KR20080069958A - 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을위한 장치 및 방법 - Google Patents
나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을위한 장치 및 방법 Download PDFInfo
- Publication number
- KR20080069958A KR20080069958A KR1020087004314A KR20087004314A KR20080069958A KR 20080069958 A KR20080069958 A KR 20080069958A KR 1020087004314 A KR1020087004314 A KR 1020087004314A KR 20087004314 A KR20087004314 A KR 20087004314A KR 20080069958 A KR20080069958 A KR 20080069958A
- Authority
- KR
- South Korea
- Prior art keywords
- nanoscale
- solar cell
- photovoltaic
- structures
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 title abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 137
- 239000000463 material Substances 0.000 claims abstract description 91
- 239000004065 semiconductor Substances 0.000 claims abstract description 68
- 230000003287 optical effect Effects 0.000 claims abstract description 55
- 238000000576 coating method Methods 0.000 claims abstract description 41
- 239000011248 coating agent Substances 0.000 claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims description 50
- 238000009792 diffusion process Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 description 69
- 239000002184 metal Substances 0.000 description 69
- 230000005540 biological transmission Effects 0.000 description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 29
- 239000011651 chromium Substances 0.000 description 29
- 239000002041 carbon nanotube Substances 0.000 description 27
- 229910021393 carbon nanotube Inorganic materials 0.000 description 26
- 239000002073 nanorod Substances 0.000 description 24
- 230000005855 radiation Effects 0.000 description 21
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 20
- 229910052804 chromium Inorganic materials 0.000 description 20
- 229910052723 transition metal Inorganic materials 0.000 description 17
- 150000003624 transition metals Chemical class 0.000 description 17
- 239000002071 nanotube Substances 0.000 description 15
- 229910052782 aluminium Inorganic materials 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 230000003197 catalytic effect Effects 0.000 description 12
- 230000005684 electric field Effects 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 239000002800 charge carrier Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000005670 electromagnetic radiation Effects 0.000 description 6
- 239000002048 multi walled nanotube Substances 0.000 description 6
- 239000002070 nanowire Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000005641 tunneling Effects 0.000 description 5
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 210000005239 tubule Anatomy 0.000 description 4
- 238000001429 visible spectrum Methods 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000879 optical micrograph Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000002079 double walled nanotube Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000013082 photovoltaic technology Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 230000013742 energy transducer activity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/18—Photovoltaic cells having only Schottky potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1437—Quantum wires or nanorods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/348—Electrochemical processes, e.g. electrochemical deposition or anodisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Nonlinear Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
본원에는 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을 위한 장치 및 방법이 개시되어 있다. 코메탈 구조물은 동축형 및 공면형일 수 있다. 태양 전지로서 사용하는 나노 스케일 광학 장치(100)는 제1 전기 전도체(120)와 제2 전기 전도체(160) 사이에 위치되는 광기전 재료(180)를 각각 포함하는 복수개의 나노 스케일 코메탈 구조물을 포함한다. 태양 전지를 제조하는 방법은 복수개의 나노 스케일 평면형 구조물을 준비하는 단계와; 복수개의 평면형 구조물의 복수개의 평면형 표면들 사이에 공간을 남기면서 복수개의 평면형 표면에 광기전 재료(180)를 코팅하는 단계와; 광기전 반도체(180)에 외부 전기 전도체 층을 코팅하는 단계로서, 외부 전기 전도체 층의 일부가 공면 구조물을 형성하기 위해 평면형 구조물들 사이에 위치되는 단계를 포함한다.
나노 스케일 광학 장치, 태양 전지, 나노 스케일 코메탈 구조물, 제1 전기 전도체, 제2 전기 전도체, 광기전 재료
Description
본원에 개시된 실시예들은 나노 스케일 광학을 사용하는 태양 에너지 변환의 분야에 관한 것으로, 특히 동축(coaxial) 또는 공면(coplanar)을 포함하는 나노 스케일 코메탈(cometal) 구조물을 사용하는 태양 에너지 변환을 위한 장치 및 방법에 관한 것이다.
나노 스케일 광학은 (가시 광에 대한) 단파장 치수의 단위로 구성되는 물질과의 광학적 상호 작용의 연구 분야이다. 나노 스케일 광학은 나노 리소그래피, 고-밀도 광학 데이터 저장, 나노미터 스케일의 광화학, 태양 전지, 단파장 측방향 해상도(subwavelength lateral resolution)를 갖는 재료 촬영 및 표면 개질, 생물 및 고체-상태 구조물의 국부 선형 및 비선형 분광, 양자 전산 및 양자 통신 등의 광학 기술에 다양하게 적용된다.
일반적으로, 태양 에너지는 2개의 방식, 즉 전기(태양 광기전)로서 그리고 열(태양 열)로서 취할 수 있다. 모든 기존의 태양 전지는 100% 미만의 효율이며, 이것은 태양 전지가 입사 태양 에너지의 100% 미만을 사용 가능한 형태로 변환한다 는 것을 의미한다. 현재, 높은 효율의 태양 전지는 약 10 내지 28%의 평균 개구-면적 효율(AAE: average aperture-area efficiency)을 갖는 p-n 접합 광학 광기전(PV: photovoltaic) 전지 그리고 약 17%의 평균 AAE를 갖는 모듈에서만 달성될 수 있는 것으로 보인다. 연구용 다중 접합 집중부에서, 39% 정도로 높은 효율이 보고되었다. 이들은 값비싼 결정질 반도체를 기초로 한다. 표준형 결정질 규소(c-Si) PV 기술의 경우에, 재료 비용이 박막 형태보다 약 50% 높을 뿐만 아니라, 또한 설치를 위한 비용이 비정질 규소(a-Si)로부터 제작된 것들과 같은 가요성 기판 PV 전지에 비해 높다. 비-결정질 반도체를 기초로 하는 저렴한 PV 전지는 다음의 AAE, 약 12%의 a-Si; 약 16%의 CdTe(카드뮴 텔루라이드); 약 19%의 구리 인듐 디셀레나이드(CIS: copper indium diselenide)를 갖는다. "The role of polycrystalline thin-film PV technologies for achieving mid-term market competitive PV modules"(B. von Roedern, K. Zweibel, 및 H.S. Ullal, 제31차 IEEE 광기전 공학 전문가 회의 및 전시회, 레이크 부에나 비스타, 미국 플로리다주, 2005년 1월 3일 내지 7일)을 참조하기 바란다.
저렴한 전지의 낮은 효율의 배경을 이루는 기초 물리학은 높은 광자 흡수 및 전하 수집 효율을 동시에 보장하는 데 있어서의 어려움과 직접적으로 관련된다. 이것은 광이 태양 전지 상으로 입사되고 전자 및 정공이 광기전 반도체 재료와 그 광의 상호 작용에 의해 해방되는 동시 요건으로부터 기인한다. 즉, 광기전 재료는 (광자의 형태로) 광을 흡수할 정도로 충분히 두꺼워야 하지만, 해방된 전하 캐리어(전자 및 정공)가 모서리(상부 및 저부)로 성공적으로 이동하여 포집될 수 있을 정도로 충분히 얇아야 한다.
나아가, a-Si-계열의 태양 전지의 경우에, 전형적으로 안정화 효율은 스태블러-브론스키 효과(SWE: Staebler-Wronski effect)로서 알려져 있는 광-유도 준안정 결함 생성으로 인해 초기 수치보다 약 15% 낮다. "Reversible conductivity changes in discharge-produced amorphous Si"[D.L. Steabler 및 C.R. Wronski, 응용 물리학 학회지(Appl. Phys. Lett.) 31, 292-294 (1977)]을 참조하기 바란다. 활성 PV 층의 표면의 두께를 감소시키고 활성 PV 층의 표면을 주름지게 하는 것은 효율을 상당히 개선시킬 수 있지만, 캐리어 이동성 및 수명이 저하된 제품 그리고 SWE는 구조적 무질서로 인해 반도체 내에서의 국부화된 전자 상태의 밴드 테일(band tail)에 의해 제어된다. 구조적 무질서는 발생된 캐리어의 확산 길이를 극적으로 감소시키는 모든 비-결정질 재료에 있어서의 근본적인 문제점이다.
광학 렉테나(optical rectenna)를 사용하여 태양 전지를 제조하려는 종래 기술의 시도는 낮은 비용으로 대-규모 금속 나노 구조물을 달성하는 데 있어서 어려움을 겪었다. 최근에, 다중-벽형 탄소 나노 튜브(MWCNT)가 입사되는 가시 광을 수용 및 전달하는 광학 안테나와 유사하게 거동하는 것으로 보고되었다. 이들 나노 구조물은 양호하게 정렬된 성장 배향을 갖는 높은 금속성을 갖는 것으로 나타났다. MWCNT는 크기를 조절할 수 없지만 여전히 이 분야의 대부분의 다른 실험적 접근에 의해 불가피하게 사용되는 전자-빔 리소그래피와 같은 값비싸고 시간-소모성인 종래 기술을 사용하지 않고서 잘 확립된 플라즈마 화학 기상 증착(PECVD) 방법에 의해 대부분의 전도성 또는 반전도성 기판 상에 대규모로 낮은 비용으로 제조될 수 있다. 이와 같이, 당업계에는 새로운 종류의 매우 효율적이고 낮은 비용의 태양 전지를 안출할 필요성이 있다.
본원에는 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을 위한 장치 및 방법이 개시되어 있다. 코메탈 구조물은 동축 또는 공면일 수 있다.
본원에 설명되는 태양에 따르면, 태양 전지로서 사용하는 나노 스케일 광학 장치로서, 제1 전기 전도체와 제2 전기 전도체 사이에 위치되는 광기전 재료를 각각 포함하는 복수개의 나노 스케일 코메탈 구조물을 포함하는 나노 스케일 광학 장치가 제공된다.
본원에 설명되는 태양에 따르면, 광기전 재료와 접촉하고 외부 전기 전도체 층이 코팅되는 전기 전도성 코어를 각각 포함하는 복수개의 나노 스케일 동축 구조물을 포함하는 태양 전지가 제공된다.
본원에 설명되는 태양에 따르면, 제1 전기 전도성 층과 제2 전기 전도성 층 사이에 위치되는 광기전 층을 각각 포함하는 복수개의 나노 스케일 공면 구조물을 포함하며; 광이 제1 전기 전도성 층과 제2 전기 전도성 층 사이의 공면 구조물 내로 진입하는 태양 전지가 제공된다.
본원에 설명되는 태양에 따르면, 복수개의 나노 스케일 평면형 구조물을 준비하는 단계와; 복수개의 평면형 구조물의 복수개의 평면형 표면들 사이에 공간을 남기면서 복수개의 평면형 표면에 광기전 재료를 코팅하는 단계와; 광기전 반도체에 외부 전기 전도체 층을 코팅하는 단계로서, 외부 전기 전도체 층의 일부가 공면 구조물을 형성하기 위해 평면형 구조물들 사이에 위치되는 단계를 포함하는 태양 전지 제조 방법이 제공된다.
본원에 개시된 실시예들이 첨부된 도면을 참조하여 추가로 설명될 것이며, 도면에서 동일한 구조물은 여러 개의 도면 전체에 걸쳐 동일한 도면 부호에 의해 표시된다. 도면은 반드시 일정한 비율일 필요가 없지만, 그 대신에 본원에 개시된 실시예들의 원리를 설명할 때에 대체로 강조될 수 있다.
도1A는 전도성 매트릭스 내에 매립되는 개시된 실시예의 복수개의 나노 스케일 동축 코메탈 태양 전지 유닛의 개략도를 도시하고 있다.
도1B는 도1A의 나노 스케일 동축 태양 전지 유닛의 평면도를 도시하고 있다.
도2A, 도2B 및 도2C는 정렬된 탄소 나노 튜브 주위에 구축되는 나노 스케일 동축 전송 선로의 개략도 및 예시도를 각각 도시하고 있다. 도2A는 정렬된 탄소 나노 튜브의 개략도 및 예시도를 도시하고 있다. 도2B는 광기전 재료를 코팅한 후의 정렬된 탄소 나노 튜브의 개략도 및 예시도를 도시하고 있다. 도2C는 광기전 재료 및 외부 전도체 재료를 코팅한 후의 정렬된 탄소 나노 튜브의 개략도 및 예시도를 도시하고 있다.
도3은 정렬된 탄소 나노 튜브 주위에 구축되는 나노 스케일 동축 전송 선로의 어레이를 도시하고 있다. 도3A는 주사 전자 현미경(SEM: scanning electron microscope)에 의해 관찰되는 노출된 동축 구조물을 도시하고 있다. 도3B는 주사 전자 현미경에 의해 관찰되는 단일의 나노 스케일 동축 전송 선로의 단면도를 도시 하고 있다. 도3C는 규소(Si), 크롬(Cr) 및 알루미늄(Al)에 대한 농도 매핑을 도시하는 동축 층의 조성물의 에너지 분산 x-선 분광(EDS: energy dispersive x-ray spectroscopy)을 도시하고 있다. 도3D는 집중부를 갖는 나노 스케일 동축 태양 전지의 어레이의 단면도를 도시하고 있다.
도4A, 도4B 및 도4C는 백색 광이 나노 스케일 동축 전송 선로의 어레이를 통해 투과된 광학 실험의 결과를 도시하고 있다. 도4A는 어두운 스팟이 나노 스케일 동축 전송 선로를 나타내는, 반사된 광 내에서 관찰 가능한 어레이의 표면 형태를 도시하고 있다. 도4B는 밝은 스팟이 조사한 나노 스케일 동축 전송 선로를 나타내는, 투과된 광 내에서 관찰 가능한 도4A와 동일한 어레이의 표면 형태를 도시하고 있다. 도4C는 반사된 광(도4A) 및 투과된 광(도4B)의 합성으로서 어레이의 표면 형태를 도시하고 있다.
도5는 비-직선형 전도성 선로 및 가요성 매트릭스를 갖는 나노 스케일 동축 태양 전지의 단면도를 도시하고 있다.
도6A는 병렬 레이아웃으로 배열되는 상이한 밴드갭 반도체의 다층 구조를 갖는 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다.
도6B는 직렬 레이아웃으로 배열되는 상이한 밴드갭 반도체의 다층 구조를 갖는 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다.
도7은 집중부가 나노 스케일 동축 태양 전지의 상부 단부로부터 연장되는 상태의 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다.
도8은 탄소 나노 튜브의 어레이를 포함하며 어레이 내의 각각의 세관이 광 나노-안테나로서 알려져 있는 금속 피막으로부터 돌출하는 부분 그리고 나노 스케일 동축 전송 라인으로서 알려져 있는 금속 피막 내에 매립되는 부분을 포함하는 나노 스케일 광학 장치의 개략도를 도시하고 있다.
도9A는 본원에 개시된 실시예들에 따른 나노 스케일 광학 장치의 3-차원 구성도를 도시하고 있다.
도9B는 도9A의 나노 스케일 광학 장치 내에서 사용된 나노 로드의 주사 전자 현미경(SEM) 사진을 도시하고 있다.
도9C는 도9A의 나노 스케일 광학 장치의 투과 광학 현미경 사진을 도시하고 있다.
도10A는 본원에 개시된 실시예들에 따른 나노 스케일 광학 장치를 제작하는 방법을 도시하고 있다.
도10B는 본원에 개시된 실시예들에 따른 나노 스케일 광학 장치를 제작하는 방법을 도시하고 있다.
도11은 최대 레이더 단면적(RCS) 산란 진폭에서의 나노-안테나 길이 대 복사선 파장의 그래프를 도시하고 있다.
도12A는 본원에 개시된 실시예들에 따라 제작되는 나노 스케일 광학 장치의 단면의 관찰 가능한 SEM 사진(중첩 상태)을 도시하고 있다.
도12B는 도12A의 나노 스케일 광학 장치의 주사 전자 현미경(SEM) 사진을 도시하고 있다.
도13은 본원에 개시된 실시예들에 따라 제작되는 태양 전지의 개략도를 도시 하고 있다.
도14는 평행 공면 도파로의 사시도를 도시하고 있다.
도15는 다중-층 평행 공면 도파로의 사시도를 도시하고 있다.
도16은 비평행 공면 도파로의 사시도를 도시하고 있다.
도17은 임의의 형상의 코메탈 도파로의 사시도를 도시하고 있다.
도18은 p-n 접합을 갖는 나노 스케일 동축 태양 전지의 사시도를 도시하고 있다.
도19는 p-i-n 접합을 갖는 나노 스케일 동축 태양 전지의 사시도를 도시하고 있다.
도20은 p-n 접합을 갖는 나노 스케일 공면 태양 전지의 사시도를 도시하고 있다.
도21은 p-i-n 접합을 갖는 나노 스케일 공면 태양 전지의 사시도를 도시하고 있다.
도22는 나노 스케일 공면 태양 전지의 측면도를 도시하고 있다.
전술된 도면은 본원에 개시된 실시예들을 설명하고 있지만, 다른 실시예가 또한 논의에서 언급된 것과 같이 고려된다. 이 명세서는 설명으로서 그리고 제한 없이 예시 실시예를 제시하고 있다. 많은 다른 변형예 및 실시예가 본원에 개시된 실시예들의 원리의 범주 및 사상 내에 속하는 당업자에 의해 고안될 수 있다.
본원에 개시된 실시예들은 나노 스케일 광학을 사용하는 태양 에너지 변환의 분야에 관한 것으로, 특히 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을 위한 장치 및 방법에 관한 것이다. 태양 전지는 태양 에너지를 수집 또는 흡수하고 태양 에너지를 전기, 열 또는 또 다른 사용 가능한 형태로 변환하는 장치이다. 나노 스케일 코메탈 태양 전지를 제조하는 방법이 또한 개시되어 있다. 다음의 정의는 본원에 개시된 실시예들의 다양한 태양 및 특징을 기술하는 데 사용된다.
여기에서 언급되는 것과 같이, "탄소 나노 튜브(carbon nanotube)", "나노 튜브(nanotube)", "나노 와이어(nanowire)" 및 "나노 로드(nanorod)"는 상호 교환 가능하게 사용된다.
여기에서 언급되는 것과 같이, "나노 스케일(nanoscale)"은 약 5000 ㎚(1 ㎚는 1 m의 1/10억과 동일함) 이하의 거리 및 특징부를 말한다.
여기에서 언급되는 것과 같이, "단일-벽형 탄소 나노 튜브(SWCNT: single-walled carbon nanotube)"는 실린더에 감긴 1개의 그라핀 시트를 포함한다. "이중-벽형 탄소 나노 튜브(DWCNT: double-walled carbon nanotube)"는 평행한 상태의 2개의 그라핀 시트를 포함하고, 다중 시트(전형적으로, 약 3 내지 약 30개)를 갖는 것들은 "다중-벽형 탄소 나노 튜브(MWCNT: multi-walled carbon nanotube)"이다.
여기에서 언급되는 것과 같이, "단일-코어 동축 전송 선로(SCCTL: single-core coaxial transmission line)"는 중심에서 1개의 나노 튜브를 포함한다. "이중-코어 동축 전송 선로(DCCTL: double-core coaxial transmission line)"는 중심에서 2개의 나노 튜브를 포함한다.
여기에서 언급되는 것과 같이, CNT는 개별 세관의 길이 방향 축이 서로에 실질적으로 평행한 평면 내에 배향되는 상태로 "정렬된다(aligned)".
여기에서 언급되는 것과 같이, "세관(tubule)"은 개별 CNT이다.
여기에서 사용되는 것과 같은 용어 "선형 CNT(linear CNT)"는 이들의 선형 축을 따라 개별 CNT 세관의 표면으로부터 유래하는 분지부를 포함하지 않는 CNT를 말한다.
여기에서 사용되는 것과 같은 용어 "어레이(array)"는 서로에 근접하게 기판 재료에 부착되는 복수개의 CNT 세관을 말한다.
여기에서 언급되는 것과 같이, "나노 스케일 동축 선로(nanoscale coaxial line)"는 복수개의 동심 층을 포함하는 나노 스케일 동축 와이어를 말한다. 하나의 실시예에서, 나노 스케일 동축 선로는 3개의 동심 층, 즉 내부 전도체, 코어 주위의 광기전 코팅 그리고 외부 전도체를 갖는다. 동축 선로 내부에서의 전자기 에너지의 전송은 파장-독립적이고, 횡단 방향 전자기(TEM) 모드에서 일어난다. 하나의 실시예에서, 내부 전도체는 금속 코어이다. 하나의 실시예에서, 외부 전도체는 금속 차폐물이다.
여기에서 언급되는 것과 같이, "나노 스케일 공면 선로(nanoscale coplanar line)"는 복수개의 평행 층을 포함하는 나노 스케일 공면 구조물을 말한다. 하나의 실시예에서, 나노 스케일 공면 선로는 3개의 평행 층, 즉 2개의 금속 전도체 그리고 이들 사이의 광기전 코팅을 갖는다. 공면 선로 내부에서의 전자기 에너지의 전송은 파장-독립적이고, 횡단 방향 전자기(TEM) 모드에서 일어난다.
여기에서 언급되는 것과 같이, "횡단 방향 전자기(TEM: transverse electromagnetic) 모드"는 전기장 및 자기장의 양쪽 모두가 전파 방향에 직각인 전송 선로 내에서의 전자기 모드를 말한다. 다른 가능한 모드는 전기장만이 전파 방향에 직각인 횡단 방향 전기(TE: transverse electric) 모드 그리고 자기장만이 전파 방향에 직각인 횡단 방향 자기(TM: transverse magnetic) 모드를 포함하지만 이들에 제한되지 않는다.
여기에서 언급되는 것과 같이, "촉매 전이 금속(catalytic transition metal)"은 임의의 전이 금속, 전이 금속 합금 또는 이들의 혼합물일 수 있다. 촉매 전이 금속의 예는 니켈(Ni), 은(Ag), 금(Au), 백금(Pt), 팔라듐(Pd), 철(Fe), 루테늄(Ru), 오스뮴(Os), 코발트(Co), 로듐(Rh) 및 이리듐(Ir)을 포함하지만 이들에 제한되지 않는다. 하나의 실시예에서, 촉매 전이 금속은 니켈(Ni)을 포함한다. 하나의 실시예에서, 촉매 전이 금속은 철(Fe)을 포함한다. 하나의 실시예에서, 촉매 전이 금속은 코발트(Co)를 포함한다.
여기에서 언급되는 것과 같이, "촉매 전이 금속 합금(catalytic transition metal alloy)"은 임의의 전이 금속 합금일 수 있다. 바람직하게는, 촉매 전이 금속 합금은 2개 이상의 전이 금속의 균질 혼합물 또는 고용체이다. 촉매 전이 금속 합금의 예는 니켈/금(Ni/Au) 합금, 니켈/크롬(Ni/Cr) 합금, 철/크롬(Fe/Cr) 합금 및 코발트/철(Co/Fe) 합금을 포함하지만 이들에 제한되지 않는다.
용어 "나노 튜브(nanotube)", "나노 와이어(nanowire)", "나노 로드(nanorod)", "나노 결정(nanocrystal)", "나노 입자(nanoparticle)" 및 "나노 구 조물(nanostructure)"은 본원에서 상호 교환 가능하게 사용된다. 이들 용어는 주로 수 ㎚ 내지 약 수 ㎛의 범위 내에서 예컨대 최대 치수에 의해 특징화되는 크기를 갖는 재료 구조물을 말한다. 상당히 대칭적인 구조물이 발생되는 응용예에서, 이 크기(최대 치수)는 수십 ㎛ 정도로 클 수 있다.
용어 "CVD"는 화학 기상 증착을 말한다. CVD에서, 약품의 가스상 혼합물은 높은 온도에서 해리된다(예컨대, CO2를 C 및 O2로). 이것은 CVD의 "CV" 부분이다. 그 다음에, 해방된 분자들 중 일부가 인접한 기판 상에 증착될 수 있으며(CVD에서 "D"), 이 때 잔여부는 펌핑된다. CVD 방법의 예는 "플라즈마 화학 기상 증착(PECVD: plasma enhanced chemical vapor deposition)", "고온 필라멘트 화학 기상 증착(HFCVD: hot filament chemical vapor deposition)" 및 "싱크로트론 복사선 화학 기상 증착(SRCVD: synchrotron radiation chemical vapor deposition)"을 포함하지만 이들에 제한되지 않는다.
본원에 언급되는 것과 같이, "광학 신호(optical signal)"는 감마 선, X-선, 자외 광, 가시 광, 적외선, 극초단파, 전자파(ULF, VLF, LF, MF, HF, 장파, 단파, HAM, VHF, UHF, SHF, EHF), 우주 극초단파 배경 복사선 그리고 다른 형태의 전자기 스펙트럼의 복사선을 포함하는 임의의 전자기 복사선 펄스를 말한다.
본원에 개시된 실시예들은 대체로 나노 스케일 광학 장치를 제조하기 위한 나노 스케일 코메탈 선로의 사용에 관한 것이다. 나노 스케일 광학 장치는 상면 및 하면을 갖는 금속 피막 그리고 복수개의 코메탈 구조물로 제작되는 다기능 나노 복합 재료이다. 나노 스케일 동축 선로는 광기전 재료로 충전되고 중심의 동심 금속 코어를 갖는 금속 실린더를 포함한다. 각각의 나노 스케일 동축 선로는 피막의 표면을 넘어 연장되는 중심 코어 그리고 피막 내에 있는 매립 부분을 가질 수 있다. 나노 스케일 공면 선로는 개재 공간에 광기전 재료가 충전된 상태의 금속 벽을 포함한다. 각각의 나노 스케일 공면 선로는 피막의 표면을 넘어 연장되는 벽 그리고 피막 내에 있는 매립 부분을 가질 수 있다.
코메탈 구조물은 횡단 방향 전자기(TEM) 파동이 2개의 금속들 사이의 공간 내에서 효율적으로 전파되는 방식으로, 2개 이상, 전형적으로는 2개인 금속 표면이 근접한 상태에 있는 구조물이다. 금속 또는 이들의 표면은 동일 또는 상이한 금속 재료로 구성될 수 있다. 이들 금속 중 일부는 안내된 복사선을 투과시킬 수 있다. 코메탈 전송 선로는 또한 다른 모드의 전파, 예컨대 횡단 방향 전기(TE) 또는 횡단 방향 자기(TM) 모드를 허용할 수 있다. 코메탈 구조물의 종래의 예는 동축 와이어 또는 케이블이다. 나노 스케일 코메탈 구조물은 코메탈 구조물 내의 임의의 2개의 금속들 사이의 분리 거리가 나노 스케일이며 그에 의해 나노 스케일이 약 1 내지 약 수천 ㎚의 범위 내에 있는 구조물이다. 나노 스케일 코메탈 구조물의 2개의 주요 예는 나노 스케일 동축 와이어 및 나노 스케일 공면 전송 선로이다. 이들 2개의 코메탈 구조물 그리고 이들의 변형예는 그 파장이 금속 분리 거리(즉, 파장 이하 전파)보다 작은 파동을 포함하는 파동을 TEM 모드를 통해 전송할 수 있다. 한정된 길이의 코메탈 구조물은 정상파를 가능케 하고, 복사선 공진기로서 역할한다. 나노 스케일 치수 덕분에, 이러한 파동은 가시 스펙트럼 내의 그리고 가시 스펙트 럼 근처의 파동, 즉 자외선(약 200 내지 약 400 ㎚)으로부터 적외선(약 800 내지 약 5000 ㎚)까지의 파동을 포함한다.
코메탈 구조물에 대한 외부 복사선의 결합 효율은 구조물의 기하 형상 그리고 동작 모드에 의존한다. 일부의 코메탈 구조물, 예컨대 도14 내지 도16 그리고 도20 내지 도22에 도시된 공면 구조물은 파장보다 훨씬 작은 전극간 분리에 대해서도 어떠한 장치 없이 복사선에 결합된다. 나노 스케일 동축 선로 등의 다른 구조물에서, 파장 이상의 충분히 큰 외부 직경을 위한 어떠한 장치도 요구되지 않는다. 전극간 채널이 복사선 파장보다 훨씬 작으면(즉, TEM 모드만이 전파될 수 있으면), 안테나 등의 특별한 장치가 필요할 수 있다.
본원에 개시된 실시예들은 전도성 매체, 즉 광기전-활성 매체가 충전되는 나노 스케일 동축 선로에 임피던스 정합되는 나노 안테나를 포함하는 기본 유닛을 사용함으로써 광자 및 전하 캐리어에 대한 포집 효율을 증가시킨다. 나노 안테나는 효율적인 광 수집을 제공하는 한편, 나노 스케일 코메탈 섹션은 수집된 복사선을 포획하고, 전자-정공 쌍으로의 그 효율적인 변환을 보장한다. 나노 스케일 동축 실시예에 대해, 동축 대칭은 TEM 모드의 전자기 복사선을 운반하는 데 효율적이기 때문에 광자 및 전하 캐리어의 양쪽 모두에 대해 높은 포집 효율을 나타낸다. 나노 스케일 동축 선로의 길이는 높은 광자 포집을 보장하기 위해 수 ㎛ 정도의 길이로 제작될 수 있고, 나노 스케일 동축 선로의 폭은 내부 전극과 외부 전극 사이에서 높은 캐리어 포집을 제공할 정도로 충분히 작은 직경으로 용이하게 제작될 수 있다. 동축 선로는 파장 이하 전파 그리고 그에 의해 전극들 사이의 매우 작은 거 리를 가능케 한다. 사실상, 전극들 사이의 거리는 광 전파를 방해하지 않고 캐리어 확산 길이보다 작을 수 있다(즉, 나노 스케일). 나노 스케일 공면 실시예가 또한 TEM 모드의 전자기 복사선을 운반하는 데 효율적이므로, 광자 및 전하 캐리어의 양쪽 모두에 대해 높은 포집 효율을 나타낸다.
본원에 개시된 실시예들은 횡단 방향 전자기(TEM) 전송이 가능한 어떠한 전송 선로와도 함께 작용한다. 이러한 선로는 동축 전송 선로(즉, 단일 코어를 갖는 동축 선로), 도12B의 41에서 도시된 것과 같은 다중-코어 동축 전송 선로(다중-코어 동축 케이블), 스트립라인(stripline) 및 공면 선로를 포함하지만 이들에 제한되지 않는다. 스트립라인은 광기전부의 피막에 의해 분리되는 2개의 평탄한 평행 금속 전극(스트립)을 갖는 전송 선로이다. 각각의 전극의 폭 L은 복사선 파장보다 크다. 전극들은 복사선 파장보다 작을 수 있는 거리 d만큼 이격된다. 하나의 실시예에서, 복수개의 코어(다중-코어)를 갖는 나노 스케일 동축 선로가 광자 및 전하 캐리어의 양쪽 모두에 대해 높은 포집 효율을 나타내도록 하는데 사용될 수 있다. 하나의 실시예에서, 나노 스트립라인(즉, 나노 스케일에서 d를 갖는 가시 광을 위한 스트립라인)이 광자 및 전하 캐리어의 양쪽 모두에 대해 높은 포집 효율을 가져온다.
안테나는 외부 공진기이다. 본원에 개시된 실시예들의 나노 안테나는 큰 종횡비, 즉 길이 l이 직경 d보다 훨씬 큰, 예컨대 l>3d인 종횡비를 갖는 광폭 공진기이다. 나노 안테나의 대역폭은 전체의 태양 스펙트럼을 커버하도록 조정될 수 있다. 본원에 기술된 나노 안테나는 종래의 안테나의 방향 특성을 소유하며, 그에 의해 종래의 전파 기술이 가시 주파수 범위 내에서 나노 스케일 광학 시스템에 적용되는 것을 입증한다.
본원에 개시된 실시예들의 시스템의 성능은 높은 재료 및 설치 비용 등의 단점 없이 c-Si에 필적할 것이다. 본원에 개시된 실시예들의 시스템은 훨씬 진전된 개선을 가능케 한다. 다중-층 전략에 의해, 광자 에너지는 반도체 밴드 갭에 정합될 수 있으며, 그에 의해 광자 손실을 최소화하고 효율을 추가로 개선시킨다.
도1A는 복수개의 나노 스케일 동축 구조물을 포함하는 나노 스케일 광학 장치(100)의 개략도를 도시하고 있다. 나노 스케일 동축 구조물은 임피던스-정합된 안테나(110)를 갖는 내부 전도체(120) 그리고 광기전 재료(180)로 코팅된 동축 섹션(115)을 포함한다. 나노 스케일 광학 장치(100)는 기판(190)에 의해 지지된다. 내부 전도체(120)는 나노 스케일 동축 구조물을 넘어 연장되며, 그에 의해 광학 나노-안테나(110)를 형성한다. 외부 전도체(160)가 동축 섹션(115)의 외부 코팅이다. 복수개의 나노 스케일 구조물이 전도성 매트릭스(140) 내에 매립된다. 나노 스케일 동축 구조물은 나노 스케일 동축 태양 전지일 수 있다. 나노 스케일 광학 장치는 본원에 개시된 실시예들에 따라 제작된다.
내부 전도체(120)는 금속 코어일 수 있다. 내부 전도체를 위한 금속의 예는 탄소 섬유; 탄소 나노 튜브; 니켈(Ni), 알루미늄(Al) 또는 크롬(Cr) 등의 순수한 전이 금속; 금속 합금 예컨대 스테인리스 강(Fe/C/Cr/Ni) 또는 알루미늄 합금(Al/Mn/Zn); 그리고 금속 중합체를 포함하지만 이들에 제한되지 않는다. 다른 내부 전도체는 고도로 도핑된 반도체 그리고 반-금속(매우 작은 밴드 갭을 갖는 금 속 예컨대 그래파이트)이다. 당업자라면 내부 전도체가 당업계에서 공지되어 있는 다른 전도성 재료일 수 있고 본원에 개시된 실시예들의 사상 및 범주 내에 있을 수 있다는 것을 인식할 것이다.
광기전 재료(180)는 가시 스펙트럼 내의 광의 흡수를 최대화하는 밴드 갭을 갖는다. 광기전 재료의 예는 규소(Si), 카드뮴 텔루라이드(CdTe), 인듐 갈륨 포스파이드(InGaP), 갈륨 아세나이드(GaAs), 게르마늄(Ge), Cu(InGa)Se, GaP, CdS, 인듐 안티모나이드(InSb), 납 텔루라이드(PbTe), In1-xGaxN, 유기 반도체[예컨대, 구리 프탈로시아닌(CuPc)], 유전성 재료 그리고 당업자에게 공지되어 있는 유사한 재료를 포함하지만 이들에 제한되지 않는다. 광기전 재료는 결정질(거시적 스케일에서의 원자의 주기적 배열), 다결정질(미시적 스케일에서의 원자의 주기적 배열) 또는 비정질(거시적 스케일에서의 원자의 비주기적 배열)일 수 있다. 당업자라면 광기전 재료가 가시 스펙트럼 내의 광의 흡수를 개선시키도록 된 밴드 갭을 갖는 당업계에서 공지되어 있는 다른 재료일 수 있다는 것을 인식할 것이다. 광기전 재료(180)는 내부 전도체(120) 주위에서 균일할 수 있거나, 불-균일하게 내부 전도체(120)를 둘러쌀 수 있다.
외부 전도체(160)는 금속일 수 있다. 이와 같이, 외부 전도체(160)는 금속 실린더의 형태를 취할 수 있다. 외부 전도체의 예는 탄소 섬유; 탄소 나노 튜브; 니켈(Ni), 알루미늄(Al) 또는 크롬(Cr) 등의 순수한 전이 금속; 금속 합금 예컨대 스테인리스 강(Fe/C/Cr/Ni) 또는 알루미늄 합금(Al/Mn/Zn); 그리고 금속 중합체를 포함하지만 이들에 제한되지 않는다. 다른 외부 전도체는 고도로 도핑된 반도체 그리고 반-금속(매우 작은 밴드 갭을 갖는 금속 예컨대 그래파이트)이다. 당업자라면 외부 전도체가 당업계에서 공지되어 있는 다른 전도성 재료일 수 있고 본원에 개시된 실시예들의 사상 및 범주 내에 있을 수 있다는 것을 인식할 것이다.
도1B는 도1A의 나노 스케일 동축 태양 전지의 평면도를 도시하고 있다. 도1B에서, 내부 전도체(120)의 직경은 2r이고, 한편 외부 전도체(160)의 직경은 2R이다. 당업자라면 직경이 변동할 수 있고 본원에 개시된 실시예들의 사상 및 범주 내에 있을 수 있다는 것을 인식할 것이다.
도2A, 도2B 및 도2C는 정렬된 탄소 나노 튜브 주위에 구축되는 나노 스케일 동축 전송 선로의 개략도 및 예시도를 각각 도시하고 있다. 도2A, 도2B 및 도2C는 복수개의 나노 스케일 동축 구조물을 갖는 어레이로부터 선택된 단일의 나노 스케일 동축 구조물을 도시하고 있다. 이 개략도는 나노 스케일 동축 태양 전지를 제조하는 3개의 주요 단계를 도시하고 있다. 이 예시도는 샘플 표면에 대해 30˚ 각도로 주사 전자 현미경(SEM)을 사용하여 촬영되었다.
도2A는 정렬된 탄소 나노 튜브의 개략도 및 예시도를 도시하고 있다. 플라즈마 화학 기상 증착(PECVD) 방법이 니켈 촉매를 사용하여 약 5 내지 6 ㎛의 평균 길이를 갖는 수직으로 정렬된 다중벽형의 직선형 탄소 나노 튜브를 성장시키는 데 사용되었다(도2A). 촉매는 유리 기판의 상부 상에 스퍼터링되는 얇은 크롬 층(약 10 ㎚) 상에 전착되었다.
도2B는 광기전 재료를 코팅한 후의 정렬된 탄소 나노 튜브의 개략도 및 예시 도를 도시하고 있다. 나노 튜브에는 알루미늄 산화물(Al2O3)의 광기전 층이 코팅되었다. 광기전 층은 약 100 내지 약 150 ㎚ 또는 그 이상의 두께를 갖는다.
도2C는 광기전 재료 및 외부 전도성 재료를 코팅한 후의 정렬된 탄소 나노 튜브의 개략도 및 예시도를 도시하고 있다. 나노 튜브에는 외부 전도체로서 약 100 내지 약 150 ㎚ 두께의 크롬 층이 스퍼터링되었다. 하나의 실시예에서, 외부 전도체는 150 ㎚보다 두껍다.
도3은 정렬된 탄소 나노 튜브 주위에 구축되는 나노 스케일 동축 전송 선로의 어레이를 도시하고 있다. 어레이는 기판(190) 상에 균일하게 또는 무작위로 분포되는 나노 스케일 동축 전송 선로를 가질 수 있다. 나노 스케일 동축 전송 선로는 열로 정렬될 수 있거나 기판(190) 상에 고르지 않게 분포될 수 있다. 기판(190)은 투명할 수 있다. 기판(190)은 중합체, 유리, 세라믹 재료, 탄소 섬유, 유리 섬유 또는 이들의 조합으로 구성될 수 있다. 당업자라면 기판이 당업계에서 공지되어 있는 다른 재료일 수 있거나 본원에 개시된 실시예들의 사상 및 범주 내에 있다는 것을 인식할 것이다.
수직으로 정렬된 전도체의 어레이(예컨대, 다중벽형의 탄소 나노 튜브 또는 다른 나노 와이어/나노 섬유)가 성장되거나 기판에 부착된다. 다음에, 전도체에는 적절한 광기전 재료가 코팅된다. 그 다음에, 전도체에는 외부 전도체로서 역할하는 금속 층이 코팅된다.
나노 스케일 동축 전송 선로의 어레이는 얇은(약 10 ㎚) 크롬 층이 코팅되는 유리 기판 상에 성장되는 수직으로 정렬된 탄소 나노 튜브를 포함한다. 이 층 상에, 나노 튜브의 PECVD 성장을 위한 니켈 촉매가 전기 화학적으로 증착되었다. 그 다음에, 나노 튜브에는 150 ㎚의 알루미늄 산화물 그리고 후속적으로 100 ㎚의 크롬이 코팅되었다. 나노 스케일 동축 케이블의 전체의 어레이에는 어레이 기능성에 영향을 미치지 않지만 나노 스케일 동축 케이블의 상부 부분이 기계적으로 연마되게 하는 스핀-온-글래스(SOG: spin-on-glass)가 충전되었다. 이 방식으로, 나노 스케일 동축 케이블 코어가 노출될 수 있고, 이들은 파장-독립성 전송 선로로서 작용할 수 있다. 도3A는 주사 전자 현미경(SEM)에 의해 관찰되는 노출된 동축 구조물을 도시하고 있다.
도3B는 주사 전자 현미경에 의해 관찰되는 단일의 나노 스케일 동축 전송 선로의 단면도를 도시하고 있다. 도3B는 연마 후에 노출되는 나노 스케일 동축 전송 선로의 내부 구조를 도시하고 있다.
도3C는 규소(Si), 크롬(Cr) 및 알루미늄(Al)에 대한 농도 매핑을 도시하는 동축 층의 조성물의 에너지 분산 x-선 분광(EDS)을 도시하고 있다. 도3C에서의 점선은 EDS 라인스캔의 위치에 대응하고, 한편 3개의 제시된 플롯은 스캐닝된 라인을 따른 규소(Si), 크롬(Cr) 및 알루미늄(Al) 농도에 대응한다. 도3C는 규소의 농도가 실리카(SiO2) 풍부 영역 내에서 최고임을 도시하고 있다. 마찬가지로, 최고 크롬 농도가 나노 스케일 동축 벽의 금속 코팅의 영역 내에 존재하고, 최고 알루미늄 농도가 광기전 코팅(Al2O3)의 영역 내에서 관찰된다.
도3D는 집중부, 즉 나노 스케일 동축 케이블 주위의 외부 전도체의 오목한 만입부를 갖는 나노 스케일 동축 태양 전지의 어레이의 단면도를 도시하고 있다. 기판은 가요성이다. 하나의 실시예에서, 기판(190)은 알루미늄(Al) 포일 또는 다른 가요성 금속 재료(구리, 탄소 섬유, 강 그리고 유사한 재료)이다. 기판에는 습식 화학 및 전기 화학 방법 또는 종래의 진공 증착 기술(예컨대, 스퍼터링, 증발 그리고 유사한 기술)을 사용하여 촉매 입자(예컨대, Fe, Ni, Co)가 코팅된다. 다음에, 나노 튜브인 내부 전도체(120)가 본원에 기술된 기술(예컨대, CVD, PECVD 그리고 유사한 기술)을 사용하여 성장되고, 기판 영역이 산소에 노출되며, 이것은 노출된 금속 기판에만 영향을 미치며 그에 의해 광기전 층(170)을 형성한다. 반도체 재료(180)의 박막은 종래의 증착 기술(예컨대, CVD 그리고 유사한 기술)을 사용하여 성장된다. 마지막으로, 기판 영역에는 집중부(185)가 형성되도록 광기전 코팅(180)에 대해 적절한 습윤 성질을 갖는 부드러운 금속 층(160)이 코팅된다. 집중부(185)는 코팅된 내부 전도체(120)에 인접한 오목 메니스커스이다. 하나의 실시예에서, 금속 분말 또는 액체가 코어간 간격을 충전하는 데 사용될 것이고, 그에 후속하여 집중부(185)를 형성하기 위한 열 처리가 수행된다. 각각의 나노 스케일 동축 유닛 주위의 오목 메니스커스 영역은 광 집중부(185), 즉 나노 안테나 자체보다 훨씬 큰 면적으로부터 광을 수집하는 추가 안테나로서 역할한다. 집중부(185)는 전체의 태양 전지 어레이가 매우 높은 효율을 여전히 유지하면서 더 적은 개수의 나노 스케일 동축 유닛으로 제작되게 한다. 집중부(185)는 당업계에서 공지되어 있는 기술을 사용하여 태양 전지 어레이에 간단하게 추가될 수 있다.
하나의 실시예에서, 집중부(185)는 반도체-코팅된 나노 스케일 동축 코어의 표면을 불량하게 습윤하는 전도성 매체 내에서 자체로-형성된다. 낮은-습윤성의 금속 매체(예컨대, 금속 분말 또는 금속 입자를 함유하는 액체)가 외부 전도체(160)로서 피착되고, 열 처리가 습윤 각도, 즉 집중부(185)의 곡률을 제어하는 데 사용된다. 이것은 각각의 나노 스케일 동축 코어 주위에 광 집중부(185), 즉 볼록 함몰부를 생성시킬 것이다.
도4A, 도4B 및 도4C는 백색 광이 나노 스케일 동축 전송 선로의 어레이를 통해 투과된 광학 실험의 결과를 도시하고 있다. 도4A는 어두운 스팟이 나노 스케일 동축 전송 선로를 나타내는 상태로 반사된 광 내에서 관찰 가능한 어레이의 표면 형태를 도시하고 있다. 도4B는 밝은 스팟이 조사한 나노 스케일 동축 전송 선로를 나타내는 상태로 투과된 광 내에서 관찰 가능한 도4A와 동일한 어레이의 표면 형태를 도시하고 있다. 도4C는 반사된 광(도4A) 및 투과된 광(도4B)의 합성으로서 어레이의 표면 형태를 도시하고 있다. 도4A 및 도4B의 양쪽 모두의 조사한 나노 스케일 동축 전송 선로 내의 스팟의 위치들 사이에는 매우 양호한 상호 관계가 있다. 투과된 광은 백색으로 남아 있으며(도4B), 이것은 어떠한 차단 주파수 및 파장 독립성 투과도 시사하지 않는다.
본원에 개시된 실시예들의 나노 스케일 동축 구조물은 태양 전지 유닛의 대규모 제조를 위한 낮은-비용의 구축 블록으로서 사용될 수 있다. 태양 전지는 나노 스케일 동축 코어로서 대규모로 생산되는 비-정렬 전도체들을 포함할 수 있다. 도5는 비-직선형 전도체 및 가요성 매트릭스를 갖는 나노 스케일 동축 태양 전지의 실시예의 단면도를 도시하고 있다. 비-직선형 전도체는 인접한 전도체에 대해 정렬되지 않는다. 비-직선형 전도체는 어떠한 고전도성의 나노 튜브, 나노 와이어, 나노 섬유 또는 유사한 구조물과 함께 사용될 수 있다.
비-직선형 전도체의 예는 열-CVD(화학 기상 증착) 기술에 의해 성장되는 탄소 나노 튜브일 수 있다. 그 다음에, 내부 전도체에는 요구된 밴드갭의 적절한 반도체가 화학적으로 다중-코팅될 수 있고, 내부 전도체는 결국 동축 구조물을 완성하도록 금속화될 수 있다. 도5는 비-직선형 전도체를 도시하고 있다. 적절한 밴드갭의 반도체(180a, 180b, 180c)가 다중 코팅되고 외부 전도체(160)로써 표면 상에서 금속화되는 비-직선형 전도체(120)가 전도성 및 가요성 매체(145)(예컨대, 전도성 페인트 또는 중합체) 내로 매립된다. 돌출 섹션(110)이 (예컨대, 에칭에 의해) 노출되고, 광기전 재료(170)의 얇은 층이 이 구조물의 상부 내에 증착된다. 그 다음에, 제2 투명 전도체(예컨대, 인듐 주석 산화물 또는 또 다른 전도성 중합체)가 도포된다. 제1 접촉부(172)가 돌출 섹션(110)에 인접하고, 광기전 층(170) 위에 있다. 제2 접촉부(174)가 돌출 섹션(110)에 대향하는 내부 전도체(120)의 단부에 인접하고, 제2 접촉부(174)는 전도성 매체(145) 내에 있다. 하나의 실시예에서, 안테나 섹션들은 정렬되지 않고, 무작위로 위치될 것이고, 무작위로 경사지고, 다양한 길이를 가질 것이다. 비-직선형의 무작위로 위치된 나노 스케일 동축 전송 선로는 비간섭성 및 광대역의 무편광 태양 복사선을 포획함으로써 수집 효율을 극적으로 개선시킬 것이다.
하나의 실시예에서, 상이한 밴드갭을 갖는 반도체가 광자 흡수 효율을 개선 시키기 위해 나노 스케일 동축 섹션 내부측에서 사용된다. 입사 광자 에너지와 반도체 밴드갭을 더 양호하게 정합하는 것은 나노 스케일 동축 케이블-계열의 태양 전지의 개선된 에너지 변환 효율을 가져온다. 광기전 재료는 병렬 구성(도6A) 또는 직렬 구성(도6B)으로 내부 전도체를 따라 증착될 수 있다. 도6A는 병렬 레이아웃으로 배열되는 상이한 밴드갭 반도체(180a, 180b)의 다층 구조를 갖는 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다. 도6B는 직렬 레이아웃으로 배열되는 상이한 밴드갭 반도체(180a, 180b, 180c)의 다층 구조를 갖는 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다. 상이한 밴드갭을 갖는 반도체는 수집된 광자의 다양한 에너지가 반도체 밴드갭과 더 양호하게 정합될 것이기 때문에 더 효율적인 광자 흡수를 가져온다.
하나의 실시예에서, 집중부(185)가 광자 수집 효율을 향상시키기 위해 나노 스케일 동축 태양 전지의 상부 단부로부터 연장된다. 도7은 집중부(185)가 나노 스케일 동축 태양 전지의 상부 단부로부터 연장되는 상태의 나노 스케일 동축 태양 전지의 정면 사시도를 도시하고 있다. 집중부(185)는 개선된 광자 수집을 위해 나노 스케일 동축 와이어의 상부 단부로부터 연장되는 원추형 섹션이다. 집중부(185)는 혼 안테나(horn antenna)이고, 극초단파 기술 분야에서 공지되어 있는 다양한 형상을 가질 수 있다. 집중부(185)는 포물선형으로 경사진 벽 또는 직선형의 원추형 벽 또는 유사한 형상을 포함하지만 이들에 제한되지 않는 형상을 가질 수 있다. 집중부(185)는 금속일 수 있다. 집중부(185)는 금속, 금속 합금, 고도로 도핑된 반도체, 전도성 중합체 그리고 다른 전도성 재료를 포함하지만 이들에 제한되지 않는 임의의 높은 전도성 재료로부터 형성될 수 있다. 집중부(185)는 각각의 나노 스케일 동축 케이블의 외부 전도성 층의 일체형 부분일 수 있다. 집중부(185)는 나노 스케일 동축 케이블의 상부 상에 별도로 형성되는 부착부일 수 있다. 집중부(185)는 도3D에 도시된 것과 같이 각각의 나노 스케일 동축 코어 주위에 볼록 함몰부를 생성시키기 위해 반도체-코팅된 나노 스케일 동축 코어의 표면을 불량하게 습윤하는 "비-습윤성(non-wetting)" 전도성 매체를 채용함으로써 실시될 수 있다.
태양 전지를 제조하는 방법은 기판에 촉매 재료를 코팅하는 단계와; 기판 상에 나노 스케일 동축 유닛의 내부 코어로서의 복수개의 탄소 나노 튜브를 성장시키는 단계와; 기판을 산화하는 단계와; 기판에 광기전 피막을 코팅하는 단계와; 나노 스케일 동축 유닛의 광기전 피막을 습윤시키는 금속 매체를 충전하는 단계를 포함한다.
나노 스케일 동축 태양 전지는 아래에서 설명되는 방법 또는 유사한 방법을 사용하여 제조될 수 있다. 알루미늄(Al) 포일 등의 가요성 금속 기판에는 습식 화학 증착, 전기-화학 증착, CVD, 스퍼터링, 증발 그리고 다른 유사한 기술을 포함하지만 이들에 제한되지 않는 임의의 적절한 기술에 의해 촉매 재료(예컨대, Ni)가 코팅될 수 있다. 처리된 기판은 나노 스케일 동축 유닛의 내부 전도체 및 코어로서의 탄소 나노 튜브 또는 임의의 다른 적절한 나노 로드/나노 와이어의 촉매 성장을 위해 사용된다. 나노 튜브의 성장은 CVD 또는 PECVD 그리고 유사한 기술을 포함하는 임의의 적절한 기술에 의해 수행될 수 있다. 나노 튜브의 성장 후, 기판의 잔여 노출 표면, 즉 나노 튜브/나노 와이어가 없는 영역은 기판과 외부 전도체 사이에 광기전 층을 형성하도록 산화된다. 그 다음에, 전체의 시스템에는 임의의 적절한 기술(예컨대, CVD, 전기-화학 증착 그리고 유사한 기술)에 의해 광기전 층이 코팅될 수 있고, 결국 금속 매체[예컨대, 주석(Sn) 분말]가 충전될 수 있다. 금속 매체는 나노 스케일 동축 케이블의 외부 전도체와의 사이에서 약한 습윤 접촉을 얻도록 선택 및 처리되어야 한다. 금속 매체는 임의의 종래의 기술 예컨대 스프레이, 페인팅, 스핀-코팅, CVD, 증발, 스퍼터링 그리고 유사한 기술에 의해 증착될 수 있다.
본원에 개시된 실시예들은 대체로 나노 스케일 광학 장치를 제조하기 위한 나노 스케일 동축 전송 선로(NCTL: nanoscale coaxial transmission line)의 사용에 관한 것이다. 나노 스케일 광학 장치는 상면 및 하면을 갖는 금속 피막 그리고 광기전 재료가 충전되는 복수개의 원통형 채널로 제작되는 다기능 나노-복합 재료이다. 나노 로드의 어레이가 복수개의 원통형 채널을 통해 금속 피막을 관통한다. 나노 로드의 어레이는 금속 피막의 표면을 넘어 연장되는 돌출 부분 그리고 금속 피막 내에 있는 매립 부분을 갖는다. 돌출 부분은 나노-안테나로서 역할하고, 가시 주파수에서의 전자기 복사선을 수용 및 전송할 수 있다. 매립 부분은 나노 스케일 동축 전송 선로(CTL: coaxial transmission line)로서 역할하고, 나노 로드의 직각 치수를 초과하는 파장을 갖는 외부 복사선의 전파를 가능케 한다.
나노 스케일 광학 장치는 광을 집중시킬 수 있으므로, 약 103 배까지 전계를 증폭시킬 수 있다. 나노-CTL이 금속 피막 내에 매립된 상태의 광학 나노-안테나의 어레이는 광을 나노스코픽 치수로 효과적으로 압축한다. 나노-안테나는 가시 주파수에서의 전자기 복사선을 수용 및 전송할 수 있다. 나노-CTL 내에서의 광의 극한 압축은 나노-CTL의 전극들 사이에서 전자의 비대칭 터널링을 가져오고, 그에 의해 광 주파수에서의 정류 작용 그리고 그에 의해 직류(DC: direct current) 전압으로의 광의 변환을 제공한다. 이 성질은 새로운 종류의 효율적이고 낮은 비용의 렉테나 태양 전지를 가능하게 한다. 나노-CTL 내에서의 광의 극한 압축은 신속하고, 광 주파수에서의 종래의 다이오드 정류를 불가능하지 않다면 비효율적으로 만드는 통상의 기생 커패시턴스에 의해 제한되지 않는다.
도8은 본원에 개시된 실시예들에 따라 합성되는 나노 스케일 광학 장치(100)의 개략도를 도시하고 있다. 나노 스케일 광학 장치(100)는 광기전 재료(180)가 충전되는 원통형 채널(160)을 통해 금속 피막(140)을 관통하는 금속 나노 로드(120)의 어레이를 갖는다. 각각의 나노 로드(120)는 금속 피막의 각각의 표면으로부터 돌출하는 광학 나노-안테나(110) 그리고 금속 피막 내에 매립되는 나노 스케일 동축 전송 선로(CTL)(115)를 갖는다.
도9A는 본원에 개시된 실시예들에 따라 합성되는 나노 스케일 광학 장치(200)의 기본 구조 구성의 3-차원 도면을 도시하고 있다. 금속 피막(240)을 넘어 연장되는 나노 로드(220)가 가시 주파수에서의 전자기 복사선을 수용 및 전송할 수 있는 나노-안테나(110)로서 역할한다. 광학 나노-안테나(110)의 어레이에 의해 수집된 입사 광은 동축 전송 선로(케이블)(115)의 나노스코픽 채널 내로 압축되고, 후속적으로 나노-안테나(110) 세그먼트에 의해 피막의 대향 측면 상에서 압축 해제(재방출)된다. 나노-안테나(110)는 종래의 안테나의 방향 특성을 소유하며, 그에 의해 종래의 전파 기술이 가시 주파수 범위 내에서 나노 스케일 광학 장치(200)에 적용되는 것을 입증한다. 광을 위한 종래의 동축 케이블이 또한 개발될 수 있다. 나노 스케일 동축 케이블(115)을 사용하는 장점은 이들이 (도파로와 대조적으로) 차단 주파수를 갖지 않는다는 것, 즉 나노 스케일 동축 케이블(115)이 이들의 직각 치수를 초과하는 파장을 갖는 복사선의 전파를 가능케 한다는 것이다. 나노 스케일 광학 장치(200)에서 나노 스케일 동축 케이블(115)을 사용하는 목적은 내부 및 외부 전극들 사이의 한정된 공간 내로 외부 복사선을 채널링 및 압축하는 것이다. 이 압축의 정도는 다음과 같이 평가될 수 있다. 정합된 안테나가 λ2의 정도의 면적으로부터 복사선을 수집한다. 후속적으로, 이 복사선 에너지는 π(R2-r2)의 면적으로 압축되는 동축 전송 선로 내로 효율적으로 전달될 수 있으며, 그에 의해 파워 압축 인자(power compression factor)는 λ2/π(R2-r2)의 정도이다. 반경 r≒5 ㎚인 나노 로드(120)를 채용함으로써 그리고 직각 치수 R≒20 ㎚를 사용함으로써, 가시 범위 내에서의 수백 정도의 파워 압축 인자가 가능하다.
동축 선로 내부측에서의 전기장은 1/ρ로서 변동하며, 여기에서 ρ는 중심으로부터의 반경 방향 거리이고, 그에 의해 작은 r에 대해 매우 커질 수 있다. 전기장 증폭이 λ/ρ 정도이고 그에 의해 r≒5 ㎚인 나노 로드(220)에서 가시 범위 내에서 약 100 정도인 것을 알 수 있다. 추가의 극적인 전계 증폭이 동작 범위 내에 서 활성 플라스몬 공진을 갖는 나노 로드(220) 예컨대 금 또는 은을 사용함으로써 달성될 수 있다. 계산은 플라스몬 (Mie) 공진으로 인해 104 정도의 인자만큼 추가의 공진 증폭이 있다는 것을 보여준다. 총 전계 증폭은 106 내지 107 정도인 것으로 예측될 수 있으므로, 동축 케이블의 광기전부 내에서 비선형 처리를 유발시킬 정도로 충분히 높으며, 그에 의해 전송된 전자기 에너지의 요구된 차단을 가져온다. 이 효과를 설명하기 위해, 플라스몬 나노 로드(220)로써 달성 가능한 105의 적절한 증폭을 고려하기로 한다. 대응하는 전계 세기는 전형적인 레이저 포인터보다 약 1000배 작은 1 W/㎡의 입사 플럭스에 대해 약 2 V/㎛이다. 이러한 전계 세기는 전형적인 나노 로드(220)로부터 전계 방출을 유발시킬 정도로 충분하다.
도9B는 도9A의 나노 로드(220)의 상대 특성을 도시하는 주사 전자 현미경(SEM) 사진을 도시하고 있다. 나노 로드(220)는 나노 스케일 광학 장치(200) 내에 선형으로 정렬된다. 도9C는 도9A의 나노 스케일 광학 장치(200)의 투과 광학 현미경 사진을 도시하고 있다. 도9A의 나노 스케일 광학 장치(200)에서, 나노 스케일 광학 장치(200)의 상부 절반부만이 형성 중에 에칭되었고, 저부 절반부는 에칭되지 않았다. 이것은 도9C의 투과 광학 현미경 사진에서 관찰되는 것과 같이 상부 절반부만이 투과된 광을 갖는다.
도10A는 나노 스케일 광학 장치(100)를 제작하는 예시적인 방법을 도시하고 있다. 단계 1에서, 크롬이 전형적으로 약 15 ㎚의 두께로 유리 기판 상으로 스퍼터링된다. 단계 2 및 3에서 도시된 것과 같이, 선택된 두께의 촉매 전이 금속(예 컨대, 니켈)이 크롬 유리 상으로 전착되고, 그에 후속하여 탄소 나노 튜브 성장이 수행된다. 단계 4에서 도시된 것과 같이 플라즈마 화학 기상 증착(PECVD)이 크롬 층을 에칭하는 데 사용된다. 전형적인 PECVD가 약 1 시간만큼 지속된다. 단계 5에서 도시된 것과 같이 광기전(또는 반도체) 재료(예컨대, SiOx, 여기에서 0≤x≤2)가 기판 상에 스퍼터링된다. 당업자라면 스퍼터링된 재료가 나노 스케일 광학 장치의 응용예에 의해 요구되는 바와 같이 특정한 기능을 갖는 임의의 재료로 제작될 수 있고 본원에 개시된 실시예들의 범주 및 사상 내에 여전히 있을 수 있다는 것을 인식할 것이다. 전형적으로, 광기전 재료는 약 100 ㎚의 두께를 갖도록 코팅된다. 그 다음에, 단계 6 및 7에서 도시된 것과 같이 알루미늄이 스퍼터링되고, 그에 후속하여 폴리메틸메타크릴레이트(PMMA)의 스핀-코팅 그리고 약 180℃에서의 소성이 약 40분 동안 수행된다. 전형적으로, 약 400 ㎚의 알루미늄이 스퍼터링된다. 단계 8에서, 나노 로드(120)의 팁 상의 알루미늄 층의 전기 화학 에칭이 약 20%의 H2SO4 내에서 약 25분 동안 4.0 V로, 샘플을 양극으로 하고 백금 전극을 음극으로 하여 수행된다. 이 예에서, 샘플의 저부 절반부만이 에칭되며, 그에 의해 투과 전자 현미경 사진에서 관찰되는 것과 같이 그 부분만이 투과된 광을 갖는다.
도10B는 나노 스케일 광학 장치(100)를 제작하는 대체예의 방법을 도시하고 있다. 단계 1에서, 크롬이 전형적으로 약 15 ㎚의 두께로 유리 기판 상으로 스퍼터링된다. 단계 2 및 3에서 도시된 것과 같이, 선택된 두께의 촉매 전이 금속(예컨대, 니켈)이 크롬 유리 상으로 전착되고, 그에 후속하여 탄소 나노 튜브 성장이 수행된다. 단계 4에서 도시된 것과 같이 플라즈마 화학 기상 증착(PECVD)이 크롬 층을 에칭하는 데 사용된다. 전형적인 PECVD가 약 1 시간만큼 지속된다. 단계 5에서 도시된 것과 같이 광기전(또는 반도체) 재료(예컨대, SiOx, 여기에서 0≤x≤2)가 기판 상에 스퍼터링된다. 당업자라면 스퍼터링된 재료가 나노 스케일 광학 장치의 응용예에 의해 요구되는 것과 같이 특정한 기능을 갖는 임의의 재료로 제작될 수 있고 본원에 개시된 실시예들의 범주 및 사상 내에 여전히 있을 수 있다는 것을 인식할 것이다. 전형적으로, 광기전 재료는 약 100 ㎚의 두께를 갖도록 코팅된다. 그 다음에, 단계 6에서 도시된 것과 같이 코팅된 기판 상으로 알루미늄이 스퍼터링된다. 전형적으로, 약 400 ㎚의 알루미늄이 스퍼터링된다. 단계 7에서, 나노 튜브의 팁이 연마에 의해 제거된다. 단계 8에서, 나노 로드(120)의 팁 상의 알루미늄 층의 전기 화학 에칭이 약 20%의 H2SO4 내에서 약 25분 동안 4.0 V로, 샘플을 양극으로 하고 백금 전극을 음극으로 하여 수행된다.
도11은 가시 주파수 범위 내에서의 나노 로드(120)의 어레이의 안테나 역할을 입증하는 결과를 도시하고 있다. 나노-안테나 길이 효과뿐만 아니라 편광이 레이더 단면적(RCS) 방식의 실험에서 도시되어 있으며, 여기에서 외부 복사선이 안테나 이론에 잘 맞게 나노 로드(120)의 비주기적 어레이에 의해 반사/산란된다. 주요 섹션은 최대 산란 진폭에서의 나노-안테나 길이 대 복사선 파장을 도시하고 있다. 도11에서의 상부 우측의 사진은 점차로 변화하는 나노 로드(120)의 길이로 인한 간섭 색상(좌측으로부터 우측으로)을 갖는 샘플의 사진을 도시하고 있다. 도11 에서의 하부 우측 사진은 나노 로드(120)의 주사 전자 현미경 사진을 도시하고 있다.
도12A는 본원에 개시된 실시예들에 따라 제작되는 나노 스케일 광학 장치(100)의 단면의 관찰 가능한 사진을 도시하고 있다. 나노-CTL(115)은 녹색 및 적색 레이저로 뒤로부터 조사되었다. 녹색 및 적색 광의 양쪽 모두는 나노-CTL(115)을 통해 안내된다. 각각의 활성 나노-CTL(115)은 녹색 후광(halo)에 의해 둘러싸여 있다. 더 작은 적색 광 스팟이 또한 관찰 가능하다. 도5B는 번호가 매겨진 나노-CTL(115)의 대응하는 SEM 근접도(평면도)를 도시하고 있다. 나노-CTL 37번 및 47번은 단일 코어이고, 41번 및 48번은 이중 코어이다. 나노-CTL 37번은 Al 피막을 관통하는 원통형 채널 내부측에 동축으로 위치되는 Si가 코팅된 CNT 코어를 포함한다. 공극(어두운 링)이 Al 벽으로부터 Si 코팅된 CNT를 분리한다. 도12B에서 관찰되는 것과 같이, 공극은 복사선의 파장(녹색에 대해 550 ㎚ 이하, 그리고 적색에 대해 650 ㎚)보다 훨씬 얇다(100 ㎚ 이하). 이와 같이, 나노-CTL의 단파장(subwavelength) 작용은 입증되었다.
하나의 실시예에서, 나노 스케일 광학 장치는 도13에 도시된 것과 같은 태양 전지로서 사용될 수 있다. 나노-CTL(650) 내에서의 비대칭 전극간 전자 터널링은 태양 전지 배터리(600)를 위한 정류 기구이다. 터널링은 최대 전계가 항상 내부 전극 내에 있으므로 비대칭이다. 이와 같이, 전자는 내부로부터 외부 전극으로 터널링된다. 광기전부(680)(반도체)는 금속-광기전부 인터페이스에서 밴드 오프셋을 감소시킬 수 있다. 이것은 광기전부 내에서의 임의의 전하 축적을 제거할 것이고, 그에 의해 전계 유도 밴드 벤딩 그리고 결과적인 터널링을 빠른 공정으로 만들 것이다. 태양 복사선(620)은 나노 로드(640)의 나노-안테나 섹션(630)을 통해 나노-CTL(650) 내로 진입한다. 충분히 큰 전계가 터널링을 유발시킬 것이며, 그에 의해 외부 전극 상에서의 음 전하 축적을 가져온다. 내부 전극이 연결될 수 있으며, 그에 의해 양으로 대전된 배터리 단자를 제공한다.
도14는 제1 전기 전도체(710) 및 제2 전기 전도체(720)를 포함하는 평행 공면 도파로(700)를 도시하고 있다. 하나의 실시예에서, 제1 및 제2 전기 전도체(710, 720)는 서로에 대략 평행하다. 하나의 실시예에서, 제1 및 제2 전기 전도체(710, 720)는 금속 전극이다. 광기전 재료가 전기 전도체(710, 720)들 사이의 공간 내에 위치될 수 있다. 공기 또는 진공이 전기 전도체(710, 720)들 사이의 공간 내에 위치될 수 있다. 전기 전도체(710, 720)들 사이의 개재 공간에 광기전 재료가 충전될 때, 도파 기능은 광기전 재료에 광 에너지를 전달하며, 여기에서 광 에너지는 전기 에너지로 변환된다.
도15는 복수개의 전기 전도체(710, 720, 730)를 포함하는 다중-층 평행 공면 도파로(701)를 도시하고 있다. 하나의 실시예에서, 복수개의 전기 전도체는 서로에 대략 평행하다. 하나의 실시예에서, 복수개의 전기 전도체는 금속 전극이다. 광기전 재료가 복수개의 전기 전도체들 사이의 공간 내에 위치될 수 있다. 공기 또는 진공이 복수개의 전기 전도체들 사이의 공간 내에 위치될 수 있다. 복수개의 전기 전도체들 사이의 개재 공간에 광기전 재료가 충전될 때, 도파 기능은 광기전 재료에 광 에너지를 전달하도록 역할하며, 여기에서 광 에너지는 전기 에너지로 변 환된다.
내부 전기 전도체들 중 일부가 투명 금속으로 제작될 수 있다. 예컨대, 도15에서의 중앙 전기 전도체(720)가 투명 금속으로 제작될 수 있다. 광학 전파 모드(즉, TEM 모드)의 경우에, 이 구조물은 (도14와 유사한) 평행 공면 도파로(701)이지만, 추가의 바이어스 전극을 갖는다. 다중-모드 전파가 충분히 큰 전극간 공간과 관련하여 달성될 수 있다.
도16은 제1 전기 전도체(710) 및 제2 전기 전도체(720)가 평행하지 않은 비평행 공면 도파로(702)를 도시하고 있다. 하나의 실시예에서, 제1 및 제2 전기 전도체(710, 720)는 금속 전극이다. 광기전 재료가 전기 전도체(710, 720)들 사이의 공간 내에 위치될 수 있다. 공기 또는 진공이 전기 전도체(710, 720)들 사이의 공간 내에 위치될 수 있다. 전기 전도체(710, 720)들 사이의 개재 공간에 광기전 재료가 충전될 때, 도파 기능은 광기전 재료에 광 에너지를 전달하며, 여기에서 광 에너지는 전기 에너지로 변환된다. 하나의 실시예에서, 비평행 공면 도파로의 다층 버전은 3개 이상의 비평행 전기 전도체를 갖는다.
도17은 부정형의 코메탈 도파로(703)를 도시하고 있다. 구조물 형상은 전파 방향으로 불변이다. 하나의 실시예에서, 임의의 형상의 코메탈 도파로의 다층 버전은 3개 이상의 층을 갖는다. 광기전 재료(180)가 내부 전도체(120)와 외부 전도체(160) 사이의 공간 내에 위치될 수 있다. 내부 전도체(120)와 외부 전도체(160) 사이의 개재 공간에 광기전 재료(180)가 충전될 때, 도파 기능은 광기전 재료(180)에 광 에너지를 전달하도록 역할하며, 여기에서 광 에너지는 전기 에너지로 변환된 다.
내부 전도체, 외부 전도체 및 장치는 둥근형, 정사각형, 직사각형, 원형, 원통형 그리고 다른 대칭 및 비-대칭 형상을 포함하지만 이들에 제한되지 않는 다양한 형상을 가질 수 있다. 어떤 형상은 어레이 상의 장치의 밀도 면에서의 증가 또는 감소를 가능케 함으로써 더 효율적일 수 있다. 당업자라면 내부 전도체, 외부 전도체 및 장치가 임의의 형상 그리고 임의의 단면을 가질 수 있고 본 발명의 사상 및 범주 내에 여전히 있을 수 있다는 것을 인식할 것이다.
태양 전지로서 사용하는 나노 스케일 광학 장치는 각각이 제1 전기 전도체와 제2 전기 전도체 사이에 위치되는 광기전 재료를 포함하는 복수개의 나노 스케일 코메탈 구조물을 포함한다. 나노 스케일 광학 장치는 코메탈 태양 전지이다.
광기전 재료의 두께는 제1 전기 전도체와 제2 전기 전도체 사이의 분리 거리이다. 하나의 실시예에서, 제1 전기 전도체와 제2 전기 전도체 사이의 분리 거리는 나노 스케일이고, 광기전 재료의 두께는 나노 스케일이다. 광기전 효과를 통해 태양 에너지에 의해 해방되는 전하 캐리어(전자 및 정공)가 전류 또는 전압의 형태로 포집되도록 나노 스케일 거리만큼만 이동할 필요가 있다. 광기전 재료의 두께는 캐리어 확산 길이와 대략 동일하거나 캐리어 확산 길이보다 작아야 한다. 예컨대, 비정질 규소(Si)에서, 캐리어 확산 길이는 약 100 ㎚이다. TEM 전파의 경우에, 코메탈 구조물 내에서의 전체의 전극간 간격은 광기전 재료와 대략 동일하여야 한다.
충분히 큰 전극간 간격의 경우에, TEM 모드에 추가하여 TE(횡단 방향 전기) 및/또는 TM(횡단 방향 자기) 모드가 전파될 수 있는 다중-모드 전파가 일어난다. 다중-모드 전파는 (광기전 재료에 추가하여) 투명 전도체 코어(내부 전도체) 또는 내부 전도체와 외부 전도체 사이에 위치되는 투명 전도체에 의해 일어날 수 있다. 투명 전도체는 광 파장보다 작거나 큰 직경을 가질 수 있으며, 그 결과 광이 안테나를 통해 간접적으로뿐만 아니라 직접적으로 진입할 수 있다. 투명 전도체는 한쪽 또는 양쪽 측면 상에 나노 스케일-두께의 광기전 재료를 가질 수 있다. 다중-모드 전파에 대해, 코메탈 구조물 내에서의 전체의 전극간 간격은 광 파장과 대략 동일하여야 한다.
하나의 실시예에서, 제1 전기 전도체의 돌출 부분이 안테나로서 역할하기 위해 제2 전기 전도체를 넘어 연장된다. 기판이 복수개의 나노 스케일 코메탈 구조물을 지지할 수 있다. 하나의 실시예에서, 투명 전도체가 제1 전기 전도체와 제2 전기 전도체 사이에 위치된다.
하나의 실시예에서, 복수개의 코메탈 구조물은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 합계이다. 하나의 실시예에서, 복수개의 코메탈 구조물은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있다.
광기전 태양 전지에서, 광 에너지가 광기전 반도체 매체에 의해 흡수되고, 반도체 원자가 밴드 내의 전자로 전달된다. 이것은 전자의 에너지를 증가시키며, 그에 의해 반도체 전도 밴드로 이들을 추진하며, 여기에서 이들은 이동성을 갖게 된다. 전도 밴드로 추진된 각각의 전자는 원자가 밴드 내에 정공을 남긴다. 정공은 전자의 음 전기 전하와 대조적으로 양으로-대전된 존재로서 생각될 수 있고, 또한 이동성을 갖는다. 이 전자-정공 쌍이 발생되면, 각각의 전자 및 정공은 금속 전극으로 이동함으로써 포집되어야 한다. 이동은 전기장의 영향 하에서 정공이 전계의 방향으로 이동하고 전자가 전계에 대항하여 이동하도록 일어난다.
태양 전지 내의 전기장이 쇼트키 배리어(Schottky barrier), p-n 접합 및 p-i-n 접합을 포함하는 여러 방식으로 생성될 수 있다. 쇼트키 배리어가 다이오드로서 사용하는 데 적절한 정류 특성을 갖는 금속-반도체 접합이다. 대부분의 금속-반도체 접합이 쇼트키 배리어를 고유하게 형성한다. 코메탈 구조물 내의 각각의 금속-반도체 접합에서 1개씩 2개의 쇼트키 배리어를 형성함으로써, 적절한 전기장이 형성된다. n-형 반도체와 p-형 반도체를 밀착 상태로 서로 결합함으로써 p-n 접합이 형성된다. p-n 접합이 또한 전기장을 형성한다. p-i-n 접합(p-형 반도체, 진성 반도체, n-형 반도체)은 p-형 반도체와 n-형 반도체 사이에 넓은 미도핑 진성 반도체 영역이 있는 상태의 접합 다이오드이다. 태양 전지의 경우에, p-영역 및 n-영역은 진성 반도체 영역에 비해 얇고, 전기장을 형성하기 위해 존재한다.
도18은 p-n 접합을 갖는 나노 스케일 동축 태양 전지(704)를 도시하고 있다. p-형 광기전 반도체 층(770) 및 n-형 광기전 반도체 층(780)은 상호 교환될 수 있으므로, 어느 하나가 내부 전기 전도체(120)에 인접할 수 있고, 다른 하나가 외부 전도체(160)에 인접할 수 있다. 태양 전지는 동축 p-n 접합 코메탈 태양 전지이다.
도19는 p-i-n 접합을 갖는 나노 스케일 동축 태양 전지(705)를 도시하고 있다. p-형 광기전 반도체 층(770)과 n-형 광기전 반도체 층(780)은 상호 교환될 수 있으므로, 어느 하나가 내부 전기 전도체(120)에 인접할 수 있고, 다른 하나가 외부 전도체(160)에 인접할 수 있다. 진성 반도체 층(775)은 p-형 층(770)과 n-형 층(780) 사이에 있다. 태양 전지는 동축 p-i-n 접합 코메탈 태양 전지이다.
태양 전지는 각각이 광기전 재료와 접촉하고 외부 전기 전도체 층이 코팅되는 전기 전도성 코어를 포함하는 복수개의 나노 스케일 동축 구조물을 포함한다. 태양 전지는 동축 코메탈 태양 전지이다.
하나의 실시예에서, 광기전 재료는 전기 전도성 코어의 일부와 접촉한다. 기판이 복수개의 나노 스케일 동축 구조물을 지지할 수 있다. 하나의 실시예에서, 광기전 재료는 광기전 반도체로 구성되는 p-n 접합을 포함한다. 하나의 실시예에서, 광기전 재료는 p-형 반도체 층, 진성 광기전 반도체 층 및 n-형 반도체 층으로 형성되는 p-i-n 접합을 포함한다. 하나의 실시예에서, 투명 전도체가 전기 전도성 코어와 외부 전기 전도체 층 사이에 위치된다.
하나의 실시예에서, 전기 전도성 코어의 돌출 부분이 안테나로서 역할하기 위해 외부 전기 전도체 층을 넘어 연장된다. 태양 전지는 안테나를 갖는 동축 코메탈 태양 전지이다.
하나의 실시예에서, 복수개의 동축 구조물은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 동축 구조물에 의해 광기전식으로 발생되는 전압의 합계이다. 하나의 실시예에서, 복수개의 동축 구조물은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있다.
도20은 p-n 접합을 갖는 나노 스케일 공면 태양 전지(706)를 도시하고 있다. p-형 광기전 반도체 층(770) 및 n-형 광기전 반도체 층(780)은 상호 교환될 수 있으므로, 어느 하나가 제1 전기 전도성 층(790)에 인접할 수 있고, 다른 하나가 제2 전기 전도성 층(792)에 인접할 수 있다. 태양 전지는 공면 p-n 접합 코메탈 태양 전지이다.
도21은 p-i-n 접합을 갖는 나노 스케일 공면 태양 전지(707)를 도시하고 있다. p-형 광기전 반도체 층(770) 및 n-형 광기전 반도체 층(780)은 상호 교환될 수 있으므로, 어느 하나가 제1 전기 전도성 층(790)에 인접할 수 있고, 다른 하나가 제2 전기 전도성 층(792)에 인접할 수 있다. 진성 반도체 층(775)은 p-형 층(770)과 n-형 층(780) 사이에 있다. 태양 전지는 공면 p-i-n 접합 코메탈 태양 전지이다.
태양 전지는 각각이 제1 전기 전도성 층과 제2 전기 전도성 층 사이에 위치되는 광기전 층을 포함하는 복수개의 나노 스케일 공면 구조물을 포함하며; 광이 제1 전기 전도성 층과 제2 전기 전도성 층 사이의 공면 구조물 내로 진입한다. 태양 전지는 공면 코메탈 태양 전지이다.
하나의 실시예에서, 제1 전기 전도성 층은 제2 전기 전도성 층에 대략 평행하다. 기판이 복수개의 나노 스케일 공면 구조물을 지지할 수 있다. 하나의 실시예에서, 제1 전기 전도성 층 및 제2 전기 전도성 층은 광기전 층을 통해서만 전기 적으로 접촉된다. 하나의 실시예에서, 광기전 층은 평면형 p-n 접합을 포함한다. 하나의 실시예에서, 광기전 층은 p-형 반도체 층, 진성 광기전 반도체 층 및 n-형 반도체 층으로 형성되는 평면형 p-i-n 접합을 포함한다. 하나의 실시예에서, 투명 전도체가 제1 전기 전도성 층과 제2 전기 전도성 층 사이에 위치된다.
하나의 실시예에서, 전기 전도성 층의 돌출 부분이 외부 전기 전도성 층을 넘어 연장된다. 태양 전지는 안테나를 갖는 공면 코메탈 태양 전지이다.
하나의 실시예에서, 복수개의 공면 구조물은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 공면 구조물에 의해 광기전식으로 발생되는 전압의 합계이다. 하나의 실시예에서, 복수개의 공면 구조물은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있다.
도22는 나노 스케일 공면 태양 전지(708)의 측면도를 도시하고 있다. 이 실시예에서, 제2 금속(796)은 2개의 제1 금속(794)들 사이에 위치되고, 광기전 재료(180)가 제1 금속(794)과 제2 금속(796) 사이에 위치된다. 다중의 제1 금속(794)은 서로에 대해 평행할 수 있거나 소정 각도에 있을 수 있다. 제2 금속(796)과 제1 금속(794)은 서로에 대해 평행할 수 있거나 소정 각도에 있을 수 있다. 제2 금속(796)은 또한 상부 전도체로서 역할한다. 광기전 재료(180)는 본원에 기술되거나 당업계에 공지되어 있는 임의의 광기전 재료, p-n 접합 또는 p-i-n 접합 구성일 수 있다. 기판이 전도성이고 투명할 때, 아래로부터의 광 에너지가 광기전 재료(180)에 도달하고, 여기에서 광 에너지는 나노 스케일 공면 태양 전지 내에서 전기 에너지로 변환된다.
태양 전지로서 사용하는 나노 스케일 광학 장치는 외부 전도체가 코팅되는 광기전 재료에 의해 둘러싸인 내부 전도체를 포함하는 복수개의 나노 스케일 동축 구조물과; 복수개의 나노 스케일 동축 구조물을 갖는 피막과; 피막의 표면을 넘어 연장되는 내부 전도체의 돌출 부분을 포함한다.
태양 전지를 제조하는 방법은 기판에 촉매 재료를 코팅하는 단계와; 기판 상에 나노 스케일 동축 유닛의 내부 코어로서 복수개의 탄소 나노 튜브를 성장시키는 단계와; 광기전 재료를 코팅하는 단계와; 금속 매체를 코팅하는 단계를 포함한다. 이 방법은 광기전 피막을 코팅하기 전에 기판을 산화하는 단계를 더 포함한다.
태양 전지를 제조하는 방법은 기판에 크롬 층을 코팅하는 단계와; 코팅된 기판 상에 촉매 전이 금속을 전착하는 단계와; 코팅된 기판 상에 탄소 나노 튜브(CNT)의 어레이를 성장시키는 단계와; 크롬 층을 에칭하는 단계와; 코팅된 기판 그리고 CNT의 어레이에 광기전 재료를 코팅하는 단계와; 코팅된 기판 그리고 CNT의 어레이에 금속 재료를 코팅하는 단계를 포함한다.
태양 전지를 제조하는 방법은 복수개의 나노 스케일 평면형 구조물을 준비하는 단계와; 복수개의 평면형 구조물의 복수개의 평면형 표면들 사이에 공간을 남기면서 복수개의 평면형 표면에 광기전 재료를 코팅하는 단계와; 광기전 반도체에 외부 전기 전도체 층을 코팅하는 단계에서, 외부 전기 전도체 층의 일부가 공면 구조물을 형성하기 위해 평면형 구조물들 사이에 위치되는 단계를 포함한다. 하나의 실시예에서, 광기전 재료는 복수개의 평면형 구조물의 복수개의 평면형 표면을 균 일하게 코팅한다. 광기전 재료는 평면형 구조물들 사이의 공간을 부분적으로만 충전하고, 공간을 완전히 충전하지 않는다. 하나의 실시예에서, 금속 나노 스케일 공면 구조물은 광학적으로 투명한 기판 상에 준비되며, 그에 의해 기판측으로부터의 광 에너지가 광기전 재료에 도달하게 하며, 여기에서 광 에너지는 태양 전지 내에서 전기 에너지로 변환된다. 하나의 실시예에서, 금속 나노 스케일 공면 구조물은 광학적으로 불투명한 기판 상에 준비되고 상부 금속 코팅은 투명하며, 그에 의해 상부 금속 코팅측을 통한 광이 광기전 재료에 도달하게 하며, 여기에서 광 에너지는 태양 전지 내에서 전기 에너지로 변환된다.
본원에서 인용되는 모든 특허, 특허 출원 그리고 공개된 참조 문헌은 온전히 참조로 여기에 합체되어 있다. 다양한 위에서-개시된 그리고 다른 특징 및 기능 또는 이들의 대체예가 많은 다른 상이한 시스템 또는 응용예로 바람직하게 조합될 수 있다는 것이 이해될 것이다. 다음의 청구의 범위에 의해 포함되도록 또한 의도되는 다양한 예측 또는 예상되지 않는 대체, 변형, 변동 또는 개선이 당업자에 의해 후속적으로 수행될 수 있다.
Claims (30)
- 태양 전지로서 사용하는 나노 스케일 광학 장치이며,제1 전기 전도체와 제2 전기 전도체 사이에 위치되는 광기전(photovoltaic) 재료를 각각 포함하는 복수개의 나노 스케일 코메탈(cometal) 구조물을 포함하는 나노 스케일 광학 장치.
- 제1항에 있어서, 제2 전기 전도체를 넘어 연장되는 제1 전기 전도체의 돌출 부분을 더 포함하는 나노 스케일 광학 장치.
- 제1항에 있어서, 복수개의 나노 스케일 코메탈 구조물을 지지하는 기판을 더 포함하는 나노 스케일 광학 장치.
- 제1항에 있어서, 제1 전기 전도체와 제2 전기 전도체 사이에 위치되는 투명 전도체를 더 포함하는 나노 스케일 광학 장치.
- 제1항에 있어서, 복수개의 코메탈 구조물들은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 합계인 나노 스케일 광학 장치.
- 제1항에 있어서, 복수개의 코메탈 구조물들은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있는 나노 스케일 광학 장치.
- 제1항에 있어서, 광기전 재료의 두께가 캐리어 확산 길이와 대략 동일한 나노 스케일 광학 장치.
- 광기전 재료와 접촉하고 외부 전기 전도체 층으로 코팅되는 전기 전도성 코어를 각각 포함하는 복수개의 나노 스케일 동축 구조물을 포함하는 태양 전지.
- 제8항에 있어서, 광기전 재료는 전기 전도성 코어의 일부와 접촉하는 태양 전지.
- 제8항에 있어서, 외부 전기 전도체 층을 넘어 연장되는 전기 전도성 코어의 돌출 부분을 더 포함하는 태양 전지.
- 제8항에 있어서, 복수개의 나노 스케일 동축 구조물을 지지하는 기판을 더 포함하는 태양 전지.
- 제8항에 있어서, 광기전 재료는 광기전 반도체로 구성되는 p-n 접합을 갖는 태양 전지.
- 제8항에 있어서, 광기전 재료는 p-형 반도체 층, 진성 광기전 반도체 층 및 n-형 반도체 층으로 형성되는 p-i-n 접합을 갖는 태양 전지.
- 제8항에 있어서, 전기 전도성 코어와 외부 전기 전도체 층 사이에 위치되는 투명 전도체를 더 포함하는 태양 전지.
- 제8항에 있어서, 복수개의 동축 구조물들은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 동축 구조물에 의해 광기전식으로 발생되는 전압의 합계인 태양 전지.
- 제8항에 있어서, 복수개의 동축 구조물들은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있는 태양 전지.
- 제8항에 있어서, 광기전 재료의 두께가 캐리어 확산 길이와 대략 동일한 태양 전지.
- 제1 전기 전도성 층과 제2 전기 전도성 층 사이에 위치되는 광기전 층을 각 각 포함하는 복수개의 나노 스케일 공면(coplanar) 구조물을 포함하며;광이 제1 전기 전도성 층과 제2 전기 전도성 층 사이의 공면 구조물 내로 진입하는 태양 전지.
- 제18항에 있어서, 제1 전기 전도성 층은 제2 전기 전도성 층에 대략 평행한 태양 전지.
- 제18항에 있어서, 제2 전기 전도성 층을 넘어 연장되는 제1 전기 전도성 층의 돌출 부분을 더 포함하는 태양 전지.
- 제18항에 있어서, 복수개의 나노 스케일 공면 구조물을 지지하는 기판을 더 포함하는 태양 전지.
- 제18항에 있어서, 제1 전기 전도성 층과 제2 전기 전도성 층은 광기전 층을 통해서만 전기적으로 접촉되는 태양 전지.
- 제18항에 있어서, 광기전 층은 평면형 p-n 접합을 갖는 태양 전지.
- 제18항에 있어서, 광기전 층은 p-형 반도체 층, 진성 광기전 반도체 층 및 n-형 반도체 층으로 형성되는 평면형 p-i-n 접합을 갖는 태양 전지.
- 제18항에 있어서, 제1 전기 전도성 층과 제2 전기 전도성 층 사이에 위치되는 투명 전도체를 더 포함하는 태양 전지.
- 제18항에 있어서, 복수개의 공면 구조물은 직렬로 연결되며, 그 결과 총 전압이 대략 각각의 공면 구조물에 의해 광기전식으로 발생되는 전압의 합계인 태양 전지.
- 제18항에 있어서, 복수개의 공면 구조물은 병렬로 연결되며, 그 결과 총 전압이 각각의 코메탈 구조물에 의해 광기전식으로 발생되는 전압의 최소치와 최대치 사이에 있는 태양 전지.
- 제18항에 있어서, 광기전 층의 두께가 캐리어 확산 길이와 대략 동일한 태양 전지.
- 태양 전지를 제조하는 방법이며,복수개의 나노 스케일 평면형 구조물을 준비하는 단계와;복수개의 평면형 구조물의 복수개의 평면형 표면들 사이에 공간을 남기면서 복수개의 평면형 표면에 광기전 재료를 코팅하는 단계와;광기전 반도체에 외부 전기 전도체 층을 코팅하는 단계로서, 외부 전기 전도 체 층의 일부가 공면 구조물을 형성하기 위해 평면형 구조물들 사이에 위치되는 단계를 포함하는 태양 전지 제조 방법.
- 제29항에 있어서, 광기전 반도체는 복수개의 평면형 구조물의 복수개의 평면형 표면을 균일하게 코팅하는 태양 전지 제조 방법.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71100405P | 2005-08-24 | 2005-08-24 | |
US60/711,004 | 2005-08-24 | ||
US11/401,606 US7754964B2 (en) | 2005-08-24 | 2006-04-10 | Apparatus and methods for solar energy conversion using nanocoax structures |
US11/401,606 | 2006-04-10 | ||
US79929306P | 2006-05-09 | 2006-05-09 | |
US60/799,293 | 2006-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080069958A true KR20080069958A (ko) | 2008-07-29 |
Family
ID=38609943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020087004314A Withdrawn KR20080069958A (ko) | 2005-08-24 | 2006-08-24 | 나노 스케일 코메탈 구조물을 사용하는 태양 에너지 변환을위한 장치 및 방법 |
Country Status (5)
Country | Link |
---|---|
US (2) | US7943847B2 (ko) |
EP (1) | EP1917557A4 (ko) |
JP (1) | JP2009506546A (ko) |
KR (1) | KR20080069958A (ko) |
WO (1) | WO2007120175A2 (ko) |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7316061B2 (en) | 2003-02-03 | 2008-01-08 | Intel Corporation | Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface |
US8728937B2 (en) * | 2004-07-30 | 2014-05-20 | Osram Opto Semiconductors Gmbh | Method for producing semiconductor chips using thin film technology |
KR100983232B1 (ko) * | 2005-03-01 | 2010-09-20 | 조지아 테크 리서치 코포레이션 | 3차원 멀티-졍션 광전지 소자 |
EP1949451A4 (en) * | 2005-08-22 | 2016-07-20 | Q1 Nanosystems Inc | NANOSTRUCTURE AND THIS IMPLEMENTING PHOTOVOLTAIC CELL |
WO2007086903A2 (en) | 2005-08-24 | 2007-08-02 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanocoax structures |
US7634162B2 (en) * | 2005-08-24 | 2009-12-15 | The Trustees Of Boston College | Apparatus and methods for nanolithography using nanoscale optics |
US7943847B2 (en) | 2005-08-24 | 2011-05-17 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanoscale cometal structures |
KR20080037683A (ko) * | 2005-08-24 | 2008-04-30 | 더 트러스티스 오브 보스턴 칼리지 | 나노 스케일 코메탈 구조물을 사용하여 광을 조정하는 장치및 방법 |
WO2007025023A2 (en) * | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Apparatus and methods for optical switching using nanoscale optics |
US7589880B2 (en) | 2005-08-24 | 2009-09-15 | The Trustees Of Boston College | Apparatus and methods for manipulating light using nanoscale cometal structures |
US20080230120A1 (en) * | 2006-02-13 | 2008-09-25 | Solexant Corp. | Photovoltaic device with nanostructured layers |
CA2642169A1 (en) * | 2006-02-16 | 2007-08-30 | Solexant Corporation | Nanoparticle sensitized nanostructured solar cells |
CN101405888B (zh) * | 2006-02-17 | 2011-09-28 | 索莱赞特公司 | 纳米结构的电致发光器件以及显示器 |
WO2008054845A2 (en) * | 2006-03-23 | 2008-05-08 | Solexant Corporation | Photovoltaic device containing nanoparticle sensitized carbon nanotubes |
US20080110486A1 (en) * | 2006-11-15 | 2008-05-15 | General Electric Company | Amorphous-crystalline tandem nanostructured solar cells |
WO2008140601A1 (en) * | 2006-12-06 | 2008-11-20 | Solexant Corporation | Nanophotovoltaic device with improved quantum efficiency |
US8426224B2 (en) * | 2006-12-18 | 2013-04-23 | The Regents Of The University Of California | Nanowire array-based light emitting diodes and lasers |
US8003883B2 (en) | 2007-01-11 | 2011-08-23 | General Electric Company | Nanowall solar cells and optoelectronic devices |
US7977568B2 (en) * | 2007-01-11 | 2011-07-12 | General Electric Company | Multilayered film-nanowire composite, bifacial, and tandem solar cells |
JP4825697B2 (ja) * | 2007-01-25 | 2011-11-30 | 株式会社ミツトヨ | デジタル式変位測定器 |
EP2115782A1 (en) * | 2007-01-30 | 2009-11-11 | Solasta, Inc. | Photovoltaic cell and method of making thereof |
US20080264479A1 (en) * | 2007-04-25 | 2008-10-30 | Nanoco Technologies Limited | Hybrid Photovoltaic Cells and Related Methods |
CN101803035B (zh) * | 2007-06-19 | 2016-08-24 | 昆南诺股份有限公司 | 基于纳米线的太阳能电池结构 |
EP2183089A4 (en) * | 2007-07-12 | 2012-10-31 | Deese Edward | PHOTOVOLTAIC SOLAR STRUCTURE WITH PHOTON-SENSITIVE NANOCELLS |
DE102007042695A1 (de) * | 2007-09-07 | 2009-03-12 | Volkswagen Ag | Elektrisch betätigte Kupplungseinrichtung |
WO2009067668A1 (en) * | 2007-11-21 | 2009-05-28 | The Trustees Of Boston College | Apparatus and methods for visual perception using an array of nanoscale waveguides |
US8273983B2 (en) * | 2007-12-21 | 2012-09-25 | Hewlett-Packard Development Company, L.P. | Photonic device and method of making same using nanowires |
US8283556B2 (en) * | 2008-01-30 | 2012-10-09 | Hewlett-Packard Development Company, L.P. | Nanowire-based device and array with coaxial electrodes |
US20090194160A1 (en) * | 2008-02-03 | 2009-08-06 | Alan Hap Chin | Thin-film photovoltaic devices and related manufacturing methods |
GR1006739B (el) * | 2008-02-11 | 2010-03-22 | (���� ������� 30%) ��������� | Νανοαντεννες για μετατροπη της ηλιακης ενεργειας σε ηλεκτρικη |
US8115683B1 (en) | 2008-05-06 | 2012-02-14 | University Of South Florida | Rectenna solar energy harvester |
JP2011522422A (ja) * | 2008-05-27 | 2011-07-28 | ユニバーシティ オブ ヒューストン | ファイバー光起電性デバイスおよびその製造のための方法 |
US7858506B2 (en) * | 2008-06-18 | 2010-12-28 | Micron Technology, Inc. | Diodes, and methods of forming diodes |
US8030206B2 (en) * | 2008-08-27 | 2011-10-04 | The Boeing Company | Coplanar solar cell metal contact annealing in plasma enhanced chemical vapor deposition |
US20100051932A1 (en) * | 2008-08-28 | 2010-03-04 | Seo-Yong Cho | Nanostructure and uses thereof |
US8890271B2 (en) | 2010-06-30 | 2014-11-18 | Zena Technologies, Inc. | Silicon nitride light pipes for image sensors |
US9000353B2 (en) | 2010-06-22 | 2015-04-07 | President And Fellows Of Harvard College | Light absorption and filtering properties of vertically oriented semiconductor nano wires |
US8229255B2 (en) | 2008-09-04 | 2012-07-24 | Zena Technologies, Inc. | Optical waveguides in image sensors |
US9299866B2 (en) | 2010-12-30 | 2016-03-29 | Zena Technologies, Inc. | Nanowire array based solar energy harvesting device |
US8299472B2 (en) * | 2009-12-08 | 2012-10-30 | Young-June Yu | Active pixel sensor with nanowire structured photodetectors |
US9478685B2 (en) | 2014-06-23 | 2016-10-25 | Zena Technologies, Inc. | Vertical pillar structured infrared detector and fabrication method for the same |
US8889455B2 (en) * | 2009-12-08 | 2014-11-18 | Zena Technologies, Inc. | Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor |
US8735797B2 (en) | 2009-12-08 | 2014-05-27 | Zena Technologies, Inc. | Nanowire photo-detector grown on a back-side illuminated image sensor |
US8748799B2 (en) | 2010-12-14 | 2014-06-10 | Zena Technologies, Inc. | Full color single pixel including doublet or quadruplet si nanowires for image sensors |
US8519379B2 (en) * | 2009-12-08 | 2013-08-27 | Zena Technologies, Inc. | Nanowire structured photodiode with a surrounding epitaxially grown P or N layer |
US8835831B2 (en) | 2010-06-22 | 2014-09-16 | Zena Technologies, Inc. | Polarized light detecting device and fabrication methods of the same |
US8274039B2 (en) * | 2008-11-13 | 2012-09-25 | Zena Technologies, Inc. | Vertical waveguides with various functionality on integrated circuits |
US9343490B2 (en) | 2013-08-09 | 2016-05-17 | Zena Technologies, Inc. | Nanowire structured color filter arrays and fabrication method of the same |
US8866065B2 (en) | 2010-12-13 | 2014-10-21 | Zena Technologies, Inc. | Nanowire arrays comprising fluorescent nanowires |
US20110115041A1 (en) * | 2009-11-19 | 2011-05-19 | Zena Technologies, Inc. | Nanowire core-shell light pipes |
US8791470B2 (en) | 2009-10-05 | 2014-07-29 | Zena Technologies, Inc. | Nano structured LEDs |
US8384007B2 (en) * | 2009-10-07 | 2013-02-26 | Zena Technologies, Inc. | Nano wire based passive pixel image sensor |
US8269985B2 (en) * | 2009-05-26 | 2012-09-18 | Zena Technologies, Inc. | Determination of optimal diameters for nanowires |
US9406709B2 (en) | 2010-06-22 | 2016-08-02 | President And Fellows Of Harvard College | Methods for fabricating and using nanowires |
US9082673B2 (en) | 2009-10-05 | 2015-07-14 | Zena Technologies, Inc. | Passivated upstanding nanostructures and methods of making the same |
US9515218B2 (en) | 2008-09-04 | 2016-12-06 | Zena Technologies, Inc. | Vertical pillar structured photovoltaic devices with mirrors and optical claddings |
US20100304061A1 (en) * | 2009-05-26 | 2010-12-02 | Zena Technologies, Inc. | Fabrication of high aspect ratio features in a glass layer by etching |
US8507840B2 (en) | 2010-12-21 | 2013-08-13 | Zena Technologies, Inc. | Vertically structured passive pixel arrays and methods for fabricating the same |
US8546742B2 (en) | 2009-06-04 | 2013-10-01 | Zena Technologies, Inc. | Array of nanowires in a single cavity with anti-reflective coating on substrate |
US8242353B2 (en) * | 2009-03-16 | 2012-08-14 | International Business Machines Corporation | Nanowire multijunction solar cell |
EP2412028A4 (en) * | 2009-03-25 | 2014-06-18 | Qunano Ab | SCHOTTKY DEVICE |
WO2010126519A1 (en) | 2009-04-30 | 2010-11-04 | Hewlett-Packard Development Company | Photonic device and method of making same |
US20100319759A1 (en) * | 2009-06-22 | 2010-12-23 | John Fisher | Nanostructure and methods of making the same |
US8258050B2 (en) * | 2009-07-17 | 2012-09-04 | Hewlett-Packard Development Company, L.P. | Method of making light trapping crystalline structures |
FR2950482A1 (fr) * | 2009-09-18 | 2011-03-25 | Univ Paris 6 Pierre Et Marie Curie | Procede pour generer une difference de potentiel a l'aide d'une couche mince de graphene, et dispositifs faisant application |
US9147790B2 (en) | 2010-01-04 | 2015-09-29 | Scitech Associates Holdings, Inc. | Method and apparatus for an optical frequency rectifier |
US8299655B2 (en) * | 2010-01-04 | 2012-10-30 | Scitech Associates Holdings, Inc. | Method and apparatus for an optical frequency rectifier |
US9202954B2 (en) * | 2010-03-03 | 2015-12-01 | Q1 Nanosystems Corporation | Nanostructure and photovoltaic cell implementing same |
US8878055B2 (en) | 2010-08-09 | 2014-11-04 | International Business Machines Corporation | Efficient nanoscale solar cell and fabrication method |
US9231133B2 (en) | 2010-09-10 | 2016-01-05 | International Business Machines Corporation | Nanowires formed by employing solder nanodots |
US8628996B2 (en) | 2011-06-15 | 2014-01-14 | International Business Machines Corporation | Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells |
TWI472048B (zh) * | 2011-07-07 | 2015-02-01 | Univ Nat Chiao Tung | 光感測元件及其製備方法 |
US8920767B2 (en) | 2011-08-19 | 2014-12-30 | Ut-Battelle, Llc | Array of titanium dioxide nanostructures for solar energy utilization |
US8685858B2 (en) | 2011-08-30 | 2014-04-01 | International Business Machines Corporation | Formation of metal nanospheres and microspheres |
US9876129B2 (en) | 2012-05-10 | 2018-01-23 | International Business Machines Corporation | Cone-shaped holes for high efficiency thin film solar cells |
WO2014012111A1 (en) * | 2012-07-13 | 2014-01-16 | Triton Systems, Inc. | Nanostring mats, multi-junction devices, and methods for making same |
US8889456B2 (en) | 2012-08-29 | 2014-11-18 | International Business Machines Corporation | Method of fabricating uniformly distributed self-assembled solder dot formation for high efficiency solar cells |
US8532448B1 (en) | 2012-09-16 | 2013-09-10 | Solarsort Technologies, Inc. | Light emitting pixel structure using tapered light waveguides, and devices using same |
US9952388B2 (en) | 2012-09-16 | 2018-04-24 | Shalom Wertsberger | Nano-scale continuous resonance trap refractor based splitter, combiner, and reflector |
US8530825B1 (en) | 2012-09-16 | 2013-09-10 | Solarsort Technologies, Inc. | Pixel structure and image array sensors using same |
US9112087B2 (en) | 2012-09-16 | 2015-08-18 | Shalom Wretsberger | Waveguide-based energy converters, and energy conversion cells using same |
US9823415B2 (en) | 2012-09-16 | 2017-11-21 | CRTRIX Technologies | Energy conversion cells using tapered waveguide spectral splitters |
JP6404222B2 (ja) | 2012-10-19 | 2018-10-10 | ジョージア テック リサーチ コーポレイション | カーボンナノチューブの配向アレイ上に形成された多層被膜 |
US9088020B1 (en) | 2012-12-07 | 2015-07-21 | Integrated Photovoltaics, Inc. | Structures with sacrificial template |
WO2014100707A1 (en) * | 2012-12-20 | 2014-06-26 | The Trustees Of Boston College | Methods and systems for controlling phonon-scattering |
US9082911B2 (en) | 2013-01-28 | 2015-07-14 | Q1 Nanosystems Corporation | Three-dimensional metamaterial device with photovoltaic bristles |
KR102279914B1 (ko) * | 2013-03-12 | 2021-07-22 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | 매우 효율적인 광-전기 변환 디바이스들 |
US9954126B2 (en) | 2013-03-14 | 2018-04-24 | Q1 Nanosystems Corporation | Three-dimensional photovoltaic devices including cavity-containing cores and methods of manufacture |
US20140264998A1 (en) | 2013-03-14 | 2014-09-18 | Q1 Nanosystems Corporation | Methods for manufacturing three-dimensional metamaterial devices with photovoltaic bristles |
US20170122928A1 (en) * | 2013-05-05 | 2017-05-04 | The Trustees Of Boston College | Coaxial electrode arrays and methods thereof |
US9287057B2 (en) | 2013-06-05 | 2016-03-15 | City University Of Hong Kong | Plasmonic enhanced tandem dye-sensitized solar cell with metallic nanostructures |
GB2517907B (en) | 2013-08-09 | 2018-04-11 | Drayson Tech Europe Ltd | RF Energy Harvester |
WO2016105679A1 (en) * | 2014-12-24 | 2016-06-30 | Novasolix, Inc. | Solar antenna array and its fabrication |
US9952453B2 (en) * | 2015-06-10 | 2018-04-24 | The Regents Of The University Of California | Broadband metacoaxial optical nanoantennas based on plasmonic modes |
US10580920B2 (en) | 2016-04-20 | 2020-03-03 | Novasolix, Inc. | Solar antenna array fabrication |
US11824264B2 (en) | 2016-04-20 | 2023-11-21 | Novasolix, Inc. | Solar antenna array fabrication |
US10622503B2 (en) | 2016-04-20 | 2020-04-14 | Novasolix, Inc. | Solar antenna array fabrication |
US11114633B2 (en) | 2016-04-20 | 2021-09-07 | Novasolix, Inc. | Solar antenna array fabrication |
US10908431B2 (en) | 2016-06-06 | 2021-02-02 | Shalom Wertsberger | Nano-scale conical traps based splitter, combiner, and reflector, and applications utilizing same |
CN107564980B (zh) * | 2016-07-01 | 2020-03-31 | 中芯国际集成电路制造(上海)有限公司 | 半导体装置及其制造方法 |
US11145772B2 (en) | 2019-03-11 | 2021-10-12 | At&T Intellectual Property I, L.P. | Device for photo spectroscopy having an atomic-scale bilayer |
Family Cites Families (210)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312870A (en) * | 1964-03-13 | 1967-04-04 | Hughes Aircraft Co | Electrical transmission system |
US3432664A (en) * | 1964-11-10 | 1969-03-11 | Atomic Energy Commission | High voltage field-reversal pulse generator using a laser switching means to activate a field emission x-ray tube |
US3401369A (en) | 1966-06-07 | 1968-09-10 | Ibm | Connector |
US3711848A (en) * | 1971-02-10 | 1973-01-16 | I D Eng Inc | Method of and apparatus for the detection of stolen articles |
US3821664A (en) | 1971-12-23 | 1974-06-28 | Comp Generale Electricite | Traveling wave excited gas laser |
US3990914A (en) | 1974-09-03 | 1976-11-09 | Sensor Technology, Inc. | Tubular solar cell |
US4105470A (en) | 1977-06-01 | 1978-08-08 | The United States Government As Represented By The United States Department Of Energy | Dye-sensitized schottky barrier solar cells |
US4445050A (en) * | 1981-12-15 | 1984-04-24 | Marks Alvin M | Device for conversion of light power to electric power |
US4197142A (en) * | 1979-03-07 | 1980-04-08 | Canadian Patents & Development Ltd. | Photochemical device for conversion of visible light to electricity |
US4360703A (en) | 1981-04-28 | 1982-11-23 | National Research Council Of Canada | Photovoltaic cell having P-N junction of organic materials |
US4445080A (en) * | 1981-11-25 | 1984-04-24 | The Charles Stark Draper Laboratory, Inc. | System for indirectly sensing flux in an induction motor |
JP2548703B2 (ja) | 1986-07-11 | 1996-10-30 | 三菱電機株式会社 | 論理回路 |
US6114696A (en) | 1986-07-14 | 2000-09-05 | Lockheed Martin Corporation | Uncooled infrared detector |
US4774554A (en) | 1986-12-16 | 1988-09-27 | American Telephone And Telegraph Company, At&T Bell Laboratories | Semiconductor devices employing Ti-doped Group III-V epitaxial layer |
DE3700792C2 (de) * | 1987-01-13 | 1996-08-22 | Hoegl Helmut | Photovoltaische Solarzellenanordnung und Verfahren zu ihrer Herstellung |
US5009958A (en) * | 1987-03-06 | 1991-04-23 | Matsushita Electric Industrial Co., Ltd. | Functional devices comprising a charge transfer complex layer |
US5185208A (en) * | 1987-03-06 | 1993-02-09 | Matsushita Electric Industrial Co., Ltd. | Functional devices comprising a charge transfer complex layer |
DE3712503A1 (de) | 1987-04-13 | 1988-11-03 | Nukem Gmbh | Solarzelle |
US6201242B1 (en) * | 1987-08-05 | 2001-03-13 | Lockheed Martin Corporation | Bandgap radiation detector |
US4854876A (en) | 1987-10-13 | 1989-08-08 | Heath William W | Aircraft carrier simulator and method |
CH674596A5 (ko) * | 1988-02-12 | 1990-06-15 | Sulzer Ag | |
US4803688A (en) * | 1988-03-28 | 1989-02-07 | Lawandy Nabil M | Ordered colloidal suspension optical devices |
JP2752687B2 (ja) * | 1989-03-29 | 1998-05-18 | 三菱電機株式会社 | ヘテロ分子接合に基づく光素子 |
US5078803A (en) * | 1989-09-22 | 1992-01-07 | Siemens Solar Industries L.P. | Solar cells incorporating transparent electrodes comprising hazy zinc oxide |
JPH03151672A (ja) * | 1989-11-08 | 1991-06-27 | Sharp Corp | 非晶質シリコン太陽電池 |
JPH03182725A (ja) | 1989-12-08 | 1991-08-08 | Internatl Business Mach Corp <Ibm> | 非線形光学素子及びその製造方法 |
US5028109A (en) | 1990-01-26 | 1991-07-02 | Lawandy Nabil M | Methods for fabricating frequency doubling polymeric waveguides having optimally efficient periodic modulation zone and polymeric waveguides fabricated thereby |
JP2649856B2 (ja) | 1990-04-13 | 1997-09-03 | 松下電器産業株式会社 | 非線形光学材料 |
US5272330A (en) | 1990-11-19 | 1993-12-21 | At&T Bell Laboratories | Near field scanning optical microscope having a tapered waveguide |
US5105305A (en) * | 1991-01-10 | 1992-04-14 | At&T Bell Laboratories | Near-field scanning optical microscope using a fluorescent probe |
JPH06120536A (ja) | 1991-02-04 | 1994-04-28 | Ricoh Co Ltd | 光起電力素子 |
US5332910A (en) | 1991-03-22 | 1994-07-26 | Hitachi, Ltd. | Semiconductor optical device with nanowhiskers |
JPH04296060A (ja) * | 1991-03-26 | 1992-10-20 | Hitachi Ltd | 太陽電池 |
JP2968080B2 (ja) * | 1991-04-30 | 1999-10-25 | ジェイエスアール株式会社 | 高分解能光学顕微鏡および照射スポット光作成用マスク |
US5157674A (en) | 1991-06-27 | 1992-10-20 | Intellectual Property Development Associates Of Connecticut, Incorporated | Second harmonic generation and self frequency doubling laser materials comprised of bulk germanosilicate and aluminosilicate glasses |
US5233621A (en) | 1991-06-27 | 1993-08-03 | Intellectual Property Development Associates Of Connecticut, Inc. | Second harmonic generation and self frequency doubling laser materials comprised of bulk germanosilicate and aluminosilicate glasses |
US5171373A (en) | 1991-07-30 | 1992-12-15 | At&T Bell Laboratories | Devices involving the photo behavior of fullerenes |
DE69223569T2 (de) * | 1991-09-18 | 1998-04-16 | Fujitsu Ltd | Verfahren zur Herstellung einer optischen Vorrichtung für die Erzeugung eines frequenzverdoppelten optischen Strahls |
US5250378A (en) | 1991-10-16 | 1993-10-05 | E. I. Du Pont De Nemours And Company | Charge transfer complexes and photoconductive compositions containing fullerenes |
US5253258A (en) | 1991-10-17 | 1993-10-12 | Intellectual Property Development Associates Of Connecticut, Inc. | Optically encoded phase matched second harmonic generation device and self frequency doubling laser material using semiconductor microcrystallite doped glasses |
US5493628A (en) * | 1991-10-17 | 1996-02-20 | Lawandy; Nabil M. | High density optically encoded information storage using second harmonic generation in silicate glasses |
US5333000A (en) | 1992-04-03 | 1994-07-26 | The United States Of America As Represented By The United States Department Of Energy | Coherent optical monolithic phased-array antenna steering system |
US5267336A (en) | 1992-05-04 | 1993-11-30 | Srico, Inc. | Electro-optical sensor for detecting electric fields |
FR2694451B1 (fr) * | 1992-07-29 | 1994-09-30 | Asulab Sa | Cellule photovoltaïque. |
US5331183A (en) | 1992-08-17 | 1994-07-19 | The Regents Of The University Of California | Conjugated polymer - acceptor heterojunctions; diodes, photodiodes, and photovoltaic cells |
US5360764A (en) | 1993-02-16 | 1994-11-01 | The United States Of America, As Represented By The Secretary Of Commerce | Method of fabricating laser controlled nanolithography |
US5689603A (en) | 1993-07-07 | 1997-11-18 | Huth; Gerald C. | Optically interactive nanostructure |
EP0641029A3 (de) * | 1993-08-27 | 1998-01-07 | Twin Solar-Technik Entwicklungs-GmbH | Element einer photovoltaischen Solarzelle und Verfahren zu seiner Herstellung sowie deren Anordnung in einer Solarzelle |
US5508881A (en) * | 1994-02-01 | 1996-04-16 | Quality Microcircuits Corporation | Capacitors and interconnect lines for use with integrated circuits |
US5437736A (en) | 1994-02-15 | 1995-08-01 | Cole; Eric D. | Semiconductor fiber solar cells and modules |
US5434878A (en) | 1994-03-18 | 1995-07-18 | Brown University Research Foundation | Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers |
US5448582A (en) | 1994-03-18 | 1995-09-05 | Brown University Research Foundation | Optical sources having a strongly scattering gain medium providing laser-like action |
US5548113A (en) | 1994-03-24 | 1996-08-20 | Trustees Of Boston University | Co-axial detection and illumination with shear force dithering in a near-field scanning optical microscope |
JP2692591B2 (ja) * | 1994-06-30 | 1997-12-17 | 株式会社日立製作所 | 光メモリ素子及びそれを用いた光回路 |
US5489774A (en) * | 1994-09-20 | 1996-02-06 | The Board Of Trustees Of The Leland Stanford University | Combined atomic force and near field scanning optical microscope with photosensitive cantilever |
JP2992464B2 (ja) | 1994-11-04 | 1999-12-20 | キヤノン株式会社 | 集電電極用被覆ワイヤ、該集電電極用被覆ワイヤを用いた光起電力素子及びその製造方法 |
US5604635A (en) * | 1995-03-08 | 1997-02-18 | Brown University Research Foundation | Microlenses and other optical elements fabricated by laser heating of semiconductor doped and other absorbing glasses |
US5585962A (en) | 1995-06-07 | 1996-12-17 | Amoco Corporation | External resonant frequency mixers based on degenerate and half-degenerate resonators |
KR100294057B1 (ko) * | 1995-08-22 | 2001-09-17 | 모리시타 요이찌 | 실리콘 구조체층을 포함하는 반도체 장치, 그 층의 제조방법 및 제조장치와 그 층을 이용한 태양전지 |
US6183714B1 (en) * | 1995-09-08 | 2001-02-06 | Rice University | Method of making ropes of single-wall carbon nanotubes |
US5796506A (en) | 1995-11-21 | 1998-08-18 | Tsai; Charles Su-Chang | Submillimeter indirect heterodyne receiver and mixer element |
US6445006B1 (en) | 1995-12-20 | 2002-09-03 | Advanced Technology Materials, Inc. | Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same |
US5872422A (en) | 1995-12-20 | 1999-02-16 | Advanced Technology Materials, Inc. | Carbon fiber-based field emission devices |
US5897945A (en) * | 1996-02-26 | 1999-04-27 | President And Fellows Of Harvard College | Metal oxide nanorods |
JP3290586B2 (ja) * | 1996-03-13 | 2002-06-10 | セイコーインスツルメンツ株式会社 | 走査型近視野光学顕微鏡 |
US5888371A (en) * | 1996-04-10 | 1999-03-30 | The Board Of Trustees Of The Leland Stanford Jr. University | Method of fabricating an aperture for a near field scanning optical microscope |
CA2255599C (en) * | 1996-04-25 | 2006-09-05 | Bioarray Solutions, Llc | Light-controlled electrokinetic assembly of particles near surfaces |
EP0927331B1 (en) | 1996-08-08 | 2004-03-31 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US5694498A (en) | 1996-08-16 | 1997-12-02 | Waveband Corporation | Optically controlled phase shifter and phased array antenna for use therewith |
US5789742A (en) | 1996-10-28 | 1998-08-04 | Nec Research Institute, Inc. | Near-field scanning optical microscope probe exhibiting resonant plasmon excitation |
US5742471A (en) * | 1996-11-25 | 1998-04-21 | The Regents Of The University Of California | Nanostructure multilayer dielectric materials for capacitors and insulators |
JPH10160740A (ja) | 1996-12-03 | 1998-06-19 | Olympus Optical Co Ltd | 走査型近接場光学顕微鏡 |
US5747861A (en) * | 1997-01-03 | 1998-05-05 | Lucent Technologies Inc. | Wavelength discriminating photodiode for 1.3/1.55 μm lightwave systems |
JP3639684B2 (ja) * | 1997-01-13 | 2005-04-20 | キヤノン株式会社 | エバネッセント波検出用の微小探針とその製造方法、及び該微小探針を備えたプローブとその製造方法、並びに該微小探針を備えたエバネッセント波検出装置、近視野走査光学顕微鏡、情報再生装置 |
US6038060A (en) * | 1997-01-16 | 2000-03-14 | Crowley; Robert Joseph | Optical antenna array for harmonic generation, mixing and signal amplification |
US6700550B2 (en) | 1997-01-16 | 2004-03-02 | Ambit Corporation | Optical antenna array for harmonic generation, mixing and signal amplification |
US6683783B1 (en) | 1997-03-07 | 2004-01-27 | William Marsh Rice University | Carbon fibers formed from single-wall carbon nanotubes |
JP3249419B2 (ja) * | 1997-03-12 | 2002-01-21 | セイコーインスツルメンツ株式会社 | 走査型近接場光学顕微鏡 |
US6096496A (en) | 1997-06-19 | 2000-08-01 | Frankel; Robert D. | Supports incorporating vertical cavity emitting lasers and tracking apparatus for use in combinatorial synthesis |
US5973316A (en) * | 1997-07-08 | 1999-10-26 | Nec Research Institute, Inc. | Sub-wavelength aperture arrays with enhanced light transmission |
KR100413906B1 (ko) * | 1997-09-19 | 2004-01-07 | 인터내셔널 비지네스 머신즈 코포레이션 | 광 결합 구조, 광 결합 구조 제조 방법 및 서브-파장 구조의 형성 방법 |
US6083843A (en) | 1997-12-16 | 2000-07-04 | Northern Telecom Limited | Method of manufacturing planar lightwave circuits |
US6043496A (en) * | 1998-03-14 | 2000-03-28 | Lucent Technologies Inc. | Method of linewidth monitoring for nanolithography |
JP3902883B2 (ja) | 1998-03-27 | 2007-04-11 | キヤノン株式会社 | ナノ構造体及びその製造方法 |
US6233045B1 (en) * | 1998-05-18 | 2001-05-15 | Light Works Llc | Self-mixing sensor apparatus and method |
US6538194B1 (en) * | 1998-05-29 | 2003-03-25 | Catalysts & Chemicals Industries Co., Ltd. | Photoelectric cell and process for producing metal oxide semiconductor film for use in photoelectric cell |
US6203864B1 (en) * | 1998-06-08 | 2001-03-20 | Nec Corporation | Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube |
US6212292B1 (en) * | 1998-07-08 | 2001-04-03 | California Institute Of Technology | Creating an image of an object with an optical microscope |
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
US6271130B1 (en) | 1998-11-25 | 2001-08-07 | The University Of Chicago | Semiconductor assisted metal deposition for nanolithography applications |
US6146227A (en) | 1998-09-28 | 2000-11-14 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
AUPP699798A0 (en) | 1998-11-06 | 1998-12-03 | Pacific Solar Pty Limited | Thin films with light trapping |
US20020122873A1 (en) | 2000-01-05 | 2002-09-05 | Mirkin Chad A. | Nanolithography methods and products therefor and produced thereby |
US6415082B1 (en) | 1999-03-15 | 2002-07-02 | Cirrex Corp. | Optical networking assembly |
US6146196A (en) | 1999-03-30 | 2000-11-14 | Burger; Edward W. | Mated coaxial contact system |
US6580026B1 (en) | 1999-06-30 | 2003-06-17 | Catalysts & Chemicals Industries Co., Ltd. | Photovoltaic cell |
US6621079B1 (en) | 1999-07-02 | 2003-09-16 | University Of Virginia Patent Foundation | Apparatus and method for a near field scanning optical microscope in aqueous solution |
CA2380149A1 (en) * | 1999-07-20 | 2001-01-25 | Konstantin B. Shelimov | Near-field scanning optical microscoe with a high q-factor piezoelectric sensing elment |
FR2799014B1 (fr) * | 1999-09-27 | 2001-12-07 | Univ Paris 13 | Procede et installation de nanolithographie par interferometrie atomique |
US6456423B1 (en) | 1999-10-22 | 2002-09-24 | The Board Of Trustees Of The University Of Illinois | Silicon nanoparticle microcrystal nonlinear optical devices |
US6333458B1 (en) | 1999-11-26 | 2001-12-25 | The Trustees Of Princeton University | Highly efficient multiple reflection photosensitive optoelectronic device with optical concentrator |
NL1013900C2 (nl) | 1999-12-21 | 2001-06-25 | Akzo Nobel Nv | Werkwijze voor de vervaardiging van een zonnecelfolie met in serie geschakelde zonnecellen. |
US6310583B1 (en) | 2000-02-17 | 2001-10-30 | Trw Inc. | Steerable offset reflector antenna |
IL134631A0 (en) * | 2000-02-20 | 2001-04-30 | Yeda Res & Dev | Constructive nanolithography |
US6913713B2 (en) * | 2002-01-25 | 2005-07-05 | Konarka Technologies, Inc. | Photovoltaic fibers |
US6322938B1 (en) | 2000-05-22 | 2001-11-27 | The United States Of America As Represented By The Secretary Of The Air Force | Nanolithography for multi-passband grating filters |
US7291284B2 (en) * | 2000-05-26 | 2007-11-06 | Northwestern University | Fabrication of sub-50 nm solid-state nanostructures based on nanolithography |
US7060510B2 (en) | 2000-08-15 | 2006-06-13 | The Trustees Of The University Of Pennsylvania | Electronic and optoelectronic devices and methods for preparing same |
US7301199B2 (en) | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
JP4278080B2 (ja) * | 2000-09-27 | 2009-06-10 | 富士フイルム株式会社 | 高感度受光素子及びイメージセンサー |
WO2002045215A2 (en) | 2000-10-20 | 2002-06-06 | Northwestern University | Nanolithography methods and products therefor and produced thereby |
US6835534B2 (en) | 2000-10-27 | 2004-12-28 | The Penn State Research Foundation | Chemical functionalization nanolithography |
US6657305B1 (en) | 2000-11-01 | 2003-12-02 | International Business Machines Corporation | Semiconductor recessed mask interconnect technology |
JP2002151708A (ja) * | 2000-11-08 | 2002-05-24 | Rikogaku Shinkokai | 光起電力素子 |
US6365466B1 (en) * | 2001-01-31 | 2002-04-02 | Advanced Micro Devices, Inc. | Dual gate process using self-assembled molecular layer |
US7498564B2 (en) | 2001-02-06 | 2009-03-03 | University Of Bristol Of Senate House | Resonant scanning near-field optical microscope |
US6782154B2 (en) | 2001-02-12 | 2004-08-24 | Rensselaer Polytechnic Institute | Ultrafast all-optical switch using carbon nanotube polymer composites |
WO2002076724A1 (en) | 2001-03-26 | 2002-10-03 | Eikos, Inc. | Coatings containing carbon nanotubes |
CA2442985C (en) * | 2001-03-30 | 2016-05-31 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
DE60228943D1 (de) * | 2001-04-10 | 2008-10-30 | Harvard College | Mikrolinse zur projektionslithographie und ihr herstellungsverfahren |
US6854415B2 (en) * | 2001-06-29 | 2005-02-15 | Finecard International Limited | Seat belt tension sensing device |
US6642129B2 (en) * | 2001-07-26 | 2003-11-04 | The Board Of Trustees Of The University Of Illinois | Parallel, individually addressable probes for nanolithography |
KR100455284B1 (ko) | 2001-08-14 | 2004-11-12 | 삼성전자주식회사 | 탄소나노튜브를 이용한 고용량의 바이오분자 검출센서 |
US7132711B2 (en) | 2001-08-30 | 2006-11-07 | Micron Technology, Inc. | Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers |
US7109517B2 (en) * | 2001-11-16 | 2006-09-19 | Zaidi Saleem H | Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors |
JP4051988B2 (ja) * | 2002-04-09 | 2008-02-27 | 富士ゼロックス株式会社 | 光電変換素子および光電変換装置 |
US7402185B2 (en) * | 2002-04-24 | 2008-07-22 | Afton Chemical Intangibles, Llc | Additives for fuel compositions to reduce formation of combustion chamber deposits |
US7452452B2 (en) | 2002-04-29 | 2008-11-18 | The Trustees Of Boston College | Carbon nanotube nanoelectrode arrays |
US7485799B2 (en) * | 2002-05-07 | 2009-02-03 | John Michael Guerra | Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same |
US6946336B2 (en) | 2002-05-13 | 2005-09-20 | William Marsh Rice University | Method of making a nanoscale electronic device |
US20030213922A1 (en) | 2002-05-15 | 2003-11-20 | The Board of Trustees of the University of Illinois, University of Illinois | Nanolithography molecular beam machine |
DE10226366A1 (de) * | 2002-06-13 | 2004-01-08 | Siemens Ag | Elektroden für optoelektronische Bauelemente und deren Verwendung |
US20050194038A1 (en) | 2002-06-13 | 2005-09-08 | Christoph Brabec | Electrodes for optoelectronic components and the use thereof |
US6946597B2 (en) | 2002-06-22 | 2005-09-20 | Nanosular, Inc. | Photovoltaic devices fabricated by growth from porous template |
US6852920B2 (en) * | 2002-06-22 | 2005-02-08 | Nanosolar, Inc. | Nano-architected/assembled solar electricity cell |
US7291782B2 (en) | 2002-06-22 | 2007-11-06 | Nanosolar, Inc. | Optoelectronic device and fabrication method |
DE10229267A1 (de) | 2002-06-28 | 2004-01-29 | Philips Intellectual Property & Standards Gmbh | Vorrichtung zur optischen Signalverarbeitung und nichtlineares optisches Bauelement |
US7335908B2 (en) * | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
US7013708B1 (en) * | 2002-07-11 | 2006-03-21 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube sensors |
US6696897B1 (en) * | 2002-08-14 | 2004-02-24 | Applied Microcircuits Corp. | System and method for voltage controlled oscillator phase interpolation |
US7005378B2 (en) * | 2002-08-26 | 2006-02-28 | Nanoink, Inc. | Processes for fabricating conductive patterns using nanolithography as a patterning tool |
US6878871B2 (en) * | 2002-09-05 | 2005-04-12 | Nanosys, Inc. | Nanostructure and nanocomposite based compositions and photovoltaic devices |
EP1537445B1 (en) * | 2002-09-05 | 2012-08-01 | Nanosys, Inc. | Nanocomposites |
US20040077156A1 (en) * | 2002-10-18 | 2004-04-22 | Loucas Tsakalakos | Methods of defect reduction in wide bandgap thin films using nanolithography |
US7491422B2 (en) | 2002-10-21 | 2009-02-17 | Nanoink, Inc. | Direct-write nanolithography method of transporting ink with an elastomeric polymer coated nanoscopic tip to form a structure having internal hollows on a substrate |
WO2004045858A1 (en) | 2002-11-21 | 2004-06-03 | Council Of Scientific And Industrial Research | Colored nanolithography on glass and plastic substrates |
US6969897B2 (en) | 2002-12-10 | 2005-11-29 | Kim Ii John | Optoelectronic devices employing fibers for light collection and emission |
KR100888470B1 (ko) | 2002-12-24 | 2009-03-12 | 삼성모바일디스플레이주식회사 | 무기 전계발광소자 |
US7224985B2 (en) | 2003-01-16 | 2007-05-29 | Lockheed Martin, Corp. | Antenna segment system |
TW584934B (en) * | 2003-03-05 | 2004-04-21 | Au Optronics Corp | Method of forming a contact and structure thereof |
US6985223B2 (en) * | 2003-03-07 | 2006-01-10 | Purdue Research Foundation | Raman imaging and sensing apparatus employing nanoantennas |
US6936761B2 (en) | 2003-03-29 | 2005-08-30 | Nanosolar, Inc. | Transparent electrode, optoelectronic apparatus and devices |
US7511217B1 (en) * | 2003-04-19 | 2009-03-31 | Nanosolar, Inc. | Inter facial architecture for nanostructured optoelectronic devices |
US7169239B2 (en) * | 2003-05-16 | 2007-01-30 | Lone Star Steel Company, L.P. | Solid expandable tubular members formed from very low carbon steel and method |
US7462774B2 (en) | 2003-05-21 | 2008-12-09 | Nanosolar, Inc. | Photovoltaic devices fabricated from insulating nanostructured template |
US7605327B2 (en) * | 2003-05-21 | 2009-10-20 | Nanosolar, Inc. | Photovoltaic devices fabricated from nanostructured template |
KR100549103B1 (ko) | 2003-06-05 | 2006-02-06 | 한국과학기술원 | 탄소나노튜브 어레이의 제작방법 |
ITTO20030425A1 (it) | 2003-06-06 | 2004-12-07 | St Microelectronics Srl | Dispositivo interruttore elettrico a comando ottico basato su nanotubi di carbonio e sistema interruttore elettrico utilizzante tale dispositivo interruttore. |
US7169329B2 (en) * | 2003-07-07 | 2007-01-30 | The Research Foundation Of State University Of New York | Carbon nanotube adducts and methods of making the same |
US20050272856A1 (en) | 2003-07-08 | 2005-12-08 | Cooper Christopher H | Carbon nanotube containing materials and articles containing such materials for altering electromagnetic radiation |
EP1507298A1 (en) | 2003-08-14 | 2005-02-16 | Sony International (Europe) GmbH | Carbon nanotubes based solar cells |
US6897158B2 (en) * | 2003-09-22 | 2005-05-24 | Hewlett-Packard Development Company, L.P. | Process for making angled features for nanolithography and nanoimprinting |
US7242073B2 (en) | 2003-12-23 | 2007-07-10 | Intel Corporation | Capacitor having an anodic metal oxide substrate |
US8013359B2 (en) * | 2003-12-31 | 2011-09-06 | John W. Pettit | Optically controlled electrical switching device based on wide bandgap semiconductors |
US7176450B2 (en) | 2004-01-02 | 2007-02-13 | Itn Energy Systems, Inc. | Long travel near-field scanning optical microscope |
KR101001547B1 (ko) | 2004-01-28 | 2010-12-17 | 삼성에스디아이 주식회사 | 섬유상 태양 전지 및 이의 제조 방법 |
WO2005076935A2 (en) | 2004-02-05 | 2005-08-25 | Northern Illinois University | Wavelength filtering in nanolithography |
KR101050468B1 (ko) | 2004-02-14 | 2011-07-19 | 삼성에스디아이 주식회사 | 바이오 칩 및 이를 이용한 바이오 분자 검출 시스템 |
US20070074755A1 (en) * | 2005-10-03 | 2007-04-05 | Nanosolar, Inc. | Photovoltaic module with rigidizing backplane |
US7088003B2 (en) | 2004-02-19 | 2006-08-08 | International Business Machines Corporation | Structures and methods for integration of ultralow-k dielectrics with improved reliability |
JP5021321B2 (ja) | 2004-02-20 | 2012-09-05 | ユニバーシティ オブ フロリダ リサーチ ファンデーション インコーポレーティッド | ナノチューブ・コンタクトを用いた半導体デバイスおよび方法 |
US7198961B2 (en) | 2004-03-30 | 2007-04-03 | Matsushita Electric Industrial Co., Ltd. | Method for modifying existing micro-and nano-structures using a near-field scanning optical microscope |
US7053351B2 (en) | 2004-03-30 | 2006-05-30 | Matsushita Electric Industrial, Co., Ltd | Near-field scanning optical microscope for laser machining of micro- and nano- structures |
US7019391B2 (en) * | 2004-04-06 | 2006-03-28 | Bao Tran | NANO IC packaging |
US7195813B2 (en) * | 2004-05-21 | 2007-03-27 | Eastman Kodak Company | Mixed absorber layer for displays |
US7238415B2 (en) | 2004-07-23 | 2007-07-03 | Catalytic Materials, Llc | Multi-component conductive polymer structures and a method for producing same |
US20060024438A1 (en) * | 2004-07-27 | 2006-02-02 | The Regents Of The University Of California, A California Corporation | Radially layered nanocables and method of fabrication |
US7323657B2 (en) * | 2004-08-03 | 2008-01-29 | Matsushita Electric Industrial Co., Ltd. | Precision machining method using a near-field scanning optical microscope |
US7541062B2 (en) * | 2004-08-18 | 2009-06-02 | The United States Of America As Represented By The Secretary Of The Navy | Thermal control of deposition in dip pen nanolithography |
US7129567B2 (en) | 2004-08-31 | 2006-10-31 | Micron Technology, Inc. | Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements |
US7151244B2 (en) * | 2004-09-02 | 2006-12-19 | Matsushita Electric Industrial Co., Ltd | Method and apparatus for calibration of near-field scanning optical microscope tips for laser machining |
US7035498B2 (en) * | 2004-09-28 | 2006-04-25 | General Electric Company | Ultra-fast all-optical switch array |
US7233071B2 (en) | 2004-10-04 | 2007-06-19 | International Business Machines Corporation | Low-k dielectric layer based upon carbon nanostructures |
US20070240757A1 (en) * | 2004-10-15 | 2007-10-18 | The Trustees Of Boston College | Solar cells using arrays of optical rectennas |
US7687402B2 (en) * | 2004-11-15 | 2010-03-30 | Micron Technology, Inc. | Methods of making optoelectronic devices, and methods of making solar cells |
US7208793B2 (en) * | 2004-11-23 | 2007-04-24 | Micron Technology, Inc. | Scalable integrated logic and non-volatile memory |
US20060110618A1 (en) * | 2004-11-24 | 2006-05-25 | General Electric Company | Electrodes for photovoltaic cells and methods for manufacture thereof |
US7763794B2 (en) | 2004-12-01 | 2010-07-27 | Palo Alto Research Center Incorporated | Heterojunction photovoltaic cell |
US20070186971A1 (en) | 2005-01-20 | 2007-08-16 | Nanosolar, Inc. | High-efficiency solar cell with insulated vias |
EP1949451A4 (en) | 2005-08-22 | 2016-07-20 | Q1 Nanosystems Inc | NANOSTRUCTURE AND THIS IMPLEMENTING PHOTOVOLTAIC CELL |
WO2007025023A2 (en) * | 2005-08-24 | 2007-03-01 | The Trustees Of Boston College | Apparatus and methods for optical switching using nanoscale optics |
US7589880B2 (en) | 2005-08-24 | 2009-09-15 | The Trustees Of Boston College | Apparatus and methods for manipulating light using nanoscale cometal structures |
US7943847B2 (en) | 2005-08-24 | 2011-05-17 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanoscale cometal structures |
WO2007086903A2 (en) * | 2005-08-24 | 2007-08-02 | The Trustees Of Boston College | Apparatus and methods for solar energy conversion using nanocoax structures |
US7634162B2 (en) | 2005-08-24 | 2009-12-15 | The Trustees Of Boston College | Apparatus and methods for nanolithography using nanoscale optics |
US8816191B2 (en) | 2005-11-29 | 2014-08-26 | Banpil Photonics, Inc. | High efficiency photovoltaic cells and manufacturing thereof |
US8791359B2 (en) | 2006-01-28 | 2014-07-29 | Banpil Photonics, Inc. | High efficiency photovoltaic cells |
US7235736B1 (en) * | 2006-03-18 | 2007-06-26 | Solyndra, Inc. | Monolithic integration of cylindrical solar cells |
US9105776B2 (en) | 2006-05-15 | 2015-08-11 | Stion Corporation | Method and structure for thin film photovoltaic materials using semiconductor materials |
US8017860B2 (en) * | 2006-05-15 | 2011-09-13 | Stion Corporation | Method and structure for thin film photovoltaic materials using bulk semiconductor materials |
US20080006319A1 (en) * | 2006-06-05 | 2008-01-10 | Martin Bettge | Photovoltaic and photosensing devices based on arrays of aligned nanostructures |
US20080072988A1 (en) * | 2006-08-22 | 2008-03-27 | Perma-Pipe, Inc. | Glass Syntactic Polyurethane Insulated Product |
US8716594B2 (en) | 2006-09-26 | 2014-05-06 | Banpil Photonics, Inc. | High efficiency photovoltaic cells with self concentrating effect |
US7999176B2 (en) | 2007-05-08 | 2011-08-16 | Vanguard Solar, Inc. | Nanostructured solar cells |
US20090071527A1 (en) * | 2007-09-18 | 2009-03-19 | Reflexite Corporation | Solar arrays with geometric-shaped, three-dimensional structures and methods thereof |
WO2009070315A1 (en) | 2007-11-28 | 2009-06-04 | Molecular Imprints, Inc. | Nanostructured organic solar cells |
US8106289B2 (en) | 2007-12-31 | 2012-01-31 | Banpil Photonics, Inc. | Hybrid photovoltaic device |
US9318295B2 (en) | 2008-01-18 | 2016-04-19 | The United States Of America As Represented By The Administrator Of The Nasa | Carbon nanotube patterning on a metal substrate |
US20090194160A1 (en) | 2008-02-03 | 2009-08-06 | Alan Hap Chin | Thin-film photovoltaic devices and related manufacturing methods |
US20090217963A1 (en) | 2008-02-29 | 2009-09-03 | Motorola, Inc. | Photovoltaic apparatus for charging a portable electronic device and method for making |
-
2006
- 2006-08-24 US US11/509,269 patent/US7943847B2/en not_active Expired - Fee Related
- 2006-08-24 JP JP2008528023A patent/JP2009506546A/ja active Pending
- 2006-08-24 KR KR1020087004314A patent/KR20080069958A/ko not_active Withdrawn
- 2006-08-24 WO PCT/US2006/032452 patent/WO2007120175A2/en active Application Filing
- 2006-08-24 EP EP06850509.8A patent/EP1917557A4/en not_active Withdrawn
-
2011
- 2011-04-22 US US13/092,512 patent/US8431816B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009506546A (ja) | 2009-02-12 |
EP1917557A2 (en) | 2008-05-07 |
US8431816B2 (en) | 2013-04-30 |
WO2007120175A3 (en) | 2008-08-07 |
WO2007120175A2 (en) | 2007-10-25 |
EP1917557A4 (en) | 2015-07-22 |
US7943847B2 (en) | 2011-05-17 |
US20070137697A1 (en) | 2007-06-21 |
WO2007120175A9 (en) | 2008-12-31 |
US20110308564A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7943847B2 (en) | Apparatus and methods for solar energy conversion using nanoscale cometal structures | |
US7754964B2 (en) | Apparatus and methods for solar energy conversion using nanocoax structures | |
US7589880B2 (en) | Apparatus and methods for manipulating light using nanoscale cometal structures | |
Lin et al. | Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function | |
CN101627479B (zh) | 光电池及其制造方法 | |
WO2011005013A2 (ko) | p-i-n 나노선을 이용한 태양전지 | |
US20130092221A1 (en) | Intermediate band solar cell having solution-processed colloidal quantum dots and metal nanoparticles | |
CN101779296B (zh) | 分布式同轴光伏装置 | |
Zhu et al. | Overview of optical rectennas for solar energy harvesting | |
Wu et al. | Direct synthesis of high-density lead sulfide nanowires on metal thin films towards efficient infrared light conversion | |
EP1917556B1 (en) | Apparatus and methods for manipulating light using nanoscale cometal structures | |
US11296291B2 (en) | High efficiency graphene/wide band-gap semiconductor heterojunction solar cells | |
GB2451108A (en) | Photovoltaic Device | |
JP5925861B2 (ja) | ナノスケール共金属構造を用いて光を操作するための装置および方法 | |
HK1140312A (en) | Photovoltaic cell and method of making thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20080222 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |