[go: up one dir, main page]

JP6505035B2 - トルク伝達装置 - Google Patents

トルク伝達装置 Download PDF

Info

Publication number
JP6505035B2
JP6505035B2 JP2016039247A JP2016039247A JP6505035B2 JP 6505035 B2 JP6505035 B2 JP 6505035B2 JP 2016039247 A JP2016039247 A JP 2016039247A JP 2016039247 A JP2016039247 A JP 2016039247A JP 6505035 B2 JP6505035 B2 JP 6505035B2
Authority
JP
Japan
Prior art keywords
elastic body
torque
intermediate member
rotating body
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016039247A
Other languages
English (en)
Other versions
JP2017155831A (ja
Inventor
智哉 尾梶
智哉 尾梶
文哉 西井
文哉 西井
アンドレイ ピディン
アンドレイ ピディン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016039247A priority Critical patent/JP6505035B2/ja
Priority to CN201710085919.9A priority patent/CN107143635B/zh
Priority to US15/436,654 priority patent/US10253842B2/en
Publication of JP2017155831A publication Critical patent/JP2017155831A/ja
Application granted granted Critical
Publication of JP6505035B2 publication Critical patent/JP6505035B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0278Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch comprising only two co-acting friction surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Description

本発明は、振動減衰機能を有するトルク伝達装置に関する。
例えばロックアップ機構を有するトルクコンバータには、ロックアップ機構の作動時に、エンジンの回転変動によって生じる捩り振動がトランスミッションに直接伝達されることを防ぐため、振動減衰機能を有する装置が設けられる。この種の装置として、例えば特許文献1記載の装置は、ロックアップクラッチとタービンランナとの間に、第1の弾性体、質量体本体および第2の弾性体を直列に連結して介装する。さらに、質量体本体に第3の弾性体を介して付加質量体を接続し、ダイナミックダンパを構成する。
特許第5051447号公報
この種の装置では、エンジン回転数に応じた加振周波数でロックアップクラッチが加振されるため、加振周波数は一定ではなく、幅広い加振周波数に対し振動減衰効果を得ることが好ましい。しかしながら、上記特許文献1記載の装置は、単に質量体本体に第3の弾性体を介して付加質量体を接続するように構成されるため、第3の弾性体のばね定数と付加質量体のイナーシャとによって定まるダイナミックダンパの設定周波数に対応した加振周波数の近傍のみでしか、振動減衰効果を発揮することができない。
本発明の一態様は、軸線を中心に回転する第1回転体からのトルクを第2回転体に伝達するトルク伝達装置であり、第1回転体と第2回転体との間の動力伝達経路に配設された中間部材と、第1回転体と中間部材との間および中間部材と第2回転体との間にそれぞれ介装された第1弾性体および第2弾性体と、第3弾性体を介して中間部材に接続された慣性体と、第3弾性体を伸縮可能に支持する弾性体支持手段と、を備え、弾性体支持手段は、第1回転体と第2回転体とが回転を停止している初期状態に、第3弾性体に初期荷重を与えた状態で第3弾性体を支持し、第1の加振周波数および第1の加振周波数に1より大きい所定係数を乗じた第2の加振周波数を、それぞれ振動減衰領域の下限周波数および上限周波数として設定するとき、弾性体支持手段は、第3弾性体のばね定数に対する第3弾性体に与える初期荷重の比率が、中間部材に対する慣性体の捩り角度の最大振幅の1/2倍を所定係数の二乗で除算した値より大きく、かつ、中間部材に対する慣性体の捩り角度の最大振幅の1/2倍よりも小さい値となるように、初期荷重を与えて第3弾性体を支持することを特徴とする。
また、本発明の他の態様は、軸線を中心に回転する第1回転体からのトルクを第2回転体に伝達するトルク伝達装置であり、第1回転体と第2回転体との間の動力伝達経路に配設された中間部材と、第1回転体と中間部材との間および中間部材と第2回転体との間にそれぞれ介装された第1弾性体および第2弾性体と、第3弾性体を介して中間部材に接続された慣性体と、第3弾性体を伸縮可能に支持する弾性体支持手段と、を備え、弾性体支持手段は、第1回転体と第2回転体とが回転を停止している初期状態に、第3弾性体に初期荷重を与えた状態で第3弾性体を支持し、弾性体支持手段は、第3弾性体のばね定数に対する第3弾性体に与える初期荷重の比率が、0より大きく、かつ、中間部材に対する慣性体の捩り角度の最大振幅の1/2倍よりも小さい値となるように、初期荷重を与えて第3弾性体を支持することを特徴とする。
本発明によれば、中間部材に接続されたダイナミックダンパを構成する第3弾性体を、初期荷重を与えた状態で支持するようにしたので、広範囲の加振周波数に対し良好な振動減衰効果を発揮することができる。
本発明の実施形態に係るトルク伝達装置が適用されるトルクコンバータの断面図。 本発明の実施形態に係るトルク伝達装置の振動モデルを示す図。 ダンパ形式の違いによる振動減衰効果を示す第1の図。 ダンパ形式の違いによる振動減衰効果を示す第2の図。 ばね定数が一定のダイナミックダンパを用いた場合のダイナミックダンパの周波数と加振周波数との関係および振動減衰効果を示す図。 エンジン回転数に対するダイナミックダンパの振幅を示す図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性を示す図。 本発明の実施形態に係るトルク伝達装置による振動減衰効果を示す図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性の設定手法を説明するための第1の図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性の設定手法を説明するための第2の図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性の設定手法を説明するための第3の図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性の設定手法を説明するための第4の図。 本発明の実施形態に係るトルク伝達装置に含まれるダイナミックダンパのばね特性の設定手法を説明するための第5の図。 図11のB点にダイナミックダンパのプリセット荷重とばね定数とを設定した場合の振動減衰効果を示す図。 図1のトルク伝達装置の拡大図。 図1のトルク伝達装置の分解斜視図。
以下、図1〜図14を参照して本発明の実施形態について説明する。本発明の実施形態に係るトルク伝達装置は、例えばロックアップ機構を有する車両のトルクコンバータに適用される。図1は、本発明の実施形態に係るトルク伝達装置が適用されるトルクコンバータの断面図である。なお、以下では、便宜上、図示のように軸線CL0に沿って前後方向を定義し、この定義に従い各部の構成を説明する。
図1に示すように、トルクコンバータ10は、図示しないエンジンの出力軸(クランクシャフト)に接続されたポンプインペラ11と、図示しない変速機の入力軸に接続されたタービンランナ12とを有する。ポンプインペラ11とタービンランナ12とは、それぞれ軸線CL0を中心に回転可能に設けられる。タービンランナ12は、ポンプインペラ11の前方に、ポンプインペラ11に対向して配置され、ポンプインペラ11とタービンランナ12との間に、矢印Aで示す流体(油)の循環路が形成される。
ポンプインペラ11とタービンランナ12との間には、ポンプインペラ11とタービンランナ12の径方向内側にステータ13が配置される。ステータ13は、その内径側に設けられたステータハブ14に支持され、ステータハブ14はワンウェイクラッチ15を介してステータシャフト16に支持される。ステータシャフト16は、その内周面が図示しない変速機のケースに回転不能に固定される。ステータハブ14とポンプインペラ11のシェル11aとの間には、スラストベアリング17Aが設けられる。
タービンランナ12の前方にはカバー18が配置される。カバー18は、略径方向に延在する第1板部181と、第1板部181の外径側端部から後方に屈曲して延在する第2板部182とを有する。第2板部182は、略円筒形状を呈し、その後端部は、ポンプインペラ11のシェル11aに溶接等により接合され、カバー18とタービンランナ12との間に空間SP1が形成される。第2板部182の外周面には径方向外側に向けてボス183が突設され、エンジンの出力軸からのトルクは、ボス183およびカバー18を介してポンプインペラ11に入力される。
ステータハブ14とカバー18の第1板部181との間には、タービンハブ19が配置される。タービンハブ19の径方向内側には、図示しない変速機の入力軸が配置される。タービンハブ19は、その内周面に設けられたスプラインを介して変速機の入力軸に固定され、入力軸と一体に回転する。タービンハブ19とカバー18との間にはスラストベアリング17Bが設けられ、タービンハブ19とステータハブ14との間にはスラストベアリング17Cが設けられる。
タービンハブ19の外周面には、径方向外側に向けてフランジ部19aが突設され、フランジ部19aの後面に、タービンランナ12のシェル12aの内径側端部がピン等の締結部材19bにより固定される。シェル12aを溶接により固定することもできる。シェル12aの外径側端部は後方に屈曲して延在する。
このようなトルクコンバータ10において、エンジンの出力軸の回転によりポンプインペラ11が回転すると、ポンプインペラ11からタービンランナ12に油が流れる。この油は、タービンランナ12を駆動した後、ステータ13を通過してポンプインペラ11に還流する。すなわち、ポンプインペラ11とタービンランナ12とステータ13との間を、図1の循環路Aに沿って油が流れる。この油の流れにより、エンジンの出力軸の回転が減速かつトルクが増幅されて、変速機の入力軸に伝達される。
トルクコンバータ10は、タービンハブ19とカバー18とを機械的に連結するロックアップクラッチ20を有する。ロックアップクラッチ20は、カバー18の第1板部181の後方に、第1板部181に対向して配置されたクラッチピストン21を有する。クラッチピストン21は、その内径側端部が後方に向けて円環状に形成され、クラッチピストン21の内周面は、タービンハブ19の外周面に前後方向に摺動可能に嵌合され、クラッチピストン21はタービンハブ19に対し相対回転可能に支持される。
クラッチピストン21は、略径方向に延在する第1板部211と、第1板部211の外径側端部から後方に延在する第2板部212とを有する。第1板部211の前面には、その外径側端部に摩擦ライニング213が取り付けられ、クラッチピストン21とカバー18とは、摩擦ライニング213を介して摩擦係合可能である。クラッチピストン21に入力されたトルクは、トルク伝達装置100を介してタービンハブ19に伝達される。なお、トルク伝達装置100の構成については後述する。
ポンプインペラ11とカバー18との間の空間SP1は、クラッチピストン21により前側作動室SP11と後側作動室SP12とに区画される。前側作動室SP11と後側作動室SP12とは、クラッチピストン21の第2板部212とカバー18の第2板部182との間の隙間22を介して連通する。前側作動室SP11には、カバー18とクラッチピストン21との間の第1流路23を介して、一方、後側作動室SP12には、ポンプインペラ11のシェル11aとステータハブ14との間の第2流路24を介して、それぞれ不図示のポンプから油を供給可能である。前側作動室SP11および後側作動室SP12への油の流れは、図示しない弁装置により制御される。
第1流路23を介して前側作動室SP11にポンプから油が供給されると、前側作動室SP11は後側作動室SP12よりも高圧となり、クラッチピストン21は後方に押動される。これによりロックアップクラッチ20が切断される。この状態では、エンジンの出力軸の回転は、カバー18を介してポンプインペラ11に伝達され、さらにポンプインペラ11とタービンランナ12とステータ13との間の循環路Aを流れる油を介してタービンランナ12に伝達される。タービンランナ12の回転は、タービンハブ19を介して変速機の入力軸に伝達される。
一方、第2流路24を介して後側作動室SP12にポンプから油が供給されると、後側作動室SP12は前側作動室SP11よりも高圧となり、クラッチピストン21は前方に押動される。これにより摩擦ライニング213を介してクラッチピストン21がカバー18に摩擦係合され、ロックアップクラッチ20が接続される。すなわち、ロックアップ機構が作動する。この状態では、エンジンの出力軸の回転は、カバー18、クラッチピストン21、トルク伝達装置100およびタービンハブ19を介して変速機の入力軸に伝達される。すなわち、タービンハブ19は、流体を介することなくカバー18に機械的に連結される。このため、流体の滑りに起因したトルクの伝達ロスを防ぐことができる。
ロックアップ機構の作動時において、クラッチピストン21とタービンハブ19とが直接連結されると、エンジンの回転変動によって生じる捩り振動が変速機に直接伝達される。これを避けるため、クラッチピストン21とタービンハブ19との間に、振動減衰機能を有するトルク伝達装置100が配置される。
図2は、トルク伝達装置100の振動モデルを示す図である。図2では、トルク伝達装置100は、第1回転体1(入力部材)からのトルクを第2回転体2(出力部材)へ伝達するものとして、一般化して示している。なお、本実施形態では、クラッチピストン21が第1回転体1を構成し、タービンハブ19と一体の出力板60(図13)が第2回転体2を構成する。
図2に示すように、トルク伝達装置100は、第1回転体1と第2回転体2との間の動力伝達経路PAに配設された中間部材3と、第1回転体1と中間部材3との間および中間部材3と第2回転体2との間にそれぞれ介装された第1弾性体4および第2弾性体5と、第3弾性体7を介して中間部材3に接続された慣性体6とを有する。すなわち、トルク伝達装置100は、第1弾性体4と第2弾性体5とを中間部材3を介して直列に接続して直列ダンパを構成するとともに、第3弾性体7を介して中間部材3に慣性体6を接続してダイナミックダンパを構成する。
図3A,図3Bは、ダンパ形式の違いによる振動減衰効果を示す図である。図中、横軸はエンジン回転数Nを、縦軸は振動の減衰率を示す。第1回転体1の振幅(最大振幅)をA1、第2回転体2の振幅(最大振幅)をA2とすると、減衰率は(A2−A1)/A1で定義される。したがって、減衰率はマイナスで表され、図の下方に行くほど減衰率(減衰効果)が大きくなる。図3A,図3Bにおいて、特性f1(実線)が本実施形態のトルク伝達装置100による特性であり、特性f2(点線)は、直列ダンパのみによる振動減衰効果の特性、特性f3(一点鎖線)は、第1回転体1にダイナミックダンパを接続した場合の振動減衰効果の特性、特性f4(二点鎖線)は、第2回転体2にダイナミックダンパを接続した場合の振動減衰効果の特性である。
図3Aに示すように、本実施形態のトルク伝達装置100のように直列ダンパとダイナミックダンパとを併用すると(特性f1)、直列ダンパのみの場合(特性f2)と比べ、特に所定回転数N1近傍の振動減衰効果を高めることができる。また、図3Bに示すように、ダイナミックダンパを慣性質量の大きい第1回転体1や第2回転体2に接続すると(特性f3,f4)、所定のエンジン回転数N2において反共振の影響により振動の減衰率が悪化する。これに対し、本実施形態のように中間部材3にダイナミックダンパを接続すると(特性f1)、反共振の影響がなく、振動減衰効果を高めることができる。以上を考慮し、本実施形態では、振動減衰効果を高めるため、直列ダンパとダイナミックダンパとを併用し、ダイナミックダンパを中間部材3に接続する。
このようなダイナミックダンパは、第3弾性体7と慣性体6の構成によって定まる特定の周波数(以下、ダンパ周波数と呼ぶ)fdd[Hz]で、振動減衰効果を高めることができる。ダンパ周波数fddは、第3弾性体7のばね定数k[Nm/deg]と慣性体6のイナーシャ(慣性モーメント)Idd[kgm2]とを用いると、次式(I)で表される。
fdd=1/2π・√(k/Idd) ・・・(I)
図4は、ばね定数kが一定のダイナミックダンパを用いた場合(与圧を与えない場合)のダンパ周波数fddと加振周波数との関係およびダイナミックダンパによる振動の減衰効果を示す図である。図中、特性f11は、エンジン回転数N[rpm]に対する加振周波数の特性、特性f12は、エンジン回転数Nに対するダンパ周波数fddの特性、特性f13は、エンジン回転数Nに対する振動の減衰率を表す特性である。なお、特性f14(点線)は、ダイナミックダンパを設けない場合の振動の減衰率を表す特性である。
特性f11に示すように、加振周波数は、エンジン回転数Nの増加に伴い一定の割合で比例的に増加する。一方、特性f12に示すように、上式(I)によって定まるダンパ周波数fddは、エンジン回転数Nの大きさに拘らず一定である。したがって、特性f13に示すように、特性f11と特性f12とが交差する領域Aのエンジン回転数近傍(N11≦N≦N12)で振動の減衰率が大きくなり、ダイナミックダンパによる振動減衰効果が得られる。
ところで、燃費向上の観点からは、ロックアップクラッチ20が作動するエンジン回転数(ロックアップ回転数)を、より低い回転数に設定することが好ましい。しかしながら、ロックアップ回転数を低くすると、エンジン回転数Nの低い領域(第1の領域)で顕著な振動が発生するおそれがある。この振動を減衰するためにダンパ周波数fddを低めの値に設定すると、エンジン回転数が第1の領域よりも高い第2の領域で、十分な振動減衰効果を得ることができない。
そこで、本実施形態では、第1の領域から第2の領域にかけてのエンジン回転数の広い範囲で十分な振動減衰効果を得るため、図2に示すように、ばね支持部8により第3弾性体7を初期状態において自然長から所定量縮退した状態で支持する。すなわち、第3弾性体7にプリセット荷重(与圧)を与えた状態で、ばね支持部8により第3弾性体7を伸縮可能に支持する。
以下、第3弾性体7にプリセット荷重を与えた場合にエンジン回転数の広い範囲で制振性能が向上する理由について説明する。図5は、エンジン回転数Nに対するダイナミックダンパ(慣性体6)の各種振幅を示す図である。図中、特性f21は、ダイナミックダンパに作用するトルクT[N・m]の振幅(トルク振幅)を表す特性であり、特性f22は、ダイナミックダンパの角速度dθ/dt[deg/s]の振幅(角速度振幅)を表す特性であり、特性f23は、中間部材3に対する慣性体6の捩れ角θ[deg]の振幅(捩れ角振幅)を表す特性である。
ダイナミックダンパの角加速度dθ/dt[deg/s2]とイナーシャ(慣性モーメント)Iとを用いると、一般にトルクTは次式(II)で表される。また、トルクTの最大振幅Aと加振周波数に相当する周波数fとを用いると、トルクTは次式(III)でも表される。
T=I・dθ/dt ・・・(II)
T=A・sin(2πft) ・・・(III)
上式(II),(III)を用い、トルクTを2階積分して捩れ角θを算出すると、捩れ角θは次式(IV)で表される。
θ=A/((2πf)2I)・sin(2πft) ・・・(IV)
上式(IV)より、捩れ角θは周波数fの二乗に反比例する。一方、周波数fはエンジン回転数Nの増加に伴い増加する(図4の特性f11)。このため、捩れ角θは、図5の特性f23に示すように、エンジン回転数Nの増加に伴い二次関数的に減少する。例えばエンジン回転数がNaのときの捩れ角振幅はθaとなり、エンジン回転数がNb(>Na)のときの捩れ角振幅はθb(<θa)となる。
図6は、本発明の実施形態に係るダイナミックダンパのばね特性を示す図である。図の横軸は捩れ角振幅θを、縦軸はトルクTを示す。第3弾性体7に与えるプリセット荷重をT0、第3弾性体7のばね定数をk0とすると、ダイナミックダンパのばね特性は次式(V)で表され、これよりばね特性は図6の特性f31のようになる。
T=k0・θ+T0 ・・・(V)
したがって、エンジン回転数がNaのときの捩れ角振幅θaに対応したばね定数kaと、エンジン回転数がNbのときの捩れ角振幅θbに対応したばね定数kbとが互いに異なり、kb>kaとなる。すなわち、エンジン回転数が高いほど捩れ角振幅θが小さくなるため、見かけのばね定数は大きくなる。なお、図6の特性f32は、第3弾性体7にプリセット荷重を与えないときのばね特性であり、この場合、捩れ角振幅θに拘らずばね定数は一定となる。
図7は、本発明の実施形態に係るトルク伝達装置100による振動減衰効果を示す図である。図中の特性f11と特性f14とは、図4に示したものと同一である。特性f41は、エンジン回転数Nに対するダンパ周波数fddの特性、特性f42は、エンジン回転数Nに対する振動の減衰率を表す特性である。本実施形態に係るトルク伝達装置100によれば、上述したようにエンジン回転数Nの増加に伴いばね定数が増大する。したがって、上式(I)のばね定数kが可変となり、特性f41に示すようにエンジン回転数Nの増加に伴いダンパ周波数fddが増大する。
これにより、図7に示すように、特性f11と特性f41とが交差する領域Aが図4の領域Aよりも拡大する。したがって、特性f42に示すように、エンジン回転数の広い範囲(N13≦N≦N14)で振動の減衰率を大きくすることができ、広範囲にわたって制振性能を向上させることができる。
次に、ダイナミックダンパのばね特性の設定手法について説明する。図8〜図11は、この点を説明するための図である。まず、ダイナミックダンパにより制振性能の向上を図るべきエンジン回転数の下限である第1回転数と上限である第2回転数とを設定する。この場合、図8に示すように、第1回転数をNs、第2回転数をα・Nsで定義し、Nsからα・Nsまでの範囲A1が、制振性能を向上させるべき範囲となる。なお、αは第1回転数と第2回転数との比(=第2回転数/第1回転数)であり、α>1である。
図8の特性f11、f41は、図7に示したものと同一であり、特性f23は、図5に示したものと同一である。エンジン回転数が第1回転数Nsであるときのダイナミックダンパの捩れ角振幅(最大振幅)θddは、図8の特性f23から求めることができる。また、特性f23に示すように、捩れ角振幅θはエンジン回転数Nの増加に伴い二次関数的に減少するため、エンジン回転数が第2回転数α・Nsであるときの捩れ角振幅は、1/α・θddとなる。
図8の加振周波数の特性f11より、エンジン回転数が第1回転数Nsであるときの加振周波数はfs(第1周波数)となり、エンジン回転数が第2回転数α・Nsであるときの加振周波数はα・fs(第2周波数)となる。したがって、エンジン回転数が第1回転数Nsおよび第2回転数α・Nsであるときのダンパ周波数を、それぞれ第1周波数fsおよび第2周波数α・fsに一致させれば、第1回転数Nsおよび第2回転数α・Nsにおける振動を良好に減衰させることができる。なお、第1周波数fsおよび第2周波数α・fsは、それぞれ振動を減衰させるべき下限周波数および上限周波数に相当する。
本実施形態では、第3弾性体7にプリセット荷重を与えるが、仮にプリセット荷重を与えない場合に、ダンパ周波数fddが第1周波数fsに設定されれば、第1回転数Nsにおける振動が抑えられ、ダンパ周波数fddが第2周波数α・fsに設定されれば、第2回転数α・Nsにおける振動が抑えられる。このとき、第1周波数fsおよび第2周波数α・fsは、上式(I)のばね定数k(>k0)を用いてそれぞれ次式(VI),(VII)で表される。
fs=1/2π・√(k/Idd) ・・・(VI)
α・fs=1/2π・√(α・k/Idd) ・・・(VII)
上式(VI)より、エンジン回転数が第1回転数Nsであるときのばね定数はkとなる。このときのばね特性は図9の特性f51で表され、捩れ角振幅θddに対応したトルクTはk・θddとなる。また、上式(VII)より、エンジン回転数が第2回転数α・Nsであるときのばね定数はα・kとなる。このときのばね特性は図9の特性f52で表され、捩れ角振幅1/α・θddに対応したトルクTはk・θddとなる。一方、本実施形態のダイナミックダンパでは、上式(V)より、捩れ角振幅θddに対応したトルクTはk0・θdd+T0となり、捩れ角振幅1/α・θddに対応したトルクTは(k0・θdd)/α+T0となる。
図9において、ダイナミックダンパによる振動吸収エネルギーは各特性f31,f51,f52の下側の面積によって表される。図10Aは、エンジン回転数が第1回転数Nsであるときの捩れ角振幅θddにおける特性f31の下側部分の面積S1と特性f51の下側部分の面積S2とを示す。両面積S1,S2が互いに等しければ、プリセット荷重を与えたときの振動吸収エネルギーとプリセット荷重を与えないときの振動吸収エネルギーとが互いに等しくなる。よって、プリセット荷重を与えたときの第3弾性体7の見かけ上のばね定数が、プリセット荷重を与えないときのばね定数kと等価となり、第1周波数fsで加振された振動を減衰することができる。
図10Bは、エンジン回転数が第2回転数α・Nsであるときの捩れ角振幅1/α・θddにおける特性f31の下側部分の面積S3と特性f52の下側部分の面積S4とを示す。両面積S3,S4が互いに等しければ、プリセット荷重を与えたときの振動吸収エネルギーとプリセット荷重を与えないときの振動吸収エネルギーとが互いに等しくなる。よって、プリセット荷重を与えたときの第3弾性体7の見かけ上のばね定数が、プリセット荷重を与えないときのばね定数α・kと等価となり、第2周波数α・fsで加振された振動を減衰することができる。
上述したように、第1周波数fsで加振された振動を減衰するためには、エンジン回転数が第1回転数Nsであるときのプリセット荷重を与えた場合の振動吸収エネルギーとプリセット荷重を与えない場合の振動吸収エネルギーとが互いに等しければよい。すなわち、図10A面積S1,S2が互いに等しければよく、そのためには次式(VIII)を満たせばよい。
1/2・k・θdd=1/2・(2・T0+k0・θdd)・θdd (VIII)
一方、第2周波数α・fsで加振された振動を減衰するためには、エンジン回転数が第2回転数α・Nsであるときのプリセット荷重を与えた場合の振動吸収エネルギーとプリセット荷重を与えない場合の振動吸収エネルギーとが互いに等しければよい。すなわち、図10Bの面積S3,S4が互いに等しければよく、そのためには次式(IX)を満たせばよい。
1/2α・k・θdd
=1/2・(2・T0+k0・θdd/α)・θdd/α (IX)
上式(VIII)を整理すると次式(X)となり、上式(IX)を整理すると次式(XI)となる。
T0=−1/2・θdd・k0+1/2・k・θdd (X)
T0=−1/2α・θdd・k0+1/2・k・θdd (XI)
図11の特性f61,f62は、それぞれ第3弾性体7のばね定数k0を横軸、第3弾性体7に与えるプリセット荷重T0を縦軸としたときの上式(X),(XI)の特性である。エンジン回転数が第1回転数Nsと第2回転数α・Nsとの間で制振性能を向上させるためには、T0>0で、かつ、図11の特性f61と特性f62との間の範囲A2内の点(例えばB点)に、ばね定数k0とプリセット荷重T0とを設定すればよい。すなわち、ばね定数k0に対するプリセット荷重T0の比率T0/k0が次式 (XII)の関係を満たすようにすればよい。
θdd/2α<T0/k0<θdd/2 ・・・(XII)
上式(XII)のαの値を大きくすればするほど、制振性能を向上しうるエンジン回転数の範囲が拡大する。係数αの値が大きくなれば、上式(XII)の左辺は0に近づく。したがって、上式(XII)は次式(XIII)のように変形することもできる。
0<T0/k0<θdd/2 ・・・(XIII)
図12(特性f71)は、図11のB点にプリセット荷重T0とばね定数k0とを設定した場合の振動減衰効果を示す図である。なお、図中の特性f72(点線)は、プリセット荷重を与えない場合の特性である。プリセット荷重T0とばね定数k0との比率T0/k0が所定の関係を満たすようにダイナミックダンパを設定することで、特性f71に示すように、エンジン回転数の広い範囲にわたって制振性能を高めることができる。
次に、本発明の実施形態に係るトルク伝達装置100の具体的な構成について説明する。図13は、図1のトルク伝達装置100の拡大図であり、図14は、トルク伝達装置100の分解斜視図である。図13に示すように、クラッチピストン21の第1板部211と第2板部212との交差部には、周方向にわたってばね収容部25が形成され、ばね収容部25に周方向複数の第1弾性体4が収容される。第1弾性体4はコイルばねにより構成される。
クラッチピストン21には、周方向複数のばね支持部26が所定ピッチで、すなわち所定角度毎に設けられる。ばね支持部26は、クラッチピストン21の後面からばね収容部25にかけて突設され、ばね支持部26により第1弾性体4の端部が支持される。クラッチピストン21の後面には、第1板部211と第2板部212との交差部に対向して第1弾性体4の周囲を覆うようにカバー27が取り付けられる。カバー27は、第1弾性体4の周面形状に対応して湾曲状に形成される。
クラッチピストン21の後方には、中間部材3を構成する一対の板部材(前板30、後板40)と、慣性体6を構成する接続板50と、第2回転体2を構成する出力板60とが配置される。前板30と後板40とは径方向に互いに平行に、かつ、前後方向に離れて延在し、前板30と後板40との間に接続板50と出力板60とが挟持される。出力板60は接続板50の径方向内側に配置され、タービンハブ19のフランジ部19aの前端面に締結部材19bにより固定される。
図13,14に示すように、前板30および後板40はそれぞれ略リング状を呈し、軸線CL0を中心とした円形の内周面31,41と外周面32,42とをそれぞれ有する。前板30の外周面32には、前方に向けて周方向複数(図では6個)のばね支持部33が所定角度(60°)毎に突設され、ばね支持部33により第1弾性体4の端部が支持される。これにより、第1弾性体4の両端部がクラッチピストン21のばね支持部26と前板30のばね支持部33との間で挟持され、クラッチピストン21のトルクが第1弾性体4を介して前板30に伝達される。
前板30および後板40には、その外径側に周方向複数(図では6個)のピン孔34,44が所定角度(60°)毎に穿設されるとともに、その内径側にも周方向複数(図では6個)のピン孔35,45が所定角度(60°)毎に穿設される。ピン孔34とピン孔44との間には所定長さの円筒状のカラー81が介装され、ピン孔35とピン孔45との間には所定長さの円筒状のカラー82が介装される。前板30と後板40とは、ピン孔34、カラー81、ピン孔44を挿通したピン83と、ピン孔35、カラー82、ピン孔45を挿通したピン84とにより、前後方向にカラー81,82の長さ分だけ互いに離間した状態で一体に固定される。
前板30および後板40には、第2弾性体5を収容するための周方向複数(図では6個)のばね収容部36,46が所定角度(60°)毎に形成されるとともに、第3弾性体7を収容するための周方向複数(図では6個)のばね収容部37,47が所定角度(60°)毎に形成される。第2弾性体5および第3弾性体7は、第1弾性体4と同様、それぞれコイルばねにより構成される。例えば、第2弾性体5は第3弾性体7よりも大径かつ長尺のコイルばねにより構成され、第1弾性体4は第2弾性体5よりも大径かつ長尺のコイルばねにより構成される。なお、各弾性体4,5,7の寸法はこれに限らない。
前板30のばね収容部36,37はプレス加工により形成され、周方向所定長さかつ径方向所定長さにわたって穿設された開口部36a,37aと、開口部36a,37aの径方向内側周縁および径方向外側周縁から前方に向けて折り曲げた一対のカバー部36b,37bとを有する。後板40のばね収容部46,47も同様にプレス加工により形成され、開口部46a,47aと、開口部46a,47aの周縁から後方に向けて折り曲げた一対のカバー部46b,47bとを有する。
カバー部36b,46bは、第2弾性体5の周面形状に対応して湾曲状に突設され、カバー部37b,47bは第3弾性体7の周面形状に対応して湾曲状に突設される。なお、ばね収容部36,37,46,47は、周方向ではなく軸線CL0を中心とした円の接線方向に形成してもよい。
出力板60は、略リング状を呈し、軸線CL0を中心とした内周面61と外周面62とを有する。内周面61は、前板30および後板40の内周面31,41よりも径方向内側に位置し、タービンハブ19のフランジ部19aの前側の円筒面19cに嵌合する。これにより、出力板60はタービンハブ19に位置決めされた状態で、周方向複数の貫通孔63を通過した締結部材19bによりフランジ部19aに固定される。出力板60には、前板30および後板40のばね収容部36,46と径方向の同一位置に、周方向所定長さを有する周方向複数(6個)の第1スロット孔64が所定角度(60°)毎に形成される。さらに、前板30および後板40のピン孔35,45と径方向同一位置に、周方向所定長さを有する周方向複数(6個)の第2スロット孔65が所定角度(60°)毎に形成される。
第1スロット孔64は、周方向ではなく軸線CL0を中心とした円の接線方向に形成してもよい。第1スロット孔64の周方向または接線方向長さは、前板30および後板40のばね収容部36,46の周方向または接線方向長さとほぼ等しく、第1スロット孔64の径方向長さ(幅)は第2弾性体5の外径とほぼ等しい。これにより、第2弾性体5は第1スロット孔64を貫通してばね収容部36,46に配置され、第2弾性体5の両端部がばね収容部36,46と第1スロット孔64との間で挟持される。
一方、第2スロット孔65の径方向長さ(幅)はカラー82の外径とほぼ等しい。このため、カラー82は第2スロット孔65に沿って周方向に移動可能であり、出力板60が前板30および後板40に対し軸線CL0を中心に相対移動可能となる。これにより、前板30および後板40に入力されたトルクが第2弾性体5を介して出力板60に伝達される。
接続板50は略リング状を呈し、軸線CL0を中心とした内周面51と外周面52とを有する。外周面52は、前板30および後板40の外周面32,42よりも径方向外側に位置する。接続板50の板厚(前後方向長さ)は出力板60の板厚と同一である。接続板50の内周面51の径は出力板60の外周面の径とほぼ等しく、接続板50は出力板60の外周面62に嵌合して支持される。接続板50の内周面51には、周方向複数(図では6個)の第1切り欠き孔53と周方向複数(図では6個)の第2切り欠き孔54とが、それぞれ所定角度(60°)毎に、かつ互いに半ピッチ(30°)だけ位相をずらして交互に設けられる。
第1切り欠き孔53と第2切り欠き孔54とは、それぞれ内周面51から径方向外側に向けて平面視コ字状に形成される。第1切り欠き孔53の周方向または接線方向長さは、前板30および後板40のばね収容部37,47の周方向または接線方向長さとほぼ等しい。この長さは、第3弾性体7の自然長よりも所定量だけ短い。第1切り欠き孔53の径方向長さは第3弾性体7の外径とほぼ等しい。これにより、第3弾性体7は、自然長から所定量だけ縮退された状態で第1切り欠き孔53を貫通してばね収容部37,47に配置され、第3弾性体7の両端部がばね収容部37,47と第1切り欠き孔53との間で挟持される。
このように本実施形態では、第3弾性体7がばね収容部37,47と第1切り欠き孔53とで支持され、これらが図2のばね支持部8を構成する。そして、エンジン回転前の初期状態において、第3弾性体7を自然長から所定量縮退した状態で設定することで、第3弾性体7に所定のプリセット荷重T0が加えられる。
一方、第2切り欠き孔54は、径方向および周方向に所定長さにわたって設けられ、第2切り欠き孔54にはカラー81が挿通される。カラー81は第2切り欠き孔54に沿って周方向に移動可能であり、接続板50は前板30および後板40に対し軸線CL0を中心に相対移動可能である。これにより、前板30および後板40に入力された捩り振動がダイナミックダンパとしての第3弾性体7および接続板50に作用する。接続板50の後面には、その外径側端部にリング状の質量体55がピン56により取り付けられる。
以上のトルク伝達装置100においては、ロックアップクラッチ20の作動時に、クラッチピストン21にエンジンからのトルクが入力されると、そのトルクは第1弾性体4を介して前板30および後板40に伝達され、さらに第2弾性体5を介して出力板60およびタービンハブ19に伝達される。これによりエンジンからの捩り振動を、第1弾性体4と第2弾性体5とにより減衰して変速機の入力軸に伝達することができる。
このとき、エンジンからの捩り振動は、前板30と後板40とに接続された第3弾性体7を介して接続板50と質量体55にも作用する。したがって、ダイナミックダンパによっても振動を減衰することができ、振動減衰効果を高めることができる。この場合、第3弾性体7に所定のプリセット荷重T0を与えているので、ダイナミックダンパの振動減衰効果が得られるエンジン回転数の範囲が拡大し、制振性能を高めることができる。
本発明の実施形態によれば以下のような作用効果を奏することができる。
(1)軸線CL0を中心に回転する第1回転体1からのトルクを第2回転体2に伝達するトルク伝達装置100は、第1回転体1と前記第2回転体2との間の動力伝達経路PAに配設された中間部材3と、第1回転体1と中間部材3との間および中間部材3と第2回転体2との間にそれぞれ介装された第1弾性体4および第2弾性体5と、第3弾性体7を介して中間部材3に接続された慣性体6と、第3弾性体7を伸縮可能に支持するばね支持部8とを備える(図2)。そして、ばね支持部8は、第1回転体1と第2回転体2とが回転を停止している初期状態に、第3弾性体7に初期荷重T0を与えた状態で第3弾性体7を支持する(図2)。
これにより、第3弾性体7の見かけのばね定数が可変となるため、ダンパ周波数fddがエンジン回転数Nに応じて変化し、エンジン回転数の広い範囲にわたり、ダンパ周波数fddを加振周波数に近づけることができる(図7)。その結果、広範囲の加振周波数に対しダイナミックダンパにより良好な振動減衰効果を発揮することができる。
(2)第1周波数fsおよび第1周波数fsに1より大きい所定係数αを乗じた第2周波数α・fsを、それぞれ振動減衰領域の下限周波数および上限周波数として設定するとき、ばね支持部8は、第3弾性体7のばね定数k0に対する第3弾性体7に与える初期荷重T0の比率T0/k0が、中間部材3に対する慣性体6の捩り角度θの最大振幅θddの1/2倍を所定係数αの二乗で除算した値より大きく、かつ、中間部材3に対する慣性体6の捩り角度の最大振幅(捩れ角振幅)θddの1/2倍よりも小さい値となるように(式(XII))、初期荷重T0を与えて第3弾性体7を支持する。このようにばね定数k0に対する初期荷重T0の比率T0/k0を所定範囲に設定することで、第1周波数fsから第2周波数α・fsにかけての加振周波数に対し、ダイナミックダンパにより良好な振動減衰効果を発揮することができる。
(3)ばね支持部8は、第3弾性体7のばね定数k0に対する第3弾性体7に与える初期荷重T0の比率T0/k0が、0より大きく、かつ、中間部材3に対する慣性体6の捩り角度の最大振幅(捩れ角振幅)θddの1/2倍よりも小さい値となるように(式(XIII))、初期荷重T0を与えて第3弾性体7を支持する。これにより、より広範囲の加振周波数に対し、ダイナミックダンパにより良好な振動減衰効果を発揮することができる。
(4)中間部材3は、径方向に互いに平行に延在するとともに、互いに一体に連結された一対の板部材(前板30、後板40)を有し、第3弾性体7および接続板50は、一対の板部材30,40の間に配置される(図4)。このように第1弾性体4と第2弾性体5との間に設けられる中間部材3を一対の板部材30,40により構成することで、中間部材3の設置スペースを抑えつつ、第3弾性体7と慣性体6の一部である接続板50を中間部材3から軸方向に突出させずに配置することができる。
(5)トルク伝達装置100は、エンジンの回転をトルクコンバータ10のロックアップクラッチ20を介して変速機に伝達するように、ロックアップクラッチ20を構成するクラッチピストン21とトルクコンバータ10を構成するタービンランナ12のシェル12aとの間に配置され、第1回転体1は、クラッチピストン21により構成され、第2回転体2は、変速機の入力軸と一体に回転する出力板60により構成される(図1,図13)。これにより、ロックアップクラッチの作動時に、エンジン回転振動に起因した広範囲の加振周波数の振動を良好に低減することができる。
なお、上記実施形態では、接続板50の第1切り欠き孔53を貫通して第3弾性体7を前板30および後板40のばね収容部37,47に所定の初期荷重T0を与えて配置し、第3弾性体7を介して前板30および後板40に接続板50を接続するようにした。すなわち、第1切り欠き孔53とばね収容部37,47とをばね支持部8として用いたが、第3弾性体を伸縮可能に支持する弾性体支持手段の構成は上述したものに限らない。上記実施形態では、第3弾性体7のばね定数k0に対する第3弾性体7に与える初期荷重T0の比率が、式(XII)あるいは式(XIII)を満たすように、ばね支持部8が初期荷重T0を与えて第3弾性体7を支持したが、第1回転体と第2回転体とが回転を停止している初期状態に、第3弾性体に初期荷重を与えた状態で第3弾性体を支持するのであれば、弾性体支持手段の構成はいかなるものでもよい。なお、初期状態では、第1回転体と第2回転体とにトルクが作用せず、第3弾性体は中立状態にある。
上記実施形態では、軸線CL0に対して垂直に延在する一対の板部材(前板30、後板40)により中間部材3を構成したが、中間部材の構成はこれに限らない。上記実施形態では、接続板50と質量体55とにより慣性体6を構成したが、質量体を省略し、接続板50のみで慣性体を構成するようにしてもよい。すなわち、慣性体6の少なくとも一部が一対の板部材の間に配置されるようにしてもよい。同様に、第3弾性体の少なくとも一部が一対の板部材の間に配置されるようにしてもよい。上記実施形態では、第1弾性体4と第2弾性体5と第3弾性体7とをいずれもコイルばねにより構成したが、これらの少なくとも1つを他の弾性体により構成してもよい。上記実施形態では、第3弾性体7をコイルばねにより構成し、第1回転体1と第2回転体2とが回転を停止した初期状態において、第3弾性体7を自然長から所定量縮退した状態でばね支持部8により支持するようにしたが、例えば第3弾性体をコイルばね以外の弾性体によって構成する場合、初期状態で弾性体を縮退させずに弾性体に初期荷重を与えてもよい。
上記実施形態では、エンジンの回転をトルクコンバータ10のロックアップクラッチ20を介して変速機に伝達するように、トルクコンバータ10のロックアップクラッチ20にトルク伝達装置100を適用した。すなわち、ロックアップクラッチの作動時のクラッチピストン21から変速機の入力軸に至る動力伝達経路にトルク伝達装置100を適用したが、第1回転体からのトルクを第2回転体に伝達する他の箇所にも、トルク伝達装置を同様に適用することができる。したがって、第1回転体を、クラッチピストン以外の回転体により構成してもよく、第2回転体を、変速機の入力軸と一体に回転する出力板以外の回転体により構成してもよい。例えば第1回転体をクラッチピストンと一体に回転する回転体により構成してもよく、第2回転体をタービンハブや変速機の入力軸により構成してもよい。すなわち、第1回転体と第2回転体の構成は上述したものに限らない。また、クラッチピストンとタービンランナのシェルとの間ではなく、他の位置にトルク伝達装置を配置することもできる。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。変形例同士を組み合わせることもできる。
1 第1回転体、2 第2回転体、3 中間部材、4 第1弾性体、5 第2弾性体、6 慣性体、7 第3弾性体、8 ばね支持部、30 前板、40 後板、100 トルク伝達装置

Claims (4)

  1. 軸線を中心に回転する第1回転体からのトルクを第2回転体に伝達するトルク伝達装置であって、
    前記第1回転体と前記第2回転体との間の動力伝達経路に配設された中間部材と、
    前記第1回転体と前記中間部材との間および前記中間部材と前記第2回転体との間にそれぞれ介装された第1弾性体および第2弾性体と、
    第3弾性体を介して前記中間部材に接続された慣性体と、
    前記第3弾性体を伸縮可能に支持する弾性体支持手段と、を備え、
    前記弾性体支持手段は、前記第1回転体と前記第2回転体とが回転を停止している初期状態に、前記第3弾性体に初期荷重を与えた状態で前記第3弾性体を支持し、
    第1の加振周波数および前記第1の加振周波数に1より大きい所定係数を乗じた第2の加振周波数を、それぞれ振動減衰領域の下限周波数および上限周波数として設定するとき、
    前記弾性体支持手段は、前記第3弾性体のばね定数に対する前記第3弾性体に与える初期荷重の比率が、前記中間部材に対する前記慣性体の捩り角度の最大振幅の1/2倍を前記所定係数の二乗で除算した値より大きく、かつ、前記中間部材に対する前記慣性体の捩り角度の最大振幅の1/2倍よりも小さい値となるように、前記初期荷重を与えて前記第3弾性体を支持することを特徴とするトルク伝達装置。
  2. 軸線を中心に回転する第1回転体からのトルクを第2回転体に伝達するトルク伝達装置であって、
    前記第1回転体と前記第2回転体との間の動力伝達経路に配設された中間部材と、
    前記第1回転体と前記中間部材との間および前記中間部材と前記第2回転体との間にそれぞれ介装された第1弾性体および第2弾性体と、
    第3弾性体を介して前記中間部材に接続された慣性体と、
    前記第3弾性体を伸縮可能に支持する弾性体支持手段と、を備え、
    前記弾性体支持手段は、前記第1回転体と前記第2回転体とが回転を停止している初期状態に、前記第3弾性体に初期荷重を与えた状態で前記第3弾性体を支持し、
    前記弾性体支持手段は、前記第3弾性体のばね定数に対する前記第3弾性体に与える初期荷重の比率が、0より大きく、かつ、前記中間部材に対する前記慣性体の捩り角度の最大振幅の1/2倍よりも小さい値となるように、前記初期荷重を与えて前記第3弾性体を支持することを特徴とするトルク伝達装置。
  3. 請求項1または2に記載のトルク伝達装置において、
    前記中間部材は、径方向に互いに平行に延在するとともに、互いに一体に連結された一対の板部材を有し、
    前記第3弾性体および前記慣性体のそれぞれの少なくとも一部は、前記一対の板部材の間に配置されることを特徴とするトルク伝達装置。
  4. 請求項1〜3のいずれか1項に記載のトルク伝達装置において、
    前記トルク伝達装置は、エンジンの回転をトルクコンバータのロックアップクラッチを介して変速機に伝達するように、前記ロックアップクラッチを構成するクラッチピストンと前記トルクコンバータを構成するタービンランナのシェルとの間に配置され、
    前記第1回転体は、前記クラッチピストンまたは前記クラッチピストンと一体に回転する回転体であり、前記第2回転体は、前記変速機の入力軸または前記入力軸と一体に回転する回転体であることを特徴とするトルク伝達装置。
JP2016039247A 2016-03-01 2016-03-01 トルク伝達装置 Expired - Fee Related JP6505035B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016039247A JP6505035B2 (ja) 2016-03-01 2016-03-01 トルク伝達装置
CN201710085919.9A CN107143635B (zh) 2016-03-01 2017-02-17 扭矩传递装置
US15/436,654 US10253842B2 (en) 2016-03-01 2017-02-17 Torque transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039247A JP6505035B2 (ja) 2016-03-01 2016-03-01 トルク伝達装置

Publications (2)

Publication Number Publication Date
JP2017155831A JP2017155831A (ja) 2017-09-07
JP6505035B2 true JP6505035B2 (ja) 2019-04-24

Family

ID=59723458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039247A Expired - Fee Related JP6505035B2 (ja) 2016-03-01 2016-03-01 トルク伝達装置

Country Status (3)

Country Link
US (1) US10253842B2 (ja)
JP (1) JP6505035B2 (ja)
CN (1) CN107143635B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200056839A (ko) * 2018-11-15 2020-05-25 현대자동차주식회사 모터 장착 엔진의 댐퍼
US20200386274A1 (en) * 2019-06-07 2020-12-10 Honda Motor Co., Ltd. Torque damper apparatus
JP7215983B2 (ja) * 2019-09-25 2023-01-31 株式会社ユタカ技研 動力伝達装置
US11767899B2 (en) 2019-06-12 2023-09-26 Yutaka Giken Co., Ltd. Power transmission device
JP2020200908A (ja) * 2019-06-12 2020-12-17 株式会社ユタカ技研 動力伝達装置
JP7194206B2 (ja) * 2021-02-08 2022-12-21 株式会社ユタカ技研 ダンパ機能付き伝動装置
US11703103B2 (en) * 2021-09-02 2023-07-18 Schaeffler Technologies AG & Co. KG Torque converter damper assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3333700B2 (ja) * 1996-11-25 2002-10-15 本田技研工業株式会社 分割型フライホイール
JP5051447B2 (ja) * 2007-11-01 2012-10-17 本田技研工業株式会社 流体伝動装置
JP5675363B2 (ja) * 2007-11-29 2015-02-25 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフトSchaeffler Technologies AG & Co. KG 特に駆動機械と被駆動部との間の出力伝達のための動力伝達装置
JP2009250288A (ja) * 2008-04-02 2009-10-29 Exedy Corp ロックアップ装置
JP4648428B2 (ja) * 2008-06-03 2011-03-09 株式会社エクセディ 流体式動力伝達装置
US8573374B2 (en) * 2008-07-04 2013-11-05 Schaeffler Technologies AG & Co. KG Hydrodynamic torque converter
JP5538408B2 (ja) * 2008-10-16 2014-07-02 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学的なトルクコンバータ
US8939860B2 (en) * 2010-05-25 2015-01-27 Zf Friedrichshafen Ag Hydrodynamic coupling device, in particular a torque converter
JP5639204B2 (ja) * 2013-02-06 2014-12-10 株式会社エクセディ トルクコンバータのロックアップ装置
JP6010476B2 (ja) * 2013-02-07 2016-10-19 株式会社エクセディ ダイナミックダンパ装置
JP5734365B2 (ja) * 2013-06-04 2015-06-17 株式会社エクセディ トルクコンバータのロックアップ装置
JP6197738B2 (ja) * 2014-04-30 2017-09-20 アイシン・エィ・ダブリュ株式会社 発進装置
JP5852701B2 (ja) * 2014-05-07 2016-02-03 株式会社エクセディ 流体式動力伝達装置
JP6334284B2 (ja) * 2014-06-16 2018-05-30 株式会社エクセディ 動力伝達装置及びトルクコンバータのロックアップ装置
JP6082771B2 (ja) * 2015-05-21 2017-02-15 本田技研工業株式会社 流体伝動装置

Also Published As

Publication number Publication date
US20170254386A1 (en) 2017-09-07
CN107143635A (zh) 2017-09-08
CN107143635B (zh) 2019-06-28
JP2017155831A (ja) 2017-09-07
US10253842B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
JP6505035B2 (ja) トルク伝達装置
JP5880696B2 (ja) 発進装置
JP5051447B2 (ja) 流体伝動装置
JP5752153B2 (ja) ダンパユニットおよびこのようなダンパユニットを備えた力伝達装置
JP5418519B2 (ja) ダンパ装置
JP5573750B2 (ja) ダンパ装置
JP6090466B2 (ja) ダンパ装置および発進装置
WO2012043302A1 (ja) 流体伝動装置
JP2012077827A (ja) 流体伝動装置
CA2997447C (en) Torsional vibration damping device
JP2012077823A (ja) 流体伝動装置
JP5585360B2 (ja) 流体伝動装置
JP2017026139A (ja) 振動減衰装置
JP2014512498A (ja) ハイドロダイナミックカップリング装置、特にハイドロダイナミックトルクコンバータ
JP5387562B2 (ja) 遠心振子式吸振装置
JP6399094B2 (ja) ダンパ装置
JP6409874B2 (ja) 発進装置
WO2017014184A1 (ja) 振動減衰装置
JP6344326B2 (ja) 流体伝動装置
JP6241393B2 (ja) ダンパ装置
JP6287763B2 (ja) 発進装置
KR101668260B1 (ko) 편심 회전 형 진자를 이용한 차량용 토크 컨버터의 진동 저감 장치
EP3372866A1 (en) Torsional vibration damping device featuring a planetary gear set
JP2014228007A (ja) 動力伝達装置
JPH0637644U (ja) 捩じり振動減衰装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6505035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees