[go: up one dir, main page]

JP3991908B2 - 排ガス浄化方法 - Google Patents

排ガス浄化方法 Download PDF

Info

Publication number
JP3991908B2
JP3991908B2 JP2003103749A JP2003103749A JP3991908B2 JP 3991908 B2 JP3991908 B2 JP 3991908B2 JP 2003103749 A JP2003103749 A JP 2003103749A JP 2003103749 A JP2003103749 A JP 2003103749A JP 3991908 B2 JP3991908 B2 JP 3991908B2
Authority
JP
Japan
Prior art keywords
catalyst
parts
layer
same manner
zsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003103749A
Other languages
English (en)
Other versions
JP2003326165A (ja
Inventor
卓弥 池田
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003103749A priority Critical patent/JP3991908B2/ja
Publication of JP2003326165A publication Critical patent/JP2003326165A/ja
Application granted granted Critical
Publication of JP3991908B2 publication Critical patent/JP3991908B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等の内燃機関から排出される排ガスの浄化方法に関するものである。
【0002】
【従来の技術】
自動車等の内燃機関の排ガス浄化用触媒としては、一酸化炭素(CO)及び炭化水素(HC)の酸化と、窒素酸化物(NOx)の還元を同時に行なう触媒が汎用されている。このような触媒は、例えば特公昭58−20307号公報にもみられるように、耐火性担体上のアルミナコート層に、パラジウム(Pd)、白金(Pt)及びロジウム(Rh)の貴金属、並びに場合により助触媒成分としてセリウム(Ce)、ランタン(La)等の希土類金属又はニッケル(Ni)等のベースメタル酸化物を添加したものがほとんどである。
【0003】
かかる触媒は、排ガス温度とエンジンの設定空燃比の影響を強く受ける。自動車用触媒が浄化能を発揮する排ガス温度としては、一般に300℃以上必要であり、また空燃比は、HCとCOの酸化とNOxの還元のバランスがとれる理論空燃比(A/F=14.6)付近で触媒が最も有効に働く。従って、従来の三元触媒を用いる排ガス浄化装置を取り付けた自動車では、三元触媒が有効に働くような位置に設置されており、また排気系の酸素濃度を検出して、混合気を理論空燃比付近に保つようフィードバック制御が行なわれている。
【0004】
従来の三元触媒をエキゾーストマニホールド直後に設置しても、排ガス温度が低い(300℃以下)エンジン始動直後には触媒活性が低く、始動直後(コールドスタート時)に大量に排出されるHCは浄化されずにそのまま排出されてしまうという問題がある。
【0005】
上記の課題を解決するための排ガス浄化装置として、触媒コンバータの排気上流側にコールドHCを吸着するための吸着剤を納めたHCトラッパーを配置したものが特開平2−135126号公報や特開平3−141816号公報に提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平2−135126号公報に記載されている自動車排気ガス浄化装置では、
(1)吸着材の下流側に触媒成分を含浸しているため、触媒が活性温度に達する前に上流側の吸着材からHCが脱離してしまう。
(2)ゼオライトへ触媒金属溶液を含浸しているため、触媒成分の耐久性に乏しい。また、特開平3−141816号公報に記載されている排気ガス浄化装置では、
(3)吸着したHCの脱離制御を温度センサ、バイパス管、制御装置等を用いて行なっているため、システムが複雑で信頼性や排気レイアウト上実用的ではない。
という問題があった。
【0007】
従って、本発明の目的は、上記従来技術に存在する問題を解決し、エンジン始動時に排出される高濃度のHCを効率よく吸着し、吸着層からHCが脱離し始める温度においても脱離したHCが効率よく浄化される排ガス浄化方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上記の従来技術に存在する問題に着目し、HC吸着に有効なゼオライト層上に触媒層を備えたことを特徴とする吸着触媒の製造方法を特願平5−273780号及び特願平5−273781号公報で提案した。これらの方法で得られた触媒は表層の触媒層が内層のゼオライトよりも早く加熱されるため、ゼオライト層からHCが脱離する段階において触媒層が活性化されており、HCが良好に浄化される。
本発明者等は更に鋭意研究を重ねた結果、上記吸着触媒を床下位置に装着し、エンジン始動直後に緩やかに加速し又は低速走行を続けた場合、表層の触媒層が活性化する前に内層のゼオライト層から吸着していたHCの一部が脱離するため、エンジン始動時に排出されたHCの浄化能が少し低下するということがわかった。
【0009】
本発明は、上記問題点を解決するために、排ガスを、ヒータを用いず、プリ三元触媒、触媒A及び吸着触媒Bに順次通過させて浄化する排ガス浄化方法であって、
上記触媒Aは、炭化水素、一酸化炭素及び窒素酸化物を理論空燃比近傍で浄化する三元触媒をハニカム担体にコーティングして成り、
上記吸着触媒Bは、ハニカム担体に、炭化水素の吸着に有効なゼオライト層を下層として、炭化水素を浄化し得る触媒層を上層として配して成ることを特徴とする排ガス浄化方法に関するものである。
【0010】
また、流入側の触媒Aと流出側の吸着触媒Bの距離は任意でよいが、近すぎると背圧上昇によるエンジン性能の低下を引き起こす可能性があり、逆に離れすぎていると、流出側の吸着触媒表層の触媒温度が上がらず脱離HCの浄化率が低下する可能性もある。従って、触媒Aと吸着触媒Bの距離は10〜50mmの範囲とするのが好ましい。
【0011】
上記吸着触媒Bとしては、ゼオライト層上に活性セリア及び/又はアルミナを主成分とした粉末に触媒成分として白金(Pt)、パラジウム(Pd)及びロジウム(Rh)から成る群より選ばれた少なくとも1種の貴金属を含む触媒層を備えるものが好ましい。
【0012】
本発明で使用される担体は、モノリス型のハニカム形状のもので、コージエライト質担体、メタル担体等任意のものが使用される。
【0013】
一般的にゼオライトは低温時にHCを吸着し、昇温とともに脱離する。触媒がある温度で急激に活性化するのに対し、ゼオライトからの脱離は温度上昇に対してある分布を持って排出される。そして、排ガス温度の上昇に伴い、吸着触媒前に配置した触媒も活性化し、反応熱によって触媒出口温度、即ち吸着触媒入口温度が上昇する。この温度上昇によって吸着触媒表層の触媒も早く活性化するため、ゼオライト層から吸着していたHCが脱離するときに、効率よく浄化することができる。しかも、吸着触媒前に触媒を配置することにより、ゼオライト層の温度上昇も抑えられるため吸着能も向上する。
【0014】
ゼオライトには多くの種類があるが、本発明の吸着触媒Bに用いるゼオライトとしては、常温ないし比較的高い温度まで水存在雰囲気下でも充分なHC吸着能を有し、且つ耐久性の高いものを適宜選択する。例えば、モルデナイト、USY、βゼオライト、ZSM−5等が挙げられる。排ガス中の多種類のHCを効率よく吸着するためには、細孔構造の異なるゼオライトを2種以上混合するのがより好ましい。
【0015】
各種ゼオライトはH型でも十分な吸着能力を有するが、Pd、Ag、Cu、Cr、Co、Nd等の金属をイオン交換法、含浸法、浸漬法等の通常の方法を用いて担持したゼオライトが、吸着特性及び脱離抑制能を更に向上することができるため好ましい。各担持量は任意でよいが、例えば0.1〜15重量%位が好ましい。0.1重量%より少ないと吸着特性及び脱離抑制効果が少なく、逆に15重量%を超えても効果は変わらない。
【0016】
【実施例】
以下、本発明を実施例、比較例及び試験例により更に詳細に説明する。尚、例中の「部」は特記しない限り重量部を表す。
【0017】
(実施例1)
Ptを担持した活性セリア粉末(以下、Pt/CeOと記す)100部、アルミナ50部、2%硝酸150部を磁気ポットに仕込み、振動ミル装置で40分間、若しくはユニバーサルボールミル装置で6.5 時間混合粉砕して、ウォッシュコートスラリーを製造した。コーディエライト製モノリス担体を吸引コート法で給水処理した後、上記製造したスラリーを担体断面全体に均一に投入し、吸引コート法で余分なスラリーを除去した。その後、乾燥を行い、400℃で1時間仮焼成した。これにより、Pt/CeO層が100g/Lコート量で担体にコートされた。上記ウォシュコート、乾燥、焼成を更に繰り返して合計200g/LのPt/CeO層をコートした。
次に、Rhを担持したアルミナ粉末(以下、Rh/Alと記す)100部、アルミナ50部、2%硝酸150部を磁器ポットに仕込み、上記と同様にしてウォシュコートスラリーを製造し、同方法でPt/CeO層の上に50g/LのRh/Al触媒層をコートし、乾燥後、空気雰囲気650℃で3時間の焼成を行い、排気流入側の(触媒A1)を得た。
また、H型ZSM−5(SiO/Al=700)(以下ZSM−5と記す)100部、シリカゾル(固形分20%)215部、10%硝酸100部及び水15部を磁性ポットに仕込み、上記と同様にしてZSM−5スラリーを製造し、同方法でモノリス担体上に150g/Lコートし、乾燥、400℃で1時間焼成を行った。
上記と同様にしてZSM−5層の上に100g/LのPt/CeO触媒層をコートし、乾燥、400℃で1時間焼成を行った。更にPt/CeO層の上にRh/Al触媒層を50g/Lコートし、乾燥後、空気雰囲気650℃で3時間の焼成を行い、排気流出側の(吸着触媒B1)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B1)を組合せ、(タンデム型吸着触媒−1)を得た。
【0018】
(実施例2)
H型ZSM−5(SiO/Al=700)100部、シリカゾル(固形分20%)215部、10%硝酸100部及び水15部を磁性ポットに仕込み、実施例1と同様にしてZSM−5スラリーを製造し、同方法でモノリス担体上に150g/Lコート、乾燥、400℃で1時間焼成を行なった。
次に、Pdを担持したアルミナ粉末(以下、Pd/Alと記す)100部、アルミナ50部、2%硝酸150部を磁器ポットに仕込み、実施例1と同方法でウォシュコートスラリーを製造し、同コート方法でZSM−5層の上に100g/LのPd/Al層をコートし、乾燥、焼成を行なった。
更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B2)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B2)を組合せ、(タンデム型吸着触媒−2)を得た。
【0019】
(実施例3)
H型ZSM−5(SiO/Al=700)50部、H型USY(SiO/Al=50)(以下USYと記す)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とUSYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とUSYの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B3)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B3)を組合せ、(タンデム型吸着触媒−3)を得た。
【0020】
(実施例4)
H型ZSM−5(SiO/Al=700)50部、H型USY(SiO/Al=50)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とUSYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5とUSYの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B4)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B4)を組合せ、(タンデム型吸着触媒−4)を得た。
【0021】
(実施例5)
H型ZSM−5(SiO/Al=700)67部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とUSYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とUSYの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B5)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B5)を組合せ、(タンデム型吸着触媒−5)を得た。
【0022】
(実施例6)
H型ZSM−5(SiO/Al=700)67部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とUSYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5とUSYの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B6)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B6)を組合せ、(タンデム型吸着触媒−6)を得た。
【0023】
(実施例7)
H型ZSM−5(SiO/Al=700)50部、H型モルデナイト(以下モルデナイトと記す)(SiO/Al=200)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とモルデナイトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とモルデナイトの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B7)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B7)を組合せ、(タンデム型吸着触媒−7)を得た。
【0024】
(実施例8)
H型ZSM−5(SiO/Al=700)50部、H型モルデナイト(SiO/Al=200)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とモルデナイトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とモルデナイトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/Al2O3層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B8)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B8)を組合せ、(タンデム型吸着触媒−8)を得た。
【0025】
(実施例9)
H型ZSM−5(SiO/Al=700)50部、H型βゼオライト(以下βゼオライトと記す)(SiO/Al=100)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とβゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とβゼオライトの混合層の上に100g/LのPt/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B9)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B9)を組合せ、(タンデム型吸着触媒−9)を得た。
【0026】
(実施例10)
H型ZSM−5(SiO/Al=700)50部、H型βゼオライト(SiO/Al=100)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とβゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5とβゼオライトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B10)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B10)を組合せ、(タンデム型吸着触媒−10)を得た。
【0027】
(実施例11)
H型ZSM−5(SiO/Al=700)67部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とβゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5とβゼオライトの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B11)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B11)を組合せ、(タンデム型吸着触媒−11)を得た。
【0028】
(実施例12)
H型ZSM−5(SiO/Al=700)67部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5とβゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5とβゼオライトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B12)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B12)を組合せ、(タンデム型吸着触媒−12)を得た。
【0029】
(実施例13)
H型USY(SiO/Al=50)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でUSYスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でUSY層の上に100g/LのPt/CeO2触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al2O3触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B13)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B13)を組合せ、(タンデム型吸着触媒−13)を得た。
【0030】
(実施例14)
H型USY(SiO/Al=50)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でUSYスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でUSY層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B14)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B14)を組合せ、(タンデム型吸着触媒−14)を得た。
【0031】
(実施例15)
H型βゼオライト(SiO/Al=100)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でβゼオライトスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でβゼオライト層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al2O3触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B15)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B15)を組合せ、(タンデム型吸着触媒−15)を得た。
【0032】
(実施例16)
H型βゼオライト(SiO/Al=100)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でβゼオライトスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/L コートし、乾燥、焼成を行った。
次に、実施例2と同方法でβゼオライト層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B16)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B16)を組合せ、(タンデム型吸着触媒−16)を得た。
【0033】
(実施例17)
H型モルデナイト(SiO/Al=200)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でモルデナイトスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/L コートし、乾燥、焼成を行った。
次に、実施例1と同方法でモルデナイト層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B17)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B17)を組合せ、(タンデム型吸着触媒−17)を得た。
【0034】
(実施例18)
H型モルデナイト(SiO/Al=200)100部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でモルデナイトスラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でモルデナイト層の上に100g/LのPt/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B18)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B18)を組合せ、(タンデム型吸着触媒−18)を得た。
【0035】
(実施例19)
H型ZSM−5(SiO/Al=700)34部、H型USY(SiO/Al=50)33部、H型モルデナイト(SiO/Al=200)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、USY、モルデナイトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、USY、モルデナイトの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B19)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B19)を組合せ、(タンデム型吸着触媒−19)を得た。
【0036】
(実施例20)
H型ZSM−5(SiO/Al=700)34部、H型USY(SiO/Al=50)33部、H型モルデナイト(SiO/Al=200)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、USY、モルデナイトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/L コートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、USY、モルデナイトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B20)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B20)を組合せ、(タンデム型吸着触媒−20)を得た。
【0037】
(実施例21)
H型ZSM−5(SiO/Al=700)34部、H型USY(SiO/Al=50)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215 部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、USY、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、USY、βゼオライトの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B21)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B21)を組合せ、(タンデム型吸着触媒−21)を得た。
【0038】
(実施例22)
H型ZSM−5(SiO/Al=700)34部、H型USY(SiO/Al=50)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、USY、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、USY、βゼオライトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B22)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B22)を組合せ、(タンデム型吸着触媒−22)を得た。
【0039】
(実施例23)
H型ZSM−5(SiO/Al=700)34部、Agをイオン交換したZSM−5(以下、Ag−ZSM−5と記す)(Ag担持量5重量%、SiO/Al=30)33部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−ZSM−5、USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、Ag−ZSM−5、USYの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B23)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B23)を組合せ、(タンデム型吸着触媒−23)を得た。
【0040】
(実施例24)
H型ZSM−5(SiO/Al=700)34部、Ag担持ZSM−5(Ag担持量5重量%、SiO/Al=30)33部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−ZSM−5、USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、Ag−ZSM−5、USYの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B24)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B24)を組合せ、(タンデム型吸着触媒−24)を得た。
【0041】
(実施例25)
H型ZSM−5(SiO/Al=700)34部、Pdをイオン交換したZSM−5(以下、Pd−ZSM−5と記す)(Pd担持量2重量%、SiO/Al=30)33部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Pd−ZSM−5、USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、Pd−ZSM−5、USYの混合層の上に100g/LのPt/CeO2触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B25)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B25)を組合せ、(タンデム型吸着触媒−25)を得た。
【0042】
(実施例26)
H型ZSM−5(SiO/Al=700)34部、Pd担持ZSM−5(Pd担持量2重量%、SiO/Al=30)33部、H型USY(SiO/Al=50)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Pd−ZSM−5、USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、Pd−ZSM−5、USYの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B26)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B26)を組合せ、(タンデム型吸着触媒−26)を得た。
【0043】
(実施例27)
H型ZSM−5(SiO/Al=700)34部、Ag担持ZSM−5(Ag担持量5重量%、SiO/Al=30)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−ZSM−5、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、Ag−ZSM−5、βゼオライトの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B27)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B27)を組合せ、(タンデム型吸着触媒−27)を得た。
【0044】
(実施例28)
H型ZSM−5(SiO/Al=700)34部、Ag担持ZSM−5(Ag担持量5重量%、SiO/Al=30)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−ZSM−5、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、Ag−ZSM−5、βゼオライトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B28)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B28)を組合せ、(タンデム型吸着触媒−28)を得た。
【0045】
(実施例29)
H型ZSM−5(SiO/Al=700)34部、Pd担持ZSM−5(Pd担持量2重量%、SiO/Al=30)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Pd−ZSM−5、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、Pd−ZSM−5、βゼオライトの混合層の上に100g/LのPt/CeO2触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B29)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B29)を組合せ、(タンデム型吸着触媒−29)を得た。
【0046】
(実施例30)
H型ZSM−5(SiO/Al=700)34部、Pd担持ZSM−5(Pd担持量2重量%、SiO/Al=30)33部、H型βゼオライト(SiO/Al=100)33部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Pd−ZSM−5、βゼオライトの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、Pd−ZSM−5、βゼオライトの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B30)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B30)を組合せ、(タンデム型吸着触媒−30)を得た。
【0047】
(実施例31)
H型ZSM−5(SiO/Al=700)50部、Agをイオン交換したUSY(以下、Ag−USYと記す)(Ag担持量5重量%、SiO/Al=12)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例1と同方法でZSM−5、Ag−USYの混合層の上に100g/LのPt/CeO触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPt/CeO層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B31)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B31)を組合せ、(タンデム型吸着触媒−31)を得た。
【0048】
(実施例32)
H型ZSM−5(SiO/Al=700)50部、Ag−USY(Ag担持量5重量%、SiO/Al=12)50部、シリカゾル(固形分20%)215部、10%硝酸100部、水15部を磁器ポットに仕込み、実施例1と同方法でZSM−5、Ag−USYの混合スラリーを製造した。そして、実施例1と同方法でモノリス担体上に150g/Lコートし、乾燥、焼成を行った。
次に、実施例2と同方法でZSM−5、Ag−USYの混合層の上に100g/LのPd/Al触媒層をコートし、乾燥、焼成を行った。更に、実施例1と同方法でRh/Al触媒層をPd/Al層上に50g/Lコートし、乾燥、焼成を行い、(吸着触媒B32)を得た。
排気流入側に(触媒A1)、排気流出側に(吸着触媒B32)を組合せ、(タンデム型吸着触媒−32)を得た。
【0049】
(実施例33)
実施例1と同方法でPd/CeO層を200g/Lコートし、乾燥、焼成を行った。更に、同方法でPd/CeO層上にRh/Al2O3層を50g/Lコートし、乾燥後、雰囲気650℃で3時間の焼成を行い、(触媒A2)を得た。
排気流入側に(触媒A2)、排気流出側に(吸着触媒B5)を組合せ、(タンデム型吸着触媒−33)を得た。
【0050】
(実施例34)
排気流入側に(触媒A2)、排気流出側に(吸着触媒B9)を組合せ、(タンデム型吸着触媒−33)を得た。
【0051】
(比較例1)
H型USY(SiO/Al=50)を100部、シリカゾル(固形分20%)215部、10%硝酸水100部、水15部を磁器ポットに仕込み、実施例1と同方法でウォッシュコートスラリーを製造し、同コート方法でモノリス担体に150g/Lコート、乾燥、焼成を行ない、(吸着触媒B35)を得た。排気流入側に(吸着触媒35)、排出流出側に(触媒A1)を組合せ、(タンデム型吸着触媒−35)を得た。
【0052】
(比較例2)
H型USY(SiO/Al=7)を100部、シリカゾル(固形分20%)215部、10%硝酸水100部、水15部を磁器ポットに仕込み、実施例1と同方法でウォッシュコートスラリーを製造し、同コート方法でモノリス担体に150g/Lコート、乾燥、焼成を行ない、(吸着触媒−36)を得た。
排気流入側に(吸着触媒B36)、排出流出側に(触媒A1)を組合せ、(タンデム型吸着触媒−36)を得た。
【0053】
(比較例3)
排気流入側に(吸着触媒B13)、排気流出側に(触媒A1)を組合せ、(タンデム型吸着触媒−37)を得た。
【0054】
[試験例]
実施例1〜34及び比較例1〜4の触媒Aと吸着触媒Bを用いたタンデム型吸着触媒を使用して下記評価条件でHC吸着・浄化特性評価(FTP75Abag)を日産自動車(株)製車両(排気量3リットル)を用いて行った。各吸着触媒Bの浄化特性は吸着触媒未装着システム(触媒Aのみ)と性能比較を行なった。
即ち、評価は、
(1)エンジン始動時に排出されるHCの吸着能を評価するためAbag0〜125秒間のエミッション低減率を測定し、
(2)エンジン始動時及び昇温後のHCの吸着浄化能を評価するためAbag0〜505秒間のエミッション低減率を測定した。
【0055】
Figure 0003991908
【0056】
尚、評価に当たっては図1示すようにエンジン1のエギゾーストマニホールド2にプリ三元触媒3(0.5L)として40g/cfのPt/RhがPt:Rh=5:1の比で担持した触媒を、850℃で100時間エンジン耐久(燃焼カット有)したPt−Rh系触媒の耐久品を配置し、床下三元触媒A4(1.3L)の後に吸着触媒B5(1.3L)を装着した排ガス浄化装置を用い、吸着触媒B未装着の場合と性能比較を行った。評価結果を表1に示す。
【0057】
【表1】
Figure 0003991908
【0058】
【発明の効果】
以上説明してきたように、本発明の排ガス浄化方法においては、担体上に触媒活性成分を含む無機物をコートした触媒を排気流入側に配置し、担体上にHC吸着に有効なゼオライトから成る吸着層がコートされた吸着触媒を排気流出側に配置することにより、吸着層からHCが脱離し始める温度においても、脱離したHCが良好に浄化される。
【図面の簡単な説明】
【図1】試験例に用いた排ガス浄化装置の系統図である。
【符号の説明】
1 エンジン
2 エキゾ−ストマニホールド
3 プリ三元触媒
4 触媒A
5 吸着触媒B

Claims (6)

  1. 排ガスを、ヒータを用いず、プリ三元触媒、触媒A及び吸着触媒Bに順次通過させて浄化する排ガス浄化方法であって、
    上記触媒Aは、炭化水素、一酸化炭素及び窒素酸化物を理論空燃比近傍で浄化する三元触媒をハニカム担体にコーティングして成り、
    上記吸着触媒Bは、ハニカム担体に、炭化水素の吸着に有効なゼオライト層を下層として、炭化水素を浄化し得る触媒層を上層として配して成ることを特徴とする排ガス浄化方法。
  2. 上記触媒Aには上記プリ三元触媒から流出した排ガスが常時流入し、上記触媒Bには上記触媒Aから流出した排ガスが常時流入することを特徴とする請求項1に記載の排ガス浄化方法。
  3. 上記触媒Bの触媒層は、活性セリア及び/又はアルミナを主成分とした粉末に触媒成分としての白金、パラジウム及びロジウムから成る群より選ばれた少なくとも1種の貴金属を予め含ませた粉末を、上記ゼオライト層上にコーティングして形成されることを特徴とする請求項1又は2に記載の排ガス浄化方法。
  4. 上記プリ三元触媒がエンジンのエキゾーストマニホールド位置に装着され、且つ上記吸着触媒Bが床下位置に装着されていることを特徴とする請求項1〜3のいずれか1つの項に記載の排ガス浄化方法。
  5. 上記触媒Aと吸着触媒Bとは、10〜50mmの距離範囲で配置されることを特徴とする請求項1〜4のいずれか1つの項に記載の排ガス浄化方法。
  6. 上記吸着触媒Bにおけるゼオライトとしてモルデナイト、USY、βゼオライト及びZSM−5から成る群より選ばれた少なくとも1種のものを用いたことを特徴とする請求項1〜5のいずれか1つの項に記載の排ガス浄化方法。
JP2003103749A 2003-04-08 2003-04-08 排ガス浄化方法 Expired - Lifetime JP3991908B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103749A JP3991908B2 (ja) 2003-04-08 2003-04-08 排ガス浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103749A JP3991908B2 (ja) 2003-04-08 2003-04-08 排ガス浄化方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17461798A Division JP3459037B2 (ja) 1998-06-22 1998-06-22 排ガス浄化装置

Publications (2)

Publication Number Publication Date
JP2003326165A JP2003326165A (ja) 2003-11-18
JP3991908B2 true JP3991908B2 (ja) 2007-10-17

Family

ID=29707384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103749A Expired - Lifetime JP3991908B2 (ja) 2003-04-08 2003-04-08 排ガス浄化方法

Country Status (1)

Country Link
JP (1) JP3991908B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007609A (ja) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
US8668877B2 (en) * 2010-11-24 2014-03-11 Basf Corporation Diesel oxidation catalyst articles and methods of making and using

Also Published As

Publication number Publication date
JP2003326165A (ja) 2003-11-18

Similar Documents

Publication Publication Date Title
US7820123B2 (en) Device for the purification of exhaust gas
JP3489048B2 (ja) 排気ガス浄化用触媒
JP3904802B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP3965711B2 (ja) 窒素酸化物の浄化触媒及び浄化方法
JP2003200049A (ja) 排気ガス浄化用触媒
EP3793725A1 (en) Hydrocarbon trap catalyst
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JPH07124468A (ja) 炭化水素吸着材および吸着触媒の製造方法
JPH07102957A (ja) 排ガス浄化装置と方法
JP3282344B2 (ja) 排気ガス浄化装置
EP0867218B1 (en) Engine with system for exhaust gas purification
JP2682404B2 (ja) 炭化水素吸着材および触媒の製造方法
US20040101453A1 (en) Apparatus for purifying exhaust gases
JPH07332073A (ja) 排気ガス浄化装置
JP3991908B2 (ja) 排ガス浄化方法
JP3695394B2 (ja) 排気ガス浄化装置および製造方法
JP3459037B2 (ja) 排ガス浄化装置
JPH07241471A (ja) 排ガス浄化用吸着触媒の製造方法
JPH06142519A (ja) 炭化水素吸着触媒
JPH04293519A (ja) 排気ガス浄化用装置
JP3295989B2 (ja) 排ガス浄化用触媒
JPH09225265A (ja) 排気ガス浄化装置
JP3414808B2 (ja) 排気ガス中の炭化水素吸着剤
JP2003135970A (ja) 排気ガス浄化用触媒
JP4106762B2 (ja) 排気ガス浄化用触媒装置及び浄化方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

EXPY Cancellation because of completion of term