[go: up one dir, main page]

JP5949196B2 - 樹脂組成物及びその成形品 - Google Patents

樹脂組成物及びその成形品 Download PDF

Info

Publication number
JP5949196B2
JP5949196B2 JP2012133595A JP2012133595A JP5949196B2 JP 5949196 B2 JP5949196 B2 JP 5949196B2 JP 2012133595 A JP2012133595 A JP 2012133595A JP 2012133595 A JP2012133595 A JP 2012133595A JP 5949196 B2 JP5949196 B2 JP 5949196B2
Authority
JP
Japan
Prior art keywords
group
ring
cyclic olefin
opening polymer
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012133595A
Other languages
English (en)
Other versions
JP2013256596A (ja
Inventor
慎介 宮澤
慎介 宮澤
進太郎 池田
進太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2012133595A priority Critical patent/JP5949196B2/ja
Publication of JP2013256596A publication Critical patent/JP2013256596A/ja
Application granted granted Critical
Publication of JP5949196B2 publication Critical patent/JP5949196B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、高周波に対して高誘電率、低誘電正接の樹脂組成物、及びそれを成形した高周波用誘電体アンテナに関する。
衛星放送、衛星通信、ハイビジョン・テレビ放送、携帯電話などの普及により、電波による高密度の情報の送受信が広く行われるようになり、使用周波数の高周波数化が進んでいる。さらに、ナビゲーション・システムのグローバル・ポジショニング・システムなどの移動体通信機での運搬効率の改善を始めとして、空間効率の改善などのために電波の受発信用アンテナと回路基板の小型化が進められている。
高誘電率及び低誘電正接の特性を持つ材料が、高周波用のアンテナを小型にするため用いられる。誘電率が高くなるほどアンテナが受発信できる電波の周波数は大きくなり、アンテナ基板を小さくしても高周波の受信が可能になる。更に、誘電正接が小さいほど、信号の伝送損失が小さくなるため、ノイズが減少する。
特許文献1には、熱可塑性樹脂として、熱可塑性ノルボルネン系樹脂にチタン酸バリウムなどの高誘電体を配合した樹脂組成物を射出成形することで容易に高誘電率かつ低誘電正接なアンテナ基板を与えることが開示されている。しかしながら、この樹脂組成物は射出可能であるが、射出成形機内に汚れを発生させ易く、結果的に射出成形の繰り返しにより成形品に焼けなどが混入して不良品を発生させるなど、その成形性は十分ではなかった。
特開平9−147626号公報
本発明の目的は、容易に成形でき、かつ優れた成形性を示す、高誘電率、低誘電正接材料の提供である。
本発明者らは、鋭意研究の結果、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物、ガラスフィラー及び常誘電体セラミックスを含有する樹脂組成物を、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーと常誘電体セラミックスを所定量配合した樹脂組成物が、高い成形性を示し、高周波用小型アンテナ基板用材料などに好適であること、さらにアンテナ製造のリフロー工程などの高温状態にも耐えることを見いだし、本発明を完成するに至った。
かくして本発明によれば、(A)多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物と(B)ガラスフィラーとを含んでなる樹脂組成物であって、当該結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとの重量比が95/5〜40/60であることを特徴とする樹脂組成物が提供される。
前記樹脂組成物は、さらに前記結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとの合計量100重量部に対し、常誘電体セラミックスを5〜100重量部含有するのが好ましい。
前記常誘電体セラミックスはチタン酸金属塩であるのが好ましい。
本発明の樹脂組成物は、アンテナ基板の材料として好適である。
本発明の樹脂組成物は、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとを含んでなる組成物である。この樹脂組成物を構成するために用いられる多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物は、多環式ノルボルネン系単量体を少なくとも単量体の一部として用いて開環重合を行い、それにより得られる開環重合体の主鎖二重結合を水素化することにより得られるものであって、かつ、結晶性を有するものである。
多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物を得る方法は、特に限定されるものではないが、例えば特開2006−52333号公報に記載されるような方法により、多環式ノルボルネン系単量体を少なくとも単量体の一部として用いて開環重合を行い、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得て、それを水素化する方法が好適である。
多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物を得るために用いられる環状オレフィン開環重合体は、3環以上の環を有する多環式ノルボルネン系単量体を少なくとも単量体の一部として用いて得ることができる。多環式ノルボルネン系単量体は、分子内に、ノルボルネン骨格と、そのノルボルネン骨格に縮合した1つ以上の環構造を有するノルボルネン系化合物であればよい。得られる樹脂組成物の耐熱性を特に良好なものとする観点からは、多環式ノルボルネン系単量体として、下記の式(1)又は式(2)で表される化合物を用いることが特に好ましい。
Figure 0005949196
(式中、R及びRはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、互いに結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数1〜20の二価の炭化水素基である。)
Figure 0005949196
(式中、R〜Rはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、RとRは互いに結合して環を形成していてもよい。mは1又は2である。)
式(1)で表される多環式ノルボルネン系単量体の具体例としては、ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ−8−エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン(1,4−メタノ−1,4,4a,9a−テトラヒドロ−9H−フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ−4,6,8,13−テトラエン(1,4−メタノ−1,4,4a,9,9a,10−ヘキサヒドロアントラセンともいう)を挙げることができる。
また、式(2)で表される多環式ノルボルネン系単量体としては、式(2)のmが1である場合のテトラシクロドデセン類と、式(2)のmが2である場合のヘキサシクロヘプタデセン類を挙げることができる。テトラシクロドデセン類の具体例としては、テトラシクロドデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、8−シクロヘキシルテトラシクロドデセン、8−シクロペンチルテトラシクロドデセンなどの無置換又はアルキル基を有するテトラシクロドデセン類;8−メチリデンテトラシクロドデセン、8−エチリデンテトラシクロドデセン、8−ビニルテトラシクロドデセン、8−プロペニルテトラシクロドデセン、8−シクロヘキセニルテトラシクロドデセン、8−シクロペンテニルテトラシクロドデセンなどの環外に二重結合を有するテトラシクロドデセン類;8−フェニルテトラシクロドデセンなどの芳香環を有するテトラシクロドデセン類;8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−メトキシカルボニルテトラシクロドデセン、8−ヒドロキシメチルテトラシクロドデセン、8−カルボキシテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸、テトラシクロドデセン−8,9−ジカルボン酸無水物などの酸素原子を含む置換基を有するテトラシクロドデセン類;8−シアノテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸イミドなどの窒素原子を含む置換基を有するテトラシクロドデセン類;8−クロロテトラシクロドデセンなどのハロゲン原子を含む置換基を有するテトラシクロドデセン類;8−トリメトキシシリルテトラシクロドデセンなどのケイ素原子を含む置換基を有するテトラシクロドデセン類を挙げることができる。
ヘキサシクロヘプタデセン類の具体例としては、ヘキサシクロヘプタデセン、12−メチルヘキサシクロヘプタデセン、12−エチルヘキサシクロヘプタデセン、12−シクロヘキシルヘキサシクロヘプタデセン、12−シクロペンチルヘキサシクロヘプタデセンなどの無置換又はアルキル基を有するヘキサシクロヘプタデセン類;12−メチリデンヘキサシクロヘプタデセン、12−エチリデンヘキサシクロヘプタデセン、12−ビニルヘキサシクロヘプタデセン、12−プロペニルヘキサシクロヘプタデセン、12−シクロヘキセニルヘキサシクロヘプタデセン、12−シクロペンテニルヘキサシクロヘプタデセンなどの環外に二重結合を有するヘキサシクロヘプタデセン類;12−フェニルヘキサシクロヘプタデセンなどの芳香環を有するヘキサシクロヘプタデセン類;12−メトキシカルボニルヘキサシクロヘプタデセン、12−メチル−12−メトキシカルボニルヘキサシクロヘプタデセン、12−ヒドロキシメチルヘキサシクロヘプタデセン、12−カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸、ヘキサシクロヘプタデセン12,13−ジカルボン酸無水物などの酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸イミドなどの窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−クロロヘキサシクロヘプタデセンなどのハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;12−トリメトキシシリルヘキサシクロヘプタデセンなどのケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類を挙げることができる。
多環式ノルボルネン系単量体を用いて環状オレフィン開環重合体を得るにあたり、1種の多環式ノルボルネン系単量体を単独で用いてもよいし、2種以上の多環式ノルボルネン系単量体を組み合わせて用いることもできる。
環状オレフィン開環重合体水素添加物の結晶性を高め、得られる成形体の耐熱性を特に良好なものとする観点からは、水素化反応に供する環状オレフィン開環重合体を得るための多環式ノルボルネン系単量体として、用いる多環式ノルボルネン系単量体全体に対して50重量%以上のジシクロペンタジエンを含むものを用いることが好ましく、ジシクロペンタジエンを単独で用いることが特に好ましい。
また、多環式ノルボルネン系単量体には、エンド体及びエキソ体の立体異性体が存在するが、そのどちらも単量体として用いることが可能であり、一方の異性体を単独で用いてもよいし、エンド体及びエキソ体が任意の割合で存在する異性体混合物を用いることもできる。但し、環状オレフィン開環重合体水素添加物の結晶性を高め、得られる樹脂組成物の耐熱性を特に良好なものとする観点からは、一方の立体異性体の割合を高くすることが好ましく、例えば、エンド体又はエキソ体の割合が、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが特に好ましい。なお、割合を高くする立体異性体は、合成容易性の観点から、エンド体であることが好ましい。
環状オレフィン開環重合体を得るにあたっては、結晶性を有する重合体を与える範囲において、多環式ノルボルネン系単量体に、多環式ノルボルネン系単量体以外の単量体を共重合させてもよい。多環式ノルボルネン系単量体と共重合できる単量体としては、ノルボルネン骨格に縮合した環構造を有しない2環のノルボルネン系化合物、モノ環状オレフィン、及び環状ジエン、ならびにこれらの誘導体を挙げることができる。
ノルボルネン骨格に縮合した環構造を有しない2環のノルボルネン系化合物の具体例としては、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−ヘキシルノルボルネン、5−デシルノルボルネン、5−シクロヘキシルノルボルネン、5−シクロペンチルノルボルネンなどの無置換又はアルキル基を有するノルボルネン類;5−エチリデンノルボルネン、5−ビニルノルボルネン、5−プロペニルノルボルネン、5−シクロヘキセニルノルボルネン、5−シクロペンテニルノルボルネンなどのアルケニル基を有するノルボルネン類;5−フェニルノルボルネンなどの芳香環を有するノルボルネン類;5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−メチル−5−エトキシカルボニルノルボルネン、ノルボルネニル−2−メチルプロピオネイト、ノルボルネニル−2−メチルオクタネイト、5−ヒドロキシメチルノルボルネン、5,6−ジ(ヒドロキシメチル)ノルボルネン、5,5−ジ(ヒドロキシメチル)ノルボルネン、5−ヒドロキシ−i−プロピルノルボルネン、5,6−ジカルボキシノルボルネン、5−メトキシカルボニル−6−カルボキシノルボルネン、などの酸素原子を含む極性基を有するノルボルネン類;5−シアノノルボルネンなどの窒素原子を含む極性基を有するノルボルネン類;を挙げることができる。
モノ環状オレフィンの具体例としては、シクロヘキセン、シクロヘプテン、シクロオクテンを挙げることができる。また、環状ジエンの具体例としては、シクロヘキサジエン、シクロヘプタジエンを挙げることができる。
環状オレフィン開環重合体水素添加物の結晶性を高め、得られる成形体の耐熱性を特に良好なものとする観点からは、水素化反応に供する環状オレフィン開環重合体を得るための単量体として、用いる単量体全体に対して80重量%以上の多環式ノルボルネン系単量体を含むことが好ましく、用いる単量体が実質的に多環式ノルボルネン系単量体のみで構成されることが特に好ましい。
シンジオタクチック立体規則性を有する環状オレフィン開環重合体水素添加物を得る場合は、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を水素化反応に供する必要がある。したがって、多環式ノルボルネン系単量体を開環重合するにあたっては、環状オレフィン開環重合体にシンジオタクチック立体規則性を与えることができる開環重合触媒を用いる必要がある。用いる開環重合触媒は、環状オレフィン開環重合体にシンジオタクチック立体規則性を与えることができるものであれば特に限定されないが、下記の式(3)で表される金属化合物を含んでなる開環重合触媒が好適である。
Figure 0005949196
(式中、Mは周期律表第6族の遷移金属原子から選択される金属原子であり、Nは窒素原子であり、Oは酸素原子であり、Rは3、4、5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は−CH10で表される基であり、Rは置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基であり、Xはハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基であり、Lは電子供与性の中性配位子であり、aは0又は1であり、bは0〜2の整数である。R10は水素原子、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基である。)
式(3)で表される金属化合物を構成する金属原子(式(3)中のM)は、周期律表第6族の遷移金属原子(クロム、モリブデン、タングステン)から選択される。なかでも、モリブデン又はタングステンが好適に用いられ、タングステンが特に好適に用いられる。
式(3)で表される金属化合物は、金属イミド結合を含んでなるものである。金属イミド結合を構成する窒素原子上の置換基(式(3)中のR)は、3、4、及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は−CH10(但し、R10は水素原子、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基である。)で表される基である。3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニル基が有しうる置換基としては、メチル基、エチル基などのアルキル基;フッ素原子、塩素原子、臭素原子などのハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基などのアルコキシ基;などが挙げられ、さらに、3,4,5位の少なくとも2つの位置に存在する置換基が互いに結合したものであってもよい。3,4,5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の具体例としては、無置換フェニル基や、4−メチルフェニル基、4−クロロフェニル基、3−メトキシフェニル基、4−シクロヘキシルフェニル基、4−メトキシフェニル基などの一置換フェニル基;3,5−ジメチルフェニル基、3,5−ジクロロフェニル基、3,4−ジメチルフェニル基、3,5−ジメトキシフェニル基などの二置換フェニル基;3,4,5−トリメチルフェニル基、3,4,5−トリクロロフェニル基などの三置換フェニル基;2−ナフチル基、3−メチル−2−ナフチル基、4−メチル−2−ナフチル基などの置換基を有していてもよい2−ナフチル基;を挙げることができる。
式(3)で表される金属化合物において、窒素原子上の置換基(式(3)中のR)として用いられ得る、−CH10で表される基において、R10は水素原子、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基を表す。このR10で表される基となり得る、置換基を有していてもよいアルキル基の炭素数は、特に限定されないが、通常1〜20、好ましくは1〜10である。また、このアルキル基は直鎖状であっても分岐状であってもよい。このアルキル基が有し得る置換基は、特に限定されないが、例えば、フェニル基、4−メチルフェニル基などの置換基を有していてもよいフェニル基;メトキシ基、エトキシ基などのアルコキシル基;を挙げることができる。
式(3)で表される金属化合物において、窒素原子上の置換基(式(3)中のR)として用いられ得る、置換基を有していてもよいアリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、及びこれらの基の水素原子が他の置換基に置き換わってなるアリール基などが挙げられる。また、このアリール基の置換基としては、特に限定されないが、例えば、フェニル基、4−メチルフェニル基などの置換基を有していてもよいフェニル基;メトキシ基、エトキシ基などのアルコキシル基;を挙げることができる。
10で表される基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基などの炭素数が1〜20のアルキル基が特に好適に用いられる。
式(3)で表される金属化合物は、ハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基を3個又は4個有してなる。すなわち、式(3)において、Xは、ハロゲン原子、アルキル基、アリール基及びアルキルシリル基から選択される基を表す。なお、式(3)で表される金属化合物においてXで表される基が2以上あるとき、それらの基は互いに結合していてもよい。
Xで表される基となり得るハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子が挙げられる。また、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ネオペンチル基、ベンジル基、ネオフィル基などが挙げられる。アリール基としては、フェニル基、4−メチルフェニル基、2,6−ジメチルフェニル基、1−ナフチル基、2−ナフチル基などが挙げられる。アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基などが挙げられる。
式(3)で表される金属化合物は、1個の金属アルコキシド結合又は1個の金属アリールオキシド結合を有するものであってもよい。この金属アルコキシド結合又は金属アリールオキシド結合を構成する酸素原子上の置換基(式(3)中のR)は、置換基を有していてもよいアルキル基及び置換基を有していてもよいアリール基から選択される基である。このRで表される基となり得る、置換基を有していてもよいアルキル基や置換基を有していてもよいアリール基としては、前述のR10で表される基におけるものと同様のものを用いることができる。
式(3)で表される金属化合物は、1個又は2個の電子供与性の中性配位子を有するものであってもよい。この電子供与性の中性配位子(式(3)中のL)としては、例えば、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられる。その具体例としては、トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィンなどのホスフィン類;ジエチルエーテル、ジブチルエーテル、1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;トリメチルアミン、トリエチルアミン、ピリジン、ルチジンなどのアミン類;を挙げることができる。これらの中でも、エーテル類が特に好適に用いられる。
シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得るための開環重合触媒として、特に好適に用いられる式(3)で表される金属化合物としては、フェニルイミド基を有するタングステン化合物(式(3)中のMがタングステン原子で、かつ、Rがフェニル基である化合物)を挙げることができ、その中でも、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)が特に好適である。
式(3)で表される金属化合物は、第6族遷移金属のオキシハロゲン化物と、3、4、及び5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類、又は一置換メチルイソシアナート類と、電子供与性の中性配位子(L)、及び必要に応じてアルコール類、金属アルコキシド、金属アリールオキシドを混合することなど(例えば、特開平5−345817号公報に記載された方法)により合成することができる。合成された式(3)で表される金属化合物は、結晶化などにより精製・単離したものを用いてもよいし、精製することなく、触媒合成溶液をそのまま開環重合触媒として使用することもできる。
開環重合触媒として用いる式(3)で表される金属化合物の使用量は、(金属化合物:用いる単量体全体)のモル比が、通常1:100〜1:2,000,000、好ましくは1:500〜1,000,000、より好ましくは1:1,000〜1:500,000となる量で用いる。触媒量が多すぎると触媒除去が困難となるおそれがあり、少なすぎると十分な重合活性が得られない場合がある。
式(3)で表される金属化合物を開環重合触媒として用いるにあたっては、式(3)で表される金属化合物を単独で使用することもできるが、重合活性が高くする観点からは式(3)で表される金属化合物と有機金属還元剤とを併用することが好ましい。用いられ得る有機金属還元剤としては、炭素数1〜20の炭化水素基を有する周期律表第1、2、12、13、及び14族の有機金属化合物を挙げることができる。その中でも、有機リチウム、有機マグネシウム、有機亜鉛、有機アルミニウム、又は有機スズが好ましく用いられ、有機アルミニウム又は有機スズが特に好ましく用いられる。有機リチウムとしては、n−ブチルリチウム、メチルリチウム、フェニルリチウムなどを挙げることができる。有機
マグネシウムとしては、ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n−ブチルマグネシウムクロリド、アリルマグネシウムブロミドなどを挙げることができる。有機亜鉛としては、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛などを挙げることができる。有機アルミニウムとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシドなどを挙げることができる。有機スズとしては、テトラメチルスズ、テトラ(n−ブチル)スズ、テトラフェニルスズなどを挙げることができる。有機金属還元剤の使用量は、式(3)で表される金属化合物に対して、0.1〜100モル倍が好ましく、0.2〜50モル倍がより好ましく、0.5〜20モル倍が特に好ましい。使用量が少なすぎると重合活性が向上しない場合があり、多すぎると副反応が起こりやすくなるおそれがある。
環状オレフィン開環重合体を得るための重合反応は、通常、有機溶媒中で行う。用いる有機溶媒は、目的とする開環重合体やその水素添加物が所定の条件で溶解もしくは分散させることが可能であり、重合反応や水素化反応を阻害しないものであれば、特に限定されない。有機溶媒の具体例としては、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタンなどの脂環族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;ジクロロメタン、クロロホルム、1,2−ジクロロエタンなどのハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼンなどのハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリルなどの含窒素炭化水素系溶媒;ジエチルエ−テル、テトラヒドロフランなどのエ−テル類;又はこれらの混合溶媒を挙げることができる。これらの溶媒の中でも、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、エーテル類が好ましく用いられる。
開環重合反応は、単量体と、式(3)で表される金属化合物と、必要に応じて有機金属還元剤とを混合することにより開始することができる。これらの成分を添加する順序は、特に限定されない。例えば、単量体に式(3)で表される金属化合物と有機金属還元剤との混合物を添加して混合してもよいし、有機金属還元剤に単量体と式(3)で表される金属化合物との混合物を添加して混合してもよく、また、単量体と有機金属還元剤との混合物に式(3)で表される金属化合物を添加して混合してもよい。また、各成分を混合するにあたっては、それぞれの成分の全量を一度に添加してもよいし、複数回に分けて添加してもよく、比較的に長い時間(例えば1分間以上)にわたって連続的に添加することもできる。なかでも、重合温度や得られる開環重合体の分子量を制御して、特に成形性に優れた樹脂組成物を得る観点からは、単量体又は式(3)で表される金属化合物を、複数回に分けて、又は連続的に、添加することが好ましく、単量体を、複数回に分けて、又は連続的に、添加することが特に好ましい。
有機溶媒中の重合反応時における単量体の濃度は、特に限定されないが、1〜50重量%であることが好ましく、2〜45重量%であることがより好ましく、3〜40重量%が特に好ましい。単量体の濃度が低すぎると重合体の生産性が悪くなるおそれがあり、高すぎる場合は重合後の溶液粘度が高すぎて、その後の水素化反応が困難となる場合がある。
重合反応系には、活性調整剤を添加してもよい。活性調整剤は、開環重合触媒の安定化、重合反応の速度及び重合体の分子量分布を調整する目的で使用することができる。活性調整剤は、官能基を有する有機化合物であれば特に制限されないが、含酸素、含窒素、含りん有機化合物が好ましい。具体的には、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、フラン、テトラヒドロフランなどのエーテル類;アセトン、ベンゾフェノン、シクロヘキサノンなどのケトン類;エチルアセテートなどのエステル類;アセトニトリルベンゾニトリルなどのニトリル類;トリエチルアミン、トリイソプロピルアミン、キヌクリジン、N,N−ジエチルアニリンなどのアミン類;ピリジン、2,4−ルチジン、2,6−ルチジン、2−t−ブチルピリジンなどのピリジン類;トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフェ−ト、トリメチルホスフェ−トなどのホスフィン類;トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフェ−ト、トリメチルホスフェ−トなどのホスフィン類;トリフェニルホスフィンオキシドなどのホスフィンオキシド類;などが挙げられるが、これらに限定されない。これらの活性調整剤は、1種を単独で、又は2種以上を混合して用いることができる。添加する活性調整剤の量は、特に限定されないが、通常、開環重合触媒として用いる金属化合物に対して0.01〜100モル%の間で選択すればよい。
また、重合反応系には、開環重合体の分子量を調整するために分子量調整剤を添加してもよい。分子量調整剤としては、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテンなどのα−オレフィン類;スチレン、ビニルトルエンなどの芳香族ビニル化合物;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル、酢酸アリル、アリルアルコール、グリシジルメタクリレートなどの酸素含有ビニル化合物;アリルクロライドなどのハロゲン含有ビニル化合物;アクリルアミドなどの窒素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,4−ペンタジエン、2,5−ジメチル−1,5−ヘキサジエンなどの非共役ジエン;1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどの共役ジエン;を挙げることができる。添加する分子量調整剤の量は目的とする分子量に応じて決定すればよいが、通常、用いる単量体に対して、0.1〜50モル%の範囲で選択すればよい。
重合温度は特に制限はないが、通常−78℃〜+200℃の範囲であり、好ましくは−30℃〜+180℃の範囲である。重合時間は、特に制限はなく、反応規模にも依存するが、通常1分間から1000時間の範囲である。
上述したような式(3)で表される金属化合物を含む開環重合触媒を用いて、上述したような条件で多環式ノルボルネン系単量体を含む単量体の開環重合反応を行うことにより、シンジオタクチック立体規則性を有する環状オレフィン開環重合体を得ることができる。水素化反応で重合体のタクチシチーが変化することはないので、このシンジオタクチック立体規則性を有する環状オレフィン開環重合体を水素化反応に供することにより、シンジオタクチック立体規則性を有することに基づいて結晶性を有する、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物を得ることができる。
水素化反応に供する環状オレフィン開環重合体におけるラセモ・ダイアッドの割合は、特に限定されないが、通常60%以上、好ましくは65%以上、より好ましくは70〜99%である。環状オレフィン開環重合体のラセモ・ダイアッドの割合(シンジオタクチック立体規則性の度合い)は、開環重合触媒の種類を選択することなどにより、調節することが可能である。
水素化反応に供する環状オレフィン開環重合体の、テトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィーにより測定した重量平均分子量(Mw)は、特に限定されないが、ポリスチレン換算で10,000〜100,000であることが好ましく、15,000〜80,000であることがより好ましい。このような重量平均分子量を有する環状オレフィン開環重合体から得られる環状オレフィン開環重合体水素添加物を用いると、成形性に優れ、得られた成形体の耐熱性に優れる点で好ましい。環状オレフィン開環重合体の重量平均分子量は、重合時に用いる分子量調整剤の添加量などを調節することにより、調節することができる。
水素化反応に供する環状オレフィン開環重合体の分子量分布〔テトラヒドロフランを溶媒としたゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の数平均分子量と重量平均分子量との比(Mw/Mn)〕は、特に限定されないが、通常1.5〜4.0であり、好ましくは1.6〜3.5である。このような分子量分布を有する環状オレフィン開環重合体から得られる環状オレフィン開環重合体水素添加物を用いると、成形性に優れる点で好ましい。環状オレフィン開環重合体水素添加物の分子量分布は、開環重合反応時における単量体の添加方法や単量体の濃度により、調節することができる。
環状オレフィン開環重合体の水素化反応(主鎖二重結合の水素化)は、水素化触媒の存在下で、反応系内に水素を供給することにより行うことができる。水素化触媒としては、オレフィン化合物の水素化に際して一般に使用されているものであれば使用可能であり、特に制限されないが、例えば、次のようなものが挙げられる。
均一系触媒としては、遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒系、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n−ブチルリチウム、ジルコノセンジクロリド/sec−ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウムなどの組み合わせが挙げられる。さらに、ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、クロロトリス(トリフェニルホスフィン)ロジウムなどの貴金属錯体触媒を挙げることができる。
不均一触媒としては、ニッケル、パラジウム、白金、ロジウム、ルテニウム、又はこれらの金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタンなどの担体に担持させた固体触媒、例えば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナなどの触媒系が挙げられる。
水素化反応は、通常、不活性有機溶媒中で行う。このような不活性有機溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素;ペンタン、ヘキサンなどの脂肪族炭化水素;シクロヘキサン、デカヒドロナフタレンなどの脂環族炭化水素;テトラヒドロフラン、エチレングリコールジメチルエーテルなどのエーテル類;などが挙げられる。不活性有機溶媒は、通常は、重合反応に用いる溶媒と同じでよく、重合反応液にそのまま水素化触媒を添加して反応させればよい。
水素化反応は、使用する水素化触媒系によっても適する条件範囲が異なるが、反応温度は通常−20℃〜+250℃、好ましくは−10℃〜+220℃、より好ましくは0℃〜200℃である。水素化温度が低すぎると反応速度が遅くなりすぎる場合があり、高すぎると副反応が起こる場合がある。水素圧力は、通常0.01〜20MPa、好ましくは0.05〜15MPa、より好ましくは0.1〜10MPaである。水素圧力が低すぎると水素化速度が遅くなりすぎる場合があり、高すぎると高耐圧反応装置が必要となる点において装置上の制約が生じる。反応時間は所望の水素化率とできれば特に限定されないが、通常0.1〜10時間である。
環状オレフィン開環重合体の水素化反応における水素化率(水素化された主鎖二重結合の割合)は、特に限定されないが、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上、最も好ましくは99%以上である。水素化率が高くなるほど、環状オレフィン開環重合体水素添加物の耐熱性が良好なものとなる。
以上のようにして得られる、環状オレフィン開環重合体水素添加物は、下記の式(4)又は式(5)で表されるような多環式ノルボルネン系単量体由来の繰返し単位を有するものである。
Figure 0005949196
(式中、R及びRはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、互いに結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数1〜20の二価の炭化水素基である。)
Figure 0005949196
(式中、R〜Rはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、RとRは互いに結合して環を形成していてもよい。mは1又は2である。)
また、以上のようにして得られる環状オレフィン開環重合体水素添加物では、水素化反応に供した開環重合体が有するシンジオタクチック立体規則性が維持される。したがって、以上のようにして得られる環状オレフィン開環重合体水素添加物は、シンジオタクチック立体規則性を有する。本発明に用いる環状オレフィン開環重合体水素添加物におけるラセモ・ダイアッドの割合は、その水素添加物が結晶性を有する限りにおいて特に限定されないが、通常55%以上、好ましくは60%以上、より好ましくは65〜99%である。このようなシンジオタクチック立体規則性を有する環状オレフィン開環重合体水素添加物を用いることにより、得られる樹脂組成物が、熱の影響により変形が特に起こり難い成形体を与えることができるものとなる。なお、環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合は、水素化反応に供する環状オレフィン開環重合体のラセモ・ダイアッドの割合に依存する。
環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合は、13C−NMRスペクトル分析で測定し、定量することができる。定量の方法は、重合体によっても異なるが、例えばジシクロペンタジエンの開環重合体水素添加物の場合、オルトジクロロベンゼン−d4を溶媒として、150℃で13C−NMR測定を行い、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比からラセモ・ダイアッドの割合を決定できる。
本発明の樹脂組成物を構成するために用いられる多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物は、結晶性を有するものである限りにおいて、その融点は特に限定されないが、200℃以上の融点を有することが好ましく、230〜290℃の融点を有することがより好ましい。このような融点を有する環状オレフィン開環重合体水素添加物を用いることによって、特に成形性と耐熱性とのバランスに優れた樹脂組成物を得ることができる。環状オレフィン開環重合体水素添加物の融点は、そのシンジオタクチック立体規則性の度合い(ラセモ・ダイアッドの割合)を調節したり、用いる単量体の種類を選択したりすることなどにより、調節することができる。
本発明において使用するガラスフィラーとしては公知のものを用いることができ、その形状において限定されない。例えば、ガラス繊維、ガラスビーズ、ガラスパウダー、ガラスフレーク、ガラスバルーン等が挙げられる。これらの中でも、成形品の機械強度の高さからガラス繊維を用いることが好ましい。本発明に使用されるガラス繊維の形状や形態は特に限定されない。具体的にはミルドファイバー、カットファイバー、チョップドストランド、ロービング等が挙げられるが、成形品の機械強度の高さ及び取り扱いの簡便さから、特にチョップドストランドが好ましい。また、本発明に使用されるガラス繊維の長さは、3mm〜40mmであることが好ましく、5〜30mmであることがより好ましい。長さが短いと成形品の機械強度が低く、長いと混練時の取り扱いに問題がある。本発明に使用されるガラス繊維の断面形状は円形、楕円形、扁平形状、矩形など任意であり、これらのガラス繊維を任意の比率で用い得る。また、本発明に使用されるガラスフィラーはシラン系化合物、エポキシ系化合物、ウレタン系化合物等で表面処理されていてもよい。
本発明におけるガラスフィラーの配合量は、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとの重量比が、95/5〜40/60、好ましくは85/15〜50/50の範囲で選択される。ガラスフィラーの配合量が少な過ぎるとリフロー時の耐熱性や成形品の強度に劣り、ガラスフィラーの配合量が多過ぎると誘電正接の上昇を招くうえ、成形性に劣るため好ましくない。
本発明の樹脂組成物には、セラミックスを配合することができる。セラミックスとしては、温度変化に対する電気特性の変化を抑えること及び誘電正接を低く抑える観点から常誘電体セラミックスが好ましい。さらに、誘電率が30〜1000、好ましくは50〜800、さらに好ましくは70〜500の範囲にある常誘電体セラミックスが、高周波用小型アンテナ用材料として好ましい。誘電率が30より小さいセラミックスを配合した場合、誘電率が低くアンテナの小型化に寄与せず、誘電率が1000より大きいセラミックスを配合した場合、誘電正接の値も大きくなることから、伝送損失の発生が大きくなり好ましくない。
このような常誘電体セラミックスとしては、金属酸化物からなるものが好ましく用いられ、特にチタン酸金属塩が好ましい。ここで、「チタン酸金属塩」とはチタン元素、チタンを除く他の金属元素及び酸素元素とを必須元素として含む化合物をいう。
常誘電体セラミックスの具体例としては、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ネオジム、チタン酸ランタン、チタン酸亜鉛等のチタン酸金属塩(ただし、強誘電体であるチタン酸バリウム及びチタン酸カリウムを除く。)が挙げられる。これらの常誘電体セラミックスは、予めカップリング剤で表面処理され得るし、配合時にカップリング剤を添加するインテグラル法により表面処理され得る。好ましいカップリング剤は、チタネート系カップリング剤である。高誘電率充填剤の形状は、粒状、不定形、フレーク状、繊維状など任意であり、これらの形状の高誘電率充填剤を任意の比率で用い得る。高誘電率充填剤の重量平均粒子径は、かさ密度と樹脂への充填性の観点から好ましくは0.05μm以上であり、樹脂層の厚さ精度の観点から好ましくは100μm以下であり、更に好ましくは0.1〜70μmである。
常誘電体セラミックスは、単独で、あるいは2種以上を組み合わせて添加できる。常誘電体セラミックスの配合量としては、多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物及びガラスフィラーの合計量100重量部に対し、通常5〜100重量部、好ましくは10〜90重量部の範囲で選択される。常誘電体セラミックスの配合量が少ないと誘電率が低く、常誘電体セラミックスの配合量が多いと成形品の製造が困難になったり、曲げ強度等の機械強度が低下するため好ましくない。
本発明に用いる樹脂組成物は、結晶性の環状オレフィン開環重合体水素添加物及びガラスフィラーのみで構成してもよいし、さらに他の材料を添加剤として配合して構成することもできる。配合できる他の材料としては、酸化防止剤、充填剤、着色剤、難燃剤、難燃助剤、帯電防止剤、可塑剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、蛍光増白剤、滑剤、造核剤、電磁線照射により単体金属核を形成しうる金属酸化物及び多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物以外の高分子材料を例示することができる。
多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物、ガラスフィラー、必要に応じて配合される常誘電体セラミックスやその他の添加剤の混合順序は任意である。ガラスフィラーと多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物をあらかじめ配合してもよいし、常誘電体セラミックスと多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物をあらかじめ配合してもよい。混合方法は、重合体中に、これらの配合剤が十分に分散する方法であり、特定の方法に限定されない。混合方法の具体例は、ミキサー、一軸混練機、二軸混練機、ロール、ブラベンダー、押出機などで樹脂を溶融状態で混練する方法、適当な溶剤に溶解して分散させて凝固法、キャスト法又は直接乾燥法により溶剤を除去する方法などである。
二軸混練機を用いる場合、樹脂組成物を混練後に通常は溶融状態で棒状に押出し、ストランドカッターで適当な長さに切り、ペレット化する。
本発明の成形品は、上述した本発明の樹脂組成物を成形して得られる。成形方法は、成形品に適した従来公知の成形方法を採用することができる。その具体例は、射出成形、プレス成形、押出ブロー成形、射出ブロー成形、多層ブロー成形、コネクションブロー成形、二重壁ブロー成形、延伸ブロー成形、真空成形、回転成形などである。成形時の樹脂の溶融温度は多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物の種類によっても異なるが、通常250〜400℃、好ましくは260〜350℃である。成形品の形状、大きさは、使用目的に応じて決めればよく、特に限定されない。
本発明の樹脂組成物を用いて得られる成形体は、例えば、ボンネット、トランクドア、ドア、フェンダー、グリル等の自動車外装部材;エアーインテーク、エンジンカバー等のエンジン部材;ヘッドランプの筐体、リアランプの筐体、リフレクタ、エクステンションリフレクタ等の車両用灯具部材;インパネ、シート筐体等の自動車内装部品;自動車用モーターケース、センサケース、モジュール部品ケース、燃料電池スタックのセパレータなどの自動車部品;パワーアシスト電池用部材等の自転車用部材;パワーアシスト、産業用ロボット、電動車いす用部材等のロボット部品の筐体;航空機内装部材;船体用部材;テレビ、冷蔵庫、エアーコンディショナー、扇風機、加湿器、除湿器、乾燥洗濯機、食器洗い機、電子レンジ、炊飯器、電子ジャーポット、ドライヤー等の家電部品;パソコン、プリンタ、コピー機、電話、ファックス、オーディオ機器、カメラ、ゲーム機、ハードディスクドライブ、携帯電話、スマートフォン等の電子製品の筐体;コネクター、リレー、コンデンサ、センサー、アンテナ、ICトレイ、シャーシ、コイル封止、モーターケース、電源ボックス等の電子部品;大型液晶表示装置の液晶ディスプレイのバックライトの光源照明器具;携帯電話、スマートフォン、タブレット等の小型電子機器の液晶ディスプレイのバックライトの光源照明器具;道路交通表示板等の電光表示板の光源として用いられるLEDの反射体;光学レンズ鏡筒;フレキシブルプリント基板;プリント配線板積層用離型フィルム;太陽電池用基板;包装用、梱包用フィルム;食品用シート、トレイ;LEDモールド材;ポンプケーシング、インペラ、配管継ぎ手、浴槽、浄化槽、浴室パネル、エクステリアパネル、窓のサッシレール、窓断熱材、洗面ボール等の住設部品;道路反射鏡、標識、信号等の道路施設用部材;輸液容器、薬液層、薬液配管、ガス配管、コンテナ、パレット、ラック柱等の工業用部材;釣竿、ゴルフクラブのシャフト等のスポーツ用品、として用いることができる。
また本発明の樹脂組成物からなる好適な成形品として、高周波用誘電体アンテナが挙げられる。高周波用誘電体アンテナは、樹脂組成物からなるアンテナ基板を形成し、その表面に放射電極、給電電極及びグランド電極を設けることにより作成される。電極としては、銅、銀、金、白金、アルミニウム、パラジウム等公知のものを用いることができる。また、電極の作成法としては、エッチング、スパッタ、めっき、MID(Molded Interconnect Device)による立体回路成形法、真空蒸着、電磁線照射により単体金属核を形成しうる金属酸化物を用いたLDS(Laser Direct Structuring)法等、公知の方法を用いることができる。
以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部及び%は、特に断りのない限り、重量基準である。
また、各例における測定や評価は、以下の方法により行った。
(1)環状オレフィン開環重合体の分子量(重量平均分子量及び数平均分子量)
ゲル・パーミエーション・クロマトグラフィー(GPC)システムHLC−8220(東ソー社製)で、Hタイプカラム(東ソー社製)を用い、テトラヒドロフランを溶媒として40℃で測定し、ポリスチレン換算値として求めた。
(2)環状オレフィン開環重合体水素添加物における水素化率
H−NMR測定により求めた。
(3)環状オレフィン開環重合体水素添加物の融点
示差走査熱量計を用いて、10℃/分で昇温して測定した。
(4)環状オレフィン開環重合体水素添加物のラセモ・ダイアッドの割合
オルトジクロロベンゼン−dを溶媒として、150℃で13C−NMR測定を行い、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて決定した。
(5)曲げ強度
試験片1について、オートグラフ(製品名「AGS−5kNJ・TCR2」、島津製作所社製)を用いてJIS K 7171に準じて試験速度2mm/minで曲げ試験を行い、曲げ強度を測定した。
(6)耐リフロー性
試験片1について、オーブンを用いた260℃×10秒間の熱処理を3回行った後、試験片を目視観察することにより耐リフロー性を評価した。ここで、試験片が熱処理の前後で変形、溶融することなく形状を保持していたものを○、変形、溶融が見られたものを×とした。
(7)誘電率、誘電正接
試験片2について、ネットワークアナライザ(製品名「N5230A」、アジレント社製)を用いて、円筒空洞共振器法によりASTM D2520に準じて、誘電率及び誘電正接を測定した。測定時の周波数は、1GHz、5GHz、10GHzとした。
〔合成例1〕
充分に乾燥した後、窒素置換したガラス製耐圧反応容器に、ジシクロペンタジエン(エンド体含有率99%以上)の75%シクロヘキサン溶液40部(ジシクロペンタジエンの量として30部)を仕込み、さらに、シクロヘキサン738部及び1−ヘキセン3.3部を加え、50℃に加温した。一方、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体1.1部を56部のトルエンに溶解した溶液に、19重量%のジエチルアルミニウムエトキシド/n−ヘキサン溶液4.6部を加えて10分間攪拌し、触媒溶液を調製した。この触媒溶液を反応器に加えて開環重合反応を開始した。その後、50℃を保ちながら、5分毎に75%ジシクロペンタジエン/シクロヘキサン溶液40部を9回添加した後、2時間反応を継続した。ついで、少量のイソプロパノールを加えて、重合反応を停止した後、重合反応溶液を多量のイソプロパノール中に注ぎ込み、重合体を凝固させた。凝固した重合体をろ過により、溶液より分離して、重合体を回収した。得られた開環重合体を、減圧下40℃で20時間乾燥した。重合体の収量は296部(収率=99%)であった。また、この重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、10,100及び17,200であり、これらから求められる分子量分布(Mw/Mn)は1.70であった。続いて、得られた重合体60部とシクロヘキサン261部を耐圧反応容器に加えて攪拌し、重合体をシクロヘキサンに溶解後、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.039部をトルエン40部に溶解した水素化触媒溶液を添加し、水素圧4MPa、160℃で5時間水素化反応を行った。得られた水素化反応液を多量のイソプロピルアルコールに注いでポリマ−を完全に析出させ、濾別洗浄後、60℃で24時間減圧乾燥して、結晶性の環状オレフィン開環重合体水素添加物Aを得た。環状オレフィン開環重合体水素添加物Aの水素化率は99%以上、ラセモ・ダイアッドの割合は79%であり、融点は260℃であった。なお、重合反応において用いた1−ヘキセンの量、得られた開環重合体の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)、ならびに得られた開環重合体水素添加物の水素化率及び融点は、表1にまとめて示した。
〔合成例2、3〕
重合反応において用いた1−ヘキセンの量を表1に示す通りに変更したこと以外は、合成例1と同様にして環状オレフィン開環重合体水素添加物B及び環状オレフィン開環重合体水素添加物Cを得た。得られた開環重合体の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)、ならびに得られた開環重合体水素添加物の水素化率、ラセモ・ダイアッドの割合及び融点は、表1にまとめて示した。
〔合成例4〕
十分に乾燥した後、窒素置換した攪拌機付き反応容器内に、脱水シクロヘキサン300部、1−へキセン0.5部、ジブチルエーテル0.15部、トリイソブチルアルミニウム10重量%シクロヘキサン溶液1.5部を添加し、温度40℃に加温した。温度を保ち、反応液を攪拌しながら、テトラシクロドデセン70部及びジシクロペンタジエン30部の混合物と、六塩化タングステン0.6重量%シクロヘキサン溶液11部をそれぞれ同時に連続的に添加して重合反応をさせた。重合反応終了後、ブチルグリシジルエーテル0.5部とイソプロピルアルコール0.2部を添加して重合反応を停止させた。
上記重合反応液400部を、攪拌装置を備えた耐圧反応器に移し替え、それにケイソウ土担持型ニッケル触媒(ズードケミー触媒社製;T8400RL、ニッケル担持率57%)4部を添加し混合した。反応器内部を水素ガスで置換し、さらに液を攪拌しながら水素を供給し、温度170℃、圧力4.5MPaにて5時間水素化反応を行った。
水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ペンタエリスリトールテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]0.1部を添加し、溶解させ、薄膜蒸発機(製品名「フィルムトルーダー」、Buss社製)を用いて、温度260℃(533°K)、圧力1kPa以下、滞留時間1.2時間の条件で揮発分を蒸発させ、テトラシクロドデセン−ジシクロペンタジエンの開環共重合体水素添加物Dを得た。開環共重合体水素添加物Dのガラス転移温度は、142℃であった。テトラシクロドデセン−ジシクロペンタジエンの開環共重合体水素添加物Dの数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)、ならびに得られた開環重合体水素添加物の水素化率は、表1にまとめて示した。
Figure 0005949196
<実施例1>
環状オレフィン開環重合体水素添加物A85部、ガラス繊維(商品名「CSG 3PA−830」、日東紡社製)15部、チタン酸カルシウム(平均粒径2.3μm、商品名「CT」、共立マテリアル社製)40部、酸化防止剤(テトラキス〔メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、商品名「イルガノックス(登録商標)1010」、BASFジャパン社製)0.8部を混合後、小型混練機(Micro15Compounder、DSM Xplore製)を用い290℃、100RPMの条件で2分間混練してペレット化した。
その後、小型射出成形機(Micro InjectionMoulding Machine 10cc、DSM Xplore社製)で成形温度290℃、射出圧力0.7MPa、金型温度150℃、金型内保持時間10秒の条件で、縦80mm、横10mm、厚さ4mmの試験片1及び縦100mm、横1mm、厚さ1mmの試験片2を成形した。組成物の組成とそれぞれの評価結果は、表2にまとめて示した。
<実施例2〜5及び比較例1〜3>
組成物の配合を表2に示す通りに変更したこと以外は実施例1と同様にして、成形体を得て、その評価を行った。それぞれの評価結果は、表2にまとめて示した。なお、常誘電体セラミックスについては、チタン酸マグネシウムは商品名「MT−1S」(平均粒径2.6μm、共立マテリアル社製)、チタン酸ストロンチウムは商品名「ST」(平均粒径1.6μm、共立マテリアル社製)である。
Figure 0005949196
表2から分かるように、本発明の樹脂組成物(実施例1〜5)は、良好な機械強度、及び電気特性を備え、かつリフロー耐性を有するものであった。一方、ガラスフィラー量が少ないとリフロー試験時に変形が見られ(比較例3)、ガラスフィラー量が多いと電気特性が悪化する(比較例2)。また、結晶性の環状オレフィン開環重合体水素添加物ではない脂環構造含有重合体水素添加物を使用すると、リフロー耐性を有さないことがわかった(比較例4)。

Claims (4)

  1. (A)多環式ノルボルネン系単量体由来の繰返し単位を有する結晶性の環状オレフィン開環重合体水素添加物と(B)ガラスフィラーとを含んでなる樹脂組成物であって、当該結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとの重量比が95/5〜40/60であり、
    前記結晶性の環状オレフィン開環重合体水素添加物とガラスフィラーとの合計量100重量部に対し、さらに常誘電体セラミックスを5〜100重量部含有することを特徴とする樹脂組成物。
  2. 前記常誘電体セラミックスがチタン酸金属塩である請求項記載の樹脂組成物。
  3. 請求項1又は2に記載の樹脂組成物からなる成形品。
  4. 高周波用誘電体アンテナである請求項に記載の成形品。
JP2012133595A 2012-06-13 2012-06-13 樹脂組成物及びその成形品 Expired - Fee Related JP5949196B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133595A JP5949196B2 (ja) 2012-06-13 2012-06-13 樹脂組成物及びその成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133595A JP5949196B2 (ja) 2012-06-13 2012-06-13 樹脂組成物及びその成形品

Publications (2)

Publication Number Publication Date
JP2013256596A JP2013256596A (ja) 2013-12-26
JP5949196B2 true JP5949196B2 (ja) 2016-07-06

Family

ID=49953296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133595A Expired - Fee Related JP5949196B2 (ja) 2012-06-13 2012-06-13 樹脂組成物及びその成形品

Country Status (1)

Country Link
JP (1) JP5949196B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631083B2 (en) 2013-02-12 2017-04-25 Zeon Corporation Resin composition and molded product thereof
US10233301B2 (en) 2014-01-30 2019-03-19 Zeon Corporation Polymer composition and molded body
JP6402620B2 (ja) * 2014-01-30 2018-10-10 日本ゼオン株式会社 重合体組成物及び成形体
WO2024090112A1 (ja) * 2022-10-27 2024-05-02 日本ゼオン株式会社 基板用樹脂組成物及び樹脂パウダー粒子の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218557A (ja) * 1990-04-13 1992-08-10 Nippon Zeon Co Ltd 熱可塑性飽和ノルボルネン系ポリマー成形品
JPH09118811A (ja) * 1995-10-24 1997-05-06 Nippon Zeon Co Ltd 熱可塑性ノルボルネン系樹脂組成物、および成形品
JPH09147626A (ja) * 1995-11-22 1997-06-06 Nippon Zeon Co Ltd 樹脂組成物、および成形品
EP1006134B1 (en) * 1997-08-19 2003-10-15 Nippon Zeon Co., Ltd. Norbornene polymer and process for the preparation thereof
JP4466272B2 (ja) * 2004-08-12 2010-05-26 日本ゼオン株式会社 ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP2006224576A (ja) * 2005-02-21 2006-08-31 Nippon Zeon Co Ltd Icタグ
JP5131476B2 (ja) * 2008-09-25 2013-01-30 日本ゼオン株式会社 導電性樹脂フィルム及びその製造方法
JP2010083932A (ja) * 2008-09-30 2010-04-15 Nippon Zeon Co Ltd 樹脂組成物及び成形品
KR20130101008A (ko) * 2010-09-07 2013-09-12 니폰 제온 가부시키가이샤 수지 조성물 및 그 성형체

Also Published As

Publication number Publication date
JP2013256596A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
CN103237843B (zh) 树脂组合物及其成形体
JP4557124B2 (ja) ノルボルネン系開環重合体水素化物の製造方法
US10233301B2 (en) Polymer composition and molded body
JP5949196B2 (ja) 樹脂組成物及びその成形品
JP5862268B2 (ja) 重合体、成形体及び重合体の製造方法
JP6724899B2 (ja) 難燃性樹脂組成物及び樹脂成形体
JP6750251B2 (ja) 難燃性樹脂組成物及び樹脂成形体
US9631083B2 (en) Resin composition and molded product thereof
JP7186501B2 (ja) 樹脂成形体、樹脂フィルム、及び射出成形品
JP6565680B2 (ja) 樹脂材料及び樹脂フィルム
JP6402620B2 (ja) 重合体組成物及び成形体
JP5949388B2 (ja) 樹脂組成物及びその成形体
TW202007727A (zh) 成形材料及成形體
JP2017170735A (ja) 導体層付樹脂フィルム、及びプリント配線基板
JP6287413B2 (ja) 樹脂組成物及びその利用
JP2009167433A (ja) 開環共重合体、開環共重合体水素化物、それらの製造方法および組成物
JP2013056991A (ja) 樹脂組成物、及びそれからなる成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees