、Rf8は、炭素数1~6の直鎖状又は分枝鎖状の部分又は完全フッ素化されたアルキル基であり、Mは、上記定義したものである。)で表されるものである。
Rf9-O-CY1Y2CF2-SO3M (XI)
(式中、Rf9は、炭素数1~12のエーテル結合を含み得る直鎖状又は分枝鎖状であって、塩素を含んでもよい、部分又は完全フッ素化されたアルキル基であり、Y1及びY2は、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
Y0は、-COOM、-SO2M、又は、-SO3Mであってよく、-SO3M、又は、COOMであってよい(式中、Mは上記定義したものである。)。
Lとしては、例えば、単結合、炭素数1~10のエーテル結合を含みうる部分又は完全フッ素化されたアルキレン基が挙げられる。
Rf11-O-(CF2CF(CF3)O)n9(CF2O)n10CF2COOM (XIII)
(式中、Rf11は、塩素を含む炭素数1~5のフルオロアルキル基であり、n9は、0~3の整数であり、n10は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。化合物(XIII)としては、CF2ClO(CF2CF(CF3)O)n9(CF2O)n10CF2COONH4(平均分子量750の混合物、式中、n9及びn10は上記定義したものである。)が挙げられる。
F(CF2)7COOM、
F(CF2)5COOM、
H(CF2)6COOM、
H(CF2)7COOM、
CF3O(CF2)3OCHFCF2COOM、
C3F7OCF(CF3)CF2OCF(CF3)COOM、
CF3CF2CF2OCF(CF3)COOM、
CF3CF2OCF2CF2OCF2COOM、
C2F5OCF(CF3)CF2OCF(CF3)COOM、
CF3OCF(CF3)CF2OCF(CF3)COOM、
CF2ClCF2CF2OCF(CF3)CF2OCF2COOM、
CF2ClCF2CF2OCF2CF(CF3)OCF2COOM、
CF2ClCF(CF3)OCF(CF3)CF2OCF2COOM、
CF2ClCF(CF3)OCF2CF(CF3)OCF2COOM、
当業者であれば、上記乳化重合の条件を調整することにより、フッ素樹脂B1の組成や物性、粒子の物性等を制御することができる。
上記粘度は、B型回転粘度計(東機産業社製、ローターNo.2)を用い、回転数60rpm、測定時間120秒の条件で、25℃において測定する。
上記質量比A1/B1は、3/97以上であることがより好ましく、5/95以上であることが更に好ましく、10/90以上であることが更により好ましく、15/85以上であることが特に好ましい。上記質量比A1/B1は、また、85/15以下であることがより好ましく、80/20以下であることが更に好ましく、75/25以下であることが更により好ましく、70/30以下であることが特に好ましい。
乾燥の方法は特に限定されず、公知の方法を用いることができ、例えば、真空、高周波、熱風等の手段を用いて行うことができる。
上記乾燥の温度としては、50℃以上が好ましく、70℃以上がより好ましく、100℃以上が更に好ましく、150℃以上が特に好ましく、また、300℃以下が好ましく、250℃以下がより好ましい。
第2の製造方法では、炭化水素系界面活性剤を含まない水性分散液を用いるので、炭化水素系界面活性剤の残留による着色や、物性への影響を低減することができる。その結果、融点以上の温度に加熱した履歴のあるフッ素樹脂を含むにもかかわらず、着色が少なく引張特性に優れるフッ素樹脂組成物を製造することができる。
上記水性分散液の上記以外の成分や物性については、第1の製造方法と同様のものを採用することができる。
上記充填材は、上記フッ素樹脂A1の粉末と混合してもよく、上記水性分散液と混合してもよく、上記フッ素樹脂A1の粉末と上記水性分散液との混合工程で得られた混合物と混合してもよく、上記凝析工程で得られた湿潤粉末と混合してもよく、上記乾燥工程で得られたフッ素樹脂組成物と混合してもよい。
なかでも、ガラス繊維、炭素繊維、カーボンブラック、及び、ブロンズからなる群より選択される少なくとも1種が好ましい。
上記造粒の方法としては、公知の方法が挙げられ、水中造粒法、温水造粒法、乳化分散造粒法、乳化温水造粒法、無溶剤造粒法、乾式溶剤造粒法等が挙げられる。
上記非イオン性界面活性剤の含有量は、凍結粉砕した1gの上記フッ素樹脂組成物を10mLのメタノール中で60℃にて超音波抽出し、「平成15年労働省告示第261号 水質基準に関する省令の規定に基づき厚生労働大臣が定める方法 別表第28」に準じて測定する。
本開示のフッ素樹脂組成物は、融点以上の温度に加熱した履歴のないフッ素樹脂を含み、かつ特定の粒子径を有する微粒子を含むので、融点以上の温度に加熱した履歴のあるフッ素樹脂を含むにもかかわらず、着色が少なく引張特性に優れる。
上記333℃未満の温度領域は、332℃未満であることがより好ましく、331℃未満であることが更に好ましく、100℃以上であることが好ましく、140℃以上であることがより好ましく、160℃以上であることが更に好ましい。
上記333℃以上の温度領域は、334℃以上であることがより好ましく、335℃であることが更に好ましく、また、360℃以下であることが好ましく、355℃以下であることがより好ましく、350℃以下であることが更に好ましい。
上記2つの温度領域に融点を有することは、フッ素樹脂組成物が、融点以上の温度に加熱した履歴のあるフッ素樹脂A2(好ましくは溶融流動性を示さないフッ素樹脂、より好ましくはPTFE)と、融点以上の温度に加熱した履歴のないフッ素樹脂B2(好ましくは溶融流動性を示さないフッ素樹脂、より好ましくはPTFE)とを含むことを示す。
融点が上記範囲内にあることは、融点以上の温度に加熱した履歴があることを示す。
フッ素樹脂A2は、333℃以上の温度領域にも融点を有していてもよい。
フッ素樹脂A2は、溶融流動性を示さないフッ素樹脂であることが好ましく、PTFE(高分子量PTFE)であることがより好ましい。
フッ素樹脂A2は、溶融流動性を示すフッ素樹脂を含んでもよい。上記溶融流動性を示すフッ素樹脂としては、PFA、FEP、ETFE、EFEP、PCTFE、CTFE/TFE共重合体、CTFE/TFE/PAVE共重合体、Et/CTFE共重合体、PVF、PVdF、VdF/TFE共重合体、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/ペンタフルオロプロピレン共重合体、VdF/PAVE/TFE共重合体、低分子量PTFE等が挙げられ、PFA、FEP及びETFEからなる群より選択される少なくとも1種が好ましく、PFA及びFEPからなる群より選択される少なくとも1種がより好ましい。
上記平均二次粒子径は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の50%に対応する粒子径に等しいとする。
上記D90は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の90%に対応する粒子径に等しいとする。
融点が上記範囲内にあることは、フッ素樹脂B2(好ましくは溶融流動性を示さないフッ素樹脂、より好ましくはPTFE)に、融点以上の温度に加熱した履歴がないことを示す。
なお、上記融点とともに、333℃未満の温度領域にも融点を有していても構わない。
フッ素樹脂B2は、溶融流動性を示さないフッ素樹脂であることが好ましく、PTFE(高分子量PTFE)であることがより好ましい。
フッ素樹脂B2は、溶融流動性を示すフッ素樹脂であってもよく、PFA、FEP、ETFE、EFEP、PCTFE、CTFE/TFE共重合体、CTFE/TFE/PAVE共重合体、Et/CTFE共重合体、PVF、PVdF、VdF/TFE共重合体、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/HFP/(メタ)アクリル酸共重合体、VdF/CTFE共重合体、VdF/ペンタフルオロプロピレン共重合体、VdF/PAVE/TFE共重合体、及び、低分子量PTFEからなる群より選択される少なくとも1種であることが好ましく、PFA、FEP、及び、低分子量PTFEからなる群より選択される少なくとも1種であることがより好ましく、PFA及びFEPからなる群より選択される少なくとも1種であることが更に好ましい。
上記平均一次粒子径は、固形分濃度を0.5質量%に調整した水性分散液をアルミ箔に滴下し、150℃、1時間の条件で水を乾燥除去したものの走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の粒子の直径の平均値である。
上記平均一次粒子径は、また、上記フッ素樹脂組成物を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の一次粒子の直径の平均値であってもよい。
上記質量比A2/B2は、3/97以上であることがより好ましく、5/95以上であることが更に好ましく、10/90以上であることが更により好ましく、15/85以上であることが特に好ましい。上記質量比A2/B2は、また、85/15以下であることがより好ましく、80/20以下であることが更に好ましく、75/25以下であることが更により好ましく、70/30以下であることが特に好ましい。
上記微粒子は、上記フッ素樹脂組成物を構成するフッ素樹脂の粒子であり、フッ素樹脂A2及びB2からなる群より選択される少なくとも1種の粒子であってよく、フッ素樹脂B2の粒子であることが好ましい。
上記微粒子は、一次粒子であってよく、フッ素樹脂B2の一次粒子であることが好ましい。
上記一次粒子径は、上記フッ素樹脂組成物を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の微粒子の直径の平均値である。
上記粗大粉末は、上記フッ素樹脂組成物を構成するフッ素樹脂の粒子であり、フッ素樹脂A2及びB2からなる群より選択される少なくとも1種の粒子であってよく、フッ素樹脂A2の粒子であることが好ましい。
上記粗大粉末は、二次粒子であってよく、フッ素樹脂A2の二次粒子であってもよい。
上記粗大粉末の粒子径は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、得られた分布(体積基準)において検出される粒子径である。
上記露出している表面は、55%以下であることがより好ましく、50%以下であることが更に好ましい。
上記露出している表面の割合は、上記フッ素樹脂組成物を走査型顕微鏡(SEM)観察した5000倍の画像から、上記粗大粉末における、上記微粒子に覆われていない表面の面積を、上記粗大粉末の表面の面積で割ることで算出する。
上記平均二次粒子径は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の50%に対応する粒子径に等しいとする。
上記D90は、ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、粒度分布積算(体積基準)の90%に対応する粒子径に等しいとする。
上記非イオン性界面活性剤の含有量は、凍結粉砕した1gの上記フッ素樹脂組成物を10mLのメタノール中で60℃にて超音波抽出し、「平成15年厚生労働省告示第261号 水質基準に関する省令の規定に基づき厚生労働大臣が定める方法 別表第28」に準じて測定する。
上記成分の量が上記範囲内にあることは、上記フッ素樹脂組成物が非イオン性界面活性剤を含まないか、含んでいてもその含有量が極めて少ないことを示す。
上記低分子量含フッ素化合物の含有量は、試料をメタノールでソックスレー抽出した抽出液を用い、液体クロマトグラフ質量計(LC/MS/MS)により測定する。
上記充填材としては、第1及び第2の製造方法において使用することが可能な充填材として例示したものが挙げられる。
上記引張破断強度は、φ100mmの金型に35gの上記フッ素樹脂組成物を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した成形体を打ち抜いて作成したダンベルを用いて、ASTM D1708に準じて測定する。
上記引張破断歪は、φ100mmの金型に35gの上記フッ素樹脂組成物を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した成形体を打ち抜いて作成したダンベルを用いて、ASTM D1708に準じて測定する。
上記イエローインデックスは、φ100mmの金型に35gの上記フッ素樹脂組成物を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した試料を用い、コニカミノルタ製分光測色計CM-5を用いて、C光源、視野2°、ASTM E313-96に準じて測定する。
本開示の成形体は、融点以上の温度に加熱した履歴のあるフッ素樹脂を含むにもかかわらず、着色が少なく引張特性に優れる。
上記引張破断強度は、ASTM D1708に準じて測定する。
上記引張破断歪は、ASTM D1708に準じて測定する。
上記イエローインデックスは、ASTM E313-96に準じて測定する。
X-DSC7000(株式会社日立ハイテクサイエンス社製)を用い、10℃/分の昇温速度で示差走査熱量測定〔DSC〕を行って得られた融解熱曲線における極小点に対応する温度として求めた。1つの融解ピーク中に極小点が2つ以上ある場合は、それぞれを融点とした。
19F-NMR法により測定した。
ベックマン・コールター製レーザー回折式粒度分布測定装置(LS13 320)を用いて、乾式で、バキューム圧20mH2Oで測定を行ない、得られた粒度分布(体積基準)に基づいて求めた。平均二次粒子径は、粒度分布積算の50%に対応する粒子径に等しいとした。10%に対応する粒子径をD10、90%に対応する粒子径をD90とした。
固形分濃度を0.5質量%に調整した水性分散液をアルミ箔に滴下し、150℃、1時間の条件で水を乾燥除去したものの走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の粒子の直径の平均値として求めた。
混合後の粉末の一次粒子径は、当該粉末を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の一次粒子の直径の平均値として求めた。
水性分散液中の固形分濃度(P質量%)は、試料約1g(Xg)を直径5cmのアルミカップにとり、110℃にて30分で加熱した加熱残分(Yg)、更に、得られた加熱残分(Yg)を300℃にて30分加熱した加熱残分(Zg)より、式:P=[Z/X]×100(質量%)から算出した。
水性分散液中の非イオン性界面活性剤のPTFEに対する含有量(N質量%)は、試料約1g(Xg)を直径5cmのアルミカップにとり、110℃にて30分で加熱した加熱残分(Yg)、更に、得られた加熱残分(Yg)を300℃にて30分加熱した加熱残分(Zg)より、式:N=[(Y-Z)/Z]×100(質量%)から算出した。
固形分濃度が0.5質量%となるように希釈したフッ素樹脂水性分散液を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の粒子について画像処理を行い、その長径と短径の比の平均より平均アスペクト比を求めた。
混合後の粉末の場合は、当該粉末を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の一次粒子について、その長径と短径の比の平均より平均アスペクト比を求めた。
アスペクト比が2.5以上の粒子の割合は、固形分濃度が0.5質量%となるように希釈したフッ素樹脂水性分散液を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の粒子について画像処理を行って各粒子のアスペクト比を算出し、上記抽出した粒子の全数に対する割合として求めた。
混合後の粉末の場合は、当該粉末を走査電子顕微鏡(SEM)で観察し、無作為に抽出した100個以上の一次粒子について、各粒子のアスペクト比を算出し、上記抽出した粒子の全数に対する割合として求めた。
JIS K 6891に準拠して測定した。
ASTM D4895 89に準拠して成形されたサンプルを用い、ASTM D 792に準拠した水置換法により測定した。
測定対象となる粉末を、走査型電子顕微鏡(SEM)を用いて観察し、5000倍の倍率で観察した画像から、粒子径5μm以上の粗大粉末における、一次粒子径1μm以下の微粒子に覆われていない表面の面積を、上記粗大粉末の表面の面積で割ることで算出した。6枚の画像の平均値を求めた。
φ100mmの金型に35gの粉末を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した試料を用い、コニカミノルタ製分光測色計CM-5を用いて、C光源、視野2°、ASTM E313-96に準じて測定した。
上記と同じ条件で圧縮成形し焼成した成形品を打ち抜くことでダンベルを用意し、ASTM D 1708に準じて引張試験を行い、引張破断強度、引張破断歪を測定した。
原料組成から計算により求めた。
凍結粉砕した1gの粉末を10mLのメタノール中で60℃にて超音波抽出した後に「平成15年厚生労働省告示第261号 水質基準に関する省令の規定に基づき厚生労働大臣が定める方法 別表第28」に準じて測定を行なった。
フッ素樹脂組成物(粉末)を1g秤量し、アンモニア水とメタノールで調製した0.3%水酸化アンモニウムメタノール溶液(A)を10mL加え、60℃に温調した超音波洗浄機にサンプル瓶をセットし、2時間の超音波処理を行ない、抽出液を得た。抽出液中の含フッ素化合物について、液体クロマトグラフ質量分析計(Agilent社製1290 Infinity II型LC、6530型飛行時間型質量分析計)を用いて測定を行った。測定機器構成と測定条件を表1に示す。精密質量から分子量800以下のフッ素化合物と同定できる化合物をピーク抽出し、抽出クロマトグラムを描いた。濃度既知の含パーフルオロオクタン酸の水溶液を用いて、4水準の含有量の水溶液を作製し、それぞれの含有量の水溶液の分析を行ない、含有量とその含有量に対するエリア面積と関係をプロットし、検量線を描いた。上記検量線を用いて、抽出液中の分子量800以下の含フッ素化合物の含有量は、上記抽出クロマトグラムと検量線を用いて、パーフルオロオクタン酸換算で計算した。
1Lオートクレーブを窒素にて置換した後、脱水したテトラメチル尿素16.5g及びジエチレングルコールジメチルエーテル220gを仕込み、冷却した。フッ化カルボニル38.5gを仕込み、次いでヘキサフルオロプロピレンオキサイド100gを導入して撹拌した。その後、フッ化カルボニル38.5g及びヘキサフルオロプロピレンオキサイド100gを追加で仕込んだ。その後、更にフッ化カルボニル及びヘキサフルオロプロピレンオキサイドを同量の仕込みを行った。反応終了後、反応混合液を取り出して、分液して下層の反応生成物を得た。
TFEモノマーのみの懸濁重合で得られたホモPTFEの粗粉末を粉砕機で粉砕して得られたPTFEモールディングパウダー(標準比重(SSG):2.159,融点:345.0℃)35gを使用して、φ100mmの金型にて30MPa、1分間の条件で圧縮成形し、370℃で3時間焼成することで成形品を得た。得られた成形品を切削した後に、粉砕機で粉砕し、フッ素樹脂粉末A-1を得た。フッ素樹脂粉末A-1の融点は328℃、平均二次粒子径は23μm、D10は8μm、D90は48μm、見掛密度は1.81g/mlであった。
撹拌翼を備えた内容積6LのSUS製のオートクレーブにて、パーフルオロエーテルカルボン酸アンモニウム塩Aを使用して、公知の乳化重合方法によりTFEモノマーのみからなるホモのPTFE粒子を含むPTFE水性分散液B-1を得た。
得られたPTFE水性分散液B-1の固形分濃度は25質量%であり、平均一次粒子径は260nm、標準比重(SSG)は2.200、融点は336.8℃、一次粒子の平均アスペクト比は1.9、一次粒子のアスペクト比が2.5以上の粒子の割合は2%であった。
得られたPTFE水性分散液B-2は、固形分濃度が68.3質量%、非イオン性界面活性剤の含有量がPTFEに対し2.7質量%であった。
撹拌翼を備えた内容積6LのSUS製のオートクレーブにて、パーフルオロエーテルカルボン酸アンモニウム塩Aを使用して、公知の乳化重合方法によりTFEとパーフルオロプロピルビニルエーテル(PPVE)からなるPPVEで変性されたPTFE粒子を含むPTFE水性分散液B-6を得た。
得られたPTFE水性分散液B-6の固形分濃度は30質量%であり、平均一次粒子径は261nm、PTFEの標準比重(SSG)は2.175、融点は334.6℃、一次粒子の平均アスペクト比は1.22、一次粒子のアスペクト比が2.5以上の粒子の割合は0.7%、PPVE単位の含有量は0.14質量%であった。
50gのフッ素樹脂粉末A-1と167gのPTFE水性分散液B-4とをフラスコ内で振り混ぜた後、メタノールを入れて凝析し、ろ過して、水とメタノールで洗浄することでPTFE湿潤粉末を取り出した。
得られたPTFE湿潤粉末を電気炉にて、150℃、15時間乾燥することで水を除去した。
乾燥後の粉末をワンダークラッシャーWC-3を用いて、回転数2900rpmで60秒間の粉砕を行なうことでPTFE粉末を得た。
上記PTFE粉末の粒子径5μm以上の粗大粉末の露出部分は44%、融点は330℃及び337℃、YI値は-3.5、引張破断強度は14MPa、引張破断歪は389%であった。
PTFE水性分散液B-4の代わりに333gのPTFE水性分散液B-5を用いた以外は、実施例1と同様にしてPTFE粉末を得た。上記PTFE粉末の粒子径5μm以上の粗大粉末表面の露出部分は49%、融点は329℃及び337℃、YI値は-3.6、引張破断強度は15MPa、引張破断歪は421%であった。
PTFE水性分散液B-4の代わりに200gのPTFE水性分散液B-1を用いた以外は、実施例1と同様にしてPTFE粉末を得た。上記PTFE粉末の粒子径5μm以上の粒子表面の露出部分は48%、融点は329℃及び337℃、YI値は-1.2、引張破断強度は17MPa、引張破断歪は326%であった。
PTFE水性分散液B-4の代わりに83gのPTFE水性分散液B-3を用いた以外は、実施例1と同様にしてPTFE粉末を得た。上記PTFE粉末の粒子径5μm以上の粗大粉末表面の露出部分は86%、融点は329℃及び337℃、YI値は-0.4、引張破断強度は12MPa、引張破断歪は278%、低分子量含フッ素化合物(アニオン性部分の分子量が800以下のフッ素を含む界面活性剤)の含有量は1質量ppm以下であった。
PTFE水性分散液B-4の代わりに、PTFE水性分散液B-6を用いた以外は、実施例1と同様にしてPTFE粉末を得た。上記PTFE粉末の粒子径5μm以上の粗大粉末表面の露出部分は46%、融点は329℃及び336℃、PPVE単位の含有量は0.07質量%、引張破断強度は30MPa、引張破断歪は506%であった。
35gのフッ素樹脂粉末A-1(融点328℃)を用いて実施例1と同様に測定を行ったところ、YI値は2.0、引張破断強度は9MPa、引張破断歪は145%であった。
フッ素樹脂粉末A-1を90gとし、PTFE水性分散液B-6を33.4gとしたこと以外は実施例1と同様にしてPTFE粉末を得た。上記PTFE粉末の粒子径5μm以上の粗大粉末表面の露出部分は57%、融点は329℃及び336℃、PPVE単位の含有量は0.014質量%、引張破断強度は13MPa、引張破断歪は317%であった。
Claims (24)
- 融点以上の温度に加熱した履歴のあるフッ素樹脂A1の粉末と、フッ素樹脂B1の粒子を含み、固形分濃度が50質量%以下である水性分散液とを混合することにより混合物を得る工程、及び、
前記混合物を乾燥することによりフッ素樹脂組成物を得る工程を含み、
フッ素樹脂A1はポリテトラフルオロエチレンであり、
前記混合を、フッ素樹脂A1の粉末とフッ素樹脂B1の粒子との質量比(A1/B1)が1/99~90/10となるように行う、
圧縮成形(ただし、ラム押出成形を除く。)用フッ素樹脂組成物の製造方法。 - 前記水性分散液が炭化水素系界面活性剤を含む請求項1に記載の製造方法。
- 前記炭化水素系界面活性剤がフッ素原子を含まない炭化水素系界面活性剤である請求項2に記載の製造方法。
- 前記炭化水素系界面活性剤がアニオン系界面活性剤又は非イオン性界面活性剤である請求項2又は3に記載の製造方法。
- 前記水性分散液は、前記水性分散液の固形分に対し12質量%以下の非イオン性界面活性剤を含む請求項1~4のいずれかに記載の製造方法。
- 前記非イオン性界面活性剤は、エーテル結合を有する請求項5に記載の製造方法。
- 前記非イオン性界面活性剤は、エーテル型非イオン性界面活性剤、ポリオキシエチレン誘導体、エステル型非イオン性界面活性剤、アミン系非イオン性界面活性剤、及び、それらの誘導体からなる群より選択される少なくとも1種である請求項5に記載の製造方法。
- 融点以上の温度に加熱した履歴のあるフッ素樹脂A1の粉末と、フッ素樹脂B1の粒子を含み、炭化水素系界面活性剤を含まない水性分散液とを混合することにより混合物を得る工程、及び、
前記混合物を乾燥することによりフッ素樹脂組成物を得る工程を含み、
フッ素樹脂A1はポリテトラフルオロエチレンであり、
前記混合を、フッ素樹脂A1の粉末とフッ素樹脂B1の粒子との質量比(A1/B1)が1/99~90/10となるように行う、
圧縮成形(ただし、ラム押出成形を除く。)用フッ素樹脂組成物の製造方法。 - フッ素樹脂A1は、333℃未満の温度領域に1つ以上の融点を有する請求項1~8のいずれかに記載の製造方法。
- 前記フッ素樹脂組成物は、粉末である請求項1~9のいずれかに記載の製造方法。
- 更に、充填材を混合する工程を含む請求項1~10のいずれかに記載の製造方法。
- 請求項1~11のいずれかに記載の製造方法により得られるフッ素樹脂組成物。
- 融点以上の温度に加熱した履歴のあるフッ素樹脂A2と、融点以上の温度に加熱した履歴のないフッ素樹脂B2とを含むフッ素樹脂組成物であって、
粒子径5μm以上の粗大粉末及び一次粒子径1μm以下の微粒子を含み、
前記粗大粉末の表面に、前記微粒子が付着しており、前記粗大粉末の露出している表面が60%以下であり、
フッ素樹脂A2はポリテトラフルオロエチレンであり、
フッ素樹脂A2とフッ素樹脂B2との質量比(A2/B2)が1/99~90/10である、
圧縮成形(ただし、ラム押出成形を除く。)用フッ素樹脂組成物。 - 333℃未満の温度領域に1つ以上、333℃以上の温度領域に1つ以上の融点を有する請求項13に記載のフッ素樹脂組成物。
- 前記微粒子は、平均アスペクト比が2.0以下である請求項13又は14に記載のフッ素樹脂組成物。
- 前記微粒子の全数に対し、アスペクト比が2.5以上の微粒子の割合が0.5%以上である請求項13又は14に記載のフッ素樹脂組成物。
- 低分子量含フッ素化合物の含有量が、前記フッ素樹脂組成物に対し1質量ppm以下である請求項13~16のいずれかに記載のフッ素樹脂組成物。
- 非イオン性界面活性剤の含有量が、前記フッ素樹脂組成物に対し1.0質量%以下である請求項13~17のいずれかに記載のフッ素樹脂組成物。
- 粉末である請求項13~18のいずれかに記載のフッ素樹脂組成物。
- 下記条件で測定した引張破断強度が11MPa以上である請求項13~19のいずれかに記載のフッ素樹脂組成物。
(測定条件)
φ100mmの金型に35gの前記フッ素樹脂組成物を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した成形体を打ち抜いて作成したダンベルを用いて、ASTM D1708に準じて測定する。 - 下記条件で測定した引張破断歪が150%以上である請求項13~20のいずれかに記載のフッ素樹脂組成物。
(測定条件)
φ100mmの金型に35gの前記フッ素樹脂組成物を投入し、30MPaの圧力、1分間の条件で圧縮成形し、室温から300℃まで3時間で昇温し、その後300℃から370℃まで4時間で昇温し、370℃で12時間保持した後、300℃まで5時間で降温したのち、室温まで1時間で降温する工程によって焼成した成形体を打ち抜いて作成したダンベルを用いて、ASTM D1708に準じて測定する。 - イエローインデックスが-1.0以下である請求項13~21のいずれかに記載のフッ素樹脂組成物。
- 更に、充填材を含む請求項13~22のいずれかに記載のフッ素樹脂組成物。
- 請求項13~23のいずれかに記載のフッ素樹脂組成物を圧縮成形(ただし、ラム押出成形を除く。)及び焼成して得られる成形体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021060840 | 2021-03-31 | ||
JP2021060840 | 2021-03-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022159204A JP2022159204A (ja) | 2022-10-17 |
JP7323833B2 true JP7323833B2 (ja) | 2023-08-09 |
Family
ID=83459670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022058836A Active JP7323833B2 (ja) | 2021-03-31 | 2022-03-31 | フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240026043A1 (ja) |
EP (1) | EP4317308A4 (ja) |
JP (1) | JP7323833B2 (ja) |
KR (1) | KR20230160917A (ja) |
CN (1) | CN117136213A (ja) |
TW (1) | TW202305053A (ja) |
WO (1) | WO2022211093A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2022014778A (es) * | 2020-05-26 | 2023-01-16 | Zeus Company Inc | Microparticulas de ptfe termomecanicamente degradado. |
WO2024143193A1 (ja) | 2022-12-28 | 2024-07-04 | Agc株式会社 | フッ素樹脂組成物、フッ素樹脂組成物の製造方法およびフッ素樹脂成形体の製造方法 |
JP7421829B1 (ja) | 2023-04-25 | 2024-01-25 | NiKKiFron株式会社 | 焼成後懸濁重合法由来四フッ化エチレン樹脂粉とバージン材懸濁重合法由来四フッ化エチレン樹脂粉の混合体、リサイクル懸濁重合法由来四フッ化エチレン樹脂焼成体、焼成後懸濁重合法由来四フッ化エチレン樹脂粉のリサイクル方法 |
WO2024248103A1 (ja) * | 2023-06-02 | 2024-12-05 | Agc株式会社 | フッ素樹脂成形体 |
TW202500662A (zh) * | 2023-06-02 | 2025-01-01 | 日商Agc股份有限公司 | 氟樹脂組成物、成形體、及氟樹脂組成物之製造方法 |
CN117048161B (zh) * | 2023-10-12 | 2024-01-12 | 山东东岳高分子材料有限公司 | 一种膨胀多孔ptfe层压板及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000508013A (ja) | 1996-03-30 | 2000-06-27 | ダブリュ.エル.ゴア アンド アソシエイツ,(ユーケイ),リミティド | 顆粒タイプのポリテトラフルオロエチレンディスパージョンとそれから調製された融合物品 |
WO2005019320A1 (ja) | 2003-08-25 | 2005-03-03 | Daikin Industries, Ltd. | 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品 |
JP2006070233A (ja) | 2004-08-31 | 2006-03-16 | Starlite Co Ltd | 混合系の非溶融加工性フッ素樹脂 |
WO2019244433A1 (ja) | 2018-06-21 | 2019-12-26 | Blanc Bijou株式会社 | フッ素樹脂焼成体の生産方法、フッ素樹脂焼成体、フッ素樹脂ディスパージョンの生産方法、焼成体の生産方法、フッ素樹脂ディスパージョン、及び焼成体 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3271341A (en) | 1961-08-07 | 1966-09-06 | Du Pont | Aqueous colloidal dispersions of polymer |
US3250808A (en) | 1963-10-31 | 1966-05-10 | Du Pont | Fluorocarbon ethers derived from hexafluoropropylene epoxide |
JPS5856171B2 (ja) * | 1979-01-31 | 1983-12-13 | 日東電工株式会社 | 多孔質滑りシ−ト |
GB9007304D0 (en) * | 1990-03-31 | 1990-05-30 | Gore W L & Ass Uk | Filter element |
JP3282209B2 (ja) * | 1991-04-04 | 2002-05-13 | ダイキン工業株式会社 | 多孔質ポリテトラフルオロエチレン成形体の製法 |
US5154866A (en) * | 1991-04-04 | 1992-10-13 | Daikin Industries, Ltd. | Molding process for preparing porous polytetrafluoroethylene articles |
JP3900883B2 (ja) | 2001-10-05 | 2007-04-04 | ダイキン工業株式会社 | 含フッ素重合体ラテックスの製造方法 |
US7696268B2 (en) | 2003-10-31 | 2010-04-13 | Daikin Industries, Ltd. | Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion |
US20070015937A1 (en) | 2005-07-15 | 2007-01-18 | 3M Innovative Properties Company | Process for recovery of fluorinated carboxylic acid surfactants from exhaust gas |
GB0514387D0 (en) | 2005-07-15 | 2005-08-17 | 3M Innovative Properties Co | Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant |
GB0514398D0 (en) | 2005-07-15 | 2005-08-17 | 3M Innovative Properties Co | Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant |
GB0523853D0 (en) | 2005-11-24 | 2006-01-04 | 3M Innovative Properties Co | Fluorinated surfactants for use in making a fluoropolymer |
GB0525978D0 (en) | 2005-12-21 | 2006-02-01 | 3M Innovative Properties Co | Fluorinated Surfactants For Making Fluoropolymers |
RU2425056C2 (ru) | 2005-10-17 | 2011-07-27 | Асахи Гласс Компани, Лимитед | Водная политетрафторэтиленовая эмульсия, политетрафторэтиленовый мелкодисперсный порошок и пористый материал, полученный из него |
WO2007046482A1 (ja) | 2005-10-20 | 2007-04-26 | Asahi Glass Company, Limited | ポリテトラフルオロエチレン水性分散液およびその製品 |
WO2007046377A1 (ja) | 2005-10-20 | 2007-04-26 | Asahi Glass Company, Limited | 溶融成形可能なフッ素樹脂の製造方法 |
JP5211424B2 (ja) | 2005-10-25 | 2013-06-12 | 旭硝子株式会社 | イオン交換膜の製造方法 |
US20070276103A1 (en) | 2006-05-25 | 2007-11-29 | 3M Innovative Properties Company | Fluorinated Surfactants |
US8119750B2 (en) | 2006-07-13 | 2012-02-21 | 3M Innovative Properties Company | Explosion taming surfactants for the production of perfluoropolymers |
CN101616939B (zh) | 2006-11-09 | 2012-11-14 | 纳幕尔杜邦公司 | 使用包含高分子量氟聚醚酸或盐以及氟聚醚酸或盐表面活性剂的聚合剂进行的氟化单体的含水聚合反应 |
JP5257360B2 (ja) * | 2007-06-28 | 2013-08-07 | ダイキン工業株式会社 | ポリテトラフルオロエチレン水性分散液及びその製造方法 |
US8703889B2 (en) | 2008-07-08 | 2014-04-22 | Solvay Solexis S.P.A. | Method for manufacturing fluoropolymers |
US8563670B2 (en) | 2010-11-09 | 2013-10-22 | E I Du Pont De Nemours And Company | Nucleation in aqueous polymerization of fluoromonomer |
WO2012064858A1 (en) | 2010-11-09 | 2012-05-18 | E. I. Du Pont De Nemours And Company | Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization |
US9255164B2 (en) | 2010-11-09 | 2016-02-09 | The Chemours Company Fc, Llc | Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant |
CN104583247B (zh) | 2012-06-20 | 2016-12-21 | 索尔维特殊聚合物意大利有限公司 | 四氟乙烯共聚物 |
EP2864376B1 (en) | 2012-06-20 | 2016-08-24 | Solvay Specialty Polymers Italy S.p.A. | Tetrafluoroethylene copolymers |
-
2022
- 2022-03-31 KR KR1020237036886A patent/KR20230160917A/ko active Pending
- 2022-03-31 TW TW111112625A patent/TW202305053A/zh unknown
- 2022-03-31 EP EP22781302.9A patent/EP4317308A4/en active Pending
- 2022-03-31 JP JP2022058836A patent/JP7323833B2/ja active Active
- 2022-03-31 WO PCT/JP2022/016870 patent/WO2022211093A1/ja active IP Right Grant
- 2022-03-31 CN CN202280023394.5A patent/CN117136213A/zh active Pending
-
2023
- 2023-09-29 US US18/478,285 patent/US20240026043A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000508013A (ja) | 1996-03-30 | 2000-06-27 | ダブリュ.エル.ゴア アンド アソシエイツ,(ユーケイ),リミティド | 顆粒タイプのポリテトラフルオロエチレンディスパージョンとそれから調製された融合物品 |
WO2005019320A1 (ja) | 2003-08-25 | 2005-03-03 | Daikin Industries, Ltd. | 混合ポリテトラフルオロエチレン粉体及びポリテトラフルオロエチレン多孔成形体及びこれらの製造方法、ポリテトラフルオロエチレン多孔発泡成形体並びに高周波信号伝送用製品 |
JP2006070233A (ja) | 2004-08-31 | 2006-03-16 | Starlite Co Ltd | 混合系の非溶融加工性フッ素樹脂 |
WO2019244433A1 (ja) | 2018-06-21 | 2019-12-26 | Blanc Bijou株式会社 | フッ素樹脂焼成体の生産方法、フッ素樹脂焼成体、フッ素樹脂ディスパージョンの生産方法、焼成体の生産方法、フッ素樹脂ディスパージョン、及び焼成体 |
Non-Patent Citations (1)
Title |
---|
DAIKIN FLUOROPLASTICS,日本,ダイキン工業株式会社,2002年04月,https://pdf4pro.com/cdn/nissili-co-jp-bc1e.pdf |
Also Published As
Publication number | Publication date |
---|---|
CN117136213A (zh) | 2023-11-28 |
TW202305053A (zh) | 2023-02-01 |
US20240026043A1 (en) | 2024-01-25 |
EP4317308A4 (en) | 2025-04-30 |
WO2022211093A1 (ja) | 2022-10-06 |
EP4317308A1 (en) | 2024-02-07 |
KR20230160917A (ko) | 2023-11-24 |
JP2022159204A (ja) | 2022-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7323833B2 (ja) | フッ素樹脂組成物の製造方法、フッ素樹脂組成物、及び、成形体 | |
JP7323832B2 (ja) | フッ素樹脂組成物、及び、成形体 | |
JP7705361B2 (ja) | フッ素樹脂組成物、及び、成形体 | |
JP7360066B2 (ja) | フッ素樹脂組成物、及び、成形体 | |
JP2023099638A (ja) | フッ素樹脂組成物、及び、成形体 | |
RU2840494C2 (ru) | Композиция фторсмолы и формованный предмет | |
RU2839252C2 (ru) | Способ производства композиции фторкаучука, композиция фторкаучука и формованное тело | |
TWI882214B (zh) | 氟樹脂組成物、及成形體 | |
RU2840776C2 (ru) | Композиция фторкаучука и формованное тело | |
RU2843524C2 (ru) | Композиция фторкаучука и формованное тело | |
WO2023191061A1 (ja) | フッ素樹脂組成物、及び、成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220614 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221013 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230420 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230420 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230710 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7323833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |