[go: up one dir, main page]

RU2175351C2 - Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот - Google Patents

Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот Download PDF

Info

Publication number
RU2175351C2
RU2175351C2 RU99104431/13A RU99104431A RU2175351C2 RU 2175351 C2 RU2175351 C2 RU 2175351C2 RU 99104431/13 A RU99104431/13 A RU 99104431/13A RU 99104431 A RU99104431 A RU 99104431A RU 2175351 C2 RU2175351 C2 RU 2175351C2
Authority
RU
Russia
Prior art keywords
amino acids
strain
amino acid
protein
coli
Prior art date
Application number
RU99104431/13A
Other languages
English (en)
Other versions
RU99104431A (ru
Inventor
В.А. Лившиц
Н.П. Закатаева
Казуо Наканиши
В.В. Алешин
П.В. Трошин
И.Л. Токмакова
Original Assignee
Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26653994&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2175351(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from RU98124016/13A external-priority patent/RU98124016A/ru
Application filed by Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") filed Critical Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ")
Priority to RU99104431/13A priority Critical patent/RU2175351C2/ru
Priority to AU64493/99A priority patent/AU764189B2/en
Priority to US09/459,573 priority patent/US6979560B1/en
Priority to IDP991150D priority patent/ID24398A/id
Priority to DE69942160T priority patent/DE69942160D1/de
Priority to EP05005781A priority patent/EP1598416A1/en
Priority to DE69941991T priority patent/DE69941991D1/de
Priority to DE69942140T priority patent/DE69942140D1/de
Priority to EP05005782A priority patent/EP1589096B1/en
Priority to AT05005782T priority patent/ATE461271T1/de
Priority to EP05005783A priority patent/EP1580262B1/en
Priority to AT99125263T priority patent/ATE461270T1/de
Priority to EP99125263A priority patent/EP1016710B1/en
Priority to AT05005783T priority patent/ATE456648T1/de
Priority to ZA9907767A priority patent/ZA997767B/xx
Priority to CA002291895A priority patent/CA2291895A1/en
Priority to BRPI9906287-9A priority patent/BR9906287B1/pt
Priority to JP37365199A priority patent/JP4221862B2/ja
Priority to BRPI9917718A priority patent/BRPI9917718B8/pt
Priority to BRPI9917719-6A priority patent/BR9917719B1/pt
Priority to KR1019990064627A priority patent/KR20000048465A/ko
Priority to SK1870-99A priority patent/SK187099A3/sk
Priority to CNB2005101036124A priority patent/CN100415874C/zh
Priority to CNB2005101036105A priority patent/CN1332021C/zh
Priority to CNB200510103611XA priority patent/CN100410366C/zh
Priority to CNB991275225A priority patent/CN1228445C/zh
Priority to MXPA00000177A priority patent/MXPA00000177A/es
Publication of RU99104431A publication Critical patent/RU99104431A/ru
Application granted granted Critical
Publication of RU2175351C2 publication Critical patent/RU2175351C2/ru
Priority to US11/116,286 priority patent/US20050202543A1/en
Priority to US11/276,522 priority patent/US7399617B1/en
Priority to KR1020070017873A priority patent/KR20070034022A/ko
Priority to KR1020070017878A priority patent/KR20070034023A/ko
Priority to KR1020070017882A priority patent/KR20070034024A/ko
Priority to US11/854,868 priority patent/US7524656B2/en
Priority to US11/854,850 priority patent/US7527950B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/24Proline; Hydroxyproline; Histidine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к биотехнологии и генетической инженерии. Предложены фрагменты ДНК yahN, yeaS, yfiK, yggA, кодирующие синтез белков, придающих бактериям Esherichia coli повышенную устойчивость к L-аминокислотам. На основе этих фрагментов сконструированы штаммы бактерий Е. coli, обладающие повышенной способностью к продукции L-лизина, L-треонина, L-глутаминовой кислоты, L-гистидина, L-пролина, L-аланина, L-аргинина, L-валина и L-изолейцина. Описан способ получения L - аминокислот с использованием новых штаммов-продуцентов. 5 с. и 1 з.п.ф-лы, 8 табл., 4 ил.

Description

Изобретение относится к биотехнологии и, в частности, касается способа получения L-аминокислот, а именно L-глутаминовой кислоты, L-лизина, L-треонина, L-аланина, L-гистидина, L-пролина, L-аргинина, L-валина, или L-изолейцина с помощью бактерий, принадлежащих к роду Escherichia.
Для получения аминокислот с помощью ферментации используются штаммы, выделенные из природных источников, или с целью увеличения продуктивности применяют специально полученные мутанты этих штаммов. В случае L-лизина, например, известно много искусственных мутантов, продуцирующих эту аминокислоту. Большинство из них - это мутанты бактерий, устойчивые к S-2-аминоэтилцистеину, (АЭЦ) принадлежащие к родам Brevibacterium, Corynebucterium, Bacillus или Escherichia. Предложено много различных приемов для повышения продукции аминокислот, например, таких как трансформация рекомбинантными ДНК (Патент США N 4278765). Эти приемы в большинстве случаев основаны на повышении активности ферментов, участвующих в биосинтезе аминокислоты, и/или в придании ключевому ферменту нечувствительности к ингибирующему действию конечного продукта и т. п. (См. Выложенную заявку на патент в Японии N 56- 18596 (1981) и международную заявку WO N 95/16042).
C другой стороны, как пример повышения продуктивности штамма-продуцента аминокислоты путем увеличения экскреции этой аминокислоты известен штамм, принадлежащий к роду Corynebacterium, у которого повышена активность гена экскреции лизина, lysE (Vrljic et al., Mol. Microbiol., 22, 815-826, 1996). Однако в отношении бактерий, принадлежащих к роду Escherichia, наличие белков, обеспечивающих экскрецию этой или какой-либо другой аминокислоты, остается неизвестным. Поэтому неизвестно также, может ли повышение активности белка экскреции повысить продукцию аминокислоты в случае бактерий, принадлежащих к роду Escherichia.
Хотя на сегодня известна нуклеотидная последовательность всей хромосомы штамма Escherichia coli К-12, принадлежащего к роду Escherichia (Science, 227, 1453-1474, 1997), имеется большое число генов, кодирующих трансмембранные белки, функция которых остается неизвестной. Среди них могут быть и белки, участвующие в процессе транспорта аминокислот из клеток бактерий.
Задачей настоящего изобретения является повышение продуктивности штаммов-продуцентов L-аминокислот и разработка на этой основе нового способа получения L-аминокислот биотехнологическим методом.
Поставленную задачу решают путем выявления генов, контролирующих синтез белков, участвующих в экскреции L-аминокислот у Е. coli, и конструирования на их основе штаммов-продуцентов, позволяющих разработать способ получения L- аминокислот, а именно L-глутаминовой кислоты, L-лизина, L- треонина, L-аланина, L-гистидина, L-пролина, L-аргинина, L-валина, или L-изолейцина с повышенным выходом целевой аминокислоты.
Предметом настоящего изобретения являются бактерии (в дальнейшем рассматриваемые как "бактерии по настоящему изобретению"), принадлежащие к роду Escherichia, обладающие способностью к продукции аминокислот, у которых эта способность повышена в результате увеличения экспрессируемого количества, по крайней мере, одного из белков, принадлежащих к группе, состоящей из следующих белков, поименованных в пунктах от А по H:
А - белок, который состоит из аминокислотной последовательности N 5 (Фиг. 1);
В - белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности N 5, и который имеет активность, обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот;
С - белок, который состоит из аминокислотной последовательности N 6 (Фиг. 2);
D - белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности N 6, и который имеет активность, обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот;
E - белок, который состоит из аминокислотной последовательности N 7 (Фиг. 3);
F - белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности N 7, и который имеет активность, обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот;
G - белок, который состоит из аминокислотной последовательности N 8 (Фиг. 4);
H - белок, который состоит из аминокислотной последовательности, включающей также делеции, замены, вставки или добавки из одной или нескольких аминокислот к последовательности N 8, и который имеет активность, обеспечивающую бактериям, содержащим этот белок, повышенную продукцию L-аминокислот.
Бактериями по настоящему изобретению являются: продуценты L-аминокислот, относящиеся к роду Escherichia, а именно: продуценты L-лизина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с А по D, G и H, увеличено; продуценты L-глутаминовой кислоты, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п. п. с А по H, увеличено; продуценты L-аланина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено; продуценты L-валина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено; продуценты L-пролина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с А по F, увеличено; продуценты L-треонина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. E и F, увеличено; продуценты L-гистидина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с C по F, увеличено; продуценты L-аргинина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. G и H, увеличено; продуценты L-изолейцина, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено.
В клетках бактерий по настоящему изобретению число копий ДНК, кодирующих указанные белки, может быть увеличено. Указанная ДНК в клетках этих бактерий преимущественно находится на многокопийном векторе или на транспозоне.
Настоящее изобретение также защищает способ получения аминокислот, который включает этапы:
культивирования бактерий, полученных в соответствии с настоящим изобретением и обладающих способностью к повышенной продукции аминокислот, в культуральной среде, обеспечивающей продукцию и накопление соответствующей аминокислоты в этой среде, и
выделения накопившейся аминокислоты из этой среды.
Этот способ получения аминокислот включает получение L-лизина с помощью бактерий, продуцирующих L-лизин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п. п. с А по D, G и H, увеличено; получение L-глутаминовой кислоты с помощью бактерий, продуцирующих L-глутаминовую кислоту, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с А по H, увеличено; получение L- треонина с помощью бактерий, продуцирующих L-треонин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. E и F, увеличено; получение L-аланина с помощью бактерий, продуцирующих L-аланин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено; получения L-пролина с помощью бактерий, продуцирующих L-пролин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с А по F, увеличено; получение L-валина с помощью бактерий, продуцирующих L-валин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено; получение L-изолейцина с помощью бактерий, продуцирующих L-изолейцин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. C и D, увеличено; получения L-гистидина с помощью бактерий, продуцирующих L-гистидин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. с C по F, увеличено; получения L-аргинина с помощью бактерий, продуцирующих L- аргинин, у которых экспрессируемое количество по крайней мере одного из белков, выбранных из группы, состоящей из белков, поименованных в п.п. G и H, увеличено.
Примеры, представленные в настоящем изобретении, касаются тех случаев, когда экспрессируемое количество белков увеличено за счет увеличения числа копий ДНК, кодирующих в клетках указанные белки.
В соответствии с настоящим изобретением способность продуцировать L-аминокислоты бактериями, принадлежащими к роду Escherichia, может быть усилена, а способ получения аминокислот может быть усовершенствован в том, что касается повышения продукции аминокислот.
Ниже следует детальное объяснение настоящего изобретения. В дальнейшем изложении, если не оговорено, имеются в виду L-стереоизомеры аминокислот.
1. Бактерии по настоящему изобретению.
Бактерии по настоящему изобретению представлены бактериями, принадлежащими к роду Escherichia и способными к продукции аминокислот, у которых эта способность повышена за счет повышения экспрессируемого количества белков, обладающих активностью, которая обеспечивает увеличенную продукцию аминокислот. В дальнейшем эти белки будут обозначены как "белки экскретирующие аминокислоты", однако этот термин не означает, что функция указанных белков ограничивается только экскрецией аминокислот. Примером белков, экскретирующих аминокислоты, являются белки, имеющие аминокислотные последовательности, представленные на Фиг. 1 (последовательность N 5), Фиг. 2 (Последовательность N 6), Фиг. 3 (Последовательность N 7) и Фиг. 4 (Последовательность N 8). Белки, экскретирующие аминокислоты, могут иметь специфичность по отношению к определенным аминокислотам. Эта специфичность может быть определена путем экспрессии соответствующих белков в клетках бактерий, принадлежащих к роду Escherichia, и установления факта повышения минимально ингибирующих концентраций определенных аминокислот или аналогов аминокислот. Кроме того, специфичность может быть определена путем экспрессии соответствующих белков в клетках указанных бактерий, обладающих способностью к продукции аминокислот, и установления факта повышения продукции этих аминокислот.
Например, в случае лизина белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6 или 8, обнаружил такого рода активность. В случае глутаминовой кислоты белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6, 7 или 8, обнаруживает такого рода активность. В случае треонина белок, имеющий последовательность, показанную в списке последовательностей под номером 7, обнаруживает такого рода активность. В случае аланина белок, имеющий последовательность, показанную в списке последовательностей под номером 6, обнаруживает такого рода активность. В случае валина белок, имеющий последовательность, показанную в списке последовательностей под номером 6, обнаруживает такого рода активность. В случае изолейцина белок, имеющий последовательность, показанную в списке последовательностей под номером 6, обнаруживает такого рода активность. В случае гистидина белок, имеющий последовательность, показанную в списке последовательностей под номером 6 и 7, обнаруживает такого рода активность. В случае пролина белок, имеющий последовательность, показанную в списке последовательностей под номером 5, 6 или 7, обнаруживает такого рода активность. В случае аргинина белок, имеющий последовательность, показанную в списке последовательностей под номером 8, обнаруживает такого рода активность.
Термин "экспрессируемое количество увеличено" используется в настоящем изобретении для обозначения того факта, что экспрессируемое количество белка больше, чем в исходных штаммах (штаммах "дикого типа"), например в штамме Е. coli MG1655 или Е. coli W3110. Этот термин означает также, что если штамм получен путем генетической модификации, например, с помощью методов генной инженерии и т.п., то экспрессируемое количество белка повышается в результате этой модификации. Экспрессируемое количество белка, экскретирующего аминокислоту, может быть прямо определено путем измерения количества белка, экскретирующего аминокислоту, или косвенно по эффекту этого белка на устойчивость бактерий рода Escherichia к аминокислотам и к аналогам аминокислот.
Способ повышения экспрессируемого количества белка, экскретирующего аминокислоту, включает методы, предполагающие увеличение числа копий ДНК, кодирующих этот белок. Для увеличения числа копий ДНК фрагмент ДНК, кодирующий указанный белок, лигируют с вектором, который может функционировать в бактериях, принадлежащих к роду Escherichia, с образованием рекомбинантной ДНК, которой затем трансформируют клетки бактерии-хозяина. При этом число копий гена, кодирующего белок, экскретирующий аминокислоту (гена белка, экскретирующего аминокислоту), в клетках трансформированных бактерий увеличивается, и таким образом повышается экспрессируемое количество белка, экскретирующего аминокислоту. Для этой цели можно использовать многокопийный вектор.
Кроме того, повышение экспрессируемого количества белка, экскретирующего аминокислоту, может быть достигнуто введением множества копий гена белка экскретирующего аминокислоту в хромосому бактерии-хозяина. Это введение в хромосому бактерий, принадлежащих к роду Escherichia, может быть осуществлено посредством гомологической рекомбинации с использованием в качестве мишеней последовательностей ДНК, множество копий которых существует в хромосоме. В качестве таковых могут быть использованы повторяющиеся последовательности в хромосомной ДНК и обращенные повторы транспозируемых элементов. Альтернативный метод предполагает введение в хромосомную ДНК множества копий гена белка, экскретирующего аминокислоту, с помощью интеграции его в транспозон и последующей индукции множественных актов транспозиции, как это описано в Выложенной заявке на патент в Японии N 2-109985 (1990). В результате осуществления любого из описанных выше подходов число копий гена белка, экскретирующего аминокислоту, увеличится и тем самым увеличится экспрессируемое количество белка, экскретирующего аминокислоту.
Мультикопийные векторы могут быть представлены плазмидными векторами, такими как pBR322, pMW118, pUC19 или подобными, или фаговыми векторами, такими как λ 1059, λ BF101, M13mp9 или подобными. Транспозоны могут быть представлены фагом Mu, транспозонами Tn10, Tn5 или подобными. Введение ДНК в клетки бактерий, принадлежащих к роду Escherichia, может быть осуществлено, например, с помощью метода Моррисона (Methods in Enzymology 68, 326, 1979), или с помощью метода, в котором реципиентные клетки бактерий подвергают воздействию хлористого кальция для увеличения их проницаемости по отношению к ДНК (Mandel and Higa, J. Mol. Biol., 53, 159, 1970), или с помощью другого подобного метода.
Кроме упомянутой выше амплификации генов, экспрессируемое количество белка, экскретирующего аминокислоту, может быть увеличено также путем замены экспрессирующей регуляторной последовательности, такой как промотор гена белка, экскретирующего аминокислоту на более сильный промотор (Выложенная заявка на патент в Японии N 1-215280 (1989)). В качестве сильных промоторов известны lac-промотор, trp- промотор, tac-промотор, PR-промотор и PL-промотор фага ламбда и другие. Замена промотора усиливает экспрессию гена белка, экскретирующего аминокислоту, и тем самым увеличивает экспрессируемое количество указанного белка. Усиление экспрессирующей регуляторной последовательности можно совмещать с увеличением числа копий гена белка, экскретирующего аминокислоту.
В бактериях по настоящему изобретению может быть повышено экспрессируемое количество нескольких белков, экскретирующих аминокислоты.
Белки, экскретирующие аминокислоты, кодируются известными генами (открытыми рамками считывания, ORF) yahN, yeaS, yfiK, yggA, функция которых неизвестна. Поэтому ДНК, кодирующие белки, экскретирующие аминокислоты, могут быть получены путем синтеза праймеров на основе известных последовательностей (например, полной нуклеотидной последовательности хромосомы Escherichia coli К-12, (Science, 277, 1453-1474, 1997)) и амплификации с помощью полимеразной цепной реакции (ПЦР) с использованием хромосомной ДНК бактерий, принадлежащих к роду Escherichia, в качестве матрицы. Кроме того, нужный фрагмент ДНК может быть отобран с помощью гибридизации из библиотеки генов хромосомной ДНК указанных бактерий путем применения зонда, изготовленного на основе известной последовательности. Альтернативный подход предполагает синтез ДНК гена, кодирующего белок, экскретирующий аминокислоту, на основе известной последовательности. Нуклеотидные последовательности фрагментов ДНК, кодирующих белки YahN, YeaS, YfiK и YggA, экскретирующие аминокислоты, представлены в приложении (Последовательности N 1-4).
Методы выделения хромосомной ДНК, получения библиотеки генов, ДНК-ДНК гибридизации, ПЦР, выделения и трансформации плазмидной ДНК, рестрицирования и лигирования ДНК, выбора нуклеотидов для праймеров и т.п. методы хорошо известны и детально описаны во многих руководствах, например, Sambrook, J., Fritsch Е. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.
Белки, экскретирующие аминокислоты, могут содержать делеции, замены, инсерции или добавки в одну или несколько аминокислот в одной или нескольких позициях, не нарушающих при этом активность белка, обеспечивающую повышенную устойчивость к аминокислотам и/или аналогам и повышенную продукцию аминокислот. Термин "несколько" может варьировать в зависимости от положения в пространственной структуре белка или характера аминокислотного остатка. Это связано с тем, что некоторые аминокислоты, такие, например, как изолейцин и валин, имеют высокое сходство друг с другом, и различие между этими аминокислотами заметно не влияет на пространственную структуру белка. Поэтому может существовать белок, который имеет гомологию не менее 70%, а предпочтительнее не менее 90% по отношению ко всей аминокислотной последовательности белка, экскретирующего аминокислоту, и который обладает активностью, повышающей способность к продукции аминокислот бактериями, принадлежащими к роду Escherichia и содержащими этот белок. В частности, "несколько" может соответствовать числам от 20 до 60, но преимущественно от 2 до 20.
Фрагменты ДНК, кодирующие по существу те же белки, что и белки, экскретирующие аминокислоты, описанные выше, могут быть получены, например, путем модификации нуклеотидной последовательности, в частности при помощи сайтнаправленного мутагенеза, так что один или более аминокислотный остаток будет делетирован, заменен, вставлен или добавлен. ДНК, модифицированная описанным выше способом, может быть получена известными методами с помощью мутационных воздействий. Мутационная обработка включает методы обработки ДНК, кодирующей белок, экскретирующий аминокислоту in vitro, например, при помощи гидроксиламина, или методы обработки микроорганизма, в частности бактерий, принадлежащих к роду Escherichia и несущих ДНК, кодирующую белок, экскретирующий аминокислоту, УФ облучением, или мутагенными агентами, такими как N-метил-N'-нитро-N-нитрозогуанидин (НГ) или азотистая кислота, которые обычно используется для индукции мутаций.
Фрагменты ДНК, кодирующие указанные варианты белков, экскретирующих аминокислоты, отбирают путем экспрессии в клетках бактерий рода Escherichia плазмидной ДНК, несущей ген, кодирующий указанный белок, и подвергнутой in vitro мутагенному воздействию, как описано выше, с последующим определением их устойчивости к высокой концентрации аминокислоты и/или аналога аминокислоты и/или способности повышать продукцию аминокислоты.
Изобретение относится также к вариантам белков, экскретирующих аминокислоты, которые встречаются в разных видах, штаммах и вариантах бактерий рода Escherichia и обусловлены природным разнообразием. ДНК, кодирующих эти варианты, и которые гибридизуются в жестких условиях с ДНК, имеющими нуклеотидные последовательности с 1 по 4, показанные в формуле изобретения.
Термин "жесткие условия" означает здесь условия, при которых так называемая специфическая гибридизация происходит, а неспецифическая не происходит. Трудно четко выразить эти условия с помощью каких-то цифровых значений. Однако например, жесткие условия включают условия, при которых ДНК, имеющие высокую гомологию, например не менее 70% гомологии по отношению друг к другу гибридизуются, а ДНК, имеющие гомологию ниже указанной величины, не гибридизуются (условия отмывки при гибридизации по Саузерну: 60oC, растворами 1 х SSC, 0.1% SDS, или предпочтительнее растворами 0.1 х SSC, 0.1% SDS, которые являются обычными условиями при гибридизации по Саузерну).
Среди отобранных таким образом генов могут встречаться гены с появившимся в их средней части стоп-кодоном или гены, кодирующие белок, который утратил активность в результате мутации в активном центре. Такие дефектные гены легко элиминируются после лигирования их с коммерчески доступными экспрессионными векторами и определения способности повышать устойчивость к аминокислотам или аналогам или повышать продукцию аминокислот бактериями, принадлежащими к роду Escherichia, как это описано выше.
Термин "ДНК кодирующая белок", обозначает двунитевую ДНК, одна из нитей которой кодирует белок.
Увеличив экспрессируемое количество белка, экскретирующего аминокислоту в клетках штамма-продуцента, как это описано выше, можно повысить продукцию соответствующей аминокислоты. При этом возможны два варианта:
1. Признак повышенного экспрессируемого количества белка, экскретирующего аминокислоту, вводят в штамм, уже способный продуцировать желаемую аминокислоту.
2. Способность к продукции аминокислот придается штаммам, у которых экспрессируемое количество белка, экскретирующего аминокислоту, уже повышено.
Примеры бактерий, продуцирующих аминокислоты и принадлежащих к роду Escherichia, приведены ниже.
Продуцент глутаминовой кислоты.
В качестве продуцента глутаминовой кислоты может быть представлен штамм Е.coli AJ13199 (Патент Франции N 2747689).
Лизин-продуцирующие бактерии
Продуцент лизина, принадлежащий к роду Escherichia, представлен штаммом Е.coli W3110 (tyrA) (Европейский патент N 488424), в который введена плазмида pCABD2 (Международная заявка WO 95/16042). Штамм W3110 (tyrA) был сконструирован следующим образом. Штамм Е.coli W3110, который хранится в Национальном Институте Генетики (Япония), высевали на чашку с LB-агаром, содержащим стрептомицин, и отбирали стрептомицин-устойчивый мутант. Клетки этого мутанта смешивали с клетками штамма Е. coli К-12 МЕ8424 и подращивали в L-бульоне (состав: 1% бактотриптона, 0.5% дрожжевого экстракта, 0.5% NaCI) при 37oC в течение 15 минут для индукции конъюгации. Штамм Е. coli К-12 МЕ8424 хранится в Национальном Институте Генетики (Япония) и имеет следующие генетические характеристики: (HfrPO45, thi, relA1, tyr::Tn10, ung-1, nadB). Затем, высевая эту суспензию бактерий на полноценную питательную среду (агаризованный L-бульон, содержащий стрептомицин, тетрациклин и тирозин), получили штамм Е. coli W3110 (tyrA). Плазмида pCABD2 может быть получена интеграцией фрагмента, содержащего ген ddh, и фрагмента, содержащего ген dapB, которые амплифицировали из хромосомы Е.coli W3110 на основе известной последовательности, в плазмиду RSED80. Штамм Е. coli, несущий плазмиду RSFD80, депонирован в Национальном Институте Биологических Наук и Гуманитарных Технологий Агентства Промышленной Науки и Технологии (Япония) 28 октября 1993 года под номером FERM Р-13936, откуда он передан в международный депозитарий по Будапештскому договору от 1 ноября 1994 года и получил номер хранения FERM ВР-4859.
Кроме того, в качестве продуцента лизина, принадлежащего к роду Escherichia, используют штамм Е. coli VL614. Этот штамм является производным известного штамма VL613 (Авторское свидетельство СССР N 1354458). Штамм VL613 в свою очередь получен на основе известного штамма Gif 102 (Theze, J. and Saint Girons. J. Bacteriol., 118, 990-998, 1974) в три этапа. На первом этапе был получен мутант этого штамма, устойчивый к 2 мг/мл S(2-аминоэтил)-L-цистеина. На втором этапе мутация rhtA23, сообщающая клеткам устойчивость к высоким концентрациям треонина и гомосерина (ABSTRACTS of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francicco, California August 24-29, 1997, N 457), была введена в клетки штамм VL611 из штамма ВКПМ В-3996 (Патент США N 5175107) с помощью трансдукции фагом P1. Трансдуктант, отобранный по устойчивости к 10 мг/мл гомосерина обозначен, как штамм VL612. На третьем этапе с помощью трансдукции фагом P1 в этот штамм была введена плазмида pVG478, содержащая гены, связанные с усвоением сахарозы, локализующиеся на транспозоне Tn2555 (Дорошенко и др., Молекулярная генетика, микробиология и вирусология, N 6, 23-28, 1987). Так был получен штамм VL613. Штамм VL614 получают трансдукцией с помощью фага P1 в этот штамм дикого аллеля гена rhtA, сцепленного с транспозоном Tn10, из штамма VKPM В-6204 (zbi- 3058::Tn10). Трасдуктанты отбирают на среде LB с тетрациклином (10 мг/л) и среди них находят клоны, чувствительные на минимальной среде к гомосерину (10 г/л), (т.е.получившие rhtA+ аллель).
Треонин-продуцирующие бактерии
Продуцент треонина, принадлежащий к роду Eschsrichia, представлен штаммом VL2054. Этот штамм является производным известного штамма Е. coli ВКПМ В-3996 (Патент США N 5 175 107) и получен на его основе в два этапа. Сначала из штамма Е. coli ВКПМ В-3996 элиминируют плазмиду pVIC40. В полученном бесплазмидном реципиенте известным методом получают мутацию, повреждающую ген kan транспозона Tn5, интегрированного в ген tdh. В результате штамм становится чувствительным к канамицину, но ген tdh остается инактивированным. Затем с помощью фага P1 трансдуцируют сцепленный с транспозоном Tn10 дикий аллель гена rhtA, связанный с устойчивостью к гомосерину и треонину из штамма VKPM В-6204 (zbi-3058::Tn10). Трансдуктанты отбирают на среде LB с тетрациклином (10 мг/л) и среди них находят клоны, чувствительные на минимальной среде к 10 г/л гомосерина, (т.е.получившие rhtA+ аллель).
На втором этапе в интегративный вектор мини-Mu(Mud) клонируют гены треонинового оперона из плазмиды pVIC40 под PR-промотором фага ламбда и ген cat устойчивости к хлорамфениколу. Полученную конструкцию известным методом (Патент США N 5595889) интегрируют в штамм E.coli C600, откуда ее с помощью трансдукции фагом P1 переносят в полученный на первом этапе штамм. Таким образом получают штамм Е.coli VL2054, который является бесплазмидным продуцентом треонина. Кроме треонина в процессе ферментации штамм Е. coli VL2054 способен накапливать также небольшие количества аланина, валина и изолейцина.
Гистидин-продуцирующие бактерии
В качестве продуцента гистидина, принадлежащего к роду Escherichia, представлен штаммом Е. coli VL2160. Этот штамм получают на основе известного штамма NK5526 hiG::Tn10 (ВКПМ В-3384) путем переноса в него мутации hisGR, нарушающей ингибирование гистидином АТФ- фосфорибозилтрансферазы, с помощью трансдукции фагом P1 из штамма CC46 (Аствацатурянц и др., Генетика, т. 24, с. 1928-1934, 1988).
Пролин-продуцирующие бактерии
В качестве продуцента пролина, принадлежащего к роду Escherichia, представлен штамм Е. coli VL2151 (W3350 proB* ΔputAP,Tn10), сконструированный на основе известного штамма W3350 (Campbell A. Viroligy 14, 22-32, 1961) путем введения в него с помощью трансдукции фагом P1 сцепленной с транспозоном Tn10 (zcc-282: :Tn10 из штамма ВКПМ В-6194)) мутации ΔputAP и последующей селекции мутанта, устойчивого к 3,4-дегидро-DL-пролину, способного накапливать пролин.
Аргинин-продуцирующие бактерии
В качестве продуцента аргинина, принадлежащего к роду Escherichia coli, используют штамм Е. coli W3350 argE::Tn10/рКА10. Этот штамм является производным известного штамма W3350 (Campbell A. Viroligy 14, 22-32, 1961). Он имеет исерционную мутацию argE::Tn10 и содержит плазмиду рКА10, несущую фрагмент ДНК из Corynebaclerium (Brevibacterium)flavum, комплементирующий по крайней мере мутации argA и argE в реципиентном штамме Е. coli (Харитонов А. А. , Тарасов А. П. Молекулярная генетика, микробиология, вирусология, N 9, 29-33, 1986).
Гены белков, экскретирующих аминокислоты по настоящему изобретению, были идентифицированы впервые, как это описано ниже.
Ранее авторы настоящего изобретения идентифицировали гены rhtB и rhtC как гены белков экскреции гомосерина и треонина у Escherichia coli. Далее, основываясь на предположении о том, что белки экскреции аминокислот должны иметь какое-то сходство в своей структуре, был осуществлен поиск белков, гомологичных RhtB.
Поиск гомологов осуществляли: с помощью программы BLAST и PSI-BLAST (Altschul, et al., Nucleic Acids Res. 25:3389-3402, 1997) в базах данных GenBank CDS translations, PDB, SwissProt, Spupdate и PIR; с помощью программы BLITZ (Sturrock, S. S., and J. F. Collins. MPsch version 1.3. Biocomputing research unit. University of Edinburgh, UK (1993)) в базе данных SWALL, и с помощью программы SMART (Ogiwara, I. et al., Protein Sci. 5, 1991-1999 (1996) в базе транслированных генов SWISS PROT. Из более 60 обнаруженных гомологичных последовательностей гены из Е. coli yeaS (кодирует f212 в последовательности N AE 000274 в базе данных GenBank), yahN (кодирует f223 в последовательности N AE 000140 в базе данных GenBank), yfiK (кодирует 0195 в последовательности N AE 000344 в базе данных GenBank) nyggA (кодирует f211 в последовательности N AE 000375 в базе данных GenBank) могут иметь функцию, сходную с функцией RhtB. Эти гены были выделены и клонированы на плазмидных векторах в клетках Е. coli. Затем определяли влияние повышенного экспрессируемого количества продуктов этих генов на чувствительность клеток бактерий Е. coli к высоким концентрациям аминокислот и аналогов аминокислот, а также на продукцию аминокислот. В результате была установлена повышенная устойчивость бактерий, содержащих плазмиды с генами yeaS, yahN, yfiK и yggA, к определенным аминокислотам и их аналогам. Кроме того, была обнаружена повышенная продуктивность штаммов-продуцентов аминокислот, содержащих указанные плазмиды. Установлено также, что в этом отношении гены yahN, yeaS, yfiK и yggA могут обладать как определенной избирательностью, так и проявлять множественный эффект.
2. Получение аминокислот по настоящему изобретению.
Получение аминокислот с помощью штаммов-продуцентов бактерий, полученных в соответствии с настоящим изобретением, включает этапы культивирования штаммов в питательной среде, обеспечивающей продукцию и накопление соответствующей аминокислоты в этой среде, и последующего выделения накопившейся аминокислоты из этой среды.
К числу аминокислот, которые получают по настоящему изобретению, относятся лизин, треонин, глутаминовая кислота, гистидин, аланин, пролин, аргинин, валин и изолейцин.
В соответствии с настоящим изобретением культивирование бактерий, принадлежащих к роду Escherichia, выделение и очистку аминокислоты из культуральной жидкости осуществляют известными методами. Для культивирования используют синтетическую или натуральную среду. Такая среда включает источник углерода, азота, минеральные соли и необходимые добавки в количествах, оптимальных для роста и биосинтеза. В качестве источника углерода используют различные углеводы, такие как глюкоза, сахароза, различные органические кислоты. В зависимости от ассимилирующих способностей можно применять спирты, включая этанол или глицерол. В качестве источника азота используют аммиак, различные соли аммония, такие как сульфат аммония, или другие азотсодержащие соединения, такие как амины, а также природные источники азота, такие как пептон, гидролизат соевых бобов, или гидролизат микробных клеток. В качестве минеральных компонентов используются фосфат калия однозамещенный, сульфат магния, хлористый натрий, сульфат железа, сульфат марганца, карбонат кальция. Культивирование преимущественно осуществляют в аэробных условиях, таких как культивирование на мешалке, или с аэрацией и перемешиванием культуры. Температура культивирования от 30 до 40oC, преимущественно 30-38oC. pH среды 5-9, преимущественно 6,5-7,2. pH среды доводят до желаемых значений с помощью аммония, карбоната кальция, различных кислот, оснований или буферов. Культивирование осуществляют в течение 1-3 дней. После завершения культивирования выделение аминокислоты осуществляют путем удаления твердых частиц, таких как клетки, из среды с помощью центрифугирования или фильтрации через мембранные фильтры с последующим выделением и очисткой целевой аминокислоты с помощью ионообменника, фракционирования с помощью концентрации и кристаллизации.
Перечень фигур.
Фиг. 1. Последовательность белка YahN.
Фиг. 2. Последовательность белка YeaS.
Фиг. 3. Последовательность белка YfiK.
Фиг. 4. Последовательность белка YggA.
Настоящее изобретение более конкретно поясняют нижеследующие примеры.
Пример 1. Получение фрагментов ДНК yahN, yeaS, yfiK и ayggA, кодирующих синтез белков, экскретирующих аминокислоты.
Полная нуклеотидная последовательность хромосомы Escherichia coli К-12 известна (Science, 277, 1453-1474, 1997). На ее основе синтезируют праймеры, которые используют для амплификации фрагментов ДНК (генов) yahN, yeaS, yfiK и ayggA, кодирующих синтез белков, экскретирующих аминокислоты с помощью полимеразной цепной реакции (ПЦР).
(1). В качестве матрицы используют хромосомную ДНК штамма Echerichia coli MG1655, которую выделяют по стандартной методике (Sambrook, J., Fritsch Е. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.). Амплификацию проводили в термоциклере Techne PHC2, используя Tag-полимеразу (Fermentas); условия реакции подбирают в зависимости от температуры плавления праймеров и размеров амплифицируемого фрагмента, как это описано в руководствах (PCR protocols. Current methods and applications. White, B.A., ed. Humana Press, Totowa, New Jersey, 1993). Полученные продукты PCR очищают стандартным способом и рестрицируют, как описано ниже.
Для амплификации гена yahN используют праймеры N 1 и N 2.
Праймер N 1: gtgtggaaccgacgccggat (последовательность, комплементарная последовательности нуклеотидов с 1885 по 1704 в последовательности АЕ000140, хранящейся в базе данных GenBank).
Праймер N 2: tgttgtatggtacggggttcgag (последовательность с 223 по 245 нуклеотид там же).
Полученный продукт ПЦР рестрицируют ферментами PstI, StuI и, используя набор для лигирования, объединяют с вектором pUC21 (Vieira, Messing, Gene, 100, 189-194, 1991), обработанным ферментами PstI и EcoRV. Продуктом лигирования трансформируют компетентные клетки штамма E.col1 TGI (Sambrook, J., Fritsch Е. F. and Maniatis T. (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.). Клетки высевают на L-arap (бактотриптон -10 г/л, дрожжевой экстракт - 5 г/л, NaCl - 5 г/л NaCl, агар - 15 г/л, pH 7.0), содержащий 10 мкг/мл IPTG (изопропил-β-В-тиогалактопиранозид) и 40 мкг/мл X-gal (5-бромо-4- хлоро-3-индолил-β-D-галактозид) and 100 мкг/мл ампицилина и выращивают в течение ночи. Появляющиеся белые колонии отбирают и рассевают до отдельных колоний на L-агаре с ампициллином. Из нескольких независимых очищенных таким образом трансформантов выделяют щелочным методом плазмидную ДНК и анализируют ее с помощью подходящих рестрицирующих ферментов. В результате получают плазмиду pYAHN.
Для амплификации reнa yeaS используют праймеры N 3 и N 4.
Праймер N 3: ctttgccaatcccgtctccc (последовательность, комплиментарная нуклеотидам с 7683 по 7702 в последовательности АЕ000274 в GenBank).
Праймер N 4: gccccatgcataacggaaag (последовательность с 5542 по 5561 нуклеотид там же).
Полученный продукт ПЦР рестрицируют ферментом Aval, и лигируют с вектором pUC19, и проводят описанные выше манипуляции. В результате получают плазмиду pYEAS.
Для амплификации гена yfiK используют праймеры N 5 и N 6.
Праймер N 5: gaagatcttgtaggccggataaggcg (последовательность с 4155 по 4177 нуклеотид в последовательности АЕ000344 в GenBank, с добавленными на 5' конце нуклеотидами, образующими сайт для BglII).
Праймер N 6: tggttttaccaattggccgc (последовательность, комплиментарная нуклеотидам с 6307 по 6326 в той же последовательности).
Полученный продукт ПЦР рестрицируют ферментами BglII, MunI, и лигируют с вектором pUC21 рестрицированным ферментами BglII и EcoRl, и проводят описанные выше манипуляции. В результате получают плазмиду pYFIK.
Для амплификации reнa yggA используют праймеры N 7 и N 8.
Праймер N 7: acttctcccgcgagccagttc (последовательность, комплиментарная последовательности нуклеотидов с 9606 по 9626 в последовательности АЕ000375 в GenBank).
Праймер N 8: ggcaagcttagcgcctctgtt (последовательность с 8478 по 8498 нуклеотид, там же).
Продукт ПЦР рестрицируют ферментами HindIII и ClaI, и лигируют с вектором рОК12 (Vieira, Messing, Gene, 100, 189-194, 1991), и проводят описанные выше манипуляции. В результате получают плазмиду pYGGA.
Полученными плазмидами трансформируют известный штамм Е. coli TG1 и штаммы Е. coli - продуценты аминокислот.
(2). В качестве матрицы используют хромосомную ДНК штамма Echerichia coli W3110, которую выделяют по стандартной методике, как описано выше.
Для амплификации гена yahN используют праймеры N 9 и N 10:
Праймер N 9: ggcgagctcccagtaaccggaaataag (последовательность, комплементарная последовательности нуклеотидов с 1230 по 1247 в АЕ000140, GenBank с добавленным на 5' конце нуклеотидами, образующими сайт для рестрицирующего фермента SacI,).
Праймер N 10: cgctctagaaaggaccacgcattacgg (последовательность с 429 по 446 нуклеотид с добавленными на 5' в конце нуклеотидами, образующими сайт для рестриктазы XbaI).
Для амплификации гена yeaS используют праймеры N 11 и N 12.
Праймер N 11: ggcgagctcagattggttagcatattc (последовательность, комплиментарная последовательности нуклеотидов с 6542 по 6560 в АЕ000274 в GenBank с добавленными на 5' конце нуклеотидами, образующими сайтом для распознавания рестриктазой Sacl).
Праймер N 12: cggtctagaatcagcgaagaatcaggg- (последовательность с 5799 по 5816 нуклеотид с сайтом распознавания для рестриктазы XbaI, добавленным на 5'-конце).
Для амплификации гена yfiK используют праймеры N 13 и N 14.
Праймер N 13: ggcgagctcatgttccgtgtcgggtac (последовательность с 5192 по 5209 нуклеотид в последовательности АЕ000344 в GenBank с добавленными на 5' конце нуклеотидами, образующими сайт для распознавания ферментом Sacl).
Праймер N 14: ggctctagatagcaagttactaagcgg (последовательность, комплиментарная последовательности нуклеотидов с 5871 по 5854 нуклеотид с добавленными на 5' конце нуклеотидами, образующими сайт для распознавания ферментом XbaI).
Для амплификации гена yggA используют праймеры N 15 и N 16.
Праймер N 15: ctctgaattctctcttattagtttttctgattgcc (последовательность, комплиментарная последовательности нуклеотидов с 9236 по 9270 в последовательности АЕ000375 в GenBank, с добавленными на 5' конце нуклеотидами, образующими сайт для распознавания ферментом EcoRI).
Праймер N 16: cgtgacctgcagcgttctcacagcgcggtagcctttaa (последовательность с 8075 по 8112 нуклеотид с добавленными на 5' конце нуклеотидами, образующими сайт для распознавания PstI).
Полученные продукты ПЦР очищают, как описано выше, рестрицируют ферментами SacI и XbaI (EcoRI и PstI для yggA) и лигируют с вектором pMW118, рестрицированным аналогичными ферментами. Нуклеотидную последовательность полученных вставок определяют с помощью ABI PRISM BigDye Terminator Cycle Sequence Ready Reaction Kit (PE Applied Biosystems) и автоматическим секвенатором ДНК (РЕ Applied Biosystems). Плазмиды, у которых нуклеотидная последовательность вставок соответствовала приведенной в GenBank, были отобраны и названы, соответственно:
несущая ген yahN: pMW 118::yahN
несущая ген yeaS: pMW 118::yeaS
несущая ген yfiK: pMW 118::yfiK
несущая ген yggA: pMW 118::yggA
Полученными плазмидами трансформируют известный штамм JM109 и штамм-продуцент лизина.
Пример 2. Влияние фрагментов ДНК yahN, yeaS, yfiK и yggA на устойчивость бактерий Е. coli к некоторым аминокислотам и аналогам аминокислот.
Гомология продуктов генов yahN, yeaS, yfiK и yggA с белком RhtB и с лизиновым транспортером LysE, осуществляющим экспорт L-лизина из клеток Corynebacterium glutamicum (Vrijic et al., Mol. Microbiol., 22, 815-826, 1996), указывает на аналогичную функцию белков - продуктов указанных генов. Известно, что повышение активности генов, контролирующих транспорт из клеток различных ингибиторов роста, увеличивает их устойчивость к соответствующим соединениям. В связи с этим определяют влияние плазмид, несущих фрагменты ДНК yahN, yeaS, yfiK и yggA, на устойчивость бактерий Е. coli TG1 к некоторым аминокислотам и аналогам аминокислот. С этой целью штамм TG1 трансформируют плазмидами pYEAS, pYAHN, pYFIK, pYGGA и векторами pUC21, pUC19 и рОК12. Ночные культуры полученных штаммов, выращенные в минимальной среде М9 на качалке (около 109 клеток/мл), разводят 1:100 и подращивают в течение 5 часов в той же среде. Затем полученные культуры в логарифмической фазе роста разводят и приблизительно по 104 жизнеспособных клеток наносят на высушенные чашки с агаризованной (2% агара) средой М9, содержащей различные концентрации аминокислот, или аналогов аминокислот. Рост или отсутствие роста определяют через 46-48 часов. Таким образом устанавливают минимальные ингибирующие концентрации (МИК) этих соединений (табл. 1).
Как видно из табл. 1, амплификация фрагмента ДНК yfiK существенно повышает устойчивость бактерий к пролину, в меньшей степени возрастает устойчивость к треонину, гомосерину, глутамату, α-аминомасляной кислоте, к аналогу треонина, α-амино-β-оксивалериановой кислоте (АОВ) и к аналогу L-лизина, (8)-2-аминоэтил-L-цистеину (АЭЦ). Амплификация фрагмента ДНК yahN повышает устойчивость бактерий к пролину. Амплификация фрагмента ДНК yeaS существенно повышает устойчивость бактерий к глутамату, гистидину и α-аминомасляной кислоте, в меньшей степени возрастает устойчивость к треонину, гомосерину, лизину. Амплификация фрагмента ДНК yggA существенно повышает устойчивость бактерий к лизину и его аналогу (8)-2-аминоэтил-L-цистеину (АЭЦ), также возрастает устойчивость к аргинину.
Эти результаты свидетельствуют о том, что почти каждый из предполагаемых экскретирующих аминокислоты белков, кодируемых указанными фрагментами ДНК, обладает специфичностью по отношению к нескольким субстратам (аминокислотам) или может обнаруживать неспецифический эффект в результате амплификации.
Пример 3. Влияние аплификации фрагментов ДНК yeaS, yahN и yfiK на продукцию глутаминовой кислоты.
В качестве продуцента глутаминовой кислоты используют штамм Е. coli АJ 13199 (Патент Франции N 2747689).
Штамм АJ 13199 трансформируют отдельно каждой из плазмид pYAHN, pYEAS, pYFIK, несущей фрагменты ДНК кодирующие белки, экскретирующие аминокислоты, а в качестве контроля - вектором pUC21. В результате получают штаммы: AJ13199/pYAHN (ВКПМ В-7729); AJ13199/pYEAS (ВКПМ В-7731); AJ13199/pYFIK (ВКПМ В-7730) и AJ13199/pUC21 (ВКПМ В-7728).
Каждый из полученных таким образом штаммов культивируют при 37oC 18 часов в LB бульоне, содержащем 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды (состав приведен ниже), содержащей также 0.2 г/л L-метионина, 0.2 г/л лизина и 100 мг/л ампициллина, и культивируют при 37oC 46 часов на роторной качалке (120 об/мин).
После культивирования количество глутаминовой кислоты в культуральной жидкости определяют известным методом. Результаты представлены в табл. 2.
Состав ферментационной среды (г/л):
Глюкоза - 80.0
(NH4)2SO4 - 22.0
K2HPO4 - 2.0
NaCl - 0.8
MgSO4 • 7H2O - 0.8
FeSO4 • 7H2O - 0.02
MnSO4 • 5H2O - 0.02
Тиамин HCl - 0.0002
Дрожжевой экстракт - 1.0
CACO3 - 30.0
Глюкоза и сернокислый магний стерилизуются отдельно. СаСО3 стерилизуется сухим жаром при 180oC в течение 2 часов. pH доводится до 7.0. Антибиотики вносят в среду после стерилизации.
Как следует из табл. 2, увеличение экспрессируемого количества каждого из белков YahN, YeaS и YfiK, кодируемых соответствующими генами, локализованными на многокопийных плазмидах, повышает продукцию глутаминовой кислоты штаммом- продуцентом. Наибольший эффект дает reн yeaS, амплификация которого повышает продукцию аминокислоты на 35%.
Пример 4. Влияние амплификации фрагментов ДНК yahN, yeaS, yfiK и yggA на продукцию лизина.
(1). В качестве исходного лизин-продуцирующего штамма используют штамм E.coli W3110 (tyrA) (Европейский патент N 488424), в который вводят плазмиду pCABD2 (Международной заявке WO 95/16042) и каждую из плазмид pMW118::yahN, pMW118: : : yeaS, pMW118::yfiK, несущих гены экскреции аминокислот, а также вектор pMW118. Так были получены следующие штаммы Е. coli:
W3110 (tyrA)/pCABD2+pMW 118: :yahN, W3110 (tyrA)/pCABD2+pMW 118::yeaS, W3110 (tyrA)/pCABD2+pMW 118::yfiK, W3110 (tyrA)/pCABD2+pMW 118.
Способность к продукции лизина этими штаммами определяют, культивируя их в ферментационной среде следующего состава (г/л):
Глюкоза - 40.0
MgSO4 • 7H2O - 1.0
(NH4)2SO4 - 16.0
К2HPO4 - 1.0
FeSO4 • 7H2O - 0.01
MnSO4 • 7H2O - 0.01
Дрожжевой экстракт - 2.0
Тирозин - 0.1
CaCO3 - 25.0
Глюкоза и сернокислый магний стерилизуется отдельно. CaCO3 стерилизуется сухим жаром при 180oC в течение 2 часов. pH доводится до 7.0. Антибиотики, ампицилин - 50 мг/л и стрептомицин - 20 мг/л, вносят в среду после стерилизации.
Культивирование осуществляют при 37oC в течение 30 часов с аэрацией (роторная качалка, 115 об/мин). Результаты представлены в табл. 3
Как следует из табл. 3, из исследованных в этом примере генов наибольший эффект на продукцию лизина оказывают гены yahN и yeaS.
(2). В качестве исходного лизин-продуцирующего штамма используют штамм Е. coli VL614. Этот штамм является производным известного штамма Е. coli VL613 (Авторское свидетельство СССР N 1354458). Штамм VL614 получают трансдукцией с помощью фага P1 в исходный штамм VL613 дикого аллеля rhtA+, сцепленного с транспозоном Tn10. Трансдуктанты отбирают на среде LB с тетрациклином (10 мг/л) и среди них находят клоны, чувствительные на минимальной среде к гомосерину (10 г/л). Полученный таким путем штамм VL614 трансформируют плазмидой pYGGA и в качестве контроля - вектором рОК12. В результате получают штаммы VL614/pYGGA (ВКПМ В-7719) и VL614/pOK12 (ВКПМ В-7722).
Каждый из полученных штаммов культивируют при 37oC 18 часов в LB бульоне с 50 мг/л канамицина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей также 0.2 г/л L-треонина, 0.2 г/л L-метионина и 50 мг/л канамицина, и культивируют при 34oC 68 часов на роторной качалке. После культивирования количество накопленного в среде лизина, а также глутаминовой кислоты измеряют известными методами. Результаты представлены в табл. 4.
Как видно из табл. 4, амплификация фрагмента ДНК yggA на плазмиде рОК12 заметно повышает продукцию лизина. Одновременно с этим повышается накопление в культуральной жидкости и глутаминовой кислоты.
Пример 5. Влияние амплификации фрагментов ДНК yfiK и yeaS на продукцию треонина, аланина, валина и изолейцина.
В качестве продуцента треонина используют штамм Е. coli VL2054. Этот штамм является бесплазмидным продуцентом треонина, полученным на основе известного штамма Е. coli ВКПМВ-3996 (Патент США N 5 175 107), после элиминации плазмиды pVIC40, индукции мутации, повреждающей ген kan транспозона Tn5, интегрированный в ген tdh, и введения с помощью трансдукции фагом P1 сцепленного с транспозоном Tn10 дикого аллеля гена rhtA. Он содержит интегрированный в хромосому вектор мини-Мu (Mud), в который под PR-промотором фага ламбда
клонированы гены треонинового оперона из плазмиды pVIC40 и ген cat устойчивости к хлорамфениколу. Кроме треонина в процессе ферментации штамм Е. coli VL2054 способен накапливать также небольшие количества аланина, валина и изолейцина.
Штамм Е. coli VL2054 трансформируют отдельно каждой из плазмид pYEAS, pYFIK, а также вектором pUC21. В результате получают штаммы Е. coli VL2054/pYEAS (ВКПМ В-7707), Е. coli VL2054/pFIK (ВКПМ В-7712) и Е. coli VL2054/pUC21 (ВКПМ В-7708).
Каждый из полученных таким образом штаммов культивируют при 37oC 18 часов в LB бульоне со 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина, и культивируют при 37oC 46 часов на роторной качалке. После культивирования количество накопленного в культуральной жидкости треонина, аланина, валина и изолейцина измеряют известными методами. Результаты представлены в табл. 5.
Как показано в табл. 5, штамм Е. coli VL2054/pYFIK накапливает в культуральной жидкости значительно больше треонина, чем штамм Е. coli VL2054/pUC21, в котором экспрессируемое количество продукта гена yflK не увеличено. Штамм Е. coli VL2054/pYEAS накапливает больше аланина, валина и изолейцина, чем контрольный штамм Е. coli VL2054/pUC21.
Пример 6. Влияние амплификации фрагментов ДНК yeaS и yfiK на продукцию гистидина.
В качестве продуцента гистидина, принадлежащего к роду Escherichia, используют штамм Е. coli VL2160. Этот штамм получают на основе известного штамма NK5526 hisG: : Tn10 (ВКПМ В-3384) путем переноса в него с помощью трансдукции фагом P1 мутации hisGR, нарушающей ингибирование АТФ-фосфорибозилтрансферазы гистидином, из штамма СС46 (Аствацатурянц и др., Генетика, т. 24, с. 1928-1934, 1988). Штамм VL2160 трансформируют отдельно каждой из плазмид pYEAS, pYFIK, а также вектором pUC21. В результате получают штаммы: E. coli VL2160/pYEAS (ВКПМ В-7753), Е. coli VL2160/pYFIK (ВКПМ В-7754), Е. coli VL2160/pUC21 (ВКПМ В-7752).
Каждый из полученных таким образом штаммов культивируют при 37oC 18 часов в LB бульоне со 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей повышенную концентрацию дрожжевого экстракта (3 г/л) и 100 мг/л ампициллина, и культивируют при 37oC 70 часов на роторной качалке. После культивирования количество накопленного в среде гистидина определяют известным методом. Результаты представлены в табл. 6.
Как следует из табл. 6, штаммы Е. coli VL2160/pYEAS и Е. coli VL2160/pYFIK продуцируют больше гистидина, чем штаммы Е. coli VL2160/pUC21, у которого экспрессируемое количество белков, продуктов генов yeaS и yflK, не увеличено. При этом видно, что набольший положительный эффект на продукцию гистидина дает амплификация на плазмиде гена yeaS.
Пример 7. Влияние амплификации фрагментов ДНК yahN, yfiK и yeaS на продукцию пролина
В качестве продуцента пролина, принадлежащего к роду Escherichia, используют штамм VL2151 (Е. coli W3350 proB*, Δ putAP, Tn10), сконструированный на основе известного штамма W3350 путем введения с помощью трансдукции фагом P1 мутации Δ putAP, сцепленной с транспозоном Tn10, и последующей селекции мутантов, устойчивых к 20 мг/л 3,4-дегидро-DL-пролина
Штамм Е. coli VL2151 трансформируют отдельно каждой из плазмид pYAHN, pYEAS, pYFIK, а также вектором pUC21. В результате получают штаммы Е. coli VL2151/pYEAS (ВКПМ В-7714), VL2151/pYAHN (ВКПМ В-7748), Е. coli VL2151/pFIK (ВКПМ В-7713) и Е.coli VL2151/pUC21 (ВКПМ В-7715).
Каждый из полученных таким образом штаммов культивируют при 37oC 18 часов в LB бульоне со 100 мг/л ампициллина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина, и культивируют при 37oC 46 часов на роторной качалке.
После культивирования количество накопленного в среде пролина определяют известным методом. Результаты представлены в табл. 7.
Как видно из табл. 7, штаммы Е. coli VL2151/pYFIK, Е. coli VL2151/pYAHN и Е. coli VL2151/pYEAS накапливают больше пролина, чем штамм Е. coli VL2151/pUC21, у которого экспрессируемое количество белков, продуктов генов yfiK, yahN и yeaS, не увеличено. При этом видно, что наибольший положительный эффект на продукцию пролина оказывает ген yfiK.
Пример 8. Влияние амплификации фрагмента ДНК yggA на продукцию аргинина
В качестве продуцента аргинина, принадлежащего к роду Escherichia coli, используют штамм Е. coli W3350 argE::Tn10/pKA10, который содержит плазмиду рКА10, несущую гены биосинтеза аргинина из Corynebacterium glutamicum (Харитонов А.А., Тарасов А.П. Молекулярная генетика, микробиология, вирусология, N 9, 29-33, 1986).
Штамм Е. coli W3350 argE::Tn10/pKA10 трансформируют плазмидой pYGGA, а в качестве контроля - вектором рОК12. В результате получают штаммы Е. coli W3350 argE::Tn10/pKA10, pYGGA (ВКПМ В-7716) и Е. coli W3350 аrgE:: Tn10/рКА10, рОК12 ВКПМВ-7718).
Каждый из полученных таким образом штаммов культивируют при 37oC 18 часов в LB бульоне с 100 мг/л ампициллина и 50 мг/л канамицина. Затем по 0.3 мл полученной культуральной жидкости вносят в пробирки 20 х 200 мм с 3 мл ферментационной среды, описанной в примере 3, содержащей 100 мг/л ампициллина и 50 мг/л канамицина, и культивируют при 37oC 46 часов на роторной качалке. После культивирования количество накопленного в среде аргинина измеряют известным методом. Результаты представлены в табл. 8.
Как видно из табл. 8, штамм Е. coli штаммы Е. coli W3350 argE:: Tn10/рКА10, pYGGA накапливают больше аргинина, чем штамм Е. coli W3350 argE: : Tn10/pKA10, рОК12, у которого экспрессируемое количество белка, продукта гена yggA, не увеличено.

Claims (6)

1. Фрагмент ДНК из Escherichia coli, yahN, определяющий повышенную продукцию L-аминокислот, имеющий нуклеотидную последовательность No. 1, представленную в описании.
2. Фрагмент ДНК Escherichia coli, yeaS, определяющий повышенную продукцию L-аминокислот, имеющий нуклеотидную последовательность No.2, представленную в описании.
3. Фрагмент ДНК из Escherichia coli, yfiK, определяющий повышенную продукцию аминокислот, имеющий нуклеотидную последовательность No.3, представленную в описании.
4. Фрагмент ДНК из Escherichia coli, yggA, определяющий повышенную продукцию аминокислот, имеющий нуклеотидную последовательность No.4, представленную в описании.
5. Способ получения L-аминокислот путем культивирования штаммов-продуцентов бактерий рода Escherichia в подходящей питательной среде с последующим выделением и очисткой целевой аминокислоты, отличающийся тем, что в качестве продуцентов используют бактерии Escherichia coli, у которых экспрессия по крайней мере одного из фрагментов ДНК по п.1, или 2, или 3, или 4 повышена с помощью генетических методов.
6. Способ получения L-аминокислот по п.5, отличающийся тем, что в качестве генетического метода повышения экспрессии используют метод амплификации по крайней мере одного из фрагментов ДНК по п.1, или 2, или 3, или 4 на многокопийной плазмиде.
RU99104431/13A 1998-12-30 1999-03-09 Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот RU2175351C2 (ru)

Priority Applications (34)

Application Number Priority Date Filing Date Title
RU99104431/13A RU2175351C2 (ru) 1998-12-30 1999-03-09 Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
AU64493/99A AU764189B2 (en) 1998-12-30 1999-12-13 Method for producing L-amino acid
US09/459,573 US6979560B1 (en) 1998-12-30 1999-12-13 Eschericha bacteria overexpressing the yahn gene for feedback-insensitive amino acid production
IDP991150D ID24398A (id) 1998-12-30 1999-12-16 Metode untuk menghasilkan asam l-amino
AT05005783T ATE456648T1 (de) 1998-12-30 1999-12-17 Verfahren zur herstellung von l-aminosäure
EP05005781A EP1598416A1 (en) 1998-12-30 1999-12-17 Method for producing L-amino acid
DE69942160T DE69942160D1 (de) 1998-12-30 1999-12-17 Verfahren zur Herstellung von L-Aminosäure
DE69941991T DE69941991D1 (de) 1998-12-30 1999-12-17 Verfahren zur Herstellung von L-Aminosäure
DE69942140T DE69942140D1 (de) 1998-12-30 1999-12-17 Verfahren zur Herstellung von L-Aminosäuren
EP05005782A EP1589096B1 (en) 1998-12-30 1999-12-17 Method for producing L-amino acid
AT05005782T ATE461271T1 (de) 1998-12-30 1999-12-17 Verfahren zur herstellung von l-aminosäure
EP05005783A EP1580262B1 (en) 1998-12-30 1999-12-17 Method for producing L-amino acid
AT99125263T ATE461270T1 (de) 1998-12-30 1999-12-17 Verfahren zur herstellung von l-aminosäuren
EP99125263A EP1016710B1 (en) 1998-12-30 1999-12-17 Method for producing L-amino acids
ZA9907767A ZA997767B (en) 1998-12-30 1999-12-20 Method for producing L-amino acid.
CA002291895A CA2291895A1 (en) 1998-12-30 1999-12-22 Method for producing l-amino acid
BRPI9917719-6A BR9917719B1 (pt) 1998-12-30 1999-12-28 bactÉria pertencente ao gÊnero escherichia e tendo uma capacidade para produzir um l-aminoÁcido selecionado do grupo que consiste de l-lisina, Ácido l-glutÂmico, l-alanina, l-valina, l-histidina, l-prolina e l-isoleucina, e, processo para produzir um l-aminoÁcido selecionado do grupo que consiste de l-lisina, Ácido l-glutÂmico, l-alanina, l-valina, l-histidina, l-prolina e l-isoleucina.
JP37365199A JP4221862B2 (ja) 1998-12-30 1999-12-28 L−アミノ酸の製造法
BRPI9906287-9A BR9906287B1 (pt) 1998-12-30 1999-12-28 bactéria pertencente ao gênero escherichia e que tem uma capacidade para produzir um l-aminoácido, e, processo para produzir um l-aminoácido.
BRPI9917718A BRPI9917718B8 (pt) 1998-12-30 1999-12-28 bactéria pertencente ao gênero escherichia e tendo uma capacidade para produzir um l-aminoácido selecionado do grupo que consiste de ácido l-glutâmico, l-histidina, l-prolina e l-treonina, e, processo para produzir um l-aminoácido selecionado do grupo que consiste de ácido l-glutâmico, l-histidina, l-prolina e l-treonina.
KR1019990064627A KR20000048465A (ko) 1998-12-30 1999-12-29 L-아미노산의 생산방법
SK1870-99A SK187099A3 (en) 1998-12-30 1999-12-29 Bacterium belonging to the genus escherichia and method for producing l-amino acid
CNB991275225A CN1228445C (zh) 1998-12-30 1999-12-30 生产l-氨基酸的细菌及方法
CNB200510103611XA CN100410366C (zh) 1998-12-30 1999-12-30 具有产生l-氨基酸能力的埃希氏菌属细菌以及生产l-氨基酸的方法
CNB2005101036124A CN100415874C (zh) 1998-12-30 1999-12-30 具有产生l-氨基酸能力的埃希氏菌属细菌以及生产l-氨基酸的方法
CNB2005101036105A CN1332021C (zh) 1998-12-30 1999-12-30 具有产生l-氨基酸能力的埃希氏菌属细菌以及生产l-氨基酸的方法
MXPA00000177A MXPA00000177A (es) 1998-12-30 2000-01-03 Metodo para producir l-amino acido.
US11/116,286 US20050202543A1 (en) 1998-12-30 2005-04-28 Method for producing L-amino acid
US11/276,522 US7399617B1 (en) 1998-12-30 2006-03-03 Method for producing an L-amino acid in an Escherichia bacterium via altering expression levels of target proteins
KR1020070017882A KR20070034024A (ko) 1998-12-30 2007-02-22 L-아미노산의 생산방법
KR1020070017878A KR20070034023A (ko) 1998-12-30 2007-02-22 L-아미노산의 생산방법
KR1020070017873A KR20070034022A (ko) 1998-12-30 2007-02-22 L-아미노산의 생산방법
US11/854,850 US7527950B2 (en) 1998-12-30 2007-09-13 Method for producing an L-amino acid by enhancing expression of the yfiK gene in an Escherichia bacterium
US11/854,868 US7524656B2 (en) 1998-12-30 2007-09-13 Method for producing an L-amino acid by enhancing expression of the yggA gene in an Escherichia bacterium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU98124016/13A RU98124016A (ru) 1998-12-30 Фрагменты днк, определяющие повышенную устойчивость бактерий escherichia coli к аминокислотам или их аналогам, и способ получения l-аминокислот
RU99104431/13A RU2175351C2 (ru) 1998-12-30 1999-03-09 Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU98124016/13A Substitution RU98124016A (ru) 1998-12-30 1998-12-30 Фрагменты днк, определяющие повышенную устойчивость бактерий escherichia coli к аминокислотам или их аналогам, и способ получения l-аминокислот

Publications (2)

Publication Number Publication Date
RU99104431A RU99104431A (ru) 2001-09-20
RU2175351C2 true RU2175351C2 (ru) 2001-10-27

Family

ID=26653994

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99104431/13A RU2175351C2 (ru) 1998-12-30 1999-03-09 Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот

Country Status (15)

Country Link
US (5) US6979560B1 (ru)
EP (4) EP1580262B1 (ru)
JP (1) JP4221862B2 (ru)
KR (4) KR20000048465A (ru)
CN (4) CN100415874C (ru)
AT (3) ATE461270T1 (ru)
AU (1) AU764189B2 (ru)
BR (3) BRPI9917718B8 (ru)
CA (1) CA2291895A1 (ru)
DE (3) DE69941991D1 (ru)
ID (1) ID24398A (ru)
MX (1) MXPA00000177A (ru)
RU (1) RU2175351C2 (ru)
SK (1) SK187099A3 (ru)
ZA (1) ZA997767B (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264457C2 (ru) * 2003-02-26 2005-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ ESCHERICHIA, СОДЕРЖАЩЕЙ НЕАКТИВНЫЙ ГЕН gadB
RU2275425C2 (ru) * 2003-11-03 2006-04-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина и способ получения l-цистеина
RU2276687C2 (ru) * 2003-07-16 2006-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Бактерия, принадлежащая к роду escherichia, - продуцент l-гистидина и способ получения l-гистидина
RU2276688C2 (ru) * 2003-08-29 2006-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" БАКТЕРИЯ, ПРИНАДЛЕЖАЩАЯ К РОДУ Escherichia,- ПРОДУЦЕНТ L-ГИСТИДИНА И СПОСОБ ПОЛУЧЕНИЯ L-ГИСТИДИНА
RU2279477C2 (ru) * 2003-12-05 2006-07-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная серинацетилтрансфераза, фрагмент днк, кодирующий мутантную серинацетилтрансферазу (варианты), бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина, и способ продукции l-цистеина
RU2407793C2 (ru) * 2004-01-12 2010-12-27 Метаболик Эксплорер Бактерия escherichia coli для получения 1,2-пропандиола, способ ее получения, способ получения 1,2-пропандиола
US8003368B2 (en) 2004-03-16 2011-08-23 Ajinomoto Co., Inc. Method for producing L-amino acids by fermentation using bacteria having enhanced expression of xylose utilization genes
US10400256B2 (en) 2015-06-04 2019-09-03 Cj Cheiljedang Corporation Polypeptide having the activity of exporting O-acetyl-homoserine

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2175351C2 (ru) 1998-12-30 2001-10-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
US7723081B1 (en) 2000-01-21 2010-05-25 Ajinomoto Co., Inc. Bacteria containing aspartate-semialdehyde dehydrogenase, phosphoenolpyruvate carboxylase, and transhydrogenase to produce L-lysine in escherichia, and methods of using same
RU2212447C2 (ru) * 2000-04-26 2003-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты)
EP1526179B9 (en) * 2001-02-13 2007-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid using bacteria belonging to the genus escherichia
CN101597589B (zh) * 2001-02-13 2011-08-24 味之素株式会社 通过埃希氏菌属细菌生产l-氨基酸的方法
DE60232120D1 (de) 2001-06-12 2009-06-10 Ajinomoto Kk Verfahren zur Herstellung von L-Lysin oder L-Arginin unter Verwendung methanolassimilierender Bakterien
US7252978B2 (en) 2001-07-25 2007-08-07 Ajinomoto Co., Inc. Method for producing L-arginine
RU2229513C2 (ru) * 2001-11-23 2004-05-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты)
ATE470711T1 (de) * 2001-11-23 2010-06-15 Ajinomoto Kk Verfahren zur l-aminosäureproduktion mit escherichia
AU2003205041A1 (en) 2002-07-12 2004-01-29 Ajinomoto Co., Inc. Method for producing target substance by fermentation
DE10232930A1 (de) * 2002-07-19 2004-02-05 Consortium für elektrochemische Industrie GmbH Verfahren zur fermentativen Herstellung von Aminosäuren und Aminosäure-Derivaten der Phosphoglycerat-Familie
JP4120364B2 (ja) 2002-11-20 2008-07-16 味の素株式会社 メタノール資化性菌を用いたl−リジンまたはl−アルギニンの製造法
JP2004166592A (ja) 2002-11-20 2004-06-17 Ajinomoto Co Inc メチロトローフを用いたl−アミノ酸の製造法
JP4380305B2 (ja) * 2003-11-21 2009-12-09 味の素株式会社 発酵法によるl−アミノ酸の製造法
JP4665537B2 (ja) * 2004-01-30 2011-04-06 味の素株式会社 L−アミノ酸生産菌及びl−アミノ酸の製造法
KR100786987B1 (ko) 2004-01-30 2007-12-18 아지노모토 가부시키가이샤 L-아미노산 생산 미생물 및 l-아미노산 생산 방법
JP4665558B2 (ja) * 2004-03-04 2011-04-06 味の素株式会社 L−グルタミン酸生産微生物及びl−グルタミン酸の製造法
JP4836440B2 (ja) * 2004-03-10 2011-12-14 センター・フォー・ディーエヌエイ・フィンガープリンティング・アンド・ダイアグノスティックス 微生物を用いたアルギニン産生の方法
KR101089559B1 (ko) * 2004-03-31 2011-12-06 아지노모토 가부시키가이샤 바실러스 또는 에스케리키아 속에 속하는 세균을 사용하여 발효에 의해 퓨린 뉴클레오사이드 및 뉴클레오타이드를 제조하는 방법
US20070004014A1 (en) * 2005-06-29 2007-01-04 Yuichiro Tsuji Method for producing l-threonine
RU2333950C2 (ru) * 2005-12-27 2008-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПРОДУКЦИИ АРОМАТИЧЕСКИХ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Methylophilus
WO2007086618A1 (en) 2006-01-30 2007-08-02 Ajinomoto Co., Inc. L-amino acid producing bacterium and method of producing l-amino acid
JP2009089603A (ja) 2006-02-02 2009-04-30 Ajinomoto Co Inc メタノール資化性細菌を用いたl−リジンの製造法
JP2009118740A (ja) 2006-03-03 2009-06-04 Ajinomoto Co Inc L−アミノ酸の製造法
EP2351830B1 (en) 2006-03-23 2014-04-23 Ajinomoto Co., Inc. A method for producing an L-amino acid using bacterium of the Enterobacteriaceae family with attenuated expression of a gene coding for small RNA
JP2009165355A (ja) 2006-04-28 2009-07-30 Ajinomoto Co Inc L−アミノ酸を生産する微生物及びl−アミノ酸の製造法
JP2010017082A (ja) 2006-10-10 2010-01-28 Ajinomoto Co Inc L−アミノ酸の製造法
JP2010041920A (ja) 2006-12-19 2010-02-25 Ajinomoto Co Inc L−アミノ酸の製造法
RU2365622C2 (ru) * 2006-12-22 2009-08-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПРОДУКЦИИ ПУРИНОВЫХ НУКЛЕОЗИДОВ И НУКЛЕОТИДОВ МЕТОДОМ ФЕРМЕНТАЦИИ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ, ПРИНАДЛЕЖАЩИХ К РОДУ Escherichia ИЛИ Bacillus
BRPI0703692B1 (pt) * 2006-12-25 2016-12-27 Ajinomoto Kk método para se obter os cristais de um hidrocloreto de aminoácido básico compreendendo gerar um aminoácido básico usando células microbianas por fermentação em um caldo de fermentação ou por um método enzimático em uma solução de reação de enzima usando as células como catalisadores
JP5540504B2 (ja) 2007-01-22 2014-07-02 味の素株式会社 L−アミノ酸を生産する微生物及びl−アミノ酸の製造法
JP2010088301A (ja) 2007-02-01 2010-04-22 Ajinomoto Co Inc L−アミノ酸の製造法
JP2010110216A (ja) 2007-02-20 2010-05-20 Ajinomoto Co Inc L−アミノ酸または核酸の製造方法
JP2010110217A (ja) 2007-02-22 2010-05-20 Ajinomoto Co Inc L−アミノ酸生産菌及びl−アミノ酸の製造法
US20100099628A1 (en) * 2007-03-02 2010-04-22 Zyto-Protec Gmbh Carbohydrate-based peritoneal dialysis fluid comprising glutamine residue
BRPI0810011B1 (pt) 2007-04-17 2021-11-30 Ajinomoto Co., Inc Método para produzir uma substância ácida tendo um grupo carboxila
RU2392322C2 (ru) * 2007-08-14 2010-06-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ L-ТРЕОНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia, В КОТОРОЙ ИНАКТИВИРОВАН ГЕН yahN
CN101939412B (zh) 2007-09-04 2016-01-20 味之素株式会社 生产氨基酸的微生物以及氨基酸的生产方法
RU2396336C2 (ru) 2007-09-27 2010-08-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia
JP2011067095A (ja) 2008-01-10 2011-04-07 Ajinomoto Co Inc 発酵法による目的物質の製造法
EP2248906A4 (en) 2008-01-23 2012-07-11 Ajinomoto Kk PROCESS FOR THE PREPARATION OF L-AMINO ACID
RU2008105793A (ru) 2008-02-19 2009-08-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) (RU) Способ конструирования оперонов, содержащих трансляционно сопряженные гены, бактерия, содержащая такой оперон, способ продукции полезного метаболита и способ мониторинга экспрессии гена
PE20110369A1 (es) 2008-09-08 2011-06-24 Ajinomoto Kk Un microorganismo que produce l-aminoacido y un metodo para producir un l-aminoacido
JP2012029565A (ja) 2008-11-27 2012-02-16 Ajinomoto Co Inc L−アミノ酸の製造法
CN103396978A (zh) 2008-12-12 2013-11-20 麦特波力克斯公司 用于制备聚(5-羟基戊酸)和5碳化合物的绿色工艺和组合物
JP2010142200A (ja) 2008-12-22 2010-07-01 Ajinomoto Co Inc L−リジンの製造法
BRPI1007069A2 (pt) 2009-01-23 2015-08-25 Ajinomoto Kk Método para produzir um l-aminoácido.
JP5521347B2 (ja) 2009-02-16 2014-06-11 味の素株式会社 L−アミノ酸生産菌及びl−アミノ酸の製造法
JP5359409B2 (ja) 2009-03-12 2013-12-04 味の素株式会社 L−システイン生産菌及びl−システインの製造法
CN102471790B (zh) 2009-07-29 2014-10-29 味之素株式会社 产生l-氨基酸的方法
JP2012223092A (ja) 2009-08-28 2012-11-15 Ajinomoto Co Inc L−アミノ酸の製造法
JP2013013329A (ja) 2009-11-06 2013-01-24 Ajinomoto Co Inc L−アミノ酸の製造法
WO2011065469A1 (ja) 2009-11-30 2011-06-03 味の素株式会社 L-システイン生産菌及びl-システインの製造法
RU2460793C2 (ru) * 2010-01-15 2012-09-10 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) Способ получения l-аминокислот с использованием бактерий семейства enterobacteriaceae
JP2013074795A (ja) 2010-02-08 2013-04-25 Ajinomoto Co Inc 変異型rpsA遺伝子及びL−アミノ酸の製造法
RU2471868C2 (ru) 2010-02-18 2013-01-10 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) Мутантная аденилатциклаза, днк, кодирующая ее, бактерия семейства enterobacteriaceae, содержащая указанную днк, и способ получения l-аминокислот
RU2501858C2 (ru) 2010-07-21 2013-12-20 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae
RU2482188C2 (ru) 2010-07-21 2013-05-20 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ РОДА Escherichia, В КОТОРОЙ ИНАКТИВИРОВАН ОПЕРОН astCADBE
BR112013006031A2 (pt) 2010-09-14 2016-06-07 Ajinomoto Kk bactéria,e, método para produzir um aminoácido contendo enxofre, uma substância relacionada ao mesmo, ou uma mnistura dos mesmos.
JP2014036576A (ja) 2010-12-10 2014-02-27 Ajinomoto Co Inc L−アミノ酸の製造法
JP2014087259A (ja) 2011-02-22 2014-05-15 Ajinomoto Co Inc L−システイン生産菌及びl−システインの製造法
CN104160024A (zh) 2011-04-01 2014-11-19 味之素株式会社 用于生产l-半胱氨酸的方法
JPWO2012157699A1 (ja) 2011-05-18 2014-07-31 味の素株式会社 動物用免疫賦活剤、それを含む飼料及びその製造方法
RU2011134436A (ru) 2011-08-18 2013-10-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") Способ получения l-аминокислоты с использованием бактерии семейства enterobacteriaceae, обладающей повышенной экспрессией генов каскада образования флагелл и клеточной подвижности
RU2012112651A (ru) 2012-04-02 2013-10-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") САМОИНДУЦИРУЕМАЯ ЭКСПРЕССИОННАЯ СИСТЕМА И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ПОЛЕЗНЫХ МЕТАБОЛИТОВ С ПОМОЩЬЮ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae
RU2013118637A (ru) 2013-04-23 2014-10-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, В КОТОРОЙ РАЗРЕГУЛИРОВАН ГЕН yjjK
RU2013140115A (ru) 2013-08-30 2015-03-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ НАРУШЕНА ЭКСПРЕССИЯ КЛАСТЕРА ГЕНОВ znuACB
JP2016192903A (ja) 2013-09-17 2016-11-17 味の素株式会社 海藻由来バイオマスからのl−アミノ酸の製造方法
RU2628696C1 (ru) 2013-10-02 2017-08-21 Адзиномото Ко., Инк. Способ получения основной аминокислоты (варианты)
RU2013144250A (ru) 2013-10-02 2015-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ ОСЛАБЛЕНА ЭКСПРЕССИЯ ГЕНА, КОДИРУЮЩЕГО ФОСФАТНЫЙ ТРАНСПОРТЕР
PL2886651T3 (pl) 2013-10-21 2018-11-30 Ajinomoto Co., Inc. Sposób wytwarzania l-aminokwasu
BR112016008830B1 (pt) 2013-10-23 2023-02-23 Ajinomoto Co., Inc Método para produzir uma substância alvo
RU2014105547A (ru) 2014-02-14 2015-08-20 Адзиномото Ко., Инк. СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, ИМЕЮЩЕЙ СВЕРХЭКСПРЕССИРУЕМЫЙ ГЕН yajL
RU2571157C2 (ru) * 2014-03-11 2015-12-20 Государственное научное учреждение Всероссийский научно-исследовательский и технологический институт биологической промышленности Российской академии сельскохозяйственных наук Защитная среда высушивания для получения симбиотического препарата
KR101599800B1 (ko) * 2014-03-21 2016-03-04 씨제이제일제당 주식회사 L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
RU2015120052A (ru) 2015-05-28 2016-12-20 Аджиномото Ко., Инк. Способ получения L-аминокислоты с использованием бактерии семейства Enterobacteriaceae, в которой ослаблена экспрессия гена gshA
CN109121422B (zh) 2016-02-25 2021-12-21 味之素株式会社 使用过表达编码铁输出蛋白基因的肠杆菌科的细菌生产l-氨基酸的方法
JP7066977B2 (ja) 2017-04-03 2022-05-16 味の素株式会社 L-アミノ酸の製造法
KR101968317B1 (ko) 2018-02-23 2019-04-11 씨제이제일제당 주식회사 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
EP3861109A1 (en) 2018-10-05 2021-08-11 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
EP3904521A4 (en) 2018-12-26 2022-03-23 Daesang Corporation E. coli variant strain or corynebacterium glutamicum variant strain producing l-amino acids, and method for producing l-amino acids using same
JP7491312B2 (ja) 2018-12-27 2024-05-28 味の素株式会社 腸内細菌科の細菌の発酵による塩基性l-アミノ酸またはその塩の製造方法
BR112021014194A2 (pt) 2019-02-22 2021-12-28 Ajinomoto Kk Método para a produção de um l-aminoácido
BR112021017870A2 (pt) 2019-04-05 2021-12-07 Ajinomoto Kk Método para produzir um l-aminoácido
KR102205717B1 (ko) 2019-04-05 2021-01-22 씨제이제일제당 주식회사 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021042460A1 (zh) 2019-09-03 2021-03-11 宁夏伊品生物科技股份有限公司 提高l-色氨酸生产效率的转运载体基因在大肠杆菌中的应用
KR102183209B1 (ko) 2019-09-09 2020-11-26 씨제이제일제당 주식회사 L-쓰레오닌 배출 단백질의 변이체 및 이를 이용한 l-쓰레오닌 생산 방법
JP7655312B2 (ja) 2019-09-25 2025-04-02 味の素株式会社 細菌の発酵によるl-アミノ酸の製造方法
KR102139806B1 (ko) * 2020-02-13 2020-07-30 씨제이제일제당 (주) 변이형 LysE를 포함하는 미생물, 및 이를 이용한 L-아미노산 생산 방법
KR102647745B1 (ko) 2020-05-27 2024-03-14 씨제이제일제당 주식회사 신규 l-타이로신 배출 단백질 변이체 및 이를 이용한 l-타이로신을 생산하는 방법
KR102617168B1 (ko) * 2020-12-09 2023-12-21 씨제이제일제당 (주) 쉬와넬라 오네이덴시스 유래 단백질을 발현하는 미생물, 및 이를 이용한 l-아미노산 생산 방법
CN112662605B (zh) * 2020-12-30 2022-09-06 宁夏伊品生物科技股份有限公司 Yh66_10715基因改造的生产l-异亮氨酸的菌株及其构建方法和应用
CN113788881B (zh) * 2021-11-15 2022-02-11 中国科学院天津工业生物技术研究所 半胱氨酸转运蛋白突变体及其在生产l-半胱氨酸中的应用
KR20230131654A (ko) 2022-03-07 2023-09-14 씨제이제일제당 (주) 변이형 l-쓰레오닌 배출 단백질 및 이를 이용한 l-쓰레오닌 생산 방법
KR102801642B1 (ko) 2022-03-07 2025-04-29 씨제이제일제당 주식회사 변이형 l-쓰레오닌 배출 단백질 및 이를 이용한 l-쓰레오닌 생산 방법
EP4505875A1 (en) 2022-04-04 2025-02-12 Ajinomoto Co., Inc. Method for controlling parasitic plants
CN117510598B (zh) * 2023-11-07 2024-06-21 苏州华赛生物工程技术有限公司 转运蛋白YahN在L-肌肽生产中的应用
KR20250075805A (ko) 2023-11-21 2025-05-29 대상 주식회사 L-아미노산 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산 방법
CN119979584B (zh) * 2025-04-17 2025-07-15 江苏省中国科学院植物研究所 一种调控菌株对1-氨基环丙烷-1-羧酸的转运活性的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278765A (en) * 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746994B2 (ja) * 1984-10-04 1995-05-24 味の素株式会社 発酵法によるl−アミノ酸の製造法
US5976843A (en) 1992-04-22 1999-11-02 Ajinomoto Co., Inc. Bacterial strain of Escherichia coli BKIIM B-3996 as the producer of L-threonine
DE3891417C5 (de) 1988-10-25 2006-01-05 Ajinomoto Co., Inc. Verfahren zur Veränderung eines L-Threonin produzierenden Mikroorganismus und Verwendung eines so erhaltenen Mikroorganismus zur Herstellung von L-Threonin
US5705371A (en) 1990-06-12 1998-01-06 Ajinomoto Co., Inc. Bacterial strain of escherichia coli BKIIM B-3996 as the producer of L-threonine
US5534421A (en) 1991-05-30 1996-07-09 Ajinomoto Co., Inc. Production of isoleucine by escherichia coli having isoleucine auxotrophy and no negative feedback inhibition of isoleucine production
US6132999A (en) * 1992-09-21 2000-10-17 Ajinomoto Co., Inc. L-threonine-producing microbacteria and a method for the production of L-threonine
JPH07155184A (ja) * 1993-12-08 1995-06-20 Ajinomoto Co Inc 発酵法によるl−リジンの製造法
CA2114677C (en) * 1994-02-01 1997-12-30 Horacio Correia Block for constructing retaining wall
US5998178A (en) * 1994-05-30 1999-12-07 Ajinomoto Co., Ltd. L-isoleucine-producing bacterium and method for preparing L-isoleucine through fermentation
DE19548222A1 (de) 1995-12-22 1997-06-26 Forschungszentrum Juelich Gmbh Verfahren zur mikrobiellen Herstellung von Aminosäuren durch gesteigerte Aktivität von Exportcarriern
JP4088982B2 (ja) * 1996-10-15 2008-05-21 味の素株式会社 発酵法によるl−アミノ酸の製造法
US20060040364A1 (en) 1998-10-13 2006-02-23 Livshits Vitaly A DNA coding for a protein which imparts L-homoserine resistance to Escherichia coli bacterium, and a method for producing L-amino acids
RU2144564C1 (ru) 1998-10-13 2000-01-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" ФРАГМЕНТ ДНК rhtB, КОДИРУЮЩИЙ СИНТЕЗ БЕЛКА RhtB, ПРИДАЮЩЕГО УСТОЙЧИВОСТЬ К L-ГОМОСЕРИНУ БАКТЕРИЯМ ESCHERICHIA COLI, И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ
RU2148642C1 (ru) * 1998-12-23 2000-05-10 ЗАО "Научно-исследовательский институт АДЖИНОМОТО-Генетика" (ЗАО "АГРИ") Фрагмент днк rhtc, кодирующий синтез белка rhtc, придающего повышенную устойчивость к l-треонину бактериям escherichia coli, и способ получения l-аминокислоты
RU2175351C2 (ru) * 1998-12-30 2001-10-27 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО "АГРИ") Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
RU2207376C2 (ru) * 1999-10-14 2003-06-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислоты методом ферментации, штамм бактерии escherichia coli - продуцент l-аминокислоты (варианты)
RU2209246C2 (ru) * 2000-01-26 2003-07-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Малая субъединица изозима iii и изозим iii синтетазы ацетогидроксикислот из escherichia coli, фрагмент днк (варианты), штамм бактерии escherichia coli - продуцент l-валина (варианты) и способ получения l-валина
RU2212447C2 (ru) * 2000-04-26 2003-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Штамм escherichia coli - продуцент аминокислоты (варианты) и способ получения аминокислот (варианты)
JP4380029B2 (ja) * 2000-07-05 2009-12-09 味の素株式会社 微生物を利用した物質の製造法
EP1526179B9 (en) * 2001-02-13 2007-10-10 Ajinomoto Co., Inc. Method for producing l-amino acid using bacteria belonging to the genus escherichia
RU2229513C2 (ru) * 2001-11-23 2004-05-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Способ получения l-аминокислот, штамм escherichia coli - продуцент l-аминокислоты (варианты)
RU2333950C2 (ru) * 2005-12-27 2008-09-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) СПОСОБ ПРОДУКЦИИ АРОМАТИЧЕСКИХ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Methylophilus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278765A (en) * 1978-06-30 1981-07-14 Debabov Vladimir G Method for preparing strains which produce aminoacids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W0 95/16042, 15.06.1995. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264457C2 (ru) * 2003-02-26 2005-11-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ ESCHERICHIA, СОДЕРЖАЩЕЙ НЕАКТИВНЫЙ ГЕН gadB
RU2276687C2 (ru) * 2003-07-16 2006-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" Бактерия, принадлежащая к роду escherichia, - продуцент l-гистидина и способ получения l-гистидина
RU2276688C2 (ru) * 2003-08-29 2006-05-20 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" БАКТЕРИЯ, ПРИНАДЛЕЖАЩАЯ К РОДУ Escherichia,- ПРОДУЦЕНТ L-ГИСТИДИНА И СПОСОБ ПОЛУЧЕНИЯ L-ГИСТИДИНА
RU2275425C2 (ru) * 2003-11-03 2006-04-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина и способ получения l-цистеина
RU2279477C2 (ru) * 2003-12-05 2006-07-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО АГРИ) Мутантная серинацетилтрансфераза, фрагмент днк, кодирующий мутантную серинацетилтрансферазу (варианты), бактерия, принадлежащая к роду escherichia, - продуцент l-цистеина, и способ продукции l-цистеина
RU2407793C2 (ru) * 2004-01-12 2010-12-27 Метаболик Эксплорер Бактерия escherichia coli для получения 1,2-пропандиола, способ ее получения, способ получения 1,2-пропандиола
US8003368B2 (en) 2004-03-16 2011-08-23 Ajinomoto Co., Inc. Method for producing L-amino acids by fermentation using bacteria having enhanced expression of xylose utilization genes
US8003367B2 (en) 2004-03-16 2011-08-23 Ajinomoto Co., Inc. Method for producing L-amino acids by fermentation using bacteria having enhanced expression of xylose utilization genes
US10400256B2 (en) 2015-06-04 2019-09-03 Cj Cheiljedang Corporation Polypeptide having the activity of exporting O-acetyl-homoserine
RU2706535C2 (ru) * 2015-06-04 2019-11-19 СиДжей ЧеилДжеданг Корпорейшн Микроорганизм, продуцирующий O-ацетилгомосерин, и способ получения O-ацетилгомосерина с использованием этого микроорганизма
US10597686B2 (en) 2015-06-04 2020-03-24 Cj Cheiljedang Corporation Polypeptide having the activity of exporting O-acetyl-homoserine

Also Published As

Publication number Publication date
KR20070034022A (ko) 2007-03-27
AU6449399A (en) 2000-07-06
CN100410366C (zh) 2008-08-13
DE69942140D1 (de) 2010-04-29
US20080050785A1 (en) 2008-02-28
ATE456648T1 (de) 2010-02-15
CN1228445C (zh) 2005-11-23
EP1598416A1 (en) 2005-11-23
US20050202543A1 (en) 2005-09-15
ZA997767B (en) 2000-06-30
ATE461271T1 (de) 2010-04-15
CN100415874C (zh) 2008-09-03
DE69942160D1 (de) 2010-04-29
DE69941991D1 (de) 2010-03-18
BRPI9917718B1 (pt) 2015-05-26
ATE461270T1 (de) 2010-04-15
CA2291895A1 (en) 2000-06-30
EP1016710B1 (en) 2010-03-17
US20080050784A1 (en) 2008-02-28
KR20070034023A (ko) 2007-03-27
CN1737121A (zh) 2006-02-22
US7399617B1 (en) 2008-07-15
BRPI9917718B8 (pt) 2016-09-13
CN1737120A (zh) 2006-02-22
JP4221862B2 (ja) 2009-02-12
CN1737119A (zh) 2006-02-22
EP1589096A1 (en) 2005-10-26
BR9906287A (pt) 2001-01-23
KR20070034024A (ko) 2007-03-27
SK187099A3 (en) 2000-08-14
AU764189B2 (en) 2003-08-14
ID24398A (id) 2000-07-13
EP1589096B1 (en) 2010-03-17
CN1332021C (zh) 2007-08-15
JP2000189180A (ja) 2000-07-11
EP1580262A1 (en) 2005-09-28
BR9917719B1 (pt) 2012-08-07
BR9906287B1 (pt) 2011-09-06
MXPA00000177A (es) 2005-07-29
US7527950B2 (en) 2009-05-05
EP1016710A3 (en) 2000-09-06
US6979560B1 (en) 2005-12-27
EP1016710A2 (en) 2000-07-05
KR20000048465A (ko) 2000-07-25
EP1580262B1 (en) 2010-01-27
CN1261626A (zh) 2000-08-02
US7524656B2 (en) 2009-04-28

Similar Documents

Publication Publication Date Title
RU2175351C2 (ru) Фрагмент днк из escherichia coli, определяющий повышенную продукцию l-аминокислот (варианты), и способ получения l-аминокислот
JP5087194B2 (ja) エシェリヒア属細菌を用いたl−アミノ酸の製造法
JP5846122B2 (ja) L−アスパラギン酸又はl−アスパラギン酸より誘導される代謝産物を生産する腸内細菌科の細菌、及びl−アスパラギン酸又はl−アスパラギン酸より誘導される代謝産物の製造方法
US7439038B2 (en) Method for producing L-amino acid using methylotroph
KR20000029006A (ko) L-호모세린에 대한 내성을 세균 에스케리키아 콜라이에제공하는 단백질을 암호화하는 dna, 및 l-아미노산을제조하는 방법
JP2005137369A (ja) エシェリヒア属細菌を用いたl−システインの製造法
US20040265956A1 (en) Method for producing target substance by fermentation
RU2392322C2 (ru) СПОСОБ ПОЛУЧЕНИЯ L-ТРЕОНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ, ПРИНАДЛЕЖАЩЕЙ К РОДУ Escherichia, В КОТОРОЙ ИНАКТИВИРОВАН ГЕН yahN
US20060040364A1 (en) DNA coding for a protein which imparts L-homoserine resistance to Escherichia coli bacterium, and a method for producing L-amino acids
CN1997747B (zh) 使用属于埃希氏菌属的细菌产生l-苏氨酸的方法
JP2022516111A (ja) 腸内細菌科の細菌の発酵による塩基性l-アミノ酸またはその塩の製造方法