[go: up one dir, main page]

KR20120094013A - 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터 - Google Patents

스퍼터링 타겟 및 그 제조방법, 및 트랜지스터 Download PDF

Info

Publication number
KR20120094013A
KR20120094013A KR1020127014740A KR20127014740A KR20120094013A KR 20120094013 A KR20120094013 A KR 20120094013A KR 1020127014740 A KR1020127014740 A KR 1020127014740A KR 20127014740 A KR20127014740 A KR 20127014740A KR 20120094013 A KR20120094013 A KR 20120094013A
Authority
KR
South Korea
Prior art keywords
layer
oxide semiconductor
oxide
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020127014740A
Other languages
English (en)
Inventor
순페이 야마자키
토루 타카야마
케이지 사토
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20120094013A publication Critical patent/KR20120094013A/ko
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/008Handling preformed parts, e.g. inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6713Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6755Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Robotics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

산화물 반도체막을 성막하는 성막 기술을 제공하는 것을 일 과제로 한다. 금속 산화물의 소결체를 포함하고, 그 금속 산화물의 소결체의 함유 수소 농도가 예를 들어 1×1016atoms/cm3 미만으로 낮은 스퍼터링 타겟을 이용하여 산화물 반도체막을 형성함으로써, H2O로 대표되는 수소 원자를 포함하는 화합물 또는 수소 원자 등의 불순물의 함유량이 적은 산화물 반도체막을 성막한다. 또한 이 산화물 반도체막을 트랜지스터의 활성층으로서 적용한다.

Description

스퍼터링 타겟 및 그 제조방법, 및 트랜지스터{SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF, AND TRANSISTOR}
본 발명은 스퍼터링 타겟 및 그 제조 방법에 관한 것이다. 또한 이 스퍼터링 타겟을 이용하여 제조된 트랜지스터에 관한 것이다.
액정표시장치로 대표되는 바와 같이, 유리 기판 등의 평판에 형성되는 트랜지스터는 주로 아몰퍼스 실리콘 또는 다결정 실리콘 등의 반도체 재료를 이용하여 제작된다. 아몰퍼스 실리콘을 이용한 트랜지스터는 전계효과 이동도가 낮지만 유리 기판의 대면적화에 대응할 수 있고, 한편 다결정 실리콘을 이용한 트랜지스터는 전계효과 이동도가 높지만 레이저 어닐링 등의 결정화 공정이 필요하고, 유리 기판의 대면적화에 반드시 적응되지는 않는 특성을 갖고 있다.
이에 반해, 반도체 재료로서 산화물 반도체를 이용하여 트랜지스터를 제조하고, 이 트랜지스터를 전자 디바이스나 광 디바이스에 응용하는 기술이 주목을 받고 있다. 예를 들어 반도체 재료로서 산화 아연, In-Ga-Zn-O계 산화물 반도체를 이용하여 트랜지스터를 제조하고 화상 표시 장치의 스위칭 소자 등에 이용하는 기술이 특허문헌 1 및 특허문헌 2에 개시되었다.
산화물 반도체에 채널 형성 영역(채널 영역이라고도 함)을 마련한 트랜지스터는 아몰퍼스 실리콘을 이용한 트랜지스터보다 높은 전계효과 이동도를 얻을 수 있다. 산화물 반도체막은 스퍼터링법 등에 의해 비교적 저온으로 막 형성이 가능하고, 다결정 실리콘을 이용한 트랜지스터보다 제조 공정이 간단하다.
이러한 산화물 반도체를 이용하여 유리 기판, 플라스틱 기판 등에 트랜지스터를 형성하고, 액정 디스플레이, 일렉트로루미네센스 디스플레이(EL 디스플레이라고도 함) 또는 전자 페이퍼 등의 표시장치에 응용될 것으로 기대된다.
1. 일본 특허공개 제2007-123861호 공보 2. 일본 특허공개 제2007-96055호 공보
그러나, 산화물 반도체를 이용하여 제조한 반도체 소자의 특성은 아직 충분하다고는 할 수 없다. 예를 들어 산화물 반도체막을 이용한 트랜지스터에는, 제어된 문턱값 전압, 빠른 동작 속도, 제조 공정이 비교적 간단할 것, 그리고 충분한 신뢰성이 요구되고 있다.
본 발명의 일 태양은, 산화물 반도체막을 성막하는 성막 기술을 제공하는 것을 일 과제로 한다. 또한 이 산화물 반도체막을 이용한 신뢰성이 높은 반도체 소자를 제조하는 방법을 제공하는 것을 일 과제로 한다.
산화물 반도체를 이용한 트랜지스터의 문턱값 전압은 산화물 반도체막에 포함되는 캐리어 밀도에 영향을 받는다. 또한 산화물 반도체막에 포함되는 캐리어는 산화물 반도체막에 포함되는 불순물에 의해 발생한다. 예를 들어 성막된 산화물 반도체막에 포함되는 H2O로 대표되는 수소 원자를 포함하는 화합물이나 탄소 원자를 포함하는 화합물, 또는 수소 원자나 탄소 원자 등의 불순물은 산화물 반도체막의 캐리어 밀도를 높인다.
H2O로 대표되는 수소 원자를 포함하는 화합물 또는 수소 원자 등의 불순물을 포함하는 산화물 반도체막을 이용하여 제조한 트랜지스터는 문턱값 전압의 쉬프트와 같은 경시 열화를 제어하기 어렵다.
따라서 상기 목적을 달성하기 위해, 산화물 반도체막에 포함되는 캐리어 밀도에 영향을 주는 불순물, 예를 들어 H2O로 대표되는 수소 원자를 포함하는 화합물 또는 수소 원자 등의 불순물을 배제시킬 수 있다. 구체적으로는, 성막에 이용하는 스퍼터링 타겟의 불순물을 배제시킴으로써 불순물의 함유량이 적은 산화물 반도체막을 성막한다.
본 발명의 일 태양의 스퍼터링 타겟은, 산화물 반도체막을 형성하는 스퍼터링 타겟으로, 산화 마그네슘, 산화 아연, 산화 알루미늄, 산화 갈륨, 산화 인듐 또는 산화 주석에서 선택된 적어도 하나의 금속 산화물의 소결체를 포함하고, 소결체의 함유 수소 농도가 1×1016atoms/cm3 미만인 것을 특징으로 한다.
또한 본 발명의 일 태양의 스퍼터링 타겟은, 산화물 반도체막을 형성하는 스퍼터링 타겟으로, 산화 인듐, 산화 갈륨 및 산화 아연의 소결체를 포함하고, 소결체의 함유 수소 농도가 1×1016atoms/cm3 미만인 것을 특징으로 한다.
또한 상술한 스퍼터링 타겟에서 산화 규소를 0.1중량% 이상 20중량% 이하 포함할 수도 있다.
또한 본 발명의 일 태양의 트랜지스터는, 상술한 스퍼터링 타겟을 이용하여 제조된 산화물 반도체층을 활성층으로서 포함하는 것을 특징으로 한다.
또한 본 발명의 일 태양의 스퍼터링 타겟의 제조 방법은, 복수의 금속 산화물을 혼합하고, 소성하여 금속 산화물의 소결체를 형성하고, 금속 산화물의 소결체를 기계 가공하고, 원하는 형상을 갖는 타겟으로 성형하고, 타겟을 세정하고, 세정 후의 타겟에 가열 처리를 가하는 것을 특징으로 한다.
또한 본 발명의 일 태양의 스퍼터링 타겟의 제조 방법은, 복수의 금속 산화물을 혼합하고, 소성하여 금속 산화물의 소결체를 형성하고, 금속 산화물의 소결체를 기계 가공하고, 원하는 형상을 갖는 타겟으로 성형하고, 타겟을 세정하고, 세정 후의 타겟을 가열 처리하고, 타겟을 백킹 플레이트에 부착하는 것을 특징으로 한다.
아울러 본 명세서에서 제1, 제2와 같은 서수사는 편의상 사용하는 것으로, 공정 순서 또는 적층 순서를 나타내는 것은 아니다. 또한 본 명세서에서 발명을 특정하기 위한 사항으로서 고유의 명칭을 나타내는 것은 아니다.
또한 본 명세서에서, 산화 질화물은 그 조성에 있어서 질소 원자보다 산소 원자의 수가 많은 물질을 가리키고, 질화 산화물은 그 조성에 있어서 산소 원자보다 질소 원자의 수가 많은 물질을 가리킨다. 예를 들어 산화 질화 실리콘막은, 그 조성에 있어서 질소 원자보다 산소 원자의 수가 많으며, 라자포드 후방 산란법(RBS: Rutherford Backscattering Spectrometry) 및 수소 전방 산란법(HFS: Hydrogen Forward Scattering)를 이용하여 측정한 경우, 농도 범위에 있어서 산소가 50원자% 이상 70원자% 이하, 질소가 0.5원자% 이상 15원자% 이하, 실리콘이 25원자% 이상 35원자% 이하, 수소가 0.1원자% 이상 10원자% 이하의 범위로 포함되는 것을 가리킨다. 또한 질화 산화 실리콘막은 그 조성에 있어서 산소 원자보다 질소 원자의 수가 많고, RBS 및 HFS를 이용하여 측정했을 경우, 농도 범위에 있어서 산소가 5원자% 이상 30원자% 이하, 질소가 20원자% 이상 55원자% 이하, 실리콘이 25원자% 이상 35원자% 이하, 수소가 10원자% 이상 30원자% 이하의 범위로 포함되는 것을 가리킨다. 단, 산화 질화 실리콘 또는 질화 산화 실리콘을 구성하는 원자의 합계를 100원자%로 했을 때, 질소, 산소, 실리콘 및 수소의 함유 비율이 상기의 범위내에 포함되는 것으로 한다.
또한 본 명세서 등에서 「상」이나 「하」라는 용어는, 구성 요소의 위치 관계가 「바로 위」 또는 「바로 아래」인 것을 한정하는 것은 아니다. 예를 들어 「게이트 절연층 상의 제1 게이트 전극」으로 표현된 경우, 게이트 절연층과 게이트 전극과의 사이에 다른 구성 요소를 포함하는 경우를 제외시키지 않는다. 또한 「상」, 「하」라는 용어는 설명의 편의를 위해 사용하는 표현에 불과하며, 특별히 언급하는 경우를 제외하고는 그 상하를 서로 바꾼 경우도 포함된다.
또한 본 명세서 등에서 「전극」이나 「배선」이라는 용어는, 이 구성 요소들을 기능적으로 한정하는 것은 아니다. 예를 들어 「전극」은 「배선」의 일부로서 이용될 수도 있으며 그 반대의 경우도 가능하다. 나아가 「전극」이나 「배선」이라는 용어는, 복수의 「전극」이나 「배선」이 일체로서 형성된 경우 등도 포함한다.
또한 「소스」나 「드레인」의 기능은, 다른 극성의 트랜지스터를 채용하는 경우, 또는 회로 동작에서 전류의 방향이 변화하는 경우 등에 서로 바뀔 수 있다. 따라서 본 명세서에서는 「소스」나 「드레인」이라는 용어는 서로 바꾸어 사용할 수 있는 것으로 한다.
아울러 본 명세서에서 타겟 또는 산화물 반도체막중의 수소 농도는 2차 이온 질량 분석법(SIMS: Secondary Ion Mass Spectroscopy)에 의한 측정값을 사용한다. 아울러 SIMS 분석은 그 원리상, 시료 표면 근방이나, 재질이 다른 막과의 적층 계면 근방의 데이터를 정확하게 얻기 어려운 것으로 알려져 있다. 따라서, 막중의 수소 농도의 두께 방향의 분포를 SIMS로 분석하는 경우, 수소 농도는, 대상이 되는 막이 존재하는 범위에 있어서 극단적인 변동이 없고 거의 일정한 강도를 얻을 수 있는 영역에서의 평균값을 채용한다. 또한 측정의 대상이 되는 막의 두께가 작은 경우, 인접하는 막 내의 수소 농도의 영향을 받아 거의 일정한 강도를 얻을 수 있는 영역을 찾기 어려울 수가 있다. 이 경우, 상기 막이 존재하는 영역에서의 최대값 또는 최소값을 수소 농도로서 채용한다. 나아가 상기 막이 존재하는 영역에서 최대값을 갖는 산형의 피크, 최소값을 갖는 골형의 피크가 존재하지 않는 경우 변곡점의 값을 수소 농도로서 채용한다.
본 발명의 일 태양은 H2O로 대표되는 수소 원자를 포함하는 화합물이나 수소 원자 등의 불순물의 함유량이 적은 스퍼터링 타겟을 제공할 수 있다. 또한 그 스퍼터링 타겟을 이용하여 불순물이 감소된 산화물 반도체막을 성막하는 것이 가능하다. 또한 이 불순물의 함유량이 적은 산화물 반도체막을 이용한 신뢰성이 높은 반도체 소자를 제조하는 방법을 제공할 수 있다.
도 1은 스퍼터링 타겟의 제조 방법을 나타낸 플로우챠트이고,
도 2는 실시형태에 따른 트랜지스터의 평면도 및 단면도이고,
도 3은 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 4는 실시형태에 따른 트랜지스터의 평면도 및 단면도이고,
도 5는 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 6은 실시형태에 따른 트랜지스터의 단면도이고,
도 7은 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 8은 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 9는 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 10은 실시형태에 따른 트랜지스터의 제조 공정을 설명하는 도면이고,
도 11은 실시형태에 따른 트랜지스터의 단면도이고,
도 12는 산화물 반도체를 이용한 탑 게이트형의 트랜지스터의 종단면도이고,
도 13은 도 12에 나타낸 A-A' 단면에서의 에너지밴드도(모식도)이고,
도 14(A)는 게이트(GE)에 양의 전위(VG>0)가 인가된 상태를 나타내고, 도 14(B)는 게이트(GE)에 음의 전위(VG<0)가 인가된 상태를 나타낸 도면이고,
도 15는 진공 준위와 금속의 일함수(φM), 산화물 반도체의 전자 친화력(χ)의 관계를 나타낸 도면이고,
도 16은 전자기기의 예를 나타낸 도면이다.
이하에서는 본 발명의 실시형태에 대하여 도면을 참조하여 상세히 설명한다. 단, 본 발명은 이하의 설명에 한정되지 않고 그 형태 및 상세를 다양하게 변경할 수 있음은 당업자라면 용이하게 이해할 수 있다. 또한 본 발명은 이하에 나타낸 실시형태의 기재 내용에 한정하여 해석되는 것은 아니다. 아울러 본 명세서중의 도면에 있어서 동일 부분 또는 동일한 기능을 갖는 부분에는 동일한 부호를 사용하고 그 설명은 생략할 수 있다.
(실시형태 1)
본 실시형태에서는, 본 발명의 일 태양인 스퍼터링 타겟(이하, 타겟으로도 표기함)의 제조 방법에 대하여 도 1을 참조하여 설명한다. 도 1은 본 실시형태에 따른 스퍼터링 타겟의 제조 방법의 일례를 나타낸 플로우차트이다.
먼저, 타겟 재료를 알맞게 칭량하고, 칭량한 각 타겟 재료를 볼밀 등에 의해 분쇄하면서 혼합한다. 산화물 반도체막을 형성하는 타겟 재료로서는, 예를 들어 산화 마그네슘, 산화 아연, 산화 알루미늄, 산화 갈륨, 산화 인듐 또는 산화 주석 등을 적절히 혼합할 수 있다(도 1(A)).
또한 타겟으로 산화 규소를 2중량% 이상 10중량% 이하 첨가하고, SiOx(X>0)를 산화물 반도체막에 포함시킬 수도 있다. 산화물 반도체막에 SiOx(X>0)를 포함시킴으로써 산화물 반도체막의 결정화를 억제시킬 수 있다.
본 실시형태에서는 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 제조하고, 예를 들어 In2O3, Ga2O3 및 ZnO를 조성비 In2O3:Ga2O3:ZnO=1:1:1[mol비]이 되도록 칭량한다.
또한 본 실시형태에서 제조되는 산화물 반도체 성막용 타겟으로서는, In-Ga-Zn-O계 산화물 반도체 성막용 타겟에 한정되지 않고, 그 밖에도 In-Sn-Ga-Zn-O계, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, Zn-Mg-O계, Sn-Mg-O계, In-Mg-O계, In-O계, Sn-O계, Zn-O계 등을 들 수 있다.
이어서, 혼합물을 소정의 형상으로 성형하고 소성하여 금속 산화물의 소결체를 얻는다(도 1(B)). 타겟 재료를 소성함으로써 타겟에 수소나 수분이나 하이드로 카본 등이 혼입되는 것을 막을 수 있다. 소성은 불활성 가스 분위기(질소 또는 희가스 분위기)하, 진공중 또는 고압 분위기중에서 수행할 수 있고, 추가로 기계적인 압력을 가하면서 수행할 수도 있다. 소성법으로서는 상압 소성법, 가압 소성법 등을 적절히 이용할 수 있다. 또한 가압 소성법으로서는 핫 프레스법, 열간 등방 가압(HIP;Hot Isostatic Pressing)법, 방전 플라즈마 소결법 또는 충격법을 적용하는 것이 바람직하다. 소성의 최고 온도는 타겟 재료의 소결 온도에 따라 선택하는데, 1000℃~2000℃ 정도로 하는 것이 바람직하고, 1200℃~1500℃로 하는 것이 보다 바람직하다. 또한 최고 온도의 유지 시간은 타겟 재료에 따라 선택하는데, 0.5시간~3시간으로 하는 것이 바람직하다.
아울러 본 실시형태의 산화물 반도체 성막용 타겟은 충전율이 90% 이상 100% 이하, 보다 바람직하게는 95% 이상 99.9% 이하로 하는 것이 바람직하다. 산화물 반도체 성막용 타겟의 충전율을 높게 함으로써, 스퍼터링 성막시에 타겟에 수분 등의 불순물이 흡착되는 공극을 없앨 수 있다. 또한 스퍼터링 성막시에 노듈(nodule)의 발생을 방지하여 균일한 방전이 가능하게 되고 파티클의 발생을 억제할 수 있다. 나아가 성막한 산화물 반도체막의 표면의 평활성이 양호해지고 또한 치밀한 막이 된다. 그 결과, 불순물 농도가 억제되어 균일한 품질의 산화물 반도체막을 얻을 수 있다.
이어서, 원하는 치수, 형상, 표면 거칠기를 갖는 타겟으로 성형하기 위한 기계 가공을 실시한다(도 1(C)). 가공 수단으로서는 예를 들어 기계적 연마, 화학적 기계 연마(Chemical Mechanical Polishing, CMP) 또는 이들의 병용 등을 이용할 수 있다.
그 후, 기계 가공에 의해 발생하는 미세한 먼지나 연삭액 성분을 제거하기 위해, 물이나 유기용매에 침지시킨 초음파 세정, 유수 세정 등에 의해 타겟을 세정한다(도 1(D)). 기계 가공 후에 세정을 수행함으로써 먼지나 불순물을 제거한 타겟을 얻을 수 있고 이 타겟을 이용하여 순도가 높은 양질의 막을 형성할 수 있다.
이어서, 세정을 마친 타겟에 가열 처리를 가한다(도 1(E)). 가열 처리는 불활성 가스 분위기(질소 또는 희가스 분위기)중에서 수행하는 것이 바람직하고, 가열 처리의 온도는 타겟 재료에 따라 다르나, 타겟 재료가 변성되지 않고 타겟 표면의 수소, 수분이 충분히 탈리되는 온도로 한다. 구체적으로는, 150℃ 이상 750℃ 이하, 바람직하게는 425℃ 이상 750℃ 이하로 한다. 또한 타겟 내부 및 표면에 함유된 수소 농도가 충분히 감소되는 시간만큼 가열하고, 구체적으로는 0.5시간 이상, 바람직하게는 1시간 이상 가열한다. 세정 후에 가열 처리함으로써, 세정에 의해 혼입된 수소나 수분 등을 타겟으로부터 탈리시킬 수 있다. 아울러 가열 처리는 진공중 또는 고압 분위기중에서 수행할 수도 있다.
가열 처리로서는, 예를 들어 가열 처리 장치 중 하나인 전기로에 타겟을 도입하고, 질소 분위기하에서 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 수분이나 수소가 타겟으로 재혼입되는 것을 막아 함유 수소 농도가 저하된 타겟을 얻는다. 가열 온도(T)에서, 다시 수분이 들어가지 않기에 충분한 온도까지 동일 전기로를 이용하여, 구체적으로는 가열 온도(T)보다 100℃ 이상 내려갈 때까지 질소 분위기하에서 서서히 냉각시킨다. 또한 질소 분위기하에 한정되지 않고, 헬륨 분위기하, 네온 분위기하, 아르곤 분위기하 등에서 가열 처리를 수행한다.
아울러 가열 처리 장치는 전기로에 한정되지 않고, 예를 들어 LRTA(Lamp Rapid Thermal Anneal) 장치, GRTA(Gas Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프에서 나오는 광(전자파)의 복사에 의해 피처리물을 가열하는 장치이다. GRTA 장치는, 상기 램프에서 나오는 광에 의한 열 복사 및 램프에서 나오는 광으로 기체를 가열하고, 가열된 기체로부터의 열전도에 의해 피처리물을 가열하는 장치이다. 기체로는, 아르곤 등의 희가스 또는 질소와 같은, 가열 처리에 의해 피처리물과 반응하지 않는 불활성 기체가 사용된다. 또한 LRTA 장치, GRTA 장치는, 램프뿐 아니라, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해 피처리물을 가열하는 장치를 구비할 수도 있다.
가열 처리에서는, 질소, 또는 헬륨, 네온, 아르곤 등의 희가스에 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는, 가열 처리 장치에 도입하는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스의 순도를 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
일반적인 산화물 반도체 성막용 타겟에는 2차 이온 질량 분석법(SIMS: Secondary Ion Mass Spectroscopy)에 의한 분석으로 1×1020~1×1021atoms/cm3의 수소가 포함된다. 그러나, 본 실시형태에서 나타낸 타겟은 세정 후에 가열 처리를 수행함으로써, 이러한 수소를 예를 들어 5×1019atoms/cm3 이하, 바람직하게는 5×1018atoms/cm3 이하, 더욱 바람직하게는 5×1017atoms/cm3 이하로 하거나, 또는 1×1016atoms/cm3 미만으로 할 수 있다. 따라서, 이 타겟을 이용하여 제조된 산화물 반도체막의 함유 수소 농도를 감소시킬 수 있다.
그 후, 타겟을 백킹 플레이트라 불리는 금속판에 합착시킨다(도 1(F)). 백킹 플레이트는 타겟 재료의 냉각과 스퍼터링 전극으로서의 역할을 가지므로 열전도성 및 도전성이 뛰어난 구리를 사용하는 것이 바람직하다. 또한 구리 이외에도, 티타늄, 구리 합금, 스텐레스 합금 등을 사용할 수도 있다. 백킹 플레이트 내부 또는 배면에 냉각로를 형성하고, 냉각로에 냉각액으로서 물이나 유지 등을 순환시킴으로써 스퍼터링 성막시의 타겟의 냉각 효율을 높일 수 있다. 다만, 물의 기화 온도는 100℃이므로 타겟을 100℃ 이상으로 유지하고자 하는 경우에는 물이 아니라 유지 등을 사용하는 것이 바람직하다.
타겟과 백킹 플레이트의 합착은 예를 들어 전자빔 용접으로 수행할 수 있다. 전자빔 용접은 진공 분위기중에서 발생시킨 전자를 가속시키고 수속시켜 대상물에 조사함으로써 용접하고자 하는 부분만을 녹이고, 용접부 이외의 소재 성질을 손상시키지 않고 용접할 수 있는 기법이다. 용접부 형상 및 용접 깊이를 제어할 수 있고, 진공중에서 용접을 수행하므로 타겟에 수소나 수분이나 하이드로 카본 등이 부착되는 것을 막을 수 있다.
또한 타겟과 백킹 플레이트를 접착시키기 위한 납땜재로서는, Au, Bi, Sn, Zn, In 또는 이들의 합금 등을 사용하는 것이 바람직하다. 아울러 납땜재로서는 도전성이 높은 금속(또는 합금) 재료를 사용하는 것이 바람직하다. 또한 납땜재와 타겟과의 사이에 백 코트층을 형성할 수도 있다. 백 코트층을 형성함으로써 타겟과 백킹 플레이트와의 밀착성을 향상시킬 수 있다.
아울러 본 실시형태에서, 세정 후의 가열 처리는 타겟과 백킹 플레이트와의 합착(본딩) 전에 수행하는 경우를 예로서 나타냈으나, 본 발명의 실시형태는 이에 한정되지 않고, 타겟과 백킹 플레이트와의 본딩 후에 가열 처리를 수행할 수도 있고, 본딩 전후에 여러 번 가열 처리를 수행할 수도 있다. 아울러 타겟과 백킹 플레이트와의 본딩 후의 가열 처리는 납땜재 또는 백킹 플레이트의 내열성을 고려하여 150℃ 이상 350℃ 이하로 수행하는 것이 바람직하다. 또한 가열 처리는 불활성 가스 분위기(질소 또는 희가스 분위기)중에서 수행하는 것이 바람직하다.
또한 가열 처리 후의 타겟은 수분이나 수소의 재혼입을 방지하기 위해, 고순도의 산소 가스 분위기하, 고순도의 N2O 가스 분위기하, 또는 초건조 에어(노점이 -40℃ 이하, 바람직하게는 -60℃ 이하) 분위기하에서 반송, 보존 등을 하는 것이 바람직하다. 또는, 스텐레스 합금 등의 투수성이 낮은 재료로 형성된 보호재로 피복할 수도 있고, 또한 그 보호재와 타겟의 간극에 상술한 가스를 도입할 수도 있다. 산소 가스 또는 N2O 가스에는 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는, 산소 가스 또는 N2O 가스의 순도를 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 산소 가스 또는 N2O 가스중의 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
이상에 의해 본 실시형태의 스퍼터링 타겟을 제조할 수 있다. 본 실시형태에서 나타낸 스퍼터링 타겟은 제조 공정에 있어서 세정 후에 가열 처리를 가함으로써 수소 원자, 또는 수소 원자를 포함하는 화합물 등의 불순물을 탈리시켜 불순물을 감소시킬 수 있다. 따라서, 이 타겟을 이용하여 제조된 산화물 반도체막이 함유하는 불순물의 농도도 감소시킬 수 있다. 아울러 가열 처리 대신에, 진공중에서 UV램프를 조사하여 수소 원자 등의 불순물을 탈리시킬 수도 있고, 또한 UV램프의 조사와 가열 처리를 병용할 수도 있다.
아울러 타겟을 스퍼터링 장치에 장착할 때에도, 대기에 노출시키지 않고 불활성 가스 분위기(질소 또는 희가스 분위기)하에서 수행함으로써 타겟에 수소나 수분이나 하이드로 카본 등이 부착되는 것을 막을 수 있다.
또한 타겟을 스퍼터링 장치에 장착시킨 후, 타겟 표면이나 타겟 재료중에 잔존하고 있는 수소를 제거하기 위해 탈수소 처리를 수행하는 것이 바람직하다. 탈수소 처리로서는 성막 챔버내를 감압하에서 200℃~600℃로 가열하는 방법이나, 가열하면서 질소나 불활성 가스의 도입과 배기를 반복하는 방법 등이 있다. 이 경우의 타겟 냉각액은 물이 아니라 유지 등을 사용하는 것이 바람직하다. 가열하지 않고 질소의 도입과 배기를 반복하여도 일정한 효과를 얻을 수 있지만, 가열하면서 수행하는 것이 보다 바람직하다. 또한 성막 챔버내에 산소 또는 불활성 가스, 또는 산소와 불활성 가스 둘 모두를 도입하고 고주파나 마이크로파를 이용하여 불활성 가스나 산소의 플라즈마를 발생시킬 수도 있다. 가열하지 않고 수행하여도 일정한 효과를 얻을 수 있지만, 가열하면서 수행하는 것이 보다 바람직하다.
아울러 본 실시형태는 다른 실시형태와 적절히 조합할 수 있다.
(실시형태 2)
본 실시형태는, 실시형태 1의 타겟을 적용하여 제조한 반도체 장치로서 트랜지스터를 제조하는 예를 나타내었다. 본 실시형태에서 나타낸 트랜지스터(410)는, 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터 및 트랜지스터의 제조 방법의 일 형태를 도 2 및 도 3을 이용하여 설명한다.
도 2(A), 도 2(B)에 트랜지스터의 평면 및 단면 구조의 일례를 나타내었다. 도 2(A), 도 2(B)에 나타낸 트랜지스터(410)는 탑 게이트 구조의 트랜지스터 중 하나이다.
도 2(A)는 탑 게이트 구조의 트랜지스터(410)의 평면도이고, 도 2(B)는 도 2(A)의 선 C1-C2에 따른 단면도이다.
트랜지스터(410)는 절연 표면을 갖는 기판(400) 및 절연층(407) 상에, 산화물 반도체층(412), 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b), 게이트 절연층(402) 및 게이트 전극층(411)을 포함하고, 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)에 각각 배선층(414a), 배선층(414b)이 접하여 마련되고 전기적으로 접속되어 있다.
또한 트랜지스터(410)는 싱글 게이트 구조의 트랜지스터를 이용하여 설명했으나, 필요에 따라서 채널 형성 영역을 복수 갖는 멀티 게이트 구조의 트랜지스터도 형성할 수 있다.
이하, 도 3(A) 내지 도 3(E)을 이용하여 기판(400) 상에 트랜지스터(410)를 제조하는 공정을 설명한다.
절연 표면을 갖는 기판(400)으로 사용할 수 있는 기판에 큰 제한은 없으나, 적어도 후의 가열 처리에 견딜 수 있을 정도의 내열성을 가질 필요가 있다. 바륨 보로실리케이트 유리(barium borosilicate glass)나 알루미노보로실리케이트 유리(aluminoborosilicate glass) 등의 유리 기판을 사용할 수 있다.
또한 유리 기판으로서는, 후의 가열 처리의 온도가 높은 경우에는, 변형점이 730℃ 이상인 것을 사용하는 것이 좋다. 또한 유리 기판으로는 예를 들어 알루미노실리케이트 유리, 알루미노보로실리케이트 유리, 바륨 보로실리케이트 유리 등의 유리 재료를 사용할 수 있다. 아울러 일반적으로 산화 붕소에 비해 산화 바륨(BaO)을 많이 포함시킴으로써 보다 실용적인 내열유리를 얻을 수 있다. 따라서 B2O3보다 BaO를 많이 포함하는 유리 기판을 사용하는 것이 바람직하다.
아울러 상기 유리 기판 대신에 세라믹 기판, 석영 기판, 사파이어 기판 등의 절연체로 이루어지는 기판을 사용할 수도 있다. 이 외에도 결정화 유리 기판 등을 사용할 수 있다. 또한 플라스틱 기판 등도 적절히 사용할 수 있다.
우선, 절연 표면을 갖는 기판(400) 상에 베이스막이 되는 절연층(407)을 형성한다. 산화물 반도체층과 접하는 절연층(407)은, 산화 실리콘층, 산화 질화 실리콘층, 산화 알루미늄층 또는 산화 질화 알루미늄층 등의 산화물 절연층을 사용하는 것이 바람직하다. 절연층(407)의 형성 방법으로서는 플라즈마 CVD법 또는 스퍼터링법 등을 이용할 수 있으나, 절연층(407)중에 수소가 다량으로 포함되지 않도록 하기 위해서는 스퍼터링법으로 절연층(407)을 성막하는 것이 바람직하다.
본 실시형태에서는 절연층(407)으로서 스퍼터링법에 의해 산화 실리콘층을 형성한다. 기판(400)을 처리실로 반송하고, 수소 및 수분이 제거된 고순도 산소를 포함하는 스퍼터링 가스를 도입하고 실리콘 타겟을 이용하여 기판(400) 상에 절연층(407)으로서 산화 실리콘층을 성막한다. 또한 기판(400)은 실온일 수도, 가열되어 있을 수도 있다.
예를 들어 석영(바람직하게는 합성 석영)을 사용하고, 기판 온도 108℃, 기판과 타겟과의 거리(T-S간 거리) 60mm, 압력 0.4Pa, 고주파 전원 1.5kW, 산소 및 아르곤(산소 유량 25sccm:아르곤 유량 25sccm=1:1) 분위기하에서 RF스퍼터링법에 의해 산화 실리콘층을 성막한다. 막 두께는 100nm로 한다. 아울러 산화 실리콘층을 성막하기 위한 타겟으로서 석영(바람직하게는 합성 석영) 대신에 실리콘 타겟을 사용할 수도 있다. 아울러 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다.
이 경우에 처리실 내의 잔류 수분을 제거하면서 절연층(407)을 성막하는 것이 바람직하다. 절연층(407)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막하여 절연층(407)에 포함되는 불순물의 농도를 감소시킬 수 있다.
절연층(407)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
스퍼터링법에는 스퍼터링용 전원으로 고주파 전원을 이용하는 RF 스퍼터링법, 직류 전원을 이용하는 DC 스퍼터링법, 나아가 펄스적으로 바이어스를 주는 펄스 DC 스퍼터링법이 있다. RF 스퍼터링법은 주로 절연막을 성막하는 경우에 이용되고 DC 스퍼터링법은 주로 금속막을 성막하는 경우에 이용된다.
또한 재료가 다른 타겟을 복수 설치할 수 있는 다원 스퍼터링 장치도 있다. 다원 스퍼터링 장치는 동일 챔버에서 서로 다른 재료막을 적층 성막할 수도, 동일 챔버에서 복수 종류의 재료를 동시에 방전시켜 성막할 수도 있다.
또한 챔버 내부에 자석 기구를 구비한 마그네트론 스퍼터링법을 이용하는 스퍼터링 장치나, 그로우 방전을 이용하지 않고 마이크로파를 사용하여 발생시킨 플라즈마를 이용하는 ECR 스퍼터링법을 이용하는 스퍼터링 장치가 있다.
또한 스퍼터링법을 이용하는 성막 방법으로서, 성막동안에 타겟 물질과 스퍼터링 가스 성분을 화학반응시켜 이들의 화합물 박막을 형성하는 리엑티브 스퍼터링법이나, 성막동안에 기판에도 전압을 인가하는 바이어스 스퍼터링법도 있다.
또한 절연층(407)은 적층 구조일 수도 있으며, 예를 들어 기판(400)측부터 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층 또는 질화 산화 알루미늄 등의 질화물 절연층과 상기 산화물 절연층과의 적층 구조로 형성할 수도 있다.
예를 들어 산화 실리콘층과 기판과의 사이에 수소 및 수분이 제거된 고순도 질소를 포함하는 스퍼터링 가스를 도입하고, 실리콘 타겟을 이용하여 질화 실리콘층을 성막한다. 이 경우에도, 산화 실리콘층과 마찬가지로, 처리실 내의 잔류 수분을 제거하면서 질화 실리콘층을 성막하는 것이 바람직하다.
질화 실리콘층을 형성하는 경우에도 성막시에 기판을 가열할 수도 있다.
절연층(407)으로서 질화 실리콘층과 산화 실리콘층을 적층하는 경우, 질화 실리콘층과 산화 실리콘층을 같은 처리실에서 공통의 실리콘 타겟을 이용하여 성막할 수 있다. 먼저 질소를 포함하는 가스를 도입하고, 처리실 내에 장착된 실리콘 타겟을 이용하여 질화 실리콘층을 형성하고, 이어서 산소를 포함하는 가스로 바꾸고 동일한 실리콘 타겟을 이용하여 산화 실리콘층을 성막한다. 질화 실리콘층과 산화 실리콘층을 대기에 노출시키지 않고 연속적으로 형성할 수 있으므로 질화 실리콘층 표면에 수소나 수분 등의 불순물이 흡착되는 것을 방지할 수 있다.
이어서 절연층(407) 상에, 막 두께 2nm 이상 200nm 이하의 산화물 반도체막을 형성한다.
또한 산화물 반도체막에 수소, 수산기 및 수분이 가능한 한 포함되지 않도록 하기 위해, 성막의 사전 처리로서 스퍼터링 장치의 예비 가열실에서 절연층(407)이 형성된 기판(400)을 예비 가열하여, 기판(400)에 흡착된 수소, 수분 등의 불순물을 탈리하여 배기시키는 것이 바람직하다. 아울러 예비 가열실에 마련하는 배기 수단은 크라이오펌프가 바람직하다. 아울러 이 예비 가열의 처리는 생략할 수도 있다. 또한 이 예비 가열은, 후에 형성하는 게이트 절연층(402)의 성막전의 기판(400)에 수행할 수도 있고, 후에 형성하는 소스 전극층 또는 드레인 전극층(415a) 및 소스 전극층 또는 드레인 전극층(415b)의 형성전의 기판(400)에도 동일하게 수행할 수도 있다.
아울러 산화물 반도체막을 스퍼터링법에 의해 성막하기 전에, 아르곤 가스를 도입하여 플라즈마를 발생시키는 역스퍼터링를 수행하여, 절연층(407)의 표면에 부착된 가루형 물질(파티클, 먼지라고도 함)을 제거하는 것이 바람직하다. 역스퍼터링은 타겟측에 전압을 인가하지 않고, 아르곤 분위기하에서 기판측에 고주파 전원을 이용하여 전압을 인가하여 기판 근방에 플라즈마를 형성하여 표면을 개질하는 방법이다. 아울러 아르곤 분위기 대신에 질소 분위기하, 헬륨 분위기하, 산소 분위기하 등으로 할 수도 있다.
산화물 반도체막은 스퍼터링법에 의해 성막한다. 아울러 스퍼터링 타겟으로서는 실시형태 1에서 나타낸 함유 수소 농도가 저하된 타겟을 사용하기로 한다.
산화물 반도체막으로서는, 4원계 금속 산화물인 In-Sn-Ga-Zn-O막이나, 3원계 금속 산화물인 In-Ga-Zn-O막, In-Sn-Zn-O막, In-Al-Zn-O막, Sn-Ga-Zn-O막, Al-Ga-Zn-O막, Sn-Al-Zn-O계나, 2원계 금속 산화물인 In-Zn-O막, Sn-Zn-O막, Al-Zn-O막, Zn-Mg-O막, Sn-Mg-O막, In-Mg-O막이나, 단원계 금속 산화물인 In-O막, Sn-O막, Zn-O막 등의 산화물 반도체막을 사용할 수 있다. 또한 상기 산화물 반도체막에 SiO2를 포함할 수도 있다.
또한 산화물 반도체막은 InMO3(ZnO)m(m>0)으로 표기되는 박막을 이용할 수 있다. 여기서, M은 Ga, Al, Mn 및 Co로부터 선택된 하나 또는 복수의 금속 원소를 나타낸다. 예를 들어 M으로서 Ga, Ga 및 Al, Ga 및 Mn, 또는 Ga 및 Co 등이 있다. InMO3(ZnO)m(m>0)으로 표기되는 구조의 산화물 반도체막 중, M으로서 Ga를 포함하는 구조의 산화물 반도체를 상기한 In-Ga-Zn-O산화물 반도체라 부르고 그 박막을 In-Ga-Zn-O막으로도 부르기로 한다.
산화물 반도체막을 성막할 때에 이용하는 스퍼터링 가스는 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
산화물 반도체막을 스퍼터링법으로 제조하기 위한 타겟으로서, 산화 아연을 주성분으로 하는 산화물 반도체 성막용 타겟을 사용할 수 있다. 또한 산화물 반도체 성막용 타겟의 다른 예로서는 In, Ga, 및 Zn을 포함하는 산화물 반도체 성막용 타겟(조성비로서 In2O3:Ga2O3:ZnO=1:1:1[mol비])을 사용할 수 있다. 또한 In, Ga, 및 Zn을 포함하는 산화물 반도체 성막용 타겟으로서 In2O3:Ga2O3:ZnO=1:1:2[mol비] 또는 In2O3:Ga2O3:ZnO=1:1:4[mol비]의 조성비를 갖는 타겟을 사용할 수도 있다. 산화물 반도체 성막용 타겟의 충전율은 90% 이상 100% 이하, 바람직하게는 95% 이상 99.9%이하이다. 충전율이 높은 산화물 반도체 성막용 타겟을 사용함으로써, 성막한 산화물 반도체막은 치밀한 막이 된다.
산화물 반도체막은, 감압 상태로 유지된 처리실 내에 기판을 유지하고, 처리실 내의 잔류 수분을 제거하면서 수소 및 수분이 제거된 스퍼터링 가스를 도입하고, 금속 산화물을 타겟으로 하여 기판(400) 상에 산화물 반도체막을 성막한다. 처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자, 수분(H2O) 등 수소 원자를 포함하는 화합물(보다 바람직하게는 탄소 원자를 포함하는 화합물도) 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막 성막시에 기판을 가열할 수도 있다.
성막 조건의 일례로서는, 기판 온도 실온, 기판과 타겟과의 거리 110mm, 압력 0.4Pa, 직류(DC) 전원 0.5kW, 산소 및 아르곤(산소 유량 15sccm:아르곤 유량 30sccm) 분위기하의 조건이 적용된다. 아울러 펄스 직류(DC) 전원을 이용하면 성막시에 발생하는 가루형 물질(파티클, 먼지라고도 함)을 줄일 수 있고 막 두께 분포도 균일해지므로 바람직하다. 산화물 반도체막은 바람직하게는 5nm 이상 30nm 이하로 한다. 아울러 적용하는 산화물 반도체 재료에 따라 적절한 두께는 다르며 재료에 따라 적절한 두께를 선택하면 된다.
이어서, 산화물 반도체막을 제1 포토리소그래피 공정에 의해 섬형의 산화물 반도체층(412)으로 가공한다(도 3(A) 참조). 또한 섬형의 산화물 반도체층(412)을 형성하기 위해 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
아울러 이때의 산화물 반도체막의 에칭은 드라이 에칭일 수도 웨트 에칭일 수도 있으며 둘 모두를 이용할 수도 있다.
드라이 에칭에 이용하는 에칭 가스로서는, 염소를 포함하는 가스(염소계 가스, 예를 들어 염소(Cl2), 염화 붕소(BCl3), 염화 규소(SiCl4), 사염화탄소(CCl4) 등)가 바람직하다.
또한 불소를 포함하는 가스(불소계 가스, 예를 들어 사불화탄소(CF4), 육불화황(SF6), 삼불화질소(NF3), 트리플루오로메탄(CHF3) 등), 브롬화 수소(HBr), 산소(O2), 이 가스들에 헬륨(He)이나 아르곤(Ar) 등의 희가스를 첨가한 가스 등을 사용할 수 있다.
드라이 에칭법으로서는 평행 평판형 RIE(Reactive Ion Etching) 법이나 ICP(Inductively Coupled Plasma: 유도 결합형 플라즈마) 에칭법을 이용할 수 있다. 원하는 가공 형상으로 에칭할 수 있도록 에칭 조건(코일형의 전극에 인가되는 전력량, 기판측의 전극에 인가되는 전력량, 기판측의 전극 온도 등)을 적절히 조절한다.
웨트 에칭에 이용하는 에칭액으로서는 인산과 초산과 질산을 혼합한 용액 등을 사용할 수 있다. 또한 ITO07N(칸토화학사 제품) 등을 사용할 수도 있다.
또한 웨트 에칭후의 에칭액은 에칭된 재료와 함께 세정에 의해 제거된다. 그 제거된 재료를 포함하는 에칭액의 폐수를 정제하여, 포함된 재료를 재이용할 수도 있다. 이 에칭후의 폐수로부터 산화물 반도체층에 포함되는 인듐 등의 재료를 회수하여 재이용함으로써 자원을 효과적으로 활용하여 저비용화할 수 있다.
원하는 가공 형상으로 에칭할 수 있도록 재료에 맞게 에칭 조건(에칭액, 에칭 시간, 온도 등)을 적절히 조절한다.
본 실시형태에서는, 에칭액으로서 인산과 초산과 질산을 혼합한 용액을 이용한 습식 에칭법에 의해 산화물 반도체막을 섬형의 산화물 반도체층(412)으로 가공한다.
본 실시형태에서는 산화물 반도체층(412)에 제1 가열 처리를 수행한다. 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만으로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하 450℃에서 1시간의 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아 산화물 반도체층을 얻는다. 이 제1 가열 처리에 의해 산화물 반도체층(412)의 탈수화 또는 탈수소화를 수행할 수 있다.
아울러 가열 처리 장치는 전기로에 한정되지 않고, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해 피처리물을 가열하는 장치를 구비할 수도 있다. 예를 들어 LRTA(Lamp Rapid Thermal Anneal) 장치, GRTA(Gas Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수 있다. LRTA 장치는 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프에서 나오는 광(전자파)의 복사에 의해 피처리물을 가열하는 장치이다. GRTA 장치는 고온의 가스를 이용하여 가열 처리를 수행하는 장치이다. 기체로는 아르곤 등의 희가스 또는 질소와 같은, 가열 처리에 의해 피처리물과 반응하지 않는 불활성 기체가 사용된다.
예를 들어 제1 가열 처리로서 650℃~700℃의 고온으로 가열한 불활성 가스안에 기판을 이동시켜 넣고 수분간 가열한 후 기판을 이동시켜 고온으로 가열한 불활성 가스안에서 꺼내는 GRTA를 수행할 수도 있다. GRTA를 이용하면 단시간의 고온 가열 처리가 가능하다.
아울러 제1 가열 처리에서는, 질소, 또는 헬륨, 네온, 아르곤 등의 희가스에 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는 가열 처리 장치에 도입하는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스의 순도를 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
또한 제1 가열 처리의 조건 또는 산화물 반도체층의 재료에 따라서는 산화물 반도체막이 결정화되어 미결정막 또는 다결정막이 될 수도 있다. 예를 들어 결정화율이 90% 이상 또는 80% 이상인 미결정의 산화물 반도체막이 될 수도 있다. 또한 제1 가열 처리의 조건 또는 산화물 반도체층의 재료에 따라서는 결정 성분을 포함하지 않는 비정질의 산화물 반도체막이 될 수도 있다. 또한 비정질의 산화물 반도체중에 미결정부(입경 1nm 이상 20nm 이하(대표적으로는 2nm 이상 4nm 이하))가 혼재하는 산화물 반도체막이 될 수도 있다.
또한 산화물 반도체층의 제1 가열 처리는 섬형의 산화물 반도체층으로 가공하기 전의 산화물 반도체막에 수행할 수도 있다. 이 경우에는 제1 가열 처리 후에 가열 장치에서 기판을 꺼내어 포토리소그래피 공정을 수행한다.
산화물 반도체층에 대한 탈수화, 탈수소화의 효과를 나타내는 가열 처리는 산화물 반도체층 성막 후, 산화물 반도체층 상에 소스 전극 및 드레인 전극을 적층시킨 후, 소스 전극 및 드레인 전극 상에 게이트 절연층을 형성한 후 중 언제라도 수행할 수 있다.
이어서, 절연층(407) 및 산화물 반도체층(412) 상에 도전막을 형성한다. 이 도전막은 스퍼터링법이나 진공 증착법으로 형성할 수 있다. 도전막의 재료로서는 알루미늄(Al), 크롬(Cr), 구리(Cu), 탄탈륨(Ta), 티타늄(Ti), 몰리브덴(Mo), 텅스텐(W)에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한 망간(Mn), 마그네슘(Mg), 지르코늄(Zr), 베릴륨(Be), 토륨(Th) 중 어느 하나 또는 복수에서 선택된 재료를 사용할 수도 있다. 또한 도전막은 단층 구조일 수도, 2층 이상의 적층 구조로 형성할 수도 있다. 예를 들어 실리콘을 포함하는 알루미늄막의 단층 구조, 알루미늄막 상에 티타늄막을 적층하는 2층 구조, 티타늄막과 그 티타늄막 상에 중첩시켜 알루미늄막을 적층하고 나아가 그 위에 티타늄막을 성막하는 3층 구조 등을 들 수 있다. 또한 알루미늄(Al)에, 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc)에서 선택된 원소를 단수, 또는 복수 조합한 막, 합금막, 또는 질화막을 사용할 수도 있다.
제2 포토리소그래피 공정에 의해 도전막 상에 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)을 형성한 후 레지스트 마스크를 제거한다(도 3(B) 참조). 아울러 형성된 소스 전극층, 드레인 전극층의 단부는 테이퍼 형상이면, 위에 적층하는 게이트 절연층의 피복성이 향상되므로 바람직하다.
본 실시형태에서는 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)으로서 스퍼터링법에 의해 막 두께 150nm의 티타늄막을 형성한다.
아울러 도전막의 에칭시에, 산화물 반도체층(412)이 제거되어 그 아래의 절연층(407)이 노출되지 않도록 각각의 재료 및 에칭 조건을 적절히 조절한다.
본 실시형태에서는 도전막으로서는 티타늄막을 사용하고, 산화물 반도체층(412)으로서는 In-Ga-Zn-O계 산화물 반도체를 사용하고, 티타늄막의 에칭액으로서 암모니아과수(암모니아, 물, 과산화수소수의 혼합액)를 사용한다.
아울러 제2 포토리소그래피 공정에서는, 산화물 반도체층(412)은 일부만이 에칭되어 홈부(요입부)를 갖는 산화물 반도체층이 될 수도 있다. 또한 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
제2 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광에는 자외선이나 KrF 레이저광이나 ArF 레이저광을 사용한다. 산화물 반도체층(412) 상에서 서로 인접하는 소스 전극층의 하단부와 드레인 전극층의 하단부와의 간격 폭에 의해 후에 형성되는 트랜지스터의 채널 길이(L)가 결정된다. 아울러 채널 길이(L)=25nm 미만에서 노광을 수행하는 경우에는, 수nm~수십nm로 극히 파장이 짧은 초자외선(Extreme Ultraviolet)을 이용하여 제2 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광을 수행한다. 초자외선에 의한 노광은 해상도가 높고 초점 심도도 크다. 따라서, 후에 형성되는 트랜지스터의 채널 길이(L)를 10nm 이상 1000nm 이하로 할 수 있어 회로의 동작 속도를 고속화시킬 수 있고 나아가 오프 전류값이 극히 작으므로 저소비전력화도 도모할 수 있다.
이어서, 절연층(407), 산화물 반도체층(412), 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b) 상에 게이트 절연층(402)을 형성한다(도 3(C) 참조).
여기서, 불순물을 제거함으로써 i형화 또는 실질적으로 i형화된 산화물 반도체(고순도화된 산화물 반도체)는 계면 준위, 계면 전하에 대하여 극히 민감하므로 산화물 반도체층과 게이트 절연막과의 계면은 중요하다. 따라서 고순도화된 산화물 반도체에 접하는 게이트 절연막(GI)은 고품질화가 요구된다.
예를 들어 μ파(2.45GHz)를 이용한 고밀도 플라즈마 CVD는 치밀하고 절연내압이 높은 고품질의 절연막을 형성할 수 있으므로 바람직하다. 고순도화된 산화물 반도체와 고품질의 게이트 절연막이 밀접됨으로써 계면 준위를 감소시켜 양호한 계면 특성을 얻을 수 있기 때문이다.
또한 고밀도 플라즈마 CVD 장치에 의해 얻어진 절연막은 일정한 두께의 막 형성을 할 수 있으므로 단차 피복성이 뛰어나다. 또한 고밀도 플라즈마 CVD 장치에 의해 얻어지는 절연막은, 얇은 막의 두께를 정밀하게 제어할 수 있다.
물론, 게이트 절연막으로서 양질의 절연막을 형성할 수 있는 것이라면 스퍼터링법이나 플라즈마 CVD법 등 다른 성막 방법을 적용할 수 있다. 또한 성막 후의 열처리에 의해 게이트 절연막의 막질, 산화물 반도체와의 계면 특성이 개질되는 절연막일 수도 있다. 어떠한 경우이든 게이트 절연막으로서의 막질이 양호함은 물론, 산화물 반도체와의 계면 준위 밀도를 감소시키고 양호한 계면을 형성할 수 있는 것이면 된다.
나아가 85℃, 2×106V/cm, 12시간의 게이트 바이어스 열 스트레스 시험(BT 시험)에 있어서는, 불순물을 포함하고 있는 산화물 반도체는 불순물과 산화물 반도체의 주성분과의 결합이 강전계(B: 바이어스)와 고온(T: 온도)에 의해 절단되고, 생성된 미결합손이 문턱값 전압(Vth)의 쉬프트를 유발시키게 된다. 이에 반해 본 발명은 산화물 반도체의 불순물, 특히 수소나 수분 등을 최대한 제거하여 상기와 같이 게이트 절연막과의 계면 특성을 양호하게 함으로써 BT 시험에서도 안정된 트랜지스터를 얻는 것을 가능하게 하였다.
또한 게이트 절연층은 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층 또는 산화 알루미늄층을 단층으로 또는 적층하여 형성할 수 있다.
게이트 절연층의 형성은 고밀도 플라즈마 CVD 장치에 의해 수행한다. 여기서 고밀도 플라즈마 CVD 장치는 1×1011/cm3 이상의 플라즈마 밀도를 달성할 수 있는 장치를 가리킨다. 예를 들어 3kW~6kW의 μ파 전력을 인가하여 플라즈마를 발생시켜 절연막의 성막을 수행한다.
챔버에 재료 가스로서 모노실란 가스(SiH4)와 아산화 질소(N2O)와 희가스를 도입하고, 10Pa~30Pa의 압력하에서 고밀도 플라즈마를 발생시켜 유리 등의 절연 표면을 갖는 기판 상에 절연막을 형성한다. 그 후, 모노실란 가스(SiH4)의 공급을 정지하고, 대기에 노출시키지 않고 아산화 질소(N2O)와 희가스를 도입하여 절연막 표면에 플라즈마 처리를 수행할 수도 있다. 아산화 질소(N2O)와 희가스를 도입하여 절연막 표면에 수행하는 플라즈마 처리는 적어도 절연막의 성막보다 나중에 수행한다. 상기 프로세스 순서를 거친 절연막은 막 두께가 얇고, 예를 들어 100nm 미만이어도 신뢰성을 확보할 수 있는 절연막이다.
챔버에 도입하는 모노실란 가스(SiH4)와 아산화 질소(N2O)와의 유량비는 1:10에서 1:200의 범위로 한다. 또한 챔버에 도입하는 희가스로서는 헬륨, 아르곤, 크립톤, 크세논 등을 사용할 수 있는데, 그 중에서 저렴한 아르곤을 사용하는 것이 바람직하다.
상기 프로세스 순서를 거친 절연막은 종래의 평행 평판형의 PCVD 장치로 얻어지는 절연막과는 크게 다르며, 동일한 에칭액을 이용하여 에칭 속도를 비교했을 경우에 평행 평판형의 PCVD 장치로 얻어지는 절연막의 10% 이상 또는 20% 이상 느려, 고밀도 플라즈마 CVD 장치로 얻어지는 절연막은 치밀한 막이라고 할 수 있다.
본 실시형태에서는 게이트 절연층(402)으로서 막 두께 100nm의 산화 질화 규소막(SiOxNy라고도 부름, 단, x>y>0)을 이용한다. 게이트 절연층(402)은, 고밀도 플라즈마 CVD 장치에 성막 가스로서 모노실란(SiH4), 아산화 질소(N2O) 및 아르곤(Ar)을 사용하고 각각의 유량을 SiH4/N2O/Ar=250/2500/2500(sccm)으로 하고, 성막 압력 30Pa, 성막 온도 325℃에서 5kW의 μ파 전력을 인가하여 플라즈마를 발생시켜 성막을 수행한다.
또한 스퍼터링법으로 게이트 절연층(402)을 성막할 수도 있다. 스퍼터링법에 의해 산화 실리콘막을 성막하는 경우에는, 타겟으로서 실리콘 타겟 또는 석영 타겟을 이용하고 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다. 스퍼터링법을 이용하면 게이트 절연층(402)중에 수소가 다량으로 포함되지 않도록 할 수 있다.
또한 게이트 절연층(402)은 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)측으로부터 차례로 산화 실리콘층과 질화 실리콘층을 적층한 구조로 할 수도 있다. 예를 들어 제1 게이트 절연층으로서 막 두께 5nm 이상 300nm 이하(본 실시형태에서는 50nm)의 산화 실리콘층(SiOx(x>0))을 형성하고, 제1 게이트 절연층 상에 제2 게이트 절연층으로서 스퍼터링법에 의해 막 두께 50nm 이상 200nm 이하(본 실시형태에서는 50nm)의 질화 실리콘층(SiNy(y>0))을 적층하여 막 두께 100nm의 게이트 절연층을 형성할 수도 있다. 예를 들어 압력 0.4Pa, 고주파 전원 1.5kW, 산소 및 아르곤(산소 유량 25sccm:아르곤 유량 25sccm=1:1) 분위기하에서 RF 스퍼터링법에 의해 막 두께 100nm의 산화 실리콘층을 형성할 수 있다.
이어서, 제3 포토리소그래피 공정에 의해 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 게이트 절연층(402)의 일부를 제거하여 소스 전극층 또는 드레인 전극층(415a), 소스 전극층 또는 드레인 전극층(415b)에 이르는 개구(421a), 개구(421b)를 형성한다(도 3(D) 참조).
이어서 게이트 절연층(402) 및 개구(421a), 개구(421b) 상에 도전막을 형성한 후, 제4 포토리소그래피 공정에 의해 게이트 전극층(411), 배선층(414a), 배선층(414b)을 형성한다. 아울러 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 게이트 전극층(411), 배선층(414a), 배선층(414b)은 몰리브덴, 티타늄, 크롬, 탄탈륨, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 단층으로 또는 적층하여 형성할 수 있다.
예를 들어 게이트 전극층(411), 배선층(414a), 배선층(414b)의 2층의 적층 구조로서는, 알루미늄층 상에 몰리브덴층이 적층된 2층의 적층 구조, 또는 구리층 상에 몰리브덴층을 적층한 2층 구조, 또는 구리층 상에 질화 티타늄층 또는 질화 탄탈륨을 적층한 2층 구조, 또는 질화 티타늄층과 몰리브덴층을 적층한 2층 구조로 하는 것이 바람직하다. 3층의 적층 구조로서는, 텅스텐층 또는 질화 텅스텐층과, 알루미늄과 실리콘의 합금 또는 알루미늄과 티타늄의 합금과, 질화 티타늄층 또는 티타늄층을 적층한 구조로 하는 것이 바람직하다. 아울러 투광성을 갖는 도전막을 이용하여 게이트 전극층을 형성할 수도 있다. 투광성을 갖는 도전막의 예로서는 투광성 도전성 산화물 등을 들 수 있다.
본 실시형태에서는 게이트 전극층(411), 배선층(414a), 배선층(414b)으로서 스퍼터링법에 의해 막 두께 150nm의 티타늄막을 형성한다.
이어서, 불활성 가스 분위기하 또는 산소 가스 분위기하에서 제2 가열 처리(바람직하게는 200℃ 이상 400℃ 이하, 보다 바람직하게는 250℃ 이상 350℃ 이하)를 수행한다. 본 실시형태에서는, 질소 분위기하에서 250℃, 1시간의 제2 가열 처리를 수행한다. 또한 제2 가열 처리는 트랜지스터(410) 상에 보호 절연층이나 평탄화 절연층을 형성하고 나서 수행할 수도 있다.
나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하의 가열 처리를 수행할 수도 있다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를 산화물 절연층의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다.
이상의 공정으로 수소, 수분, 수소화물, 수산화물의 농도가 감소된 산화물 반도체층(412)을 갖는 트랜지스터(410)를 형성할 수 있다(도 3(E) 참조).
또한 트랜지스터(410) 상에 보호 절연층이나, 평탄화를 위한 평탄화 절연층을 마련할 수도 있다. 예를 들어 보호 절연층으로서 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층 또는 산화 알루미늄층을 단층으로 또는 적층하여 형성할 수 있다.
또한 평탄화 절연층으로서는 폴리이미드, 아크릴, 벤조시클로부텐, 폴리아미드, 에폭시 등의 내열성을 갖는 유기 재료를 사용할 수 있다. 또한 상기 유기 재료 외에, 저유전율 재료(low-k 재료), 실록산계 수지, PSG(인 글래스), BPSG(인 붕소 유리) 등을 사용할 수 있다. 아울러 이 재료들로 형성되는 절연막을 복수 적층시킴으로써 평탄화 절연층을 형성할 수도 있다.
아울러 실록산계 수지는 실록산계 재료를 출발 재료로 하여 형성된 Si-O-Si 결합을 포함하는 수지에 상당한다. 실록산계 수지는 치환기로서는 유기기(예를 들어 알킬기나 아릴기)나 플루오로기를 사용할 수도 있다. 또한 유기기는 플루오로기를 가지고 있을 수도 있다.
평탄화 절연층의 형성법은 특별히 한정되지 않고, 그 재료에 따라 스퍼터링법, SOG법, 스핀 코트, 딥, 스프레이 도포, 액적 토출법(잉크젯법, 스크린 인쇄, 오프셋 인쇄 등), 닥터 나이프, 롤 코터, 커텐 코터, 나이프 코터 등을 이용할 수 있다.
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로 산화물 반도체막에 함유되는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
본 발명의 일 태양에 따른 트랜지스터에서, 활성층으로 이용되는 산화물 반도체막은 그 캐리어 밀도를 1×1012/cm3 이하, 바람직하게는 1×1011/cm3 이하가 되도록 한다. 즉, 산화물 반도체층의 캐리어 밀도는 측정 한계 이하로서 실질적으로 제로로 한다.
또한 이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 예를 들어 1×10-13A 이하까지 감소시킨 트랜지스터를 제공할 수 있다.
아울러 산화물 반도체와의 비교 대상이 될 수 있는 반도체 재료로서는 탄화 규소(예를 들어 4H-SiC)가 있다. 산화물 반도체와 4H-SiC는 몇가지 공통점을 갖고 있다. 캐리어 밀도는 그 일례이다. 페르미 디락 분포에 따르면, 산화물 반도체의 소수 캐리어는 1×10-7/cm3 정도로 추측되는데, 이는 4H-SiC의 6.7×10-11/cm3와 마찬가지로 극히 낮은 값이다. 실리콘의 진성 캐리어 밀도(1.4×1010/cm3 정도)와 비교하면 그 정도가 크게 벗어남을 잘 알 수 있다.
또한 산화물 반도체의 에너지 밴드 갭은 3.0eV~3.5eV이고 4H-SiC의 에너지 밴드 갭은 3.26eV이므로 와이드 갭 반도체라는 점에서도 산화물 반도체와 탄화 규소는 공통된다.
한편, 산화물 반도체와 탄화 규소 사이에는 극히 큰 차이점이 존재한다. 이는 프로세스 온도이다. 탄화 규소는 일반적으로 1500℃~2000℃의 열처리를 필요로 하기 때문에, 다른 반도체 재료를 이용한 반도체 소자와의 적층 구조는 어렵다. 이러한 높은 온도에서는 반도체 기판이나 반도체 소자 등이 파괴되기 때문이다. 한편, 산화물 반도체는 300℃~500℃(유리 전이 온도 이하, 최대일지라도 700℃ 정도)의 열처리로 제조하는 것이 가능하여, 다른 반도체 재료를 이용하여 집적회로를 형성한 다음에 산화물 반도체에 의한 반도체 소자를 형성하는 것이 가능하다.
또한 탄화 규소의 경우와 달리, 유리 기판 등 내열성이 낮은 기판을 이용하는 것이 가능한 이점을 갖는다. 나아가 고온에서의 열처리가 불필요하므로, 탄화 규소의 형성 방법과 비교하여 에너지 비용을 충분히 낮출 수 있는 이점을 갖는다.
또한 산화물 반도체는 일반적으로 n형으로 되어 있지만, 개시하는 발명의 일 태양에서는 불순물, 특히 수분이나 수소를 제거함으로써 i형화를 실현한다. 이 점은, 실리콘 등과 같이 불순물을 첨가한 i형화가 아니라 종래에 없는 기술 사상을 포함하는 것이라 할 수 있다.
<산화물 반도체를 이용한 트랜지스터의 전도 기구>
여기서 산화물 반도체를 이용한 트랜지스터의 전도 기구에 대하여 도 12 내지 도 15를 이용하여 설명한다. 아울러 이하의 설명은 일 고찰에 지나지 않고, 이를 바탕으로 발명의 유효성이 부정되는 것은 아님을 밝혀둔다.
도 12는, 산화물 반도체를 이용한 탑 게이트형의 트랜지스터의 종단면도를 나타낸 것이다. 게이트 전극(GE) 아래에 게이트 절연막(GI)을 사이에 두고 산화물 반도체층(OS)이 마련되고 그 위에 소스 전극(S) 및 드레인 전극(D)이 마련되어 있다.
도 13에는 도 12의 A-A' 상에서의 에너지밴드 구조의 모식도를 나타내었다. 도 13에서 검은 원(●)은 전자를 나타내고 흰 원(○)은 정공을 나타내며 각각은 전하(-q, +q)를 갖고 있다. 그리고, 드레인 전극에 양의 전압(VD>0)을 인가한 다음, 파선은 게이트 전극에 전압을 인가하지 않는 경우(VG=0), 실선은 게이트 전극에 양의 전압(VG>0)을 인가한 경우를 나타낸다. 게이트 전극에 전압을 인가하지 않는 경우에는 높은 포텐셜 장벽으로 인해 소스 전극으로부터 산화물 반도체측으로 캐리어(전자)가 주입되지 않아 전류를 흘리지 않는 오프 상태를 나타낸다. 한편, 게이트 전극에 양의 전압을 인가하면 포텐셜 장벽이 저하되어 전류를 흘리는 온 상태를 나타낸다.
도 14(A), 도 14(B)는 도 12의 B-B'의 단면에서의 에너지밴드도(모식도)이다. 도 14(A)는 게이트 전극(GE)에 양의 전압(VG>0)이 인가된 상태로서, 소스 전극과 드레인 전극의 사이에 캐리어(전자)가 흐르는 온 상태를 나타낸다. 또한 도 14(B)는 게이트 전극(GE)에 음의 전압(VG<0)이 인가된 상태로서, 오프 상태(소수 캐리어는 흐르지 않음)인 경우를 나타낸다.
도 15는 진공 준위와 금속의 일함수(φM), 산화물 반도체의 전자 친화력(χ)의 관계를 나타낸 것이다.
상온에서 금속중의 전자는 축퇴(degenerate)되고 페르미 준위는 전도대 내에 위치한다. 종래의 산화물 반도체는 일반적으로 n형이며, 그 경우의 페르미 준위(Ef)는 밴드갭 중앙에 위치하는 진성 페르미 준위(Ei)로부터 멀어져 전도대 근처에 위치하고 있다. 아울러 산화물 반도체에서 수소의 일부는 도너가 되어 n형화되는 하나의 요인임이 알려져 있다.
이에 반해 본 발명에 따른 산화물 반도체는, n형 불순물인 수소를 산화물 반도체로부터 제거하여, 산화물 반도체의 주성분 이외의 불순물이 최대한 포함되지 않도록 고순도화함으로써 진성(i형)으로 하거나, 또는 진성형에 가깝도록 한 것이다. 즉, 불순물을 첨가하여 i형화시키는 것이 아니라 수소나 수분 등의 불순물을 최대한 제거함으로써 고순도화된 i형(진성 반도체) 또는 이에 근접시키는 것을 특징으로 하고 있다. 이렇게 함으로써 페르미 준위(Ef)는 진성 페르미 준위(Ei)와 동일한 정도로 할 수 있다.
산화물 반도체의 밴드 갭(Eg)은 3.15eV이고, 전자 친화력(χ)은 4.3V로 알려져 있다. 소스 전극 및 드레인 전극을 구성하는 티타늄(Ti)의 일함수는 산화물 반도체의 전자 친화력(χ)과 거의 동일하다. 이 경우, 금속과 산화물 반도체 사이의 계면에서 쇼트키형의 전자 장벽은 형성되지 않는다.
이 때 전자는 도 14(A)에서 나타낸 바와 같이 게이트 절연막과 고순도화된 산화물 반도체와의 계면에서의, 산화물 반도체측의 에너지적으로 안정된 최저부로 이동한다.
또한 도 14(B)에서, 게이트 전극(GE)에 음의 전위가 인가되면 소수 캐리어인 홀의 수는 실질적으로 제로이므로 전류는 실질적으로 제로에 가까운 값이 된다.
예를 들어 트랜지스터의 채널 폭(W)이 1×10m이고 채널 길이(L)가 3μm인 소자일지라도, 오프 전류가 10-13A이하이며 서브스레숄드 스윙값(S값)이 0.1V/dec.(게이트 절연막 두께 100nm)인 트랜지스터를 얻을 수 있다.
이와 같이, 산화물 반도체의 주성분 이외의 불순물이 최소화되도록 산화물 반도체를 고순도화시킴으로써 트랜지스터의 동작을 양호하게 할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 3)
본 실시형태는 실시형태 1의 타겟을 적용하여 제조한 반도체 장치로서 트랜지스터를 제조하는 예를 나타내었다. 아울러 실시형태 2와 동일한 부분 또는 동일한 기능을 갖는 부분 및 공정은 실시형태 2와 동일하게 할 수 있고 그 반복되는 설명은 생략한다. 또한 동일한 부위의 상세한 설명도 생략한다. 본 실시형태에서 나타낸 트랜지스터(460)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터 및 트랜지스터의 제조 방법의 일 형태를 도 4 및 도 5를 이용하여 설명한다.
도 4(A), 도 4(B)에 트랜지스터의 평면 및 단면 구조의 일례를 나타내었다. 도 4(A), 도 4(B)에 나타낸 트랜지스터(460)는 탑 게이트 구조의 트랜지스터 중 하나이다.
도 4(A)는 탑 게이트 구조의 트랜지스터(460)의 평면도이며, 도 4(B)는 도 4(A)의 선 D1-D2에 따른 단면도이다.
트랜지스터(460)는 절연 표면을 갖는 기판(450) 상에 절연층(457), 소스 전극층 또는 드레인 전극층(465a(465a1, 465a2)), 산화물 반도체층(462), 소스 전극층 또는 드레인 전극층(465b), 배선층(468), 게이트 절연층(452), 게이트 전극층(461(461a, 461b))을 포함하고, 소스 전극층 또는 드레인 전극층(465a(465a1, 465a2))은 배선층(468)을 통해 배선층(464)과 전기적으로 접속되어 있다. 또한 도시하지 않았으나, 소스 전극층 또는 드레인 전극층(465b)도 게이트 절연층(452)에 마련된 개구를 통해 배선층과 전기적으로 접속된다.
이하, 도 5(A) 내지 도 5(E)을 이용하여 기판(450) 상에 트랜지스터(460)을 제조하는 공정을 설명한다.
우선, 절연 표면을 갖는 기판(450) 상에 베이스막이 되는 절연층(457)을 형성한다.
본 실시형태에서는 절연층(457)으로서 스퍼터링법에 의해 산화 실리콘층을 형성한다. 기판(450)을 처리실로 반송하고, 수소 및 수분이 제거된 고순도 산소를 포함하는 스퍼터링 가스를 도입하고 실리콘 타겟 또는 석영(바람직하게는 합성 석영)을 이용하여 기판(450) 상에 절연층(457)으로서 산화 실리콘층을 성막한다. 아울러 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다.
예를 들어 스퍼터링 가스의 순도가 6N(99.9999%)이고, 석영(바람직하게는 합성 석영)을 사용하고, 기판 온도 108℃, 기판과 타겟과의 거리(T-S간 거리) 60mm, 압력 0.4Pa, 고주파 전원 1.5kW, 산소 및 아르곤(산소 유량 25sccm:아르곤 유량 25sccm=1:1) 분위기하에서 RF 스퍼터링법에 의해 산화 실리콘층을 성막한다. 막 두께는 100nm로 한다. 아울러 산화 실리콘층을 성막하기 위한 타겟으로서 석영(바람직하게는 합성 석영) 대신에 실리콘 타겟을 사용할 수도 있다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 절연층(457)을 성막하는 것이 바람직하다. 절연층(457)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물이 배기되므로, 이 성막실에서 성막했을 경우, 절연층(457)에 포함되는 불순물의 농도를 감소시킬 수 있다.
절연층(457)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
또한 절연층(457)은 적층 구조일 수도 있으며, 예를 들어 기판(450)측으로부터 차례로 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층, 질화 산화 알루미늄층 등의 질화물 절연층과 상기 산화물 절연층을 적층한 구조로 형성할 수도 있다.
예를 들어 산화 실리콘층과 기판과의 사이에 수소 및 수분이 제거된 고순도 질소를 포함하는 스퍼터링 가스를 도입하고, 실리콘 타겟을 이용하여 질화 실리콘층을 성막한다. 이 경우에도, 산화 실리콘층과 마찬가지로 처리실 내의 잔류 수분을 제거하면서 질화 실리콘층을 성막하는 것이 바람직하다.
이어서, 절연층(457) 상에 도전막을 형성하고 제1 포토리소그래피 공정에 의해 도전막 상에 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)을 형성한 후 레지스트 마스크를 제거한다(도 5(A) 참조). 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)은 단면도에서는 분단되어 나타나 있으나 연속된 막이다. 아울러 형성된 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)의 단부는 테이퍼 형상이면, 위에 적층하는 게이트 절연층의 피복성이 향상되므로 바람직하다.
소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)의 재료로서는, Al, Cr, Cu, Ta, Ti, Mo, W에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한 망간(Mn), 마그네슘(Mg), 지르코늄(Zr), 베릴륨(Be), 토륨(Th) 중 어느 하나 또는 복수에서 선택된 재료를 사용할 수도 있다. 또한 도전막은 단층 구조일 수도, 2층 이상의 적층 구조로 형성할 수도 있다. 예를 들어 실리콘을 포함하는 알루미늄막의 단층 구조, 알루미늄막 상에 티타늄막을 적층하는 2층 구조, 티타늄막과 그 티타늄막 상에 중첩시켜 알루미늄막을 적층하고 나아가 그 위에 티타늄막을 성막하는 3층 구조 등을 들 수 있다. 또한 Al에, 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc)에서 선택된 원소를 단수, 또는 복수 조합한 막, 합금막, 또는 질화막을 사용할 수도 있다.
본 실시형태에서는 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)으로서 스퍼터링법에 의해 막 두께 150nm의 티타늄막을 형성한다.
이어서, 절연층(457), 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2) 상에, 막 두께 2nm 이상 200nm 이하의 산화물 반도체막을 형성한다. 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하기로 한다.
이어서 산화물 반도체막을, 제2 포토리소그래피 공정에 의해 섬형의 산화물 반도체층(462)으로 가공한다(도 5(B) 참조). 본 실시형태에서는, 산화물 반도체막을 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하여 스퍼터링법에 의해 성막한다.
산화물 반도체막은 감압 상태로 유지된 처리실 내에 기판을 유지하고, 처리실 내의 잔류 수분을 제거하면서 수소 및 수분이 제거된 스퍼터링 가스를 도입하고 금속 산화물을 타겟으로 하여 기판(450) 상에 성막된다. 처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자, 수분(H2O) 등 수소 원자를 포함하는 화합물(보다 바람직하게는 탄소 원자를 포함하는 화합물도) 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막 성막시에 기판을 100℃~400℃로 가열할 수도 있다.
산화물 반도체막을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
성막 조건의 일례로서는, 기판 온도를 실온, 기판과 타겟과의 거리를 110mm, 압력 0.4Pa, 직류(DC) 전원 0.5kW, 산소 및 아르곤(산소 유량 15sccm:아르곤 유량 30sccm) 분위기하의 조건이 적용된다. 아울러 펄스 직류(DC) 전원을 이용하면 성막시에 발생하는 가루형 물질(파티클, 먼지라고도 함)을 줄일 수 있고 막 두께 분포도 균일해지므로 바람직하다. 산화물 반도체막은 바람직하게는 5nm 이상 30nm 이하로 한다. 아울러 적용하는 산화물 반도체 재료에 따라 적절한 두께는 다르며, 재료에 따라 적절한 두께를 선택하면 된다.
본 실시형태에서는 에칭액으로서 인산과 초산과 질산을 혼합한 용액을 이용한 습식 에칭법에 의해 산화물 반도체막을 섬형의 산화물 반도체층(462)으로 가공한다.
본 실시형태에서는, 산화물 반도체층(462)에 제1 가열 처리를 수행한다. 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만으로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하 450℃에서 1시간의 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아 산화물 반도체층을 얻는다. 이 제1 가열 처리에 의해 산화물 반도체층(462)의 탈수화 또는 탈수소화를 수행할 수 있다.
아울러 가열 처리 장치는 전기로에 한정되지 않고, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해 피처리물을 가열하는 장치를 구비할 수도 있다. 예를 들어 GRTA(Gas Rapid Thermal Anneal) 장치, LRTA(Lamp Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수 있다. 예를 들어 제1 가열 처리로서 650℃~700℃의 고온으로 가열한 불활성 가스안에 기판을 이동시켜 넣고 수분간 가열한 후, 기판을 이동시켜 고온으로 가열한 불활성 가스안에서 꺼내는 일이 GRTA에 의해 수행될 수도 있다. GRTA를 이용하면 단시간의 고온 가열 처리가 가능하다.
아울러 제1 가열 처리에서는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스에 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는, 가열 처리 장치에 도입하는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스의 순도를 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
또한 제1 가열 처리의 조건 또는 산화물 반도체층의 재료에 따라서는, 산화물 반도체층이 결정화되어 미결정막 또는 다결정막이 될 수도 있다.
또한 산화물 반도체층의 제1 가열 처리는 산화물 반도체막이 섬형의 산화물 반도체층으로 가공하기 전에 수행할 수도 있다. 이 경우에는 제1 가열 처리 후에 가열 장치에서 기판을 꺼내어 포토리소그래피 공정을 수행한다.
산화물 반도체층에 대한 탈수화, 탈수소화의 효과를 나타내는 가열 처리는, 산화물 반도체층 성막 후, 산화물 반도체층 상에 소스 전극 및 드레인 전극을 적층시킨 후, 소스 전극 및 드레인 전극 상에 게이트 절연층을 형성한 후 중 언제라도 수행할 수 있다.
이어서, 절연층(457), 산화물 반도체층(462) 및 소스 전극층 또는 드레인 전극층(465a2) 상에 도전막을 형성하고, 제3 포토리소그래피 공정에 의해 도전막 상에 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층 또는 드레인 전극층(465b), 배선층(468)을 형성한 후 레지스트 마스크를 제거한다(도 5(C) 참조). 소스 전극층 또는 드레인 전극층(465b), 배선층(468)은 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)과 동일한 재료 및 공정으로 형성할 수 있다.
본 실시형태에서는 소스 전극층 또는 드레인 전극층(465b)과, 배선층(468)으로서 스퍼터링법에 의해 막 두께 150nm의 티타늄막을 형성한다. 본 실시형태에서는, 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)과 소스 전극층 또는 드레인 전극층(465b)에 동일한 티타늄막을 이용하는 예이므로 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)과 소스 전극층 또는 드레인 전극층(465b)은 에칭에 있어서 선택비를 취할 수 없다. 따라서, 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)이 소스 전극층 또는 드레인 전극층(465b)의 에칭시에 에칭되지 않도록, 산화물 반도체층(462)에 덮이지 않는 소스 전극층 또는 드레인 전극층(465a2) 상에 배선층(468)을 마련하였다. 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2)과 소스 전극층 또는 드레인 전극층(465b)에 에칭 공정에서 높은 선택비를 갖는 서로 다른 재료를 이용하는 경우에는, 에칭시에 소스 전극층 또는 드레인 전극층(465a2)을 보호하는 배선층(468)은 반드시 마련하지 않을 수도 있다.
아울러 도전막의 에칭에 의해 산화물 반도체층(462)이 제거되지 않도록 각각의 재료 및 에칭 조건을 적절히 조절한다.
본 실시형태에서는 도전막으로서 티타늄막을 사용하고, 산화물 반도체층(462)으로는 In-Ga-Zn-O계 산화물 반도체를 사용하고, 티타늄막의 에칭액으로서 암모니아과수(암모니아, 물, 과산화수소수의 혼합액)를 사용한다.
아울러 제3 포토리소그래피 공정에서는 산화물 반도체층(462)은 일부만이 에칭되어 홈부(요입부)를 갖는 산화물 반도체층이 될 수도 있다. 또한 소스 전극층 또는 드레인 전극층(465b), 배선층(468)을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
이어서, 절연층(457), 산화물 반도체층(462), 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2), 소스 전극층 또는 드레인 전극층(465b) 상에 게이트 절연층(452)을 형성한다.
게이트 절연층(452)은 플라즈마 CVD법 또는 스퍼터링법 등을 이용하고, 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층 또는 산화 알루미늄층을 단층으로 또는 적층하여 형성할 수 있다. 아울러 게이트 절연층(452)중에 수소가 다량으로 포함되지 않도록 하기 위해서는 스퍼터링법으로 게이트 절연층(452)을 성막하는 것이 바람직하다. 스퍼터링법에 의해 산화 실리콘막을 성막하는 경우에는 타겟으로서 실리콘 타겟 또는 석영 타겟을 이용하고 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다.
게이트 절연층(452)은 소스 전극층 또는 드레인 전극층(465a1), 소스 전극층 또는 드레인 전극층(465a2), 소스 전극층 또는 드레인 전극층(465b)측으로부터 차례로 산화 실리콘층과 질화 실리콘층을 적층한 구조로 할 수도 있다. 본 실시형태에서는, 압력 0.4Pa, 고주파 전원 1.5kW, 산소 및 아르곤(산소 유량 25sccm:아르곤 유량 25sccm=1:1) 분위기하에서 RF 스퍼터링법에 의해 막 두께 100nm의 산화 실리콘층을 형성한다.
이어서, 제4 포토리소그래피 공정에 의해 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 게이트 절연층(452)의 일부를 제거하여 배선층(468)에 이르는 개구(423)를 형성한다(도 5(D) 참조). 도시하지 않았으나 개구(423)의 형성시에 소스 전극층 또는 드레인 전극층(465b)에 이르는 개구를 형성할 수도 있다. 본 실시형태에서는 소스 전극층 또는 드레인 전극층(465b)에 이르는 개구는 층간 절연층을 더 적층한 후에 형성하고, 전기적으로 접속되는 배선층을 개구에 형성하는 예로 한다.
이어서 게이트 절연층(452) 및 개구(423) 상에 도전막을 형성한 후, 제5 포토리소그래피 공정에 의해 게이트 전극층(461(461a, 461b)), 배선층(464)을 형성한다. 아울러 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 게이트 전극층(461(461a, 461b)), 배선층(464)은 몰리브덴, 티타늄, 크롬, 탄탈륨, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 단층으로 또는 적층하여 형성할 수 있다.
본 실시형태에서는 게이트 전극층(461(461a, 461b)), 배선층(464)은 스퍼터링법에 의해 막 두께 150nm의 티타늄막을 이용하여 형성한다.
이어서, 불활성 가스 분위기하 또는 산소 가스 분위기하에서 제2 가열 처리(예를 들어 200℃ 이상 400℃ 이하, 바람직하게는 250℃ 이상 350℃ 이하)를 수행한다. 본 실시형태에서는 질소 분위기하에서 250℃, 1시간의 제2 가열 처리를 수행한다. 또한 제2 가열 처리는 트랜지스터(460) 상에 보호 절연층이나 평탄화 절연층을 형성하고 나서 수행할 수도 있다.
나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하의 가열 처리를 수행할 수도 있다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를 산화물 절연층의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다.
이상의 공정으로 수소, 수분, 수소화물, 수산화물의 농도가 감소된 산화물 반도체층(462)을 갖는 트랜지스터(460)를 형성할 수 있다(도 5(E) 참조).
또한 트랜지스터(460) 상에 보호 절연층이나 평탄화를 위한 평탄화 절연층을 마련할 수도 있다. 아울러 도시하지 않았으나, 게이트 절연층(452), 보호 절연층이나 평탄화 절연층에 소스 전극층 또는 드레인 전극층(465b)에 이르는 개구를 형성하고, 그 개구에 소스 전극층 또는 드레인 전극층(465b)과 전기적으로 접속되는 배선층을 형성한다.
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로 산화물 반도체막이 함유하는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 이 방법으로 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
또한 이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 4)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 아울러 실시형태 2와 동일한 부분 또는 동일한 기능을 갖는 부분 및 공정은 실시형태 2와 동일하게 할 수 있고 그 반복되는 설명은 생략한다. 또한 동일한 부위의 상세한 설명도 생략한다. 본 실시형태에서 나타낸 트랜지스터(425), 트랜지스터(426)는, 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터를 도 6을 이용하여 설명한다.
도 6(A), 도 6(B)에 트랜지스터의 단면 구조의 일례를 나타낸다. 도 6(A), 도 6(B)에 나타낸 트랜지스터(425), 트랜지스터(426)는 산화물 반도체층을 도전층과 게이트 전극층 사이에 끼워 마련한 구조의 트랜지스터 중 하나이다.
또한 도 6(A), 도 6(B)에서, 기판은 실리콘 기판을 이용하고 기판(420) 상에 마련된 절연층(422) 상에 트랜지스터(425), 트랜지스터(426)가 각각 마련되어 있다.
도 6(A)에서 기판(420)에 마련된 절연층(422)과 절연층(407)과의 사이에 적어도 산화물 반도체층(412) 전체와 중첩되도록 도전층(427)이 마련되어 있다.
아울러 도 6(B)는 절연층(422)과 절연층(407)과의 사이의 도전층(424)이, 도시된 바와 같이 에칭에 의해 가공되어 산화물 반도체층(412)의 적어도 채널 영역을 포함한 일부와 중첩되는 예이다.
도전층(427), 도전층(424)은 후속 공정에서 수행되는 가열 처리 온도에 견딜 수 있는 금속재료일 수 있으며, 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc)에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막, 또는 상술한 원소를 성분으로 하는 질화물 등을 사용할 수 있다. 또한 도전층(427)과 도전층(424)은 각각 단층 구조일 수도 적층 구조일 수도 있으며, 예를 들어 텅스텐층의 단층 구조 또는 질화 텅스텐층과 텅스텐층과의 적층 구조 등을 이용할 수 있다.
또한 도전층(427), 도전층(424)은, 전위가 트랜지스터(425), 트랜지스터(426)의 게이트 전극층(411)과 같을 수도 다를 수도 있으며, 제2 게이트 전극층으로서 기능시킬 수도 있다. 또한 도전층(427), 도전층(424)의 전위가 GND 또는 0V와 같은 고정 전위일 수도 있다.
도전층(427)과 도전층(424)에 의해 트랜지스터(425)와 트랜지스터(426)의 전기 특성을 각각 제어할 수 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 5)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터(390)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 사용할 수 있다.
본 실시형태의 트랜지스터의 단면 구조의 일례를 도 7(A) 내지 도 7(E)에 나타내었다. 도 7(A) 내지 도 7(E)에 나타낸 트랜지스터(390)는 보텀 게이트 구조의 트랜지스터이며 역스태거형 트랜지스터라고도 한다.
또한 트랜지스터(390)는 싱글 게이트 구조의 트랜지스터로서 설명하였으나, 필요에 따라서 복수의 채널 형성 영역을 포함하는 멀티 게이트 트랜지스터로 제조할 수 수 있다.
이하, 도 7(A) 내지 도 7(E)를 이용하여 기판(394) 상에 트랜지스터(390)를 제조하는 공정을 설명한다.
우선, 절연 표면을 갖는 기판(394) 상에 도전막을 형성한 후, 제1 포토리소그래피 공정에 의해 게이트 전극층(391)을 형성한다. 형성된 게이트 전극층의 단부는 테이퍼 형상이면, 위에 적층하는 게이트 절연층의 피복성이 향상되므로 바람직하다. 아울러 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
절연 표면을 갖는 기판(394)으로 사용할 수 있는 기판에 특별한 제한은 없으나, 적어도 후의 가열 처리에 견딜 수 있을 정도의 내열성을 가질 필요가 있다. 바륨 보로실리케이트 유리나 알루미노보로실리케이트 유리 등의 유리 기판을 절연 표면을 갖는 기판(394)으로 사용할 수 있다.
또한 유리 기판이 사용되고, 후의 가열 처리의 온도가 높은 경우에는, 변형점이 730℃ 이상인 것을 사용하는 것이 좋다. 또한 유리 기판으로는, 예를 들어 알루미노실리케이트 유리, 알루미노보로실리케이트 유리, 바륨 보로실리케이트 유리 등의 유리 재료가 사용되고 있다. 아울러 일반적으로 산화 붕소에 비해 산화 바륨(BaO)을 많이 포함시킴으로써, 보다 실용적인 내열유리를 얻을 수 있다. 따라서 B2O3보다 BaO를 많이 포함하는 유리 기판을 사용하는 것이 바람직하다.
아울러 상기 유리 기판 대신에 세라믹 기판, 석영 유리 기판, 석영 기판, 사파이어 기판과 같은 절연체로 이루어지는 기판을 사용할 수도 있다. 이 외에도 결정화 유리 기판 등을 사용할 수 있다. 또한 플라스틱 기판 등도 적절히 사용할 수 있다.
베이스막이 되는 절연막을 기판(394)과 게이트 전극층(391)과의 사이에 마련할 수도 있다. 베이스막은 기판(394)으로부터의 불순물 원소의 확산을 방지하는 기능이 있고, 질화 실리콘막, 산화 실리콘막, 질화 산화 실리콘막 또는 산화 질화 실리콘막에서 선택된 하나 또는 복수의 막에 의한 단층 구조 또는 적층 구조에 의해 형성할 수 있다.
또한 게이트 전극층(391)은 몰리브덴, 티타늄, 크롬, 탄탈륨, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 단층으로 또는 적층하여 형성할 수 있다.
예를 들어 게이트 전극층(391)의 2층의 적층 구조로서는 아래와 같은 구조, 즉 알루미늄층 상에 몰리브덴층이 적층된 2층의 적층 구조, 구리층 상에 몰리브덴층을 적층한 2층 구조, 구리층 상에 질화 티타늄층 또는 질화 탄탈륨을 적층한 2층 구조, 질화 티타늄층과 몰리브덴층을 적층한 2층 구조, 또는 질화 텅스텐층과 텅스텐층을 적층한 2층 구조로 하는 것이 바람직하다. 3층의 적층 구조로서는 텅스텐층 또는 질화 텅스텐층과, 알루미늄과 실리콘의 합금 또는 알루미늄과 티타늄의 합금과, 질화 티타늄층 또는 티타늄층을 적층한 구조로 하는 것이 바람직하다. 아울러 투광성을 갖는 도전막을 이용하여 게이트 전극층을 형성할 수도 있다. 투광성을 갖는 도전막의 예로서는 투광성 도전성 산화물 등을 들 수 있다.
이어서, 게이트 전극층(391) 상에 게이트 절연층(397)을 형성한다.
게이트 절연층(397)은 플라즈마 CVD법 또는 스퍼터링법 등으로, 산화 실리콘층, 질화 실리콘층, 산화 질화 실리콘층, 질화 산화 실리콘층, 또는 산화 알루미늄층을 단층으로 또는 적층하여 형성할 수 있다. 아울러 게이트 절연층(397)중에 수소가 다량으로 포함되지 않도록 하기 위해서는 스퍼터링법으로 게이트 절연층(397)을 성막하는 것이 바람직하다. 스퍼터링법에 의해 산화 실리콘막을 성막하는 경우에는, 타겟으로서 실리콘 타겟 또는 석영 타겟을 이용하고 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다.
게이트 절연층(397)은 게이트 전극층(391) 상에 차례로 질화 실리콘층과 산화 실리콘층을 적층한 구조로 할 수도 있다. 예를 들어 제1 게이트 절연층으로서 스퍼터링법에 의해 막 두께 50nm 이상 200nm 이하(본 실시형태에서는 50nm)의 질화 실리콘층(SiNy(y>0))을 형성하고, 제1 게이트 절연층 상에 제2 게이트 절연층으로서 막 두께 5nm 이상 300nm 이하(본 실시형태에서는 50nm)의 산화 실리콘층(SiOx(x>0))을 적층하여 막 두께 100nm의 게이트 절연층을 형성한다.
또한 게이트 절연층(397), 후에 형성하는 산화물 반도체막(393)에 수소, 수산기 및 수분이 가능한 한 포함되지 않도록 하기 위해서, 성막의 사전 처리로서 스퍼터링 장치의 예비 가열실에서 게이트 전극층(391)이 형성된 기판(394), 또는 게이트 절연층(397)까지 형성된 기판(394)를 예비 가열하여, 기판(394)에 흡착된 수소, 수분 등의 불순물을 탈리하여 배기시키는 것이 바람직하다. 아울러 예비 가열의 온도로서는 100℃ 이상 400℃ 이하, 바람직하게는 150℃ 이상 300℃ 이하이다. 아울러 예비 가열실에 마련하는 배기 수단은 크라이오펌프가 바람직하다. 아울러 이 예비 가열의 처리는 생략할 수도 있다. 또한 이 예비 가열은, 산화물 절연층(396)의 성막 전에, 소스 전극층(395a) 및 드레인 전극층(395b)을 포함하여 전극층이 기판(394)의 층까지 형성될 때까지 기판(394)에도 동일하게 수행할 수도 있다.
이어서, 게이트 절연층(397) 상에, 막 두께 2nm 이상 200nm 이하의 산화물 반도체막(393)을 형성한다(도 7(A) 참조). 산화물 반도체막(393)은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조할 수 있다.
아울러 산화물 반도체막(393)을 스퍼터링법에 의해 성막하기 전에, 아르곤 가스를 도입하여 플라즈마를 발생시키는 역스퍼터링를 수행하여, 게이트 절연층(397)의 표면에 부착된 먼지를 제거하는 것이 바람직하다. 역스퍼터링은 타겟측에 전압을 인가하지 않고 아르곤 분위기하에서 기판측에 RF전원을 이용하여 전압을 인가하여 기판 근방에 플라즈마를 형성하여 표면을 개질하는 방법을 말한다. 아울러 아르곤 분위기 대신에 질소 분위기, 헬륨 분위기, 산소 분위기 등을 이용할 수도 있다.
산화물 반도체막(393)은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하는, 스퍼터링법에 의해 성막한다. 산화물 반도체막(393)으로서 In-Ga-Zn-O계, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Sn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, In-O계, Sn-O계, Zn-O계의 산화물 반도체막을 사용한다. 본 실시형태에서는 산화물 반도체막(393)을 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하여 스퍼터링법에 의해 성막한다. 또한 산화물 반도체막(393)은 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스(대표적으로는 아르곤) 및 산소 혼합 분위기하에서 스퍼터링법에 의해 형성할 수 있다. 또한 스퍼터링법을 이용하는 경우, SiO2를 2중량% 이상 10중량% 이하 포함하는 타겟을 이용하여 성막을 수행할 수도 있다.
산화물 반도체막(393)을 스퍼터링법으로 제조하기 위한 타겟으로서 산화 아연을 주성분으로 하는 산화물 반도체 성막용 타겟을 사용할 수 있다. 또한 산화물 반도체 성막용 타겟의 다른 예로서는, In, Ga 및 Zn을 포함하는 산화물 반도체 성막용 타겟(조성비로서 In2O3:Ga2O3:ZnO=1:1:1[mol비])을 사용할 수 있다. 또한 In, Ga 및 Zn을 포함하는 산화물 반도체 성막용 타겟으로서 In2O3:Ga2O3:ZnO=1:1:2[mol비], 또는 In2O3:Ga2O3:ZnO=1:1:4[mol비]의 조성비를 갖는 타겟을 사용할 수도 있다. 산화물 반도체 성막용 타겟의 충전율은 90% 이상 100% 이하, 바람직하게는 95% 이상 99.9%이하이다. 충전율이 높은 산화물 반도체 성막용 타겟을 사용함으로써, 성막한 산화물 반도체막은 치밀한 막이 된다.
감압 상태로 유지된 처리실 내에 기판을 유지하고, 기판을 실온 또는 400℃ 미만의 온도로 가열한다. 그리고, 처리실 내의 잔류 수분을 제거하면서 수소 및 수분이 제거된 스퍼터링 가스를 도입하고, 금속 산화물을 타겟으로 하여 기판(394) 에 산화물 반도체막(393)을 성막한다. 처리실 내의 잔류 수분을 제거하기 위해서는, 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자, 수분(H2O) 등 수소 원자를 포함하는 화합물(보다 바람직하게는 탄소 원자를 포함하는 화합물도) 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다. 또한 크라이오펌프에 의해 처리실 내에 잔류하는 수분을 제거하면서 스퍼터링 성막을 수행함으로써, 산화물 반도체막(393)을 성막할 때의 기판 온도는 실온에서 400℃ 미만으로 할 수 있다.
성막 조건의 일례로서는, 기판과 타겟과의 거리를 100mm, 압력 0.6Pa, 직류(DC) 전원 0.5kW, 산소(산소 유량 비율 100%) 분위기하의 조건이 적용된다. 아울러 펄스 직류(DC) 전원을 이용하면 성막시에 발생하는 가루형 물질(파티클, 먼지라고도 함)을 줄일 수 있고 막 두께 분포도 균일해지므로 바람직하다. 산화물 반도체막은 바람직하게는 5nm 이상 30nm 이하로 한다. 아울러 적용하는 산화물 반도체 재료에 따라 적절한 두께는 다르며, 재료에 따라 적절한 두께를 선택하면 된다.
스퍼터링법에는 스퍼터링용 전원에 고주파 전원을 이용하는 RF 스퍼터링법, 직류 전원을 이용하는 DC 스퍼터링법, 나아가 펄스적으로 바이어스를 주는 펄스 DC 스퍼터링법이 있고, 어떤 것을 이용할 수도 있다. RF 스퍼터링법은 주로 절연막을 성막하는 경우에 이용되고 DC 스퍼터링법은 주로 금속막을 성막하는 경우에 이용된다.
또한 재료가 다른 타겟을 복수 마련할 수 있는 다원 스퍼터링 장치를 사용할 수도 있다. 다원 스퍼터링 장치는 동일한 챔버에서 서로 다른 재료막을 적층 성막할 수도, 동일한 챔버에서 복수 종류의 재료를 동시에 방전시켜 성막할 수도 있다.
또한 챔버 내부에 자석 기구를 구비한 마그네트론 스퍼터링법을 이용하는 스퍼터링 장치나, 그로우 방전을 사용하지 않고 μ파를 이용하여 발생시킨 플라즈마를 이용하는 ECR 스퍼터링법을 이용하는 스퍼터링 장치를 사용할 수도 있다.
또한 스퍼터링법을 이용하는 성막 방법으로서 성막중에 타겟 물질과 스퍼터링 가스 성분을 화학반응시켜 이들의 화합물 박막을 형성하는 리엑티브 스퍼터링법이나, 성막중에 기판에도 전압을 인가하는 바이어스 스퍼터링법을 이용할 수도 있다.
이어서, 산화물 반도체막을 제2 포토리소그래피 공정에 의해 섬형의 산화물 반도체층(399)으로 가공한다(도 7(B) 참조). 또한 섬형의 산화물 반도체층(399)을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 게이트 절연층(397)에 콘택홀을 형성하는 경우, 그 콘택홀은 산화물 반도체층(399)의 형성시에 형성될 수 있다.
아울러 이때의 산화물 반도체막(393)의 에칭은 드라이 에칭일 수도 웨트 에칭일 수도 있으며 둘 모두를 이용할 수도 있다.
드라이 에칭에 이용하는 에칭 가스로서는, 염소를 포함하는 가스(염소계 가스, 예를 들어 염소(Cl2), 염화 붕소(BCl3), 염화 규소(SiCl4), 사염화탄소(CCl4) 등)가 바람직하다.
또한 불소를 포함하는 가스(불소계 가스, 예를 들어 사불화탄소(CF4), 육불화황(SF6), 삼불화질소(NF3), 트리플루오로메탄(CHF3) 등), 브롬화 수소(HBr), 산소(O2), 이 가스들에 헬륨(He)이나 아르곤(Ar) 등의 희가스를 첨가한 가스 등을 사용할 수 있다.
드라이 에칭법으로서는, 평행 평판형 RIE(Reactive Ion Etching) 법이나, ICP(Inductively Coupled Plasma: 유도 결합형 플라즈마) 에칭법을 이용할 수 있다. 원하는 가공 형상으로 막을 에칭할 수 있도록 에칭 조건(코일형의 전극에 인가되는 전력량, 기판측의 전극에 인가되는 전력량, 기판측의 전극 온도 등)을 적절히 조절한다.
웨트 에칭에 이용하는 에칭액으로서는 인산과 초산과 질산을 혼합한 용액 등을 사용할 수 있다. 또한 ITO07N(칸토 화학사제) 등을 사용할 수도 있다.
또한 웨트 에칭후의 에칭액은 에칭된 재료와 함께 세정에 의해 제거된다. 그 제거된 재료를 포함하는 에칭액의 폐수를 정제하여, 포함된 재료를 재이용할 수도 있다. 이 에칭후의 폐수로부터 산화물 반도체층에 포함되는 인듐 등의 재료를 회수하여 재이용함으로써 자원을 효과적으로 활용하여 저비용화할 수 있다.
원하는 가공 형상으로 에칭할 수 있도록 재료에 맞게 에칭 조건(에칭액, 에칭 시간, 온도 등)을 적절히 조절한다.
아울러 다음 공정의 도전막을 형성하기 전에 역스퍼터링를 수행하여 산화물 반도체층(399) 및 게이트 절연층(397)의 표면에 부착된 레지스터 찌꺼기 등을 제거하는 것이 바람직하다.
이어서, 게이트 절연층(397) 및 산화물 반도체층(399) 상에 도전막을 형성한다. 도전막을 스퍼터링법이나 진공 증착법으로 형성할 수 있다. 도전막의 재료로서는, Al, Cr, Cu, Ta, Ti, Mo, W에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한 망간, 마그네슘, 지르코늄, 베릴륨, 도륨 중 어느 하나 또는 복수에서 선택된 재료를 사용할 수도 있다. 또한 도전막은 단층 구조일 수도, 2층 이상의 적층 구조로 형성할 수도 있다. 예를 들어 실리콘을 포함하는 알루미늄막의 단층 구조, 알루미늄막 상에 티타늄막을 적층하는 알루미늄막의 2층 구조, 티타늄막과 그 티타늄막 상에 중첩시켜 알루미늄막을 적층하고 나아가 그 위에 티타늄막을 성막하는 3층 구조 등을 들 수 있다. 또한 Al에, 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc)에서 선택된 원소를 단수, 또는 복수 조합한 막, 합금막, 또는 질화막을 사용할 수도 있다.
제3 포토리소그래피 공정에에서 도전막 상에 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층(395a), 드레인 전극층(395b)을 형성한 후 레지스트 마스크를 제거한다(도 7(C) 참조).
제3 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광에는 자외선이나 KrF 레이저광이나 ArF 레이저광을 이용한다. 산화물 반도체층(399) 상에서 서로 인접하는 소스 전극층의 하단부와 드레인 전극층의 하단부와의 거리에 의해 후에 형성되는 트랜지스터의 채널 길이(L)가 결정된다. 아울러 채널 길이(L)=25nm 미만에서 노광을 수행하는 경우에는, 수nm~수십nm로 극히 파장이 짧은 초자외선(Extreme Ultraviolet)을 이용하여 제3 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광을 수행한다. 초자외선에 의한 노광은 해상도가 높고 초점 심도도 크다. 따라서, 후에 형성되는 트랜지스터의 채널 길이(L)를 10nm 이상 1000nm 이하로 할 수 있어 회로의 동작 속도를 고속화시킬 수 있고 나아가 오프 전류값이 극히 작으므로 저소비전력화도 도모할 수 있다.
아울러 도전막의 에칭시에, 산화물 반도체층(399)이 제거되지 않도록 각각의 도전막과 산화물 반도체층(399)의 재료 및 에칭 조건을 적절히 조절한다.
본 실시형태에서는 도전막으로서 티타늄막을 사용하고, 산화물 반도체층(399)에는 In-Ga-Zn-O계 산화물 반도체를 사용하고, 티타늄막의 에칭액으로서 암모니아과수(암모니아, 물, 과산화수소수의 혼합액)를 사용한다.
아울러 제3 포토리소그래피 공정에서는, 산화물 반도체층(399)은 일부만이 에칭되어 홈부(요입부)를 갖는 산화물 반도체층이 될 수도 있다. 또한 소스 전극층(395a), 드레인 전극층(395b)을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 포토리소그래피 공정에서 이용하는 포토마스크수 및 공정수를 삭감시키기 위해, 투과된 광이 복수의 강도가 되게 하는 노광 마스크인 다계조 마스크에 의해 에칭 공정을 수행할 수도 있다. 다계조 마스크를 이용하여 형성한 레지스트 마스크는 복수의 막 두께를 갖고, 에칭을 수행함으로써 형상을 더 변형시킬 수 있으므로 서로 다른 패턴으로 가공하는 복수의 에칭 공정에 이용할 수 있다. 따라서, 한 장의 다계조 마스크에 의해, 적어도 2종류 이상의 서로 다른 패턴에 대응하는 레지스트 마스크를 형성할 수 있다. 따라서 노광 마스크수를 삭감할 수 있고 대응하는 포토리소그래피 공정도 삭감할 수 있으므로 공정의 간략화가 가능하다.
N2O, N2 또는 Ar 등의 가스를 이용한 플라즈마 처리에 의해 노출된 산화물 반도체층의 표면에 부착된 흡착수 등을 제거할 수도 있다. 또한 산소와 아르곤의 혼합 가스를 이용하여 플라즈마 처리를 수행할 수도 있다.
플라즈마 처리를 수행했을 경우, 산화물 반도체층의 일부에 접하는 보호 절연막이 되는 산화물 절연층으로서 산화물 절연층(396)을 대기에 접촉시키지 않고 형성한다(도 7(D) 참조). 본 실시형태에서는, 산화물 반도체층(399)이 소스 전극층(395a), 드레인 전극층(395b)과 중첩되지 않는 영역에서, 산화물 반도체층(399)과 산화물 절연층(396)이 접촉하도록 형성한다.
본 실시형태에서는, 섬형의 산화물 반도체층(399), 소스 전극층(395a), 드레인 전극층(395b)까지 형성된 기판(394)를 실온 또는 100℃ 미만의 온도로 가열하고, 수소 및 수분이 제거된 고순도 산소를 포함하는 스퍼터링 가스를 도입하고 실리콘 타겟을 이용하여 산화물 절연층(396)으로서 결함을 포함하는 산화 실리콘층을 성막한다.
예를 들어 스퍼터링 가스의 순도가 6N(99.9999%)이고, 붕소가 도핑된 실리콘 타겟(저항값 0.01Ωcm)을 이용하고 기판과 타겟과의 거리(TS간 거리)를 89mm, 압력 0.4Pa, 직류(DC) 전원 6kW, 산소(산소 유량 비율 100%) 분위기하에서 펄스 DC 스퍼터링법에 의해 산화 실리콘층을 성막한다. 막 두께는 300nm로 한다. 아울러 산화 실리콘층을 성막하기 위한 타겟으로서 실리콘 타겟 대신에 석영(바람직하게는 합성 석영)을 사용할 수 있다. 아울러 스퍼터링 가스로서 산소 또는 산소 및 아르곤의 혼합 가스를 이용하여 수행한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 절연층(396)을 성막하는 것이 바람직하다. 산화물 반도체층(399) 및 산화물 절연층(396)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 처리실은, 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물이 배기되므로, 이 처리실에서 성막한 산화물 절연층(396)에 포함되는 불순물의 농도를 감소시킬 수 있다.
아울러 산화물 절연층(396)으로서 산화 실리콘층 대신에 산화 질화 실리콘층, 산화 알루미늄층, 또는 산화 질화 알루미늄층 등을 사용할 수도 있다.
나아가 산화물 절연층(396)과 산화물 반도체층(399)을 접촉되어 있는 상태에서 100℃~400℃에서 가열 처리를 수행할 수도 있다. 본 실시형태에서의 산화물 절연층(396)은 결함을 많이 포함하기 때문에, 이 가열 처리에 의해 산화물 반도체층(399)중에 포함되는 수소, 수분, 수산기 또는 수소화물 등의 불순물을 산화물 절연층(396)으로 확산시켜 산화물 반도체층(399)중에 포함되는 상기 불순물을 더욱 감소시킬 수 있다.
이상의 공정으로, 수소, 수분, 수산기 또는 수소화물의 농도가 감소된 산화물 반도체층(392)을 갖는 트랜지스터(390)를 제조할 수 있다(도 7(E) 참조).
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로 산화물 반도체막이 함유하는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 성막함에 있어서 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
산화물 절연층상에 보호 절연층을 마련할 수도 있다. 본 실시형태에서는, 보호 절연층(398)을 산화물 절연층(396) 상에 형성한다. 보호 절연층(398)으로서는 질화 실리콘막, 질화 산화 실리콘막, 질화 알루미늄막 또는 질화 산화 알루미늄막 등을 사용한다.
보호 절연층(398)으로서, 산화물 절연층(396)까지 형성된 기판(394)을 100℃~400℃의 온도로 가열하고, 수소 및 수분이 제거된 고순도 질소를 포함하는 스퍼터링 가스를 도입하고 실리콘 타겟을 이용하여 질화 실리콘막을 성막한다. 이 경우에도, 산화물 절연층(396)과 마찬가지로, 처리실 내의 잔류 수분을 제거하면서 보호 절연층(398)을 성막하는 것이 바람직하다.
보호 절연층(398)을 형성하는 경우, 보호 절연층(398)의 성막시에 100℃~400℃로 기판(394)을 가열함으로써 산화물 반도체층중에 포함되는 수소 또는 수분을 산화물 절연층으로 확산시킬 수 있다. 이 경우 상기 산화물 절연층(396)의 형성 후에 가열 처리를 수행하지 않을 수도 있다.
산화물 절연층(396)으로서 산화 실리콘층을 형성하고, 보호 절연층(398)으로서 질화 실리콘층을 적층하는 경우, 산화 실리콘층과 질화 실리콘층을 같은 처리실에서 공통의 실리콘 타겟을 이용하여 성막할 수 있다. 먼저 산소를 포함하는 가스를 도입하고, 처리실 내에 장착된 실리콘 타겟을 이용하여 산화 실리콘층을 형성하고, 이어서 질소를 포함하는 가스로 바꾸고 동일한 실리콘 타겟을 이용하여 질화 실리콘층을 성막한다. 산화 실리콘층과 질화 실리콘층을 대기에 노출시키지 않고 연속적으로 형성할 수 있으므로 산화 실리콘층 표면에 수소나 수분 등의 불순물이 흡착되는 것을 방지할 수 있다. 이 경우, 산화물 절연층(396)으로서 산화 실리콘층을 형성하고, 보호 절연층(398)으로서 질화 실리콘층을 적층한 후, 산화물 반도체층중에 포함되는 수소 또는 수분을 산화물 절연층으로 확산시키기 위한 가열 처리(온도 100℃~400℃)를 수행하는 것이 바람직하다.
보호 절연층의 형성 후, 나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하에서의 가열 처리를 수행할 수도 있다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온 등 가열 온도에 변화를 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를 산화물 절연층의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다. 이 가열 처리에 의해, 노멀리-오프가 되는 트랜지스터를 얻을 수 있다. 따라서 반도체 장치의 신뢰성을 향상시킬 수 있다.
또한 게이트 절연층 상에 채널 형성 영역으로 이용하는 산화물 반도체층을 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체층중의 수소 및 수소화물의 농도를 감소시킬 수 있다.
상기의 공정은 400℃ 이하의 온도에서 이루어지므로, 두께가 1mm 이하이고, 한 변이 1m를 넘는 유리 기판을 이용하는 제조 공정에 적용할 수 있다. 또한 400℃ 이하의 처리 온도에서 상기의 모든 공정을 수행할 수 있으므로 표시 패널을 제조하기 위해서 너무 많은 에너지를 소비하지 않을 수 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 6)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터(310)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터의 단면 구조의 일례를 도 8(A) 내지 도 8(E)에 나타내었다. 도 8(A) 내지 도 8(E)에 나타낸 트랜지스터(310)는 보텀 게이트 구조의 트랜지스터 중 하나이며 역스태거형 트랜지스터라고도 한다.
또한 트랜지스터(310)는 싱글 게이트 구조의 트랜지스터를 이용하여 설명하였으나, 필요에 따라서는 복수의 채널 형성 영역을 갖는 멀티 게이트 구조의 트랜지스터도 형성할 수 있다.
이하, 도 8(A) 내지 도 8(E)을 이용하여 기판(300) 상에 트랜지스터(310)를 제조하는 공정을 설명한다.
우선, 절연 표면을 갖는 기판(300) 상에 도전막을 형성한 후, 제1 포토리소그래피 공정에 의해 게이트 전극층(311)을 형성한다. 아울러 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
절연 표면을 갖는 기판(300)으로 사용할 수 있는 기판에 특별한 제한은 없으나, 적어도, 후의 가열 처리에 견딜 수 있을 정도의 내열성을 가질 필요가 있다. 예를 들어 바륨 보로실리케이트 유리나 알루미노보로실리케이트 유리 등의 유리 기판을 사용할 수 있다.
또한 유리 기판으로서는, 후의 가열 처리의 온도가 높은 경우에는, 변형점이 730℃ 이상인 것을 사용하는 것이 좋다. 또한 유리 기판에는, 예를 들어 알루미노실리케이트 유리, 알루미노보로실리케이트 유리, 바륨 보로실리케이트 유리 등의 유리 재료가 사용되고 있다. 아울러 일반적으로 산화 붕소에 비해 산화 바륨(BaO)을 많이 포함시킴으로써, 보다 실용적인 내열유리를 얻을 수 있다. 따라서 B2O3보다 BaO를 많이 포함하는 유리 기판을 사용하는 것이 바람직하다.
아울러 상기 유리 기판 대신에 세라믹 기판, 석영 기판, 사파이어 기판 등의 절연체로 이루어지는 기판을 사용할 수도 있다. 이 외에도 결정화 유리 기판 등을 사용할 수 있다. 또한 플라스틱 기판 등도 적절히 사용할 수 있다.
베이스막이 되는 절연막을 기판(300)과 게이트 전극층(311)과의 사이에 마련할 수도 있다. 베이스막은 기판(300)으로부터의 불순물 원소의 확산을 방지하는 기능이 있고, 질화 규소막, 산화 규소막, 질화 산화 규소막 또는 산화 질화 규소막에서 선택된 하나 또는 복수의 막에 의한 적층 구조에 의해 형성할 수 있다.
또한 게이트 전극층(311)은 몰리브덴, 티타늄, 크롬, 탄탈륨, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 단층으로 또는 적층하여 형성할 수 있다.
예를 들어 게이트 전극층(311)의 2층의 적층 구조로서는, 알루미늄층 상에 몰리브덴층이 적층된 2층의 적층 구조, 구리층 상에 몰리브덴층을 적층한 2층의 적층 구조, 구리층 상에 질화 티타늄층 또는 질화 탄탈륨을 적층한 2층의 적층 구조, 질화 티타늄층과 몰리브덴층을 적층한 2층의 적층 구조, 또는 질화 텅스텐층과 텅스텐층과의 2층의 적층 구조로 하는 것이 바람직하다. 3층의 적층 구조로서는, 텅스텐층 또는 질화 텅스텐층과, 알루미늄과 규소의 합금 또는 알루미늄과 티타늄의 합금과, 질화 티타늄층 또는 티타늄층을 적층한 구조로 하는 것이 바람직하다.
이어서, 게이트 전극층(311) 상에 게이트 절연층(302)을 형성한다.
게이트 절연층(302)은, 플라즈마 CVD법 또는 스퍼터링법 등을 이용하고, 산화 규소층, 질화 규소층, 산화 질화 규소층, 질화 산화 규소층 또는 산화 알루미늄층을 단층으로 또는 적층하여 형성할 수 있다. 예를 들어 성막 가스로서 SiH4, 산소 및 질소를 이용하고 플라즈마 CVD법에 의해 산화 질화 규소층을 형성할 수 있다. 게이트 절연층(302)의 막 두께는, 100nm 이상 500nm 이하로 하고, 적층의 경우에는, 예를 들어 막 두께 50nm 이상 200nm 이하의 제1 게이트 절연층과 제1 게이트 절연층 상에 막 두께 5nm 이상 300nm 이하의 제2 게이트 절연층의 적층으로 한다.
본 실시형태에서는, 게이트 절연층(302)으로서 플라즈마 CVD법에 의해 막 두께 100nm 이하의 산화 질화 규소층을 형성한다.
이어서, 게이트 절연층(302) 상에 막 두께 2nm 이상 200nm 이하의 산화물 반도체막(330)을 형성한다. 산화물 반도체막(330)은, 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 스퍼터링법에 의해 제조한다.
아울러 산화물 반도체막(330)을 스퍼터링법에 의해 성막하기 전에, 아르곤 가스를 도입하여 플라즈마를 발생시키는 역스퍼터링를 수행하여 게이트 절연층(302)의 표면에 부착된 먼지를 제거하는 것이 바람직하다. 아울러 아르곤 분위기 대신에 질소 분위기, 헬륨 분위기, 산소 분위기 등을 이용할 수도 있다.
산화물 반도체막(330)은 In-Ga-Zn-O계, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Sn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, In-O계, Sn-O계, Zn-O계의 산화물 반도체막을 사용한다. 본 실시형태에서는, 산화물 반도체막(330)으로서 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하고 스퍼터링법에 의해 성막한다. 이 단계에 상당하는 단면도가 도 8(A)이다. 또한 산화물 반도체막(330)은, 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스(대표적으로는 아르곤) 및 산소 혼합 분위기하에서 스퍼터링법에 의해 형성할 수 있다. 또한 스퍼터링법을 이용하는 경우, SiO2를 2중량% 이상 10중량% 이하 포함하는 타겟을 이용하여 산화물 반도체의 성막을 수행할 수도 있다.
산화물 반도체막(330)을 스퍼터링법으로 제조하기 위한 타겟으로서 산화 아연을 주성분으로 하는 산화물 반도체 성막용 타겟을 사용할 수 있다. 또한 산화물 반도체 성막용 타겟의 다른 예로서는, In, Ga 및 Zn을 포함하는 산화물 반도체 성막용 타겟(조성비로서 In2O3:Ga2O3:ZnO=1:1:1[mol비])을 사용할 수 있다. 또한 In, Ga 및 Zn을 포함하는 산화물 반도체 성막용 타겟으로서 In2O3:Ga2O3:ZnO=1:1:2[mol비] 또는 In2O3:Ga2O3:ZnO=1:1:4[mol비]의 조성비를 갖는 타겟을 사용할 수도 있다. 산화물 반도체 성막용 타겟의 충전율은 90% 이상 100% 이하, 바람직하게는 95% 이상 99.9% 이하이다. 충전율이 높은 산화물 반도체 성막용 타겟을 사용함으로써, 산화물 반도체막은 치밀한 막이 된다.
산화물 반도체막(330)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
감압 상태로 유지된 처리실 내에 기판을 유지하고, 기판 온도를 100℃ 이상 600℃ 이하 바람직하게는 200℃ 이상 400℃ 이하로 한다. 기판을 가열하면서 성막함으로써, 성막한 산화물 반도체막에 포함되는 불순물 농도를 감소시킬 수 있다. 또한 스퍼터링에 의한 손상이 경감된다. 그리고, 처리실 내의 잔류 수분을 제거하면서 수소 및 수분이 제거된 스퍼터링 가스를 도입하고, 금속 산화물을 타겟으로 하여 게이트 절연층(302) 상에 산화물 반도체막(330)을 성막한다. 처리실 내의 잔류 수분을 제거하기 위해서는, 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자, 수분(H2O) 등 수소 원자를 포함하는 화합물(보다 바람직하게는 탄소 원자를 포함하는 화합물도) 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다.
성막 조건의 일례로서는, 기판과 타겟과의 거리를 100mm, 압력 0.6Pa, 직류(DC) 전원 0.5kW, 산소(산소 유량 비율 100%) 분위기하의 조건이 적용된다. 아울러 펄스 직류(DC) 전원을 이용하면 성막시에 발생하는 가루형 물질(파티클, 먼지라고도 함)을 줄일 수 있고 막 두께 분포도 균일해지므로 바람직하다. 산화물 반도체막은 바람직하게는 5nm 이상 30nm 이하로 한다. 아울러 적용하는 산화물 반도체 재료에 따라 적절한 두께는 다르며, 재료에 따라 적절한 두께를 선택하면 된다.
이어서, 산화물 반도체막(330)을 제2 포토리소그래피 공정에 의해 섬형의 산화물 반도체층으로 가공한다. 또한 섬형의 산화물 반도체층을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
이어서, 산화물 반도체층에 제1 가열 처리를 수행한다. 이 제1 가열 처리에 의해 산화물 반도체층의 탈수화 또는 탈수소화를 수행할 수 있다. 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만으로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하 450℃에서 1시간의 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아, 산화물 반도체층(331)을 얻는다(도 8(B) 참조).
아울러 가열 처리 장치는 전기로에 한정되지 않고, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해 피처리물을 가열하는 장치를 구비할 수도 있다. 예를 들어 LRTA(Lamp Rapid Thermal Anneal) 장치, GRTA(Gas Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프에서 나오는 광(전자파)의 복사에 의해 피처리물을 가열하는 장치이다. GRTA 장치는 고온의 가스를 이용하여 가열 처리를 수행하는 장치이다. 기체로는 아르곤 등의 희가스 또는 질소와 같은, 가열 처리에 의해 피처리물과 반응하지 않는 불활성 기체가 이용된다.
예를 들어 제1 가열 처리로서 650℃~700℃의 고온으로 가열한 불활성 가스안에 기판을 이동시켜 넣고 수분간 가열한 후, 기판을 이동시켜 고온으로 가열한 불활성 가스안에서 꺼내는 GRTA를 수행할 수도 있다. GRTA를 이용하면 단시간의 고온 가열 처리가 가능하다.
아울러 제1 가열 처리에서는, 질소, 또는 헬륨, 네온, 아르곤 등의 희가스에 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는, 가열 처리 장치에 도입하는 질소, 또는 헬륨, 네온, 아르곤 등의 희가스의 순도를, 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
또한 제1 가열 처리의 조건 또는 산화물 반도체층의 재료에 따라서는 산화물 반도체층이 결정화되어 미결정막 또는 다결정막이 될 수도 있다. 예를 들어 산화물 반도체층이 결정화되어 결정화율이 90% 이상 또는 80% 이상인 미결정의 산화물 반도체막이 될 수도 있다. 또한 제1 가열 처리의 조건 또는 산화물 반도체층의 재료에 따라서는 결정 성분을 포함하지 않는 비정질의 산화물 반도체막이 될 수도 있다. 또한 산화물 반도체층은 비정질의 산화물 반도체중에 미결정부(입경 1nm 이상 20nm 이하(대표적으로는 2nm 이상 4nm 이하))가 혼재하는 산화물 반도체막이 될 수도 있다.
또한 산화물 반도체층의 제1 가열 처리는, 섬형의 산화물 반도체층으로 가공되지 않은 산화물 반도체막(330)에 수행할 수도 있다. 이 경우에는 제1 가열 처리 후에 가열 장치에서 기판을 꺼내어 포토리소그래피 공정을 수행한다.
산화물 반도체층에 대한 탈수화, 탈수소화의 효과를 나타내는 가열 처리는, 산화물 반도체층 성막 후, 산화물 반도체층 상에 소스 전극 및 드레인 전극을 적층시킨 후, 소스 전극 및 드레인 전극 상에 보호 절연막을 형성한 후 중 언제라도 수행할 수 있다.
또한 게이트 절연층(302)에 콘택홀을 형성하는 경우, 그 공정은 산화물 반도체막(330)에 탈수화 또는 탈수소화 처리를 수행하기 전에 수행할 수도 후에 수행할 수도 있다.
아울러 이때의 산화물 반도체막의 에칭은 웨트 에칭에 한정되지 않고 드라이 에칭을 이용할 수도 있다.
원하는 가공 형상으로 에칭할 수 있도록 재료에 맞게 에칭 조건(에칭액, 에칭 시간, 온도 등)을 적절히 조절한다.
이어서, 게이트 절연층(302) 및 산화물 반도체층(331) 상에 도전막을 형성한다. 도전막을 스퍼터링법이나 진공 증착법으로 형성할 수 있다. 도전막의 재료로서는, Al, Cr, Cu, Ta, Ti, Mo, W에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한 망간, 마그네슘, 지르코늄, 베릴륨, 도륨 중 어느 하나 또는 복수에서 선택된 재료를 사용할 수도 있다. 또한 도전막은 단층 구조일 수도, 2층 이상의 적층 구조로 형성할 수도 있다. 예를 들어 실리콘을 포함하는 알루미늄막의 단층 구조, 알루미늄막 상에 티타늄막을 적층하는 2층 구조, 티타늄막과 그 티타늄막 상에 중첩시켜 알루미늄막을 적층하고 나아가 그 위에 티타늄막을 성막하는 3층 구조 등을 들 수 있다. 또한 Al에, 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 네오디뮴(Nd), 스칸듐(Sc)에서 선택된 원소를 단수, 또는 복수 조합한 막, 합금막, 또는 질화막을 사용할 수도 있다.
도전막 후에 가열 처리를 수행하는 경우에는, 이 가열 처리에 견디는 내열성을 도전막에 부여하는 것이 바람직하다.
제3 포토리소그래피 공정에 의해 도전막 상에 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층(315a), 드레인 전극층(315b)을 형성한 후 레지스트 마스크를 제거한다(도 8(C) 참조).
제3 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광에는, 자외선이나 KrF 레이저광이나 ArF 레이저광을 이용한다. 산화물 반도체층(331) 상에서 서로 인접하는 소스 전극층의 하단부와 드레인 전극층의 하단부와의 간격 폭에 의해 후에 형성되는 트랜지스터의 채널 길이(L)가 결정된다. 아울러 채널 길이(L)=25nm 미만에서 노광을 수행하는 경우에는, 수nm~수십nm로 극히 파장이 짧은 초자외선(Extreme Ultraviolet)을 이용하여 제3 포토리소그래피 공정에서의 레지스트 마스크 형성시의 노광을 수행한다. 초자외선에 의한 노광은 해상도가 높고 초점 심도도 크다. 따라서, 후에 형성되는 트랜지스터의 채널 길이(L)를 10nm 이상 1000nm 이하로 할 수 있어 회로의 동작 속도를 고속화시킬 수 있고 나아가 오프 전류값이 극히 작으므로 저소비전력화도 도모할 수 있다.
아울러 도전막의 에칭시에, 산화물 반도체층(331)이 제거되지 않도록 도전막과 산화물 반도체층(331) 각각의 재료 및 에칭 조건을 적절히 조절한다.
본 실시형태에서는 도전막으로서 티타늄막을 사용하고, 산화물 반도체층(331)에는 In-Ga-Zn-O계 산화물 반도체를 사용하고, 티타늄막의 에칭액으로서 암모니아과수(암모니아, 물, 과산화수소수의 혼합액)를 사용한다.
아울러 제3 포토리소그래피 공정에서는 산화물 반도체층(331)은 일부만이 에칭되어 홈부(요입부)를 갖는 산화물 반도체층이 될 수도 있다. 또한 소스 전극층(315a), 드레인 전극층(315b)을 형성하기 위한 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 산화물 반도체층과 소스 전극층 및 드레인 전극층 사이에, 산화물 도전층을 형성할 수도 있다. 산화물 도전층과 소스 전극층 및 드레인 전극층을 형성하기 위한 금속층은 연속 성막이 가능하다. 산화물 도전층은 소스 영역 및 드레인 영역으로서 기능할 수 있다.
소스 영역 및 드레인 영역으로서 산화물 도전층을 산화물 반도체층과 소스 전극층 및 드레인 전극층과의 사이에 마련함으로써 소스 영역 및 드레인 영역의 저저항화를 도모할 수 있어 트랜지스터의 고속 동작을 할 수 있다.
또한 포토리소그래피 공정에서 이용하는 포토마스크수 및 공정수를 삭감시키기 위해, 투과된 광이 복수의 강도가 되는 노광 마스크인 다계조 마스크의 사용으로 에칭 공정을 수행할 수도 있다. 다계조 마스크를 이용하여 형성한 레지스트 마스크는 복수의 막 두께를 갖는 형상이 되고, 에칭을 수행함으로써 형상을 더 변형시킬 수 있으므로 서로 다른 패턴으로 가공하는 복수의 에칭 공정에 이용할 수 있다. 따라서, 한 장의 다계조 마스크에 의해, 적어도 2종류 이상의 서로 다른 패턴에 대응하는 레지스트 마스크를 형성할 수 있다. 따라서 노광 마스크수를 삭감할 수 있고 대응하는 포토리소그래피 공정도 삭감할 수 있으므로 공정의 간략화가 가능하다.
이어서, N2O, N2 또는 Ar 등의 가스를 이용한 플라즈마 처리를 수행한다. 이 플라즈마 처리에 의해 노출된 산화물 반도체층의 표면에 부착된 흡착수 등을 제거한다. 또한 산소와 아르곤의 혼합 가스를 이용하여 플라즈마 처리를 수행할 수도 있다.
플라즈마 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층의 일부에 접하는 보호 절연막이 되는 산화물 절연층(316)을 형성한다.
산화물 절연층(316)은 적어도 1nm 이상의 막 두께로 하고, 스퍼터링법 등, 산화물 절연층(316)에 수분, 수소 등의 불순물을 혼입시키지 않는 방법을 적절히 이용하여 형성할 수 있다. 산화물 절연층(316)에 수소가 포함되면 그 수소의 산화물 반도체층으로의 침입, 또는 수소에 의한 산화물 반도체층중의 산소의 축출이 발생하여 산화물 반도체층의 백 채널이 저저항화(n형화)되어 기생 채널이 형성될 우려가 있다. 따라서, 산화물 절연층(316)은 가능한 한 수소를 포함하지 않는 막이 되도록, 성막 방법에 수소를 사용하지 않는 것이 중요하다.
본 실시형태에서는 스퍼터링법을 이용하여 산화물 절연층(316)으로서 막 두께 200nm의 산화 규소막을 성막한다. 성막시의 기판 온도는, 실온 이상 300℃ 이하로 할 수 있고, 본 실시형태에서는 100℃로 한다. 산화 규소막의 스퍼터링법에 의한 성막은, 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스(대표적으로는 아르곤) 및 산소 혼합 분위기하에서 수행할 수 있다. 또한 타겟으로서 산화 규소 타겟 또는 규소 타겟을 사용할 수 있다. 예를 들어 규소 타겟을 이용하여 산소 분위기하 및 질소 분위기하에서 스퍼터링법에 의해 산화 규소를 형성할 수 있다. 저저항화된 산화물 반도체층에 접하여 형성하는 산화물 절연층(316)은, 수분이나, 수소 이온이나, 수산기 등의 불순물을 포함하지 않고, 이것들이 외부로부터 침입하는 것을 차단하는 무기 절연막을 사용하며, 대표적으로는 산화 실리콘막, 산화 질화 실리콘막, 산화 알루미늄막 또는 산화 질화 알루미늄막 등을 사용한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 절연층(316)을 성막하는 것이 바람직하다. 산화물 반도체층(331) 및 산화물 절연층(316)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은, 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 절연층(316)에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 절연층(316)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 불활성 가스 분위기하 또는 산소 가스 분위기하에서 제2 가열 처리(바람직하게는 200℃ 이상 400℃ 이하, 보다 바람직하게는 250℃ 이상 350℃ 이하)를 수행한다. 예를 들어 질소 분위기하에서 250℃, 1시간의 제2 가열 처리를 수행한다. 제2 가열 처리를 수행하면 산화물 반도체층의 일부(채널 형성 영역)가 산화물 절연층(316)과 접촉한 상태로 가열된다.
이상의 공정을 거침으로써, 성막 후의 산화물 반도체막은 탈수화 또는 탈수소화를 위한 제1 가열 처리에 의해 산소 결핍형이 되어 저저항화, 즉 n형화(n-화 등)된다. 그 후, 산화물 절연층과 산화물 반도체층이 접한 상태에서 가열되는 제2 가열 처리에 의해, 제1 가열 처리로 저저항화된 산화물 반도체층(331)으로 산소가 공급되어 산소 결손부를 보상한다. 그 결과, 게이트 전극층(311)과 중첩되는 채널 형성 영역(313)은 고저항화(i형화)되어, 소스 전극층(315a)과 중첩되는 고저항 소스 영역(314a)과 드레인 전극층(315b)과 중첩되는 고저항 드레인 영역(314b)이 자기 정합적으로 형성된다. 이상의 공정으로 트랜지스터(310)가 형성된다(도 8(D) 참조).
나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하의 가열 처리를 수행할 수도 있다. 본 실시형태에서는 150℃에서 10시간 가열 처리를 수행한다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를 산화물 절연막의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다. 이 가열 처리에 의해, 노멀리-오프가 되는 트랜지스터를 얻을 수 있다. 따라서 반도체 장치의 신뢰성을 향상시킬 수 있다.
아울러 드레인 전극층(315b)(및 소스 전극층(315a))과 중첩된 산화물 반도체층의 부분에 고저항 드레인 영역(314b)(또는 고저항 소스 영역(314a))을 형성함으로써 트랜지스터의 신뢰성의 향상을 도모할 수 있다. 구체적으로는, 고저항 드레인 영역(314b)을 형성함으로써, 드레인 전극층(315b)에서 고저항 드레인 영역(314b), 채널 형성 영역(313)에 걸쳐 도전성을 단계적으로 변화시킬 수 있는 구조를 얻을 수 있다. 따라서, 드레인 전극층(315b)으로 고전원전위(VDD)를 공급하는 배선에 접속하여 동작시키는 경우, 게이트 전극층(311)과 드레인 전극층(315b)과의 사이에 고전압이 인가되어도 고저항 드레인 영역이 버퍼가 되어 국소적인 전계 집중이 쉽게 발생되지 않으므로 트랜지스터의 내압을 향상시킬 수 있다.
또한 산화물 반도체층의 고저항 소스 영역 또는 고저항 드레인 영역은 산화물 반도체층의 막 두께가 15nm 이하로 얇은 경우에는 막 두께 방향 전체에 걸쳐서 형성되지만, 산화물 반도체층의 막 두께가 30nm 이상 50nm 이하로 보다 두꺼운 경우에는, 산화물 반도체층의 일부, 소스 전극층 또는 드레인 전극층과 접하는 영역 및 그 근방이 저저항화되고 고저항 소스 영역 또는 고저항 드레인 영역이 형성되어 산화물 반도체층에 있어서 게이트 절연막에 가까운 영역은 i형으로 할 수도 있다.
산화물 절연층(316) 상에 보호 절연층을 더 형성할 수도 있다. 예를 들어 RF 스퍼터링법을 이용하여 질화 규소막을 형성한다. RF 스퍼터링법은 양산성이 좋기 때문에 보호 절연층의 성막 방법으로서 바람직하다. 보호 절연층은 수분이나, 수소 이온이나, 수산기 등의 불순물을 포함하지 않고, 이것들이 외부로부터 침입하는 것을 차단하는 무기 절연막을 사용하며, 질화 실리콘막, 질화 알루미늄막, 질화 산화 실리콘막, 질화 산화 알루미늄막 등을 사용한다. 본 실시형태에서는 보호 절연층으로서 보호 절연층(303)을 질화 실리콘막을 이용하여 형성한다(도 8(E) 참조).
본 실시형태에서는 보호 절연층(303)으로서, 산화물 절연층(316)까지 형성된 기판(300)을 100℃~400℃의 온도로 가열하고, 수소 및 수분이 제거된 고순도 질소를 포함하는 스퍼터링 가스를 도입하고, 실리콘 타겟을 이용하여 질화 실리콘막을 성막한다. 이 경우에도, 산화물 절연층(316)과 마찬가지로, 처리실 내의 잔류 수분을 제거하면서 보호 절연층(303)을 성막하는 것이 바람직하다.
보호 절연층(303) 상에 평탄화를 위한 평탄화 절연층을 마련할 수도 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 7)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터(360)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터의 단면 구조의 일례를 도 9(A) 내지 도 9(D)에 나타내었다. 도 9(A) 내지 도 9(D)에 나타낸 트랜지스터(360)는 채널 보호형(채널 스톱형이라고도 함)이라 불리는 보텀 게이트 구조의 트랜지스터 중 하나이며 역스태거형 트랜지스터라고도 한다.
또한 트랜지스터(360)는 싱글 게이트 구조의 트랜지스터를 이용하여 설명하였으나, 필요에 따라 채널 형성 영역을 복수 갖는 멀티 게이트 구조의 트랜지스터도 필요시 형성할 수 있다.
이하, 도 9(A) 내지 도 9(D)을 이용하여 기판(320) 상에 트랜지스터(360)를 제조하는 공정을 설명한다.
우선, 절연 표면을 갖는 기판(320) 상에 도전막을 형성한 후, 제1 포토리소그래피 공정에 의해 게이트 전극층(361)을 형성한다. 아울러 레지스트 마스크를 잉크젯법으로 형성할 수도 있다. 레지스트 마스크를 잉크젯법으로 형성하면 포토마스크를 사용하지 않으므로 제조비용을 줄일 수 있다.
또한 게이트 전극층(361)은 몰리브덴, 티타늄, 크롬, 탄탈륨, 텅스텐, 알루미늄, 구리, 네오디뮴, 스칸듐 등의 금속재료 또는 이들을 주성분으로 하는 합금 재료를 이용하여 단층으로 또는 적층하여 형성할 수 있다.
이어서, 게이트 전극층(361) 상에 게이트 절연층(322)을 형성한다.
본 실시형태에서는 게이트 절연층(322)으로서 플라즈마 CVD법에 의해 막 두께 100nm 이하의 산화 질화 규소층을 형성한다.
이어서, 게이트 절연층(322) 상에 막 두께 2nm 이상 200nm 이하의 산화물 반도체막을 형성하고, 제2 포토리소그래피 공정에 의해 섬형의 산화물 반도체층으로 가공한다. 본 실시형태에서는 산화물 반도체막을 실시형태 1에서 나타낸 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하여 스퍼터링법에 의해 성막한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 반도체막을 성막하는 것이 바람직하다. 산화물 반도체막에 수소, 수산기 또는 수분이 보다 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 반도체막을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 산화물 반도체층의 탈수화 또는 탈수소화를 수행한다. 탈수화 또는 탈수소화를 수행하는 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만으로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하 450℃에서 1시간의 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아, 산화물 반도체층(332)을 얻는다(도 9(A) 참조).
이어서, N2O, N2 또는 Ar 등의 가스를 이용한 플라즈마 처리를 수행한다. 이 플라즈마 처리에 의해 노출된 산화물 반도체층의 표면에 부착된 흡착수 등을 제거한다. 또한 산소와 아르곤의 혼합 가스를 이용하여 플라즈마 처리를 수행할 수도 있다.
이어서, 게이트 절연층(322) 및 산화물 반도체층(332) 상에 산화물 절연층을 형성한 후, 제3 포토리소그래피 공정에 의해 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 산화물 절연층(366)을 형성한 후 레지스트 마스크를 제거한다.
본 실시형태에서는 산화물 절연층(366)으로서 스퍼터링법을 이용하여 막 두께 200nm의 산화 규소막을 성막한다. 성막시의 기판 온도는 실온 이상 300℃ 이하로 할 수 있고, 본 실시형태에서는 100℃로 한다. 산화 규소막의 스퍼터링법에 의한 성막은 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하, 또는 희가스(대표적으로는 아르곤) 및 산소 혼합 분위기하에서 수행할 수 있다. 또한 타겟으로서 산화 규소 타겟 또는 규소 타겟을 사용할 수 있다. 예를 들어 규소 타겟을 이용하여 산소 분위기하 및 질소 분위기하에서 스퍼터링법에 의해 산화 규소를 형성할 수 있다. 저저항화된 산화물 반도체층에 접하여 형성하는 산화물 절연층(366)은, 수분이나 수소 이온이나 수산기 등의 불순물을 포함하지 않고, 이것들이 외부로부터 침입하는 것을 차단하는 무기 절연막을 이용하며, 대표적으로는 산화 실리콘막, 산화 질화 실리콘막, 산화 알루미늄막 또는 산화 질화 알루미늄막 등을 이용한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 절연층(366)을 성막하는 것이 바람직하다. 산화물 반도체층(332) 및 산화물 절연층(366)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 절연층(366)에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 절연층(366)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 물, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 불활성 가스 분위기하 또는 산소 가스 분위기하에서 제2 가열 처리(바람직하게는 200℃ 이상 400℃ 이하, 보다 바람직하게는 250℃ 이상 350℃ 이하)를 수행할 수도 있다. 예를 들어 질소 분위기하에서 250℃, 1시간의 제2 가열 처리를 수행한다. 제2 가열 처리를 수행하면 산화물 반도체층의 일부(채널 형성 영역)가 산화물 절연층(366)과 접촉한 상태로 가열된다.
본 실시형태는, 산화물 절연층(366)이 더 마련되어 일부가 노출된 산화물 반도체층(332)을 질소 분위기하, 불활성 가스 분위기하, 또는 감압하에서 가열 처리한다. 산화물 절연층(366)에 의해 덮이지 않은 노출된 산화물 반도체층(332)의 영역은, 질소 분위기하, 불활성 가스 분위기하 또는 감압하에서 가열 처리를 수행하면 저저항화될 수 있다. 예를 들어 질소 분위기하에서 250℃, 1시간의 가열 처리를 수행한다.
산화물 절연층(366)이 마련된 산화물 반도체층(332)에 대한 질소 분위기하의 가열 처리에 의해 산화물 반도체층(332)의 노출 영역은 저저항화되어 저항이 서로 다른 영역(도 9(B)에서 사선 영역 및 백지 영역으로 나타냄)을 갖는 산화물 반도체층(362)이 된다.
이어서, 게이트 절연층(322), 산화물 반도체층(362) 및 산화물 절연층(366) 상에 도전막을 형성한 후, 제4 포토리소그래피 공정에 의해 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층(365a), 드레인 전극층(365b)을 형성한 후 레지스트 마스크를 제거한다(도 9(C) 참조).
소스 전극층(365a), 드레인 전극층(365b)의 재료로서는 Al, Cr, Cu, Ta, Ti, Mo, W에서 선택된 원소, 또는 상술한 원소를 성분으로 하는 합금이나 상술한 원소를 조합한 합금막 등을 들 수 있다. 또한 도전막은 단층 구조일 수도, 2층 이상의 적층 구조로 형성할 수도 있다.
이상의 공정을 거침으로써, 성막 후의 산화물 반도체막은 탈수화 또는 탈수소화를 위한 제1 가열 처리에 의해 산소 결핍형이 되어 저저항화, 즉 n형화(n-화 등)된다. 그 후, 산화물 절연층과 산화물 반도체층이 접한 상태에서 가열되는 제2 가열 처리에 의해, 제1 가열 처리로 저저항화된 산화물 반도체층(362)으로 산소가 공급되어 산소 결손부를 보상한다. 그 결과, 게이트 전극층(361)과 중첩되는 채널 형성 영역(363)은 고저항화(i형화)되고, 소스 전극층(365a)과 중첩되는 고저항 소스 영역(364a)과 드레인 전극층(365b)과 중첩되는 고저항 드레인 영역(364b)이 자기 정합적으로 형성된다. 이상의 공정으로 트랜지스터(360)가 형성된다.
나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하에서의 가열 처리를 수행할 수도 있다. 본 실시형태에서는 150℃에서 10시간 가열 처리를 수행한다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를, 산화물 절연막의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다. 이 가열 처리에 의해, 노멀리-오프가 되는 트랜지스터를 얻을 수 있다. 따라서 반도체 장치의 신뢰성을 향상시킬 수 있다.
아울러 드레인 전극층(365b)(및 소스 전극층(365a))과 중첩된 산화물 반도체층에 있어서 고저항 드레인 영역(364b)(또는 고저항 소스 영역(364a))을 형성함으로써 트랜지스터의 신뢰성의 향상을 도모할 수 있다. 구체적으로는, 고저항 드레인 영역(364b)을 형성함으로써, 드레인 전극층(365b)에서 고저항 드레인 영역(364b)을 통해, 채널 형성 영역(363)에 걸쳐 도전성을 단계적으로 변화시킬 수 있는 구조를 얻을 수 있다. 따라서, 드레인 전극층(365b)에 고전원전위(VDD)를 공급하는 배선에 접속하여 동작시키는 경우, 게이트 전극층(361)과 드레인 전극층(365b)와의 사이에 고전압이 인가되어도 고저항 드레인 영역이 버퍼가 되어 국소적인 전계 집중이 쉽게 발생되지 않으므로 트랜지스터의 내압을 향상시킬 수 있다.
소스 전극층(365a), 드레인 전극층(365b), 산화물 절연층(366) 상에 보호 절연층(323)을 형성한다. 본 실시형태에서는 보호 절연층(323)을 질화 규소막을 이용하여 형성한다(도 9(D) 참조).
아울러 소스 전극층(365a), 드레인 전극층(365b), 산화물 절연층(366) 상에 산화물 절연층을 더 형성하고, 이 산화물 절연층 상에 보호 절연층(323)을 적층할 수도 있다.
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로, 산화물 반도체막이 함유하는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 8)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터(350)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태의 트랜지스터의 단면 구조의 일례를 도 10(A) 내지 도 10(D)에 나타내었다.
또한 트랜지스터(350)는 싱글 게이트 구조의 트랜지스터를 이용하여 설명하였으나, 필요에 따라 채널 형성 영역을 복수 갖는 멀티 게이트 구조의 트랜지스터도 형성할 수 있다.
이하, 도 10(A) 내지 도 10(D)를 이용하여 기판(340) 상에 트랜지스터(350)를 제조하는 공정을 설명한다.
우선, 절연 표면을 갖는 기판(340) 상에 도전막을 형성한 후, 제1 포토리소그래피 공정에 의해 게이트 전극층(351)을 형성한다. 본 실시형태에서는 게이트 전극층(351)으로서 막 두께 150nm의 텅스텐막을 스퍼터링법을 이용하여 형성한다.
이어서, 게이트 전극층(351) 상에 게이트 절연층(342)을 형성한다. 본 실시형태에서는 게이트 절연층(342)으로서 플라즈마 CVD법에 의해 막 두께 100nm 이하의 산화 질화 규소층을 형성한다.
이어서, 게이트 절연층(342) 상에 도전막을 형성하고, 제2 포토리소그래피 공정에 의해 도전막 상에 레지스트 마스크를 형성하고 도전막은 선택적으로 에칭을 수행하여 소스 전극층(355a), 드레인 전극층(355b)을 형성한 후 레지스트 마스크를 제거한다(도 10(A) 참조).
이어서 산화물 반도체막(345)을 형성한다(도 10(B) 참조). 산화물 반도체막(345)은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한다. 본 실시형태에서는, 산화물 반도체막(345)은 실시형태 1에서 나타낸 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하여 스퍼터링법에 의해 성막한다. 산화물 반도체막(345)은 제3 포토리소그래피 공정에 의해 섬형의 산화물 반도체층으로 가공한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 반도체막(345)을 성막하는 것이 바람직하다. 산화물 반도체막(345)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막(345)에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 반도체막(345)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 산화물 반도체층의 탈수화 또는 탈수소화를 수행한다. 탈수화 또는 탈수소화를 수행하는 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 400℃ 이상 기판의 변형점 미만으로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하 450℃에서 1시간의 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아, 산화물 반도체층(346)을 얻는다(도 10(C) 참조).
또한 제1 가열 처리로서 650℃~700℃의 고온으로 가열한 불활성 가스안에 기판을 이동시켜 넣고 수분간 가열한 후, 기판을 이동시켜 고온으로 가열한 불활성 가스안에서 꺼내는 GRTA를 수행할 수도 있다. GRTA를 이용하면 단시간의 고온 가열 처리가 가능하다.
산화물 반도체층(346)에 접하는 보호 절연막이 되는 산화물 절연층(356)을 형성한다.
산화물 절연층(356)은 적어도 1nm 이상의 막 두께로 하고, 스퍼터링법 등, 산화물 절연층(356)에 수분, 수소 등의 불순물을 혼입시키지 않는 방법을 적절히 이용하여 형성할 수 있다. 산화물 절연층(356)에 수소가 포함되면 그 수소의 산화물 반도체층으로의 침입, 또는 수소에 의한 산화물 반도체층중의 산소의 축출이 발생하여 산화물 반도체층의 백 채널이 저저항화(n형화)되어 기생 채널이 형성될 우려가 있다. 따라서, 산화물 절연층(356)은 가능한 한 수소를 포함하지 않는 막이 되도록, 성막 방법에 수소를 사용하지 않는 것이 중요하다.
본 실시형태에서는, 산화물 절연층(356)으로서 스퍼터링법을 이용하여 막 두께 200nm의 산화 규소막을 성막한다. 성막시의 기판 온도는 실온 이상 300℃ 이하로 할 수 있고, 본 실시형태에서는 100℃로 한다. 산화 규소막의 스퍼터링법에 의한 성막은, 희가스(대표적으로는 아르곤) 분위기하, 산소 분위기하 또는 희가스(대표적으로는 아르곤) 및 산소 혼합 분위기하에서 수행할 수 있다. 또한 타겟으로서 산화 규소 타겟 또는 규소 타겟을 사용할 수 있다. 예를 들어 규소 타겟을 이용하여 산소 및 질소 분위기하에서 스퍼터링법에 의해 산화 규소를 형성할 수 있다. 저저항화된 산화물 반도체층에 접하여 형성하는 산화물 절연층(356)은, 수분이나 수소 이온이나 수산기 등의 불순물을 포함하지 않고, 이것들이 외부로부터 침입하는 것을 차단하는 무기 절연막을 이용하며, 대표적으로는 산화 실리콘막, 산화 질화 실리콘막, 산화 알루미늄막 또는 산화 질화 알루미늄막 등을 사용한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 절연층(356)을 성막하는 것이 바람직하다. 산화물 반도체층(346) 및 산화물 절연층(356)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 절연층(356)에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 절연층(356)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 불활성 가스 분위기하 또는 산소 가스 분위기하에서 제2 가열 처리(바람직하게는 200℃ 이상 400℃ 이하, 보다 바람직하게는 250℃ 이상 350℃ 이하)를 수행한다. 예를 들어 질소 분위기하에서 250℃, 1시간의 제2 가열 처리를 수행한다. 제2 가열 처리를 수행하면, 산화물 반도체층의 일부(채널 형성 영역)가 산화물 절연층(356)과 접한 상태로 가열된다.
이상의 공정을 거침으로써, 성막 후의 산화물 반도체막에 대해서 탈수화 또는 탈수소화를 위한 가열 처리를 수행하여 저저항화한 후, 산화물 반도체막의 산소 결손부를 보상한다. 그 결과, 고저항화(i형화)된 산화물 반도체층(352)이 형성된다. 이상의 공정으로 트랜지스터(350)가 형성된다.
나아가 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하의 가열 처리를 수행할 수도 있다. 본 실시형태에서는 150℃에서 10시간 가열 처리를 수행한다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를 산화물 절연막의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다. 이 가열 처리에 의해, 노멀리-오프가 되는 트랜지스터를 얻을 수 있다. 따라서 반도체 장치의 신뢰성을 향상시킬 수 있다.
산화물 절연층(356) 상에 보호 절연층을 더 형성할 수도 있다. 예를 들어 RF 스퍼터링법을 이용하여 질화 규소막을 형성한다. 본 실시형태에서는 보호 절연층으로서 보호 절연층(343)을 질화 규소막을 이용하여 형성한다(도 10(D) 참조).
보호 절연층(343) 상에 평탄화를 위한 평탄화 절연층을 마련할 수도 있다.
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로, 산화물 반도체막이 함유하는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다. 또한 본 실시형태에서 설명한 오프 전류를 감소시킨 트랜지스터를 예를 들어 표시장치의 화소에 적용함으로써, 화소에 마련한 유지 용량이 전압을 유지할 수 있는 기간을 길게 할 수 있다. 따라서, 정지 화면 등을 표시할 때의 소비 전력이 적은 표시장치를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 9)
본 실시형태에서는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터(380)는 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조한 산화물 반도체막을 활성층으로서 이용할 수 있다.
본 실시형태에서는, 트랜지스터의 제조 공정의 일부가 실시형태 6과 다른 예를 도 11에 나타내었다. 도 11은, 도 8과 공정이 일부 다른 점을 제외하고는 동일하므로, 동일한 부위에는 동일한 부호를 사용하고 동일한 부위의 상세한 설명은 생략한다.
실시형태 6에 따라, 기판(370) 상에 게이트 전극층(381)을 형성하고, 제1 게이트 절연층(372a), 제2 게이트 절연층(372b)을 적층한다. 본 실시형태에서는, 게이트 절연층을 2층 구조로 하고, 제1 게이트 절연층(372a)으로 질화물 절연층을, 제2 게이트 절연층(372b)으로 산화물 절연층을 사용한다.
산화물 절연층으로서는 산화 실리콘층, 산화 질화 실리콘층, 산화 알루미늄층 또는 산화 질화 알루미늄층 등을 사용할 수 있다. 또한 질화물 절연층으로서는 질화 실리콘층, 질화 산화 실리콘층, 질화 알루미늄층 또는 질화 산화 알루미늄층 등을 사용할 수 있다.
본 실시형태에서는, 게이트 전극층(381) 상에 차례로 질화 실리콘층과 산화 실리콘층을 적층한 구조로 한다. 제1 게이트 절연층(372a)으로서 스퍼터링법에 의해 막 두께 50nm 이상 200nm 이하(본 실시형태에서는 50nm)의 질화 실리콘층(SiNy(y>0))을 형성하고, 제1 게이트 절연층(372a) 상에 제2 게이트 절연층(372b)으로서 막 두께 5nm 이상 300nm 이하(본 실시형태에서는 100nm)의 산화 실리콘층(SiOx(x>0))을 적층하여 막 두께 150nm의 게이트 절연층을 형성한다.
이어서 산화물 반도체막의 형성을 수행하고, 산화물 반도체막을 포토리소그래피 공정에 의해 섬형의 산화물 반도체층으로 가공한다. 본 실시형태에서는 산화물 반도체막을 In-Ga-Zn-O계 산화물 반도체 성막용 타겟을 이용하여 스퍼터링법에 의해 성막한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 반도체막을 성막하는 것이 바람직하다. 산화물 반도체막에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 반도체막에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 반도체막을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이어서, 산화물 반도체층의 탈수화 또는 탈수소화를 수행한다. 탈수화 또는 탈수소화를 수행하는 제1 가열 처리의 온도는 400℃ 이상 750℃ 이하, 바람직하게는 425℃ 이상 기판의 변형점 미만으로 한다. 아울러 425℃ 이상이면 가열 처리 시간은 1시간 이하일 수 있으나, 425℃ 미만이면 가열 처리 시간은 1시간보다 장시간 수행하기로 한다. 여기서는, 가열 처리 장치 중 하나인 전기로에 기판을 도입하고, 산화물 반도체층에 대해 질소 분위기하에서 가열 처리를 수행한 후, 대기에 접촉하지 않도록 하여 산화물 반도체층으로의 수분이나 수소의 재혼입을 막아, 산화물 반도체층을 얻는다. 그 후, 동일 전기로에 고순도의 산소 가스, 고순도의 N2O 가스, 또는 초건조 에어(노점이 -40℃ 이하, 바람직하게는 -60℃ 이하)를 도입하여 냉각을 수행한다. 산소 가스 또는 N2O 가스에 수분, 수소 등이 포함되지 않는 것이 바람직하다. 또는, 가열 처리 장치로 도입하는 산소 가스 또는 N2O 가스의 순도를 6N(99.9999%) 이상, 바람직하게는 7N(99.99999%) 이상(즉 산소 가스 또는 N2O 가스중의 불순물 농도를 1ppm 이하, 바람직하게는 0.1ppm 이하)으로 하는 것이 바람직하다.
아울러 가열 처리 장치는 전기로에 한정되지 않고, 예를 들어 LRTA(Lamp Rapid Thermal Anneal) 장치, GRTA(Gas Rapid Thermal Anneal) 장치 등의 RTA(Rapid Thermal Anneal) 장치를 이용할 수 있다. LRTA 장치는, 할로겐 램프, 메탈할라이드 램프, 크세논 아크 램프, 카본 아크 램프, 고압 나트륨 램프, 고압 수은 램프 등의 램프에서 나오는 광(전자파)의 복사에 의해 피처리물을 가열하는 장치이다. 또한 LRTA 장치, 램프뿐 아니라, 저항 발열체 등의 발열체로부터의 열전도 또는 열복사에 의해 피처리물을 가열하는 장치를 구비할 수도 있다. GRTA는 고온의 가스를 이용하여 가열 처리를 수행하는 방법을 가리킨다. 가스로서는 아르곤 등의 희가스 또는 질소와 같은, 가열 처리에 의해 피처리물과 반응하지 않는 불활성 기체가 사용된다. RTA법을 이용하여 600℃~750℃에서 수분간 가열 처리를 수행할 수도 있다.
또한 탈수화 또는 탈수소화를 수행하는 제1 가열 처리 후에 200℃ 이상 400℃ 이하, 바람직하게는 200℃ 이상 300℃ 이하의 온도에서 산소 가스 분위기하 또는 N2O 가스 분위기하에서 가열 처리를 수행할 수도 있다.
또한 산화물 반도체층의 제1 가열 처리는 섬형의 산화물 반도체층으로 가공하기 전의 산화물 반도체막에 수행할 수도 있다. 이 경우에는 제1 가열 처리 후에 가열 장치에서 기판을 꺼내어 포토리소그래피 공정을 수행한다.
이상의 공정을 거침으로써 산화물 반도체막 전체를 산소 과잉인 상태로 하여 고저항화, 즉 i형화시킨다. 따라서, 전체가 i형화된 산화물 반도체층(382)을 얻는다.
이어서, 제2 게이트 절연층(372b) 및 산화물 반도체층(382) 상에 도전막을 형성한다. 나아가 도전막 상에 포토리소그래피 공정에 의해 레지스트 마스크를 형성하고 선택적으로 에칭을 수행하여 소스 전극층(385a), 드레인 전극층(385b)을 형성하고 스퍼터링법으로 산화물 절연층(386)을 형성한다.
이 경우에, 처리실 내의 잔류 수분을 제거하면서 산화물 절연층(386)을 성막하는 것이 바람직하다. 산화물 반도체층(382) 및 산화물 절연층(386)에 수소, 수산기 또는 수분이 포함되지 않도록 하기 위함이다.
처리실 내의 잔류 수분을 제거하기 위해서는 흡착형의 진공 펌프를 이용하는 것이 바람직하다. 예를 들어 크라이오펌프, 이온 펌프, 티타늄 서블리메이션 펌프를 이용하는 것이 바람직하다. 또한 배기 수단은 터보 펌프에 콜드트랩을 부가한 것일 수도 있다. 크라이오펌프를 이용하여 배기시킨 성막실은 예를 들어 수소 원자나, 수분(H2O) 등 수소 원자를 포함하는 화합물 등이 배기되므로, 이 성막실에서 성막한 산화물 절연층(386)에 포함되는 불순물의 농도를 감소시킬 수 있다.
산화물 절연층(386)을 성막할 때에 이용하는 스퍼터링 가스는, 수소, 수분, 수산기 또는 수소화물 등의 불순물이 농도 수ppm 정도, 농도 수ppb 정도까지 제거된 고순도 가스를 사용하는 것이 바람직하다.
이상의 공정으로 트랜지스터(380)를 형성할 수 있다.
이어서, 트랜지스터의 전기적 특성의 편차를 줄이기 위해, 불활성 가스 분위기하 또는 질소 가스 분위기하에서 가열 처리(바람직하게는 150℃ 이상 350℃ 미만)를 수행할 수도 있다. 예를 들어 질소 분위기하에서 250℃, 1시간의 가열 처리를 수행한다.
또한 대기중에서 100℃ 이상 200℃ 이하, 1시간 이상 30시간 이하의 가열 처리를 수행할 수도 있다. 본 실시형태에서는 150℃에서 10시간 가열 처리를 수행한다. 이 가열 처리는 일정한 가열 온도를 유지하며 가열할 수도 있고, 실온으로부터 100℃ 이상 200℃ 이하의 가열 온도로의 승온과 가열 온도로부터 실온까지의 강온을 여러 번 반복하여 수행할 수도 있다. 또한 이 가열 처리를, 산화물 절연막의 형성전에 감압하에서 수행할 수도 있다. 감압하에서 가열 처리를 수행하면 가열 시간을 단축할 수 있다. 이 가열 처리에 의해, 노멀리-오프가 되는 트랜지스터를 얻을 수 있다. 따라서 반도체 장치의 신뢰성을 향상시킬 수 있다.
산화물 절연층(386) 상에 보호 절연층(373)을 형성한다. 본 실시형태에서는, 보호 절연층(373)으로서 스퍼터링법을 이용하여 막 두께 100nm의 질화 규소막을 형성한다.
질화물 절연층으로 이루어지는 보호 절연층(373) 및 제1 게이트 절연층(372a)은 수분이나, 수소나, 수소화물, 수산화물 등의 불순물을 포함하지 않고, 이것들이 외부로부터 침입하는 것을 차단하는 효과가 있다.
따라서, 보호 절연층(373) 형성 후의 제조 프로세스에서 외부로부터의 수분 등의 불순물의 침입을 막을 수 있다. 또한 반도체 장치로서 디바이스가 완성된 후에도 장기적으로 외부로부터의 수분 등의 불순물의 침입을 막을 수 있어 디바이스의 장기 신뢰성을 향상시킬 수 있다.
또한 질화물 절연층으로 이루어지는 보호 절연층(373)과 제1 게이트 절연층(372a)과의 사이에 마련되는 절연층을 제거하여 보호 절연층(373)과 제1 게이트 절연층(372a)이 접하는 구조로 형성할 수도 있다.
따라서, 산화물 반도체층중의 수분이나 수소나 수소화물, 수산화물 등의 불순물의 농도를 최대한 감소시키고 아울러 이 불순물의 재혼입을 방지하여 산화물 반도체층중의 불순물의 농도를 낮게 유지할 수 있다.
보호 절연층(373) 상에 평탄화를 위한 평탄화 절연층을 마련할 수도 있다.
본 실시형태에서 나타낸 트랜지스터에서, 산화물 반도체막은 실시형태 1에서 나타낸 스퍼터링 타겟을 이용하여 제조하였으므로, 산화물 반도체막이 함유하는 불순물의 농도를 감소시킬 수 있다. 또한 산화물 반도체막을 성막함에 있어서 반응 분위기중의 잔류 수분을 제거함으로써 이 산화물 반도체막중의 수소 및 수소화물의 농도를 보다 감소시킬 수 있다. 이에 의해 산화물 반도체막의 안정화를 도모할 수 있다.
이상과 같이, 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다. 또한 본 실시형태에서 설명한 오프 전류를 감소시킨 트랜지스터를 예를 들어 표시장치의 화소에 적용함으로써, 화소에 마련한 유지 용량이 전압을 유지할 수 있는 기간을 길게 할 수 있다. 따라서, 정지 화면 등을 표시할 때의 소비 전력이 적은 표시장치를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 10)
본 실시형태는 실시형태 1의 타겟을 적용하여 제조한 트랜지스터의 다른 예를 나타낸다. 본 실시형태에서 나타낸 트랜지스터는 실시형태 2 내지 실시형태 9의 트랜지스터에 적용할 수 있다.
본 실시형태에서는 게이트 전극층, 소스 전극층 및 드레인 전극층에 투광성을 갖는 도전재료를 이용하는 예를 나타낸다. 따라서, 그 이외에는 상기 실시형태와 동일하게 수행할 수 있고, 상기 실시형태와 동일 부분 또는 동일한 기능을 갖는 부분 및 공정의 반복되는 설명은 생략한다. 또한 동일한 부위의 상세한 설명은 생략한다.
예를 들어 게이트 전극층, 소스 전극층, 드레인 전극층의 재료로서 가시광에 대하여 투광성을 갖는 도전재료, 예를 들어 In-Sn-O계, In-Sn-Zn-O계, In-Al-Zn-O계, Sn-Ga-Zn-O계, Al-Ga-Zn-O계, Sn-Al-Zn-O계, In-Zn-O계, Sn-Zn-O계, Al-Zn-O계, In-O계, Sn-O계, Zn-O계의 금속 산화물을 적용할 수 있고 막 두께는 50nm 이상 300nm 이하의 범위내에서 적절히 선택한다. 게이트 전극층, 소스 전극층, 드레인 전극층에 이용하는 금속 산화물의 성막 방법은, 스퍼터링법, 진공 증착법(전자빔 증착법 등), 아크 방전 이온 도금법, 또는 스프레이법을 이용한다. 또한 스퍼터링법을 이용하는 경우, SiO2를 2중량% 이상 10중량% 이하 포함하는 타겟을 이용하여 성막을 수행하고, 투광성을 갖는 도전막에 결정화를 저해하는 SiOx(X>0)를 포함시켜, 후의 공정에서 수행하는 가열 처리시에 산화물 반도체막이 결정화되는 것을 억제시키는 것이 바람직하다.
아울러 투광성을 갖는 도전막의 조성비의 단위는 원자%로 하고, 전자선 마이크로 애널라이저(EPMA: Electron Probe X-ray MicroAnalyzer)를 이용한 분석에 의해 평가하기로 한다.
또한 트랜지스터가 배치되는 화소에는, 화소 전극층 또는 그 외의 전극층(용량 전극층 등)이나, 그 외의 배선층(용량 배선층 등)에 가시광에 대하여 투광성을 갖는 도전막을 이용하면 고개구율을 갖는 표시장치를 실현할 수 있다. 물론, 화소에 존재하는 게이트 절연층, 산화물 절연층, 보호 절연층, 평탄화 절연층도 가시광에 대하여 투광성을 갖는 막을 이용하는 것이 바람직하다.
본 명세서에서, 가시광에 대하여 투광성을 갖는 막은, 가시광의 투과율이 75%~100%인 두께를 갖는 막을 가리키고, 그 막이 도전성을 갖는 경우에는 투명한 도전막이라고도 부른다. 또한 게이트 전극층, 소스 전극층, 드레인 전극층, 화소 전극층 또는 그 외의 전극층이나 그 외의 배선층에 적용하는 금속 산화물로서 가시광에 대하여 반투명한 도전막을 사용할 수도 있다. 가시광에 대하여 반투명한 도전막은 가시광의 투과율이 50%~75%인 것을 가리킨다.
이상과 같이, 트랜지스터에 투광성을 갖게 하면 개구율을 향상시킬 수 있다. 특히 10인치 이하의 소형의 액정 표시 패널에서, 예를 들어 게이트 배선의 수를 늘리거나 하여 표시 화상의 고해상도화를 도모하기 위해 화소 치수를 미세화시켜도 높은 개구율을 실현할 수 있다. 또한 트랜지스터의 구성 부재로서 투광성을 갖는 막을 사용함으로써, 고밀도의 트랜지스터군을 배치하여도 개구율을 크게 할 수 있어 표시 영역의 면적을 충분히 확보할 수 있다. 또한 트랜지스터의 구성 부재와 동일한 공정 및 동일한 재료를 이용하여 유지 용량을 형성하면 유지 용량도 투광성을 갖게 할 수 있으므로 더욱 개구율을 향상시킬 수 있다.
또한 고순도화된 산화물 반도체층을 트랜지스터에 적용함으로써 오프 전류를 감소시킨 트랜지스터를 제공할 수 있다. 또한 본 실시형태에서 설명한 오프 전류를 감소시킨 트랜지스터를 예를 들어 표시장치의 화소에 적용함으로써, 화소에 마련한 유지 용량이 전압을 유지할 수 있는 기간을 길게 할 수 있다. 따라서, 정지 화면 등을 표시할 때의 소비 전력이 적은 표시장치를 제공할 수 있다.
본 실시형태는 다른 실시형태에 기재한 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 11)
상기 실시형태 2 내지 실시형태 10에서 나타낸 트랜지스터 등의 반도체 장치를 이용하여 다양한 전자기기를 완성할 수 있다. 실시형태 1에서 나타낸 타겟을 이용하여 제조한 트랜지스터는, 고순도화된 산화물 반도체층을 활성층으로서 이용하고 있으므로 오프 전류를 감소시킬 수 있다. 또한 문턱값 전압의 편차가 적은, 신뢰성이 높은 트랜지스터를 실현할 수 있다. 따라서, 최종 제품으로서의 전자기기를 높은 생산성(throughput) 및 양호한 품질로 제조하는 것이 가능하게 된다.
본 실시형태에서는 도 16을 이용하여 구체적인 전자기기에 대한 적용예를 설명한다. 아울러 전자기기로서는, 예를 들어 텔레비젼 장치(텔레비전 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라, 디지털 포토프레임, 휴대전화기(휴대전화, 휴대전화 장치라고도 함), 휴대형 게임기, 휴대 정보단말, 음향 재생 장치, 파칭코기 등의 대형 게임기 등을 들 수 있다. 아울러 실시형태 2 내지 실시형태 10에 따른 반도체 장치는 집적화되어 회로 기판 등에 실장되어 각 전자기기의 내부에 탑재될 수도 있고, 화소부의 스위칭 소자로서 이용할 수도 있다. 실시형태 2 내지 실시형태 10에 나타낸 트랜지스터는 오프 전류가 낮고, 아울러 문턱값 전압의 편차가 적어 화소부 또는 구동 회로부 모두에 바람직하게 이용할 수 있다.
도 16(A)는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 노트형의 퍼스널컴퓨터로, 본체(501), 하우징(502), 표시부(503), 키보드(504) 등에 의해 구성되어 있다.
도 16(B)는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 휴대 정보단말(PDA)로, 본체(511)에는 표시부(513)와 외부 인터페이스(515)와 조작 버튼(514) 등이 마련되어 있다. 또한 조작용의 부속품으로서 스타일러스(512)가 있다.
도 16(C)에는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 전자 페이퍼의 일례로서 전자서적(520)을 나타내었다. 전자서적(520)은 하우징(521) 및 하우징(523)의 2개의 하우징으로 구성되어 있다. 하우징(521) 및 하우징(523)은 축부(537)에 의해 일체형을 이루고 있으며 이 축부(537)를 축으로 하여 개폐 동작을 수행할 수 있다. 이러한 구성에 의해 전자서적(520)은 종이 서적처럼 이용할 수 있다.
하우징(521)에는 표시부(525)가 포함되고 하우징(523)에는 표시부(527)가 포함되어 있다. 표시부(525) 및 표시부(527)는 연속 화면을 표시하도록 구성할 수도 있고, 다른 화면을 표시하도록 구성할 수도 있다. 다른 화면을 표시하도록 구성함으로써 예를 들어 우측의 표시부(도 16(C)에서는 표시부(525))에 문장을 표시하고, 좌측의 표시부(도 16(C)에서는 표시부(527))에 화상을 표시할 수 있다.
또한 도 16(C)에서는 하우징(521)에 조작부 등을 구비한 예를 나타내고 있다. 예를 들어 하우징(521)은 전원(531), 조작키(533), 스피커(535) 등을 구비하고 있다. 조작키(533)에 의해 페이지를 넘길 수 있다. 아울러 하우징의 표시부와 동일면에 키보드나 포인팅 디바이스 등을 구비할 수도 있다. 또한 하우징의 뒷면이나 측면에 외부 접속용 단자(이어폰 단자, USB 단자, 또는 AC 어댑터 및 USB 케이블 등의 각종 케이블과 접속 가능한 단자 등), 기록 매체 삽입부 등을 구비할 수도 있다. 나아가 전자서적(520)은 전자 사전으로서의 기능을 갖게 할 수도 있다.
또한 전자서적(520)은 무선으로 정보를 송수신하도록 구성할 수도 있다. 무선에 의해, 전자서적 서버로부터 원하는 서적 데이터 등을 구입하고 다운로드하도록 할 수도 있다.
아울러 전자 페이퍼는 정보를 표시하는 것이면 모든 분야에 적용할 수 있다. 예를 들어 전자서적 외에도, 포스터, 전철 등의 차량의 차내 광고, 크레디트 카드 등의 각종 카드에서의 표시 등에 적용할 수 있다.
도 16(D)는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 휴대전화기이다. 이 휴대전화기는, 하우징(540) 및 하우징(541)의 2개의 하우징으로 구성되어 있다. 하우징(541)은 표시 패널(542), 스피커(543), 마이크로폰(544), 포인팅 디바이스(546), 카메라용 렌즈(547), 외부 접속 단자(548) 등을 구비하고 있다. 또한 하우징(540)은 이 휴대전화기의 충전을 수행하는 태양전지 셀(549), 외부 메모리 슬롯(550) 등을 구비하고 있다. 또한 안테나는 하우징(541) 내부에 내장되어 있다.
표시 패널(542)은 터치 패널 기능을 구비하고 있으며 도 16(D)에는 영상 표시되어 있는 복수의 조작키(545)를 점선으로 나타내었다. 아울러 이 휴대전화는 태양전지 셀(549)에서 출력되는 전압을 각 회로에 필요한 전압으로 승압시키기 위한 승압 회로를 실장하고 있다. 또한 상기 구성에 더하여, 비접촉 IC칩, 소형 기록장치 등을 내장할 수도 있다.
표시 패널(542)은 사용 형태에 따라 표시의 방향이 적절히 변화된다. 또한 표시 패널(542)과 동일면 상에 카메라용 렌즈(547)를 구비하고 있어 화상 전화가 가능하다. 스피커(543) 및 마이크로폰(544)은 음성 통화에 한정되지 않고, 화상 전화, 녹음, 재생 등이 가능하다. 나아가 하우징(540)과 하우징(541)은 슬라이드하여 도 16(D)과 같이 전개된 상태에서 중첩된 상태로 할 수 있어 휴대 정보 단말기의 크기를 줄일 수 있고, 휴대에 적합한 소형화가 가능하다.
외부 접속 단자(548)는 AC 어댑터와 USB 케이블 등의 각종 케이블과 접속 가능하여 이동 전화기의 충전과, 이동 전화기와 개인용 컴퓨터 등과의 데이터 통신이 가능하도록 되어 있다. 또한 외부 메모리 슬롯(550)에 기록 매체를 삽입하여, 보다 대량의 데이터의 보존 및 이동에 대응할 수 있다. 또한 상기 기능에 더하여, 적외선 통신 기능, 텔레비전 수신 기능 등을 구비할 수도 있다.
도 16(E)는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 디지털 카메라이다. 이 디지털 카메라는 본체(561), 표시부(A)(567), 접안부(563), 조작 스위치(564), 표시부(B)(565), 배터리(566) 등에 의해 구성되어 있다.
도 16(F)는 실시형태 2 내지 실시형태 10에 따른 반도체 장치를 포함하는 텔레비전 장치이다. 텔레비전 장치(570)에서는 하우징(571)에 표시부(573)가 포함되어 있다. 표시부(573)에 의해 영상을 표시할 수 있다. 아울러 여기서는 스탠드(575)에 의해 하우징(571)을 지지한 구성을 나타내었다.
텔레비전 장치(570)의 조작은, 하우징(571)에 구비된 조작 스위치나 별체의 리모콘 조작기(580)에 의해 수행할 수 있다. 리모콘 조작기(580)에 구비된 조작키(579)에 의해 채널이나 음량의 조작을 수행할 수 있고 표시부(573)에 표시되는 영상을 조작할 수 있다. 또한 리모콘 조작기(580)에, 이 리모콘 조작기(580)로부터 출력하는 정보를 표시하는 표시부(577)를 마련할 수도 있다.
아울러 텔레비전 장치(570)는 수신기나 모뎀 등을 구비하도록 하는 것이 바람직하다. 수신기에 의해 일반적인 텔레비전 방송의 수신을 수행할 수 있다. 또한 모뎀을 통해 유선 또는 무선에 의한 통신 네트워크에 접속함으로써 일방향(송신자로부터 수신자) 또는 쌍방향(송신자와 수신자간, 또는 수신자들끼리 등)의 정보통신을 수행할 수 있다.
본 실시형태에 나타낸 구성, 방법 등은 다른 실시형태에 나타낸 구성, 방법 등과 적절히 조합하여 이용할 수 있다.
300 기판 302 게이트 절연층
303 보호 절연층 310 트랜지스터
311 게이트 전극층 313 채널 형성 영역
314a 고저항 소스 영역 314b 고저항 드레인 영역
315a 소스 전극층 315b 드레인 전극층
316 산화물 절연층 320 기판
322 게이트 절연층 323 보호 절연층
330 산화물 반도체막 331 산화물 반도체층
332 산화물 반도체층 340 기판
342 게이트 절연층 343 보호 절연층
345 산화물 반도체막 346 산화물 반도체층
350 트랜지스터 351 게이트 전극층
352 산화물 반도체층 355a 소스 전극층
355b 드레인 전극층 356 산화물 절연층
360 트랜지스터 361 게이트 전극층
362 산화물 반도체층 363 채널 형성 영역
364a 고저항 소스 영역 364b 고저항 드레인 영역
365a 소스 전극층 365b 드레인 전극층
366 산화물 절연층 370 기판
372a 게이트 절연층 372b 게이트 절연층
373 보호 절연층 380 트랜지스터
381 게이트 전극층 382 산화물 반도체층
385a 소스 전극층 385b 드레인 전극층
386 산화물 절연층 390 트랜지스터
391 게이트 전극층 392 산화물 반도체층
393 산화물 반도체막 394 기판
395a 소스 전극층 395b 드레인 전극층
396 산화물 절연층 397 게이트 절연층
398 보호 절연층 399 산화물 반도체층
400 기판 402 게이트 절연층
407 절연층 410 트랜지스터
411 게이트 전극층 412 산화물 반도체층
414a 배선층 414b 배선층
415a 소스 전극층 또는 드레인 전극층
415b 소스 전극층 또는 드레인 전극층
420 기판 421a 개구
421b 개구 422 절연층
423 개구 424 도전층
425 트랜지스터 426 트랜지스터
427 도전층 450 기판
452 게이트 절연층 457 절연층
460 트랜지스터 461 게이트 전극층
461a 게이트 전극층 461b 게이트 전극층
462 산화물 반도체층 464 배선층
465a 소스 전극층 또는 드레인 전극층
465a1 소스 전극층 또는 드레인 전극층
465a2 소스 전극층 또는 드레인 전극층
465b 소스 전극층 또는 드레인 전극층
468 배선층 501 본체
502 하우징 503 표시부
504 키보드 511 본체
512 스타일러스 513 표시부
514 조작 버튼 515 외부 인터페이스
520 전자서적 521 하우징
523 하우징 525 표시부
527 표시부 531 전원
533 조작키 535 스피커
537 축부 540 하우징
541 하우징 542 표시 패널
543 스피커 544 마이크로폰
545 조작키 546 포인팅 디바이스
547 카메라용 렌즈 548 외부 접속 단자
549 태양전지 셀 550 외부 메모리 슬롯
561 본체 563 접안부
564 조작 스위치 565 표시부(B)
566 배터리 567 표시부(A)
570 텔레비전 장치 571 하우징
573 표시부 575 스탠드
577 표시부 579 조작키
580 리모콘 조작기

Claims (18)

  1. 스퍼터링 타겟으로서,
    산화 마그네슘, 산화 아연, 산화 알루미늄, 산화 갈륨, 산화 인듐 또는 산화 주석에서 선택된 적어도 하나의 금속 산화물의 소결체를 포함하고,
    상기 소결체는 세정 후 가열 처리를 받으며,
    상기 소결체에 함유된 수소 농도가 1×1016atoms/cm3 미만인, 스퍼터링 타겟.
  2. 제 1 항에 있어서,
    상기 소결체는 산화 인듐, 산화 갈륨, 및 산화 아연의 소결체인, 스퍼터링 타겟.
  3. 제 1 항에 있어서,
    산화 규소를 더 포함하고, 상기 산화 규소는 상기 스프터링 타겟에 0.1중량% 이상 20중량% 이하로 추가되는, 스퍼터링 타겟.
  4. 스퍼터링 타겟을 이용하여 제조된 산화물 반도체층을 활성층으로서 포함하는 트랜지스터로서,
    상기 스퍼터링 타겟은 산화 마그네슘, 산화 아연, 산화 알루미늄, 산화 갈륨, 산화 인듐 또는 산화 주석에서 선택된 적어도 하나의 금속 산화물을 포함하고,
    상기 산화물 반도체에 함유된 수소 농도가 1×1016atoms/cm3 미만인, 트랜지스터.
  5. 제 4 항에 있어서,
    상기 산화물 반도체층은 산화 인듐, 산화 갈륨, 및 산화 아연의 혼합된 층인, 트랜지스터.
  6. 제 4 항에 있어서,
    상기 산화물 반도체층은 산화 규소를 포함하고, 상기 산화 규소는 상기 스프터링 타겟에 0.1중량% 이상 20중량% 이하로 추가되는, 트랜지스터.
  7. 스퍼터링 타겟의 제조 방법으로서,
    복수의 금속 산화물을 혼합하고, 소성하여 소결체를 형성하는 단계,
    상기 소결체를 기계 가공하여 타겟으로 성형하는 단계,
    상기 타겟을 세정하는 단계, 및
    세정된 타겟에 가열 처리를 수행하는 단계를
    포함하는, 스퍼터링 타겟의 제조 방법.
  8. 제 7 항에 있어서,
    상기 세정하는 단계는 초음파 세정에 의해 수행되는, 스퍼터링 타겟의 제조 방법.
  9. 제 7 항에 있어서,
    상기 가열 처리의 온도는 425℃ 이상 750℃ 이하인, 스퍼터링 타겟의 제조 방법.
  10. 제 7 항에 있어서,
    상기 가열 처리는 상기 소결체에 함유된 수소의 농도가 1×1016atoms/cm3 미만이 되도록 수행되는, 스퍼터링 타겟의 제조 방법.
  11. 제 7 항에 있어서,
    상기 가열 처리는 질소, 헬륨, 네온, 아르곤 중 적어도 하나의 가스가 도입되는 가열 처리 장치에서 수행되고,
    복수의 상기 적어도 하나의 가스의 순도를 6N 이상, 또는 7N 이상으로 설정하며,
    6N은 99.9999%이고, 7N은 99.99999%인, 스퍼터링 타겟의 제조 방법.
  12. 제 7 항에 있어서,
    상기 복수의 금속 산화물은 산화 아연, 산화 갈륨, 및 산화 인듐을 포함하는, 스퍼터링 타겟의 제조 방법.
  13. 스퍼터링 타겟의 제조 방법으로서,
    복수의 금속 산화물을 혼합하고, 소성하여 소결체를 형성하는 단계,
    상기 소결체를 기계 가공하여 타겟으로 성형하는 단계,
    상기 타겟을 세정하는 단계,
    세정 후의 타겟을 가열 처리를 수행하는 단계, 및
    상기 타겟을 백킹 플레이트에 부착하는 단계를
    포함하는, 스퍼터링 타겟의 제조 방법.
  14. 제 13 항에 있어서,
    상기 세정하는 단계는 초음파 세정에 의해 수행되는, 스퍼터링 타겟의 제조 방법.
  15. 제 13 항에 있어서,
    상기 가열 처리의 온도는 425℃ 이상 750℃ 이하인, 스퍼터링 타겟의 제조 방법.
  16. 제 13 항에 있어서,
    상기 가열 처리는 상기 소결체에 함유된 수소의 농도가 1×1016atoms/cm3 미만이 되도록 수행되는, 스퍼터링 타겟의 제조 방법.
  17. 제 13 항에 있어서,
    상기 가열 처리는 질소, 헬륨, 네온, 아르곤 중 적어도 하나의 가스가 도입되는 가열 처리 장치에서 수행되고,
    복수의 상기 적어도 하나의 가스의 순도를 6N 이상, 또는 7N 이상으로 설정하며,
    6N은 99.9999%이고, 7N은 99.99999%인, 스퍼터링 타겟의 제조 방법.
  18. 제 13 항에 있어서,
    상기 복수의 금속 산화물은 산화 아연, 산화 갈륨, 및 산화 인듐을 포함하는, 스퍼터링 타겟의 제조 방법.
KR1020127014740A 2009-11-13 2010-10-21 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터 Ceased KR20120094013A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-260224 2009-11-13
JP2009260224 2009-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020177017122A Division KR20170072965A (ko) 2009-11-13 2010-10-21 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터

Publications (1)

Publication Number Publication Date
KR20120094013A true KR20120094013A (ko) 2012-08-23

Family

ID=43991541

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127014740A Ceased KR20120094013A (ko) 2009-11-13 2010-10-21 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터
KR1020177017122A Ceased KR20170072965A (ko) 2009-11-13 2010-10-21 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177017122A Ceased KR20170072965A (ko) 2009-11-13 2010-10-21 스퍼터링 타겟 및 그 제조방법, 및 트랜지스터

Country Status (5)

Country Link
US (3) US8492862B2 (ko)
JP (9) JP5627098B2 (ko)
KR (2) KR20120094013A (ko)
TW (2) TWI542717B (ko)
WO (1) WO2011058882A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410943B1 (ko) * 2012-12-20 2014-07-04 재단법인 포항산업과학연구원 고 아연 분율의 산화인듐-산화갈륨-산화아연 혼합 화합물의 소결체 및 그 제조방법

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058934A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
WO2011058882A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
WO2012029612A1 (en) * 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
US9219159B2 (en) * 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
TWI545652B (zh) 2011-03-25 2016-08-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
KR102492593B1 (ko) 2011-06-08 2023-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟, 스퍼터링 타겟의 제조 방법 및 박막의 형성 방법
EP2748351A1 (en) * 2011-08-25 2014-07-02 Applied Materials, Inc. Sputtering apparatus and method
SG11201505099TA (en) * 2011-09-29 2015-08-28 Semiconductor Energy Lab Semiconductor device
CN106847929B (zh) * 2011-09-29 2020-06-23 株式会社半导体能源研究所 半导体装置
KR20130046357A (ko) * 2011-10-27 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20140097244A (ko) 2011-11-08 2014-08-06 토소우 에스엠디, 인크 특별한 표면 처리를 하고 양호한 입자 성능을 가진 실리콘 스퍼터링 타겟 및 그 제조 방법들
US9057126B2 (en) * 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
KR20140101817A (ko) 2011-12-02 2014-08-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
CN102751240B (zh) * 2012-05-18 2015-03-11 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制造方法、显示面板、显示装置
WO2014002916A1 (en) * 2012-06-29 2014-01-03 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for manufacturing oxide film
JP6059460B2 (ja) * 2012-07-20 2017-01-11 株式会社コベルコ科研 ターゲット組立体
US10557192B2 (en) 2012-08-07 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for forming oxide film
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
CN102856392B (zh) * 2012-10-09 2015-12-02 深圳市华星光电技术有限公司 薄膜晶体管主动装置及其制作方法
KR102227591B1 (ko) * 2012-10-17 2021-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101504580B1 (ko) * 2012-10-19 2015-03-20 홍성돈 코팅 성능이 향상된 엠블럼 코팅 장치
EP2767610B1 (en) * 2013-02-18 2015-12-30 Heraeus Deutschland GmbH & Co. KG ZnO-Al2O3-MgO sputtering target and method for the production thereof
JP6141777B2 (ja) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP6345544B2 (ja) * 2013-09-05 2018-06-20 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI677989B (zh) * 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP2016027597A (ja) * 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 半導体装置
KR20170101233A (ko) 2014-12-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링용 타깃의 제작 방법
US20170229295A1 (en) * 2016-02-09 2017-08-10 Honeywell International Inc. Sputtering device component with modified surface and method of making
US10655212B2 (en) 2016-12-15 2020-05-19 Honeywell Internatonal Inc Sputter trap having multimodal particle size distribution
KR102082602B1 (ko) * 2018-03-08 2020-04-23 토토 가부시키가이샤 복합 구조물 및 복합 구조물을 구비한 반도체 제조 장치 그리고 디스플레이 제조 장치
CN112975593A (zh) * 2021-04-29 2021-06-18 合肥江丰电子材料有限公司 一种含钼靶材的自动抛光工艺方法
CN113182941A (zh) * 2021-04-29 2021-07-30 合肥江丰电子材料有限公司 一种含铜靶材的自动抛光工艺方法
CN113442000A (zh) * 2021-06-08 2021-09-28 先导薄膜材料有限公司 一种金属铋平面靶材的制备方法
WO2023189870A1 (ja) * 2022-03-29 2023-10-05 出光興産株式会社 スパッタリングターゲット、スパッタリングターゲットの製造方法、酸化物薄膜、薄膜トランジスタ、及び電子機器
CN114823977B (zh) * 2022-04-25 2024-02-23 中国科学技术大学 氧化镓光电探测器的制备方法

Family Cites Families (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0784654B2 (ja) * 1989-07-13 1995-09-13 株式会社ジャパンエナジー Ito透明導電膜用スパッタリングターゲットの製造方法
JPH04154654A (ja) * 1990-10-19 1992-05-27 Sumitomo Metal Mining Co Ltd Ito焼結体の製造方法
JPH04293769A (ja) * 1991-03-20 1992-10-19 Tosoh Corp 低温成膜用itoスパッタリングタ−ゲット
JP3030913B2 (ja) * 1991-04-15 2000-04-10 住友金属鉱山株式会社 Ito焼結体の製造方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JPH073443A (ja) * 1993-06-16 1995-01-06 Asahi Glass Co Ltd スパッタリングターゲットとその製造方法
JP3864425B2 (ja) * 1994-03-22 2006-12-27 東ソー株式会社 アルミニウムドープ酸化亜鉛焼結体およびその製造方法並びにその用途
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
US5836506A (en) 1995-04-21 1998-11-17 Sony Corporation Sputter target/backing plate assembly and method of making same
US5539219A (en) * 1995-05-19 1996-07-23 Ois Optical Imaging Systems, Inc. Thin film transistor with reduced channel length for liquid crystal displays
WO1997001853A1 (fr) 1995-06-28 1997-01-16 Idemitsu Kosan Co., Ltd. Stratifie transparent conducteur et ecran tactile realise a partir dudit stratifie
JP3746094B2 (ja) * 1995-06-28 2006-02-15 出光興産株式会社 ターゲットおよびその製造方法
JPH11505377A (ja) * 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
US5650358A (en) * 1995-08-28 1997-07-22 Ois Optical Imaging Systems, Inc. Method of making a TFT having a reduced channel length
EP1553205B1 (en) * 1995-10-12 2017-01-25 Kabushiki Kaisha Toshiba Sputter target for forming thin film interconnector and thin film interconnector line
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP2985789B2 (ja) 1996-08-30 1999-12-06 日本電気株式会社 半導体装置の製造方法
US6673400B1 (en) 1996-10-15 2004-01-06 Texas Instruments Incorporated Hydrogen gettering system
JPH10297966A (ja) 1997-04-28 1998-11-10 Sumitomo Metal Mining Co Ltd スパッタリングターゲット用ZnO−Ga2O3系焼結体の製造方法
JPH1150244A (ja) 1997-08-05 1999-02-23 Riyouka Massey Kk スパッタリングターゲット材およびその製造方法
JP4076265B2 (ja) * 1998-03-31 2008-04-16 三井金属鉱業株式会社 酸化亜鉛焼結体スパッタリングターゲットおよびその製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) * 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
JP3362008B2 (ja) * 1999-02-23 2003-01-07 シャープ株式会社 液晶表示装置およびその製造方法
TW460731B (en) * 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
CA2322714A1 (en) * 1999-10-25 2001-04-25 Ainissa G. Ramirez Article comprising improved noble metal-based alloys and method for making the same
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP4845267B2 (ja) * 2001-01-15 2011-12-28 東芝モバイルディスプレイ株式会社 レーザアニール装置およびレーザアニール方法
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) * 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
EP1443130B1 (en) * 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP2003216100A (ja) 2002-01-21 2003-07-30 Matsushita Electric Ind Co Ltd El表示パネルとel表示装置およびその駆動方法および表示装置の検査方法とel表示装置のドライバ回路
JP2003277924A (ja) 2002-01-21 2003-10-02 Sumitomo Metal Mining Co Ltd ルテニウムスパッタリングターゲットの製造方法及びそれにより得られたターゲット
JP2003213407A (ja) 2002-01-24 2003-07-30 Nikko Materials Co Ltd 高純度ニッケル又はニッケル合金スパッタリングターゲット及びその製造方法
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) * 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
EP1367659B1 (en) * 2002-05-21 2012-09-05 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
KR100602062B1 (ko) 2003-04-03 2006-07-14 엘지.필립스 엘시디 주식회사 수평 전계 인가형 액정 표시 장치 및 그 제조 방법
WO2004105054A1 (ja) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. 非晶質透明導電膜、及びその原料スパッタリングターゲット、及び非晶質透明電極基板、及びその製造方法、及び液晶ディスプレイ用カラーフィルタ
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
KR101012491B1 (ko) 2003-12-04 2011-02-08 엘지디스플레이 주식회사 액정표시장치용 어레이기판과 제조방법
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
KR101019337B1 (ko) * 2004-03-12 2011-03-07 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 아몰퍼스 산화물 및 박막 트랜지스터
US7297977B2 (en) * 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
KR101132266B1 (ko) 2004-03-26 2012-04-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제조 방법
JP4823543B2 (ja) 2004-03-26 2011-11-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US7476105B2 (en) * 2004-08-06 2009-01-13 Super Talent Electronics, Inc. Super-digital (SD) flash card with asymmetric circuit board and mechanical switch
US7378286B2 (en) 2004-08-20 2008-05-27 Sharp Laboratories Of America, Inc. Semiconductive metal oxide thin film ferroelectric memory transistor
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
CN101057333B (zh) * 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
KR100939998B1 (ko) * 2004-11-10 2010-02-03 캐논 가부시끼가이샤 비정질 산화물 및 전계 효과 트랜지스터
KR100889796B1 (ko) * 2004-11-10 2009-03-20 캐논 가부시끼가이샤 비정질 산화물을 사용한 전계 효과 트랜지스터
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) * 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) * 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006101152A1 (ja) 2005-03-23 2006-09-28 National Institute Of Advanced Industrial Science And Technology 不揮発性メモリ素子
US7544967B2 (en) * 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) * 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) * 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) * 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) * 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) * 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4560502B2 (ja) 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP5058469B2 (ja) 2005-09-06 2012-10-24 キヤノン株式会社 スパッタリングターゲットおよび該ターゲットを用いた薄膜の形成方法
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR20090130089A (ko) * 2005-11-15 2009-12-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 다이오드 및 액티브 매트릭스 표시장치
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP4552950B2 (ja) * 2006-03-15 2010-09-29 住友金属鉱山株式会社 ターゲット用酸化物焼結体、その製造方法、それを用いた透明導電膜の製造方法、及び得られる透明導電膜
JP2007250982A (ja) 2006-03-17 2007-09-27 Canon Inc 酸化物半導体を用いた薄膜トランジスタ及び表示装置
KR20070101595A (ko) * 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) * 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7989361B2 (en) 2006-09-30 2011-08-02 Samsung Electronics Co., Ltd. Composition for dielectric thin film, metal oxide dielectric thin film using the same and preparation method thereof
JP2008091789A (ja) 2006-10-04 2008-04-17 Hitachi Cable Ltd 発光ダイオード
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5216204B2 (ja) 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 液晶表示装置及びその作製方法
JP5116290B2 (ja) 2006-11-21 2013-01-09 キヤノン株式会社 薄膜トランジスタの製造方法
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP5143410B2 (ja) 2006-12-13 2013-02-13 出光興産株式会社 スパッタリングターゲットの製造方法
US8784700B2 (en) 2006-12-13 2014-07-22 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP4727684B2 (ja) 2007-03-27 2011-07-20 富士フイルム株式会社 薄膜電界効果型トランジスタおよびそれを用いた表示装置
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) * 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
JP2008270313A (ja) 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 半導体記憶素子
KR101325053B1 (ko) * 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) * 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5241143B2 (ja) * 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
JP5049659B2 (ja) 2007-06-11 2012-10-17 昭和電工株式会社 Iii族窒化物半導体の製造方法、iii族窒化物半導体発光素子の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
US7763502B2 (en) 2007-06-22 2010-07-27 Semiconductor Energy Laboratory Co., Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device, and electronic device
KR100884883B1 (ko) 2007-06-26 2009-02-23 광주과학기술원 아연산화물 반도체 및 이를 제조하기 위한 방법
JP5446161B2 (ja) 2007-08-31 2014-03-19 住友電気工業株式会社 ショットキーバリアダイオードおよびその製造方法
JP2009127125A (ja) 2007-11-28 2009-06-11 Mitsui Mining & Smelting Co Ltd スパッタリングターゲット材およびこれから得られるスパッタリングターゲット
KR101270174B1 (ko) 2007-12-03 2013-05-31 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
JP5213422B2 (ja) 2007-12-04 2013-06-19 キヤノン株式会社 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
CN101897031B (zh) 2007-12-13 2013-04-17 出光兴产株式会社 使用了氧化物半导体的场效应晶体管及其制造方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP5213458B2 (ja) 2008-01-08 2013-06-19 キヤノン株式会社 アモルファス酸化物及び電界効果型トランジスタ
JP5121478B2 (ja) 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト 光センサー素子、撮像装置、電子機器、およびメモリー素子
US8586979B2 (en) 2008-02-01 2013-11-19 Samsung Electronics Co., Ltd. Oxide semiconductor transistor and method of manufacturing the same
JP4555358B2 (ja) 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
JP2009231664A (ja) 2008-03-25 2009-10-08 Idemitsu Kosan Co Ltd 電界効果トランジスタ及びその製造方法
TWI475282B (zh) 2008-07-10 2015-03-01 Semiconductor Energy Lab 液晶顯示裝置和其製造方法
KR101753574B1 (ko) 2008-07-10 2017-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5484853B2 (ja) 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP2256814B1 (en) 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
WO2011040213A1 (en) 2009-10-01 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20130130879A (ko) 2009-10-21 2013-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
WO2011058882A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and manufacturing method thereof, and transistor
KR20120106950A (ko) 2009-11-13 2012-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스퍼터링 타겟 및 그 제작 방법 및 트랜지스터

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101410943B1 (ko) * 2012-12-20 2014-07-04 재단법인 포항산업과학연구원 고 아연 분율의 산화인듐-산화갈륨-산화아연 혼합 화합물의 소결체 및 그 제조방법

Also Published As

Publication number Publication date
US20130277895A1 (en) 2013-10-24
JP2020150270A (ja) 2020-09-17
TW201630081A (zh) 2016-08-16
JP5839746B2 (ja) 2016-01-06
TWI542717B (zh) 2016-07-21
JP7470093B2 (ja) 2024-04-17
WO2011058882A1 (en) 2011-05-19
JP2024079844A (ja) 2024-06-11
US20150136594A1 (en) 2015-05-21
JP2015043440A (ja) 2015-03-05
JP6425769B2 (ja) 2018-11-21
US8492862B2 (en) 2013-07-23
JP2019014975A (ja) 2019-01-31
JP2022033167A (ja) 2022-02-28
JP5848427B2 (ja) 2016-01-27
KR20170072965A (ko) 2017-06-27
JP2011122238A (ja) 2011-06-23
JP2017152742A (ja) 2017-08-31
JP5627098B2 (ja) 2014-11-19
US10083823B2 (en) 2018-09-25
US20110114944A1 (en) 2011-05-19
JP2016066804A (ja) 2016-04-28
TWI607512B (zh) 2017-12-01
JP6151332B2 (ja) 2017-06-21
JP2015061953A (ja) 2015-04-02
TW201132780A (en) 2011-10-01
JP6995927B2 (ja) 2022-02-04
US8937020B2 (en) 2015-01-20

Similar Documents

Publication Publication Date Title
JP7470093B2 (ja) 半導体装置の作製方法
KR20120106950A (ko) 스퍼터링 타겟 및 그 제작 방법 및 트랜지스터
TWI649882B (zh) 電壓調整器電路及半導體裝置
TWI553875B (zh) 半導體裝置
TWI603474B (zh) 半導體裝置
KR20120115318A (ko) 반도체 장치
KR101803987B1 (ko) 표시 장치

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20120607

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
AMND Amendment
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20151008

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20161013

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20170418

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20161013

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20170418

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20161213

Comment text: Amendment to Specification, etc.

Patent event code: PX09012R01I

Patent event date: 20151008

Comment text: Amendment to Specification, etc.

PX0601 Decision of rejection after re-examination

Comment text: Decision to Refuse Application

Patent event code: PX06014S01D

Patent event date: 20170525

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20170518

Comment text: Decision to Refuse Application

Patent event code: PX06011S01I

Patent event date: 20170418

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20161213

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20161013

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20151008

A107 Divisional application of patent
PA0104 Divisional application for international application

Comment text: Divisional Application for International Patent

Patent event code: PA01041R01D

Patent event date: 20170621