JP3625677B2 - エピタキシャルウエハと発光ダイオード及び、その製造方法 - Google Patents
エピタキシャルウエハと発光ダイオード及び、その製造方法 Download PDFInfo
- Publication number
- JP3625677B2 JP3625677B2 JP6016199A JP6016199A JP3625677B2 JP 3625677 B2 JP3625677 B2 JP 3625677B2 JP 6016199 A JP6016199 A JP 6016199A JP 6016199 A JP6016199 A JP 6016199A JP 3625677 B2 JP3625677 B2 JP 3625677B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- epitaxial
- epitaxial wafer
- junction
- wafer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Led Devices (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の属する技術分野】
本発明は化合物半導体エピタキシャルウエハと発光ダイオード(以下「LED」という)、およびその製造方法に関する。
【0002】
【従来の技術】
半導体結晶を構成材料とするLEDは表示用素子として現在幅広く用いられている。LEDの材料として、特にIII−V族化合物半導体が多く使用されている。III−V族化合物半導体は可視光、赤外光の波長に相当するバンドギャップを有するために発光素子への応用がなされてきた。
【0003】
III−V族化合物半導体の中でもGaAsPはLED用として需要は大きく、LEDの特性として発光出力が最も重要であり、その観点からのGaAsPにおける品質の向上が要求されてきた。
【0004】
GaAs1−xPxは、x=0.45を境界として、それよりGaP混晶比が小さい場合は直接遷移型の、大きい場合は間接遷移型のバンド構造を有する。直接遷移型の組成の場合、そのままでは十分な発光をしない。
【0005】
ここで、窒素をドープすることで発光出力を向上させる構成として、GaAs1−xPx(0.45<x<1)をエピタキシャル層とした場合について考察する。
【0006】
GaAs1−xPx(0.45<x<1)を発光層とするLEDは、発光効率を上げるため、アイソエレクトロニックトラップとして窒素(N)をドープして光出力を10倍程度向上させている。
【0007】
一般には石英製のリアクタを用いた気相成長法により、n型の層だけ成長した後に、発光層表面に亜鉛(Zn)を拡散してp型の層を形成してpn接合を得る。
【0008】
図2にGaAsPエピタキシャルウエハの一般的な構造を示す。例として単結晶基板がGaPである場合として説明する。
【0009】
図2において、n型のGaP単結晶基板20上に、この基板と同一組成のGaPホモ層24、基板20と最上層の格子定数の差を緩和するために混晶比xを連続的に1.0〜x0まで変化させたGaAs1−xPxグレード組成層21、GaAs1−x0Px0一定組成層22及び、窒素をドープしたGaAs1−x0Px0低キャリア濃度一定組成層23が順次エピタキシャル成長されている。
【0010】
エピタキシャルウエハの最上層である低キャリア濃度一定組成層23が発光層となり、LEDの発光波長を得るための一定組成x0を有する。そして、窒素とn型のドーパントであるテルル(Te)又は硫黄(S)を所定のキャリア濃度になるようにドープされている。
【0011】
通常は赤色発光(波長640nm)用としては、x0=約0.60である。窒素(N)はGaAsP中にドープされると発光センターとなるアイソエレクトロニックトラップとなる。アイソエレクトロニックトラップは電気的には不活性でキャリア濃度には寄与しない。このように発光層に窒素をドープすることで発光効率を約10倍に高めている。
【0012】
一般には気相成長では上記のエピタキシャル層はすべてn型であり、その後の加工工程で拡散によりエピタキシャル層表面から窒素をドープした一定組成層に4〜10μm程度の深さまで高濃度にZnを拡散してp型の層を形成する。
【0013】
これによりp型の層のキャリア濃度が高いため、良好なオーミック接触を安定に得ることができる。拡散法は数十〜百枚程度のエピタキシャルウエハを一度に拡散でき、コスト的にはあまり大きくならない。一般には気相成長法によりn型の層だけ成長した後で拡散法により形成する。これにより安定にLEDを得ることができる。
【0014】
しかし、拡散の熱ダメージによりエピタキシャル層の結晶の品質の低下により、またp型層の光吸収の増加により、LEDの光出力の低下を招いていた。著しく拡散温度を低くすればこれらの問題は解決されるが、p型層の厚さが薄くなりすぎ、表面のキャリア濃度の低下により良好なオーミック接触を得にくい。
【0015】
上記のように気相成長したエピタキシャルウエハはエピタキシャル層、GaP基板の両方ともn型の電導型を持つようになっている。特開平8−335715に記載されるようにGaAsPのエピタキシャル成長ではZnをドーパントとして用いて気相成長中にp層を成長することができる。
【0016】
このように気相成長でもp型ドーパントのZnをドープするとが知られていて、気相成長中にpn接合を形成できることは、結晶欠陥の少ない良好なpn接合が得られ、高い光出力のLEDが得られることが期待できる。
【0017】
しかし、近年、更に高い光出力がLEDに要求されるようになり、従来の拡散や単純な気相成長法では光出力の向上では限界に達していた。
【0018】
一方、直接遷移型の組成において、窒素ドープを必要としないで例えば、以下の様な諸構造により発光効率を上げようとすることが知られている。
【0019】
特開昭47−45481号公報には、pn接合部を有する第1の半導体領域と、この第1の半導体領域より大きなエネルギー禁制帯幅を有する第2の半導体領域を有する半導体発光装置が記載されている。
【0020】
その実施例(同公報第3図参照)として、n型のエピタキシャルウエハの表面から、第1の半導体領域9と第2の半導体領域8の境界より下0.5μmの深さまでZnを拡散させてp型の層とした発光ダイオードが記載されている。
【0021】
特開昭60−55678号公報には、GaAsP発光層上に、それよりバンドギャップの大きいGaInPからなる出力光取出側電極層を設けた発光ダイオードが開示されている。
【0022】
例えば、その実施例1にはn型GaAs基板上にn型GaAs0.61P0.39層およびp型のInGaP層を3μm積層し、更にZnを用いてP+拡散した発光ダイオードが記載されている。しかし、そのZnの拡散深さは不明である。
【0023】
特開昭64−35970号公報には、その下層よりもバンドギャップの大きい薄い表面層で被覆された発光ダイオードで、p領域が当該表面層を貫通して延びている発光ダイオードが開示されている。実施例として、薄い表面層の厚みが1.2μm、表面から亜鉛拡散されて形成されるp層全体の厚さが1.3μmである例が記載されている。
【0024】
さらに、雑誌「ジャーナル・エレクトロケミカル・ソサエティ」(J.Electrochem. Soc.:Vol.11,No.2,1969,p248−253)には、GaAs1−xPxダイオードであって、p+表面層とGaPを多く含む窓層とを設けたダイオードが記載されている。そのFig.1等には、n+GaAs基板上に20〜40μmのn層、8μm以下のp層、8μm以下のp+層が積層されたダイオードが示されている。
【0025】
これらの層は、組成としては、基板に近い側からx=0→0.45、x=0.45、x=0.45→0.55と記載されている。しかしながら、pn接合から窓層までの距離は不明である。
【0026】
【発明が解決しようとする課題】
したがって、本発明の目的は、拡散の熱ダメージによりエピタキシャル層の結晶の品質の低下、またp型層の光吸収の増加により、LEDの光出力の低下の問題が生じること、更にこれを解決すべく著しく拡散温度を低くすれば、p型層の厚さが薄くなりすぎ、表面のキャリア濃度の低下により良好なオーミック接触を得にくいという、上記した問題を解決するエピタキシャルウエハを提供することにある。
【0027】
さらに、本発明の目的は、一層の高光出力を実現し得るLED及びその材料となるガリウム(Ga)およびりん(P)を構成元素とするエピタキシャル層を有するエピタキシャルウエハ、特にGaAs1−xPx(0≦x≦1)エピタキシャルウエハを提供することである。
【0028】
さらに本発明の目的は、かかるエピタキシャルウエハの製造方法及び、これ用いて製造されるLEDを提供することにある。
【0029】
【課題を解決するための手段】
本発明者は、上記従来のLEDに存在した課題を解決すべく、LEDの光出力を向上させるために、pn接合で発光した光をより効率よく外部に取り出すことを鋭意検討した。
【0030】
その結果、特にp層内での光の吸収を抑えるために、これまで組成が一定、すなわちバンドギャップがpn接合部と同じであったp層内に、より光吸収の少ないバンドギャップが大きい層を設けることで上記従来のLEDに存在した課題が解決されるという構想に到達した。
【0031】
すなわちチップ化され、電極18の形成されたLEDの一般的構成を図3の例で考える。図3において、単結晶基板10上にエピタキシャル層16が形成されている。LEDをチップ化するためにエピタキシャル層16の一定組成層23(図2参照)にZnを拡散して、pn接合17を形成する。
【0032】
発光はエピタキシャル層16の表面側に近いpn接合17で生じる。発光はp層を通過して、LEDチップの外に取り出される。したがって、特にp層からの光の取り出し効率を上げればよい。具体的にはp層の光の吸収をできるだけ抑えることである。
【0033】
本発明ではpn接合部分17は単一組成の結晶であるホモ接合として欠陥の少ないpn接合を維持して、高光出力を得る。たとえばダブルへテロ(DH)構造は3元または4元混晶をエピタキシャル層としたとき、その組成を変化させた場合に、格子定数の差(ミスフィット)の少ない混晶系のみで有効ある。
【0034】
ヘテロ接合を形成しても、ミスフィット転位等の結晶欠陥が発生するため、良好な接合は得られ難い。AlGaAsなどのごく限られた混晶系のみが容易に良好なヘテロ接合を実現できる。
【0035】
本発明では、これを避けるためにpn接合はホモ接合として良質の接合とし、光を外部に取り出し易くするためにpn接合部17のバンドギャップよりも大きいエピタキシャル層を隣接させることで高光出力を得るものである。
【0036】
また、混晶の組成が違ってくると熱膨張係数も違ってくるため、成長後にエピタキシャルウエハが曲がり、内部応力を生じ、時には応力により転位等の結晶欠陥を発生することがある。内部応力がpn接合部17にかかると、光出力が低下する。
【0037】
そこで、pn接合部17よりバンドギャップが大きい層を、組成の変化がグレード組成である層とすることで、pn接合にかかる応力を減少できることを認識した。これによってさらに20〜50%高光出力を得ることができる。
【0038】
この構造は、予めn型の層のみでエピタキシャル成長した後に、エピタキシャル層表面にZnを拡散することでも実現できる。より安定に製造するために、n層のみならず、p層を気相成長中に形成することが有効である。
【0039】
同時に気相成長中に、p層内により大きなバンドギャップをもつ構造とすることで容易に製造できる。p型ドーパントとしてはZn、Mg、Be、Cd等があるが、その毒性からZnやMgが有用である。ドーピングガスとしては同ドーパント金属の有機金属ガスを用いることで容易にドープできる。
【0040】
かかる本発明の内容を特徴として纏めると次のようである。
【0041】
第1に、本発明に従うエピタキシャルウエハは、単結晶基板上に、少なくともGa、Pを構成元素として含有する化合物半導体のエピタキシャル層を有し、このエピタキシャル層中にpn接合を有し、このpn接合からエピタキシャル層表面側に2μm以上離れた領域に、バンドギャップが前記pn接合部分よりも大きいエピタキシャル層を有することを特徴とする。
【0042】
第2に、本発明に従うエピタキシャルウエハは、第1の特徴において、前記バンドギャップがpn接合部分よりも大きいエピタキシャル層の厚みが2〜200μmであることを特徴とする。
【0043】
第3に、本発明に従うエピタキシャルウエハは、第1又は第2の特徴において、前記pn接合部分のエピタキシャル層組成が、間接遷移型のバンド構造を有する組成であることを特徴とする。
【0044】
第4に、本発明に従うエピタキシャルウエハは、第1〜第3の特徴のいずれかにおいて、前記pn接合部分のGaP混晶比が0.45より大きく1以下であることを特徴とする。
【0045】
第5に、本発明に従うエピタキシャルウエハは、第4の特徴において、更に前記pn接合部分のエピタキシャル層組成が、GaAs1−xPx(0.45<x≦1)であることを特徴とする。
【0046】
第6に、本発明に従うエピタキシャルウエハは、第1〜第5の特徴のいずれかにおいて、前記pn接合部分のエピタキシャル層には、窒素がドープされていることを特徴とする。
【0047】
第7に、本発明に従うエピタキシャルウエハは、第1〜第6の特徴のいずれかにおいて、前記pn接合は、ホモ接合であることを特徴とする。
【0048】
第8に、本発明に従うエピタキシャルウエハは、第1〜第7の特徴のいずれかにおいて、前記バンドギャップがpn接合部分よりも大きいエピタキシャル層が、厚み2〜60μmのグレード組成層を含むことを特徴とする。
【0049】
第9に、本発明に従うエピタキシャルウエハは、第1〜第8の特徴のいずれかにおいて、前記バンドギャップがpn接合部分よりも大きいエピタキシャル層が、一定組成の層を含むことを特徴とする。
【0050】
第10に、本発明に従うエピタキシャルウエハは、第1〜第9の特徴のいずれかにおいて、前記バンドギャップがpn接合部分よりも大きいエピタキシャル層が、GaP混晶比がpn接合部分よりも0.02以上大きい部分を含むことを特徴とする。
【0051】
第11に、本発明に従うエピタキシャルウエハは、第1〜第10の特徴のいずれかにおいて、前記pn接合のエピタキシャル層表面側がp層であり、このp層の層厚は4〜202μmであることを特徴とする。
【0052】
第12に、本発明に従うエピタキシャルウエハは、第1〜第11の特徴のいずれかにおいて、前記基板はGaP基板であり、この基板とpn接合との間にはグレード組成層を有することを特徴とする。
【0053】
第13に、本発明に従うエピタキシャルウエハは、第1〜第12の特徴のいずれかにおいて、前記p型の層のキャリア濃度が、0.2〜70×1018cm−3であることを特徴とする。
【0054】
第14に、本発明に従うエピタキシャルウエハは、第1〜第13の特徴のいずれかにおいて、前記p型のドーパントが、亜鉛及び/又はマグネシウムであることを特徴とする。
【0055】
さらに、本発明に従う発光ダイオードは、上記第1〜第14のいずれかに記載のエピタキシャルウエハから製造されることを特徴とする。
【0056】
また、本発明に従うエピタキシャルウエハの製造方法は、第1に、上記第1〜第14のいずれかに記載のエピタキシャルウエハの製造方法であって、p型のエピタキシャル層を、p型ドーピングガスとして亜鉛又はマグネシウムの有機金属化合物を用いた気相成長法で成長することを特徴とする。
【0057】
さらに、本発明に従うエピタキシャルウエハの製造方法の特徴は、第2に前記気相成長法が、ハロゲン輸送法であることを特徴とする。
【0058】
また、本発明に従うエピタキシャルウエハの製造方法の特徴は、第3に前記気相成長法が、ハイドライド法であることを特徴とする。
【0059】
さらにまた、本発明に従うエピタキシャルウエハの製造方法の特徴は、第4に前記気相成長法が、有機金属気相成長法であることを特徴とする。
【0060】
本発明の更なる特徴は、以下の発明の実施の形態の説明から明らかになる。
【0061】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。なお、図において、同一又は、類似のものには同一の参照番号を付して説明する。
【0062】
図1は、本発明に従う実施の態様であるりん化ひ化ガリウムエピタキシャルウェハの層構成の断面を説明する図である。
【0063】
図1において、単結晶基板10上に形成されるエピタキシャル層は、少なくともGaとPを構成元素とするGaAs1−xPx(0≦x≦1)や、InGaP、AlInGaP等の3元または4元化合物半導体から選択される。このエピタキシャル層は、7つの層I〜VIIを有している。
【0064】
上記エピタキシャル層として選択される、少なくともGaとPを構成元素とする3元または4元化合物半導体が、LED用としての需要が大きいGaAs1−xPx(0≦x≦1)であって、pn接合がGaAs1−xPx(0.45<x<1)である場合について、以下に説明する。
【0065】
ただし、他のGaとPを構成元素とするエピタキシャル層であっても本発明としての効果は同じである。したがって、本発明の保護の範囲は、以下の説明における具体例には限定されるものではない。
【0066】
単結晶基板10は通常GaP又はGaAsの何れかが選択されるが、pn接合を形成するn層の低キャリア濃度領域13が間接遷移型のバンドギャップを持つGaAs1−xPx(0.45<x<1)からなる場合は、単結晶基板10はGaPであることが好ましい。LEDの発光色に対して透明であり、LEDとして高い光出力を得られるからである。
【0067】
GaAs1−xPx(0<x<1)エピタキシャル層を、組成の観点から見た場合、通常、少なくともグレード組成層11及び一定組成層12を有することが一般的である。単結晶基板10とエピタキシャル層の格子定数の差が大きいため、グレード組成層11を用いることでより結晶欠陥の少ない一定組成層12を得ることができる。
【0068】
単結晶基板10と同じ結晶であるホモ層14は特に形成されていなくてもよいが、ミスフィット転位の発生を抑制するために0.1〜100μm、好ましくは0.5〜20μmのホモ層14を形成した方が、安定に高輝度が得られるので好ましい。
【0069】
グレード組成層11の層厚は、好ましくは2〜100μm、より好ましくは10〜50μmである。前記グレード組成層のキャリア濃度は、0.5〜30×1017cm−13以上、好ましくは0.8×1017cm−3以上で、25×1017cm−3以下であり、平均で1〜10×1017cm−3であることがLED化した時の順方向電圧を下げ、良好な結晶性が得られるので好ましい。
【0070】
キャリア濃度は30×1017cm−3以上であれば、結晶性が悪化してエピタキシャル層表面に結晶欠陥が発生したり、LEDの光出力の低下を生じる等の問題がなく好ましい。
【0071】
グレード組成層11は、連続的な組成変化を有する構造のみに限定されず、複数の階段状の組成変化を有する構造であっても、エピタキシャル層の比抵抗は主にキャリア濃度で決定されるために効果は同じである。
【0072】
n層内の一定組成層12に隣接してpn接合17が形成される。pn接合17を形成するn層側が間接遷移型のバンドギャップをもつGaAs1−xPx(0.45<x<1)からなる場合は、pn接合のn層側は低キャリア濃度領域となる。
【0073】
低キャリア濃度領域13は、平均キャリア濃度が20×1015cm−3以下であることが好ましいが、0.5×1015cm−3以下になるとキャリア濃度の制御が困難となったり、比抵抗が高くなってLEDの順方向電圧の増加を招くことがある。このため、好ましい平均キャリア濃度は0.5〜9×1015cm−3である。
【0074】
低キャリア濃度層13の層厚は1〜50μm必要で、好ましくは1〜40μmである。50μmを超えると低キャリア濃度による抵抗の増大で順方向電圧の増加を招き好ましくない。
【0075】
低キャリア濃度層13以外のグレード組成層11との間の一定組成層12領域は、グレード組成層11と同じキャリア濃度範囲となることが、グレード組成層11と同様の理由により好ましい。
【0076】
その層厚はグレード組成層11の終点からpn接合の距離を5μm以上とすることが、グレード組成層中で生じたのミスフィット転位がpn接合まで伝播することを防ぐため好ましい。具体的には4.5〜50μmであり、成長時間が長くなるので4.5〜25μmとすることがさらに好ましい。
【0077】
一定組成層12中の組成はミスフィット転位等の結晶欠陥をできるだけ抑制するため、できる限り一定であることが望ましいが、±0.05以内、好ましくは±0.02以内の組成変動とする。
【0078】
本発明は、pn接合17のp層30側とn層側は同じ組成をもつ、いわゆるホモ接合である。pn接合17からエピタキシャル層表面側に少なくともバンドギャップがpn接合部分よりも大きい層31が含まれる。
【0079】
さらに、pn接合17はGaAs1−xPx(0.45<x<0.98)であり、pn接合からエピタキシャル層表面側に2μm以上離れた領域に、バンドギャップが大きい組成の層31が2〜200μmであればよい。バンドギャップがpn接合17より大きい層を2μm以上有することで、LED化した時の発光した光の吸収が減少して、高い光出力が得られる。
【0080】
ただし、バンドギャップがpn接合17より大きい層31がpn接合17から2μm以内に近づくと、組成変化による応力をpn接合17で受けるので好ましくない。
【0081】
p層30の全体の層厚は4μm以上あればよいが、LED化したときの電流の広がりを良くして光出力を増加させるためには4〜202μmあり、9〜60μmであれば成長時間が短くなりさらに好ましい。
【0082】
pn接合17よりバンドギャップが大きいp層31はGaAs1−xPx(0.45<x≦1)であることが、成長が容易であることから最も好ましい。
すなわち、p層30のエピタキシャル層表面側にはpn接合17より組成が0.02以上大きい一定組成層GaAs1−xPx(0.47≦x≦1)が1〜45μmあることが好ましい。階段状に急峻に組成変化をして成長して、その組成差を埋めることができる。
【0083】
pn接合17での応力をできるだけ小さくすること、またp層30でもより良い結晶性が要求されることから、p層30内のグレード組成層32はGaAs1−xPx(0.47≦x≦1)を2〜60μmの厚さでpn接合17より2μm以上離れたp層30内に設ける必要がある。
【0084】
これにより、結晶欠陥が逆にpn接合17に入ることを防止して、組成差によってエピタキシャル成長後に生じる応力の影響を減少できる。また、p層30の表面は一定組成層が必ずある必要はなく、グレード組成層32がエピタキシャル表面まで達していても良い。
【0085】
p層30内のグレード組成層32の組成変化は、連続的な組成勾配であっても複数階段状のグレード組成であっても効果は同じである。
【0086】
p層30のキャリア濃度は0.5〜70×1018cm−3であれば、電流拡がりを確保し、オーミック電極が安定に得られる。さらに好ましくは、キャリア濃度が0.5〜15×1018cm−3であれば高光出力が得られて好ましい。70×1018cm−3越えると、結晶欠陥が生じて光の吸収が生じるので好ましくない。
【0087】
なお、pn接合部分が、間接遷移型のバンドギャップをもつGaAs1−xPx(0.45<x<1)からなる場合は、LEDの発光出力を向上させるために、pn接合部分には少なくとも窒素がドープされることが一般的である。
【0088】
ここで、上記に説明したエピタキシャルウエハの製造に当たっては、複雑なエピタキシャル層構造を製造できる気相エピタキシャル成長法の中から選択される。
【0089】
具体的にはハロゲン輸送法または有機金属気相成長法(MOCVD)のいずれかが選択される。ハロゲン輸送法は高純度のエピタキシャル層が得られ、量産性に富むことから有利であり、特にハイドライド法が一般的である。
【0090】
p層30の形成は、気相成長中に連続で成長することが好ましい。Znを拡散してもp層30は形成できるが、拡散深さがウエハ全面で一定となる等、その制御性が少ない。一方、拡散法ではキャリア濃度の制御が困難であり、1×1019cm−3以上の高キャリア濃度になり、光の吸収が生じ、LEDの光出力の向上に限界がある。
【0091】
p型ドーパントとしてはZn、Mg、Cd、Be等があるが、毒性からCdとBeは好ましくない。高光出力が得られ、有害性も少ないことからZn又は、Mgが選択される。
【0092】
ドーパントガスとしては高純度の原料が得られ、使いやすいことから、Znはジエチル亜鉛(C2H5)2Zn、Mgならシクロペンタジエニルマグネシウム(C5H5)Mg(またはCp2Mg)などの有機金属化合物が使用される。特にドーパントをMgにすれば、5×1018cm−3以上の高濃度により容易にドープ可能であるので更に好ましい。
【0093】
エピタキシャル層内のキャリア濃度プロファイルの測定方法は、エピタキシャル層を斜めに研磨した後、ショットキーバリアダイオードをその表面に作製し、C−V法によって測定できる。
【0094】
また日本バイオ・ラッド・ラボラトリー社のセミコンダクタ・プロファイル・プロッタPN4300の様に、直接エピタキシャル層を電解液でエッチングしながら測定する方法でも同様に測定できる。
【0095】
【実施例】
以下本発明を実施例により、更に詳細に説明するが、本発明は、その要旨を越えない限り、下記実施例により限定されるものではない。
【0096】
(実施例1)
GaP単結晶基板および高純度ガリウム(Ga)を、Ga溜め用石英ボ−ト付きのエピタキシャル・リアクタ−内の所定の場所に、それぞれ設置した。
GaP単結晶基板10として、は硫黄(S)が3〜10×1017原子個/cm3添加され、直径50mmの円形で、(100)面から[001]方向に10゜偏位した面をもつGaP基板を用いた。これらを、同時にホルダー上に配置し、ホルダーを毎分3回転させた。
【0097】
以下は標準状態に換算したガスの流量単位としてSCCMを用いて説明する。
次に窒素(N2)ガスを前記リアクタ−内に15分間導入し、空気を充分置換除去した後、キャリヤ・ガスとして高純度水素(H2)を9600SCCM導入し、N2の流れを止め昇温工程に入った。
【0098】
上記Ga入り石英ボ−ト設置部分及び、GaP単結晶基板設置部分の温度が、それぞれ800℃及び930℃一定に保持されていることを確認した後、尖頭発光波長649±10nmのGaAs1−xPxエピタキシャル膜の気相成長を開始した。
【0099】
最初、濃度50ppmに水素ガスで希釈したn型不純物であるジエチルテルル((C2H5)2Te)を15SCCM導入し、周期律表第III族元素成分原料としてのGaClを369SCCM生成させるために、高純度塩化水素ガス(HCl)を上記石英ボ−ト中のGa溜に毎分369cc吹き込み、Ga溜上表面より吹き出させた。
【0100】
他方周期律表第V族元素成分として、H2で濃度10%に希釈したりん化水素(PH3)を毎分737SCCM導入しつつ、20分間にわたり、第1層(図1:I)であるGaP層をGaP単結晶基板10上に成長させた。
【0101】
次に、(C2H5)2Te、HCl、PH3の各ガスの導入量を変えること無く、H2で濃度10%に希釈したひ化水素(AsH3)の導入量を、0SCCMから毎分603SCCMまで徐々に増加させ、同時にGaP基板の温度を930゜Cから870゜Cまで徐々に降温させ、90分間にわたり、第2層(図1:II)であるGaAs1−xPxエピタキシャル層を、第1層のGaPエピタキシャル層上に成長させた。
【0102】
次の30分間は、(C2H5)2Te、HCl、PH3、AsH3の導入量を変えることなく、即ち、それぞれ15SCCM,369SCCM,737SCCM,603SCCMに保持しつつ、第3層(図1:III)のGaAs1−xPxエピタキシャル層を第2層のGaAs1−xPxエピタキシャル層上に成長させた。
【0103】
次の10分間は(C2H5)2Teの導入量を0.2SCCMにし、HCl、PH3、AsH3の量を変えることなく導入しながら、これに窒素アイソ・エレクトロニック・トラップ添加用として214SCCMの高純度アンモニア・ガス(NH3)を添加して第4層(図1:IV)のGaAs1−xPxエピタキシャル層を第3層のGaAs1−xPxエピタキシャル層上に成長さた。
【0104】
次の20分間は(C2H5)2Te、HC1、PH3、AsH3、NH3の量を変えることなく、p型ドーパンントを供給するために25℃に一定に保温された(C2H5)2Zn入りのボンベにH2ガスを50SCCM導入して(C2H5)2Zn蒸気を含ませて、そのH2ガスを導入して、第5層(図1:V)のp型のGaAs1−xPxエピタキシャル層を第4層のGaAs1−xPxエピタキシャル層上に成長させた。
【0105】
次の20分間は(C2H5)2Te、HC1、PH3、NH3の量を変えることなく、AsH3を0SCCMまで徐々に減少させて第6層(図1:VI)のp型のGaAs1−xPxエピタキシャル層を第5層のGaAs1−xPxエピタキシャル層上に成長させた。
【0106】
最終の20分間は、(C2H5)2Te、HC1、PH3、NH3(C2H5)2Znの量を変えることなく、第7層(図1:VII)のGaPエピタキシャル層を第6層のGaAs1−xPxエピタキシャル層上に成長させて、気相成長を終了した。
【0107】
この時、第1層目〜第7層のエピタキシャル層の膜厚は、それぞれ4μm、38μm、16μm、7μm、15μm、10μm、6μmであった。キャリア濃度は、エピタキシャル層を約1゜斜めに研磨して、その表面にショットキーバリアダイオードを作製して測定した。
【0108】
第5層〜7層を含むp層30のキャリア濃度は、2〜4×1018cm−3であった。第4の層はn型であり、そのキャリア濃度は、3×1015cm−3であった。他の第1層〜第3層のキャリア濃度は1〜3×1017cm−3であった。
【0109】
ここで、各層の組成はX線マイクロアナライザによって測定した。組成の計算はZAF補正法を用いた。第4層と第5層の境界であるpn接合部17の組成はx=0.57であった。第7層はGaP層であり、組成はx=1であった。
【0110】
pn接合17の組成は発光波長でほぼ決定される。エピタキシャル層の組成は、PH3とAsH3の導入量比率PH3/(PH3+AsH3)に比例して決定されるため、発光波長がわかれば窓層の組成が同比率で決定できる。
【0111】
続いて、真空蒸着により、図3に示すように電極18の形成等を行って300μm×300μm×280μm(厚さ)の角柱型発光ダイオード(LED)を形成して、エポシキコートなしで測定した。5チップで順方向電圧が1.9±0.1で光出力は85でピーク波長は650±1nmであった。
【0112】
(実施例2)
第6層において、AsH3の導入量を603SCCMから450SCCMまで徐々に減少させて成長させたこと、第6層の成長でAsH3を450SCCMで導入量を一定にした以外の条件はすべて実施例1に同じで、気相成長を終了した。
【0113】
第1層〜第7層のエピタキシャル層の膜厚はそれぞれ5μm、39μm、15μm、8μm、14μm、12μm、10μmであった。各層の組成は発光波長から第4層と第5層は0.57であった。第7層は導入量のPH3とAsH3の導入量比率と発光波長の組成からx=0.64であった。またX線マイクロアナライザの測定とも一致した。
【0114】
続いて、真空蒸着による電極形成等を行って300μm×300μm×280μm(厚さ)の角柱型発光ダイオードを形成して、エポキシコートなしで測定した。5チップで順方向電圧1.9±0.1Vで光出力は88でピーク波長は650±1nmであった。
【0115】
(比較例1)
第5層を60分成長し、第6層を成長しないで第7層のGaPエピタキシャル層を直接に第5のGaAs1−xPxエピタキシャル層上に成長させた。それ以外の条件はすべて実施例1に同じで、気相成長を終了した。
【0116】
エピタキシャル膜の第1層〜第7層のエピタキシャル層の膜厚は、それぞれ5μm、39μm、15μm、8μm、24μm、0μm、6μmであった。このとき、エピタキシャル層表面は荒れていた。
【0117】
続いて、真空蒸着による電極形成等を行って300μm×300μm×280μm(厚さ)の角柱型発光ダイオードを形成して、エポキシコートなしで測定した。5チップで順方向電圧1.9±0.1Vで光出力は58でピーク波長は650±1nmであった。
【0118】
(比較例2)
第5層を60分成長し、第6層と第7層を成長しない以外の条件はすべて実施例1に同じで、気相成長を終了した。エピタキシャル膜の第1〜第5のエピタキシャル層の膜厚はそれぞれ5μm、38μm、15μm、8μm、25μmであった。
【0119】
続いて、真空蒸着による電極形成等を行って300μm×300μm×280μm(厚さ)の角柱型発光ダイオードを形成して、エポキシコートなしで測定した。5チップで順方向電圧1.9±0.1Vで光出力は60でピーク波長は650±1nmであった。
【0120】
(比較例3)
第4層を50分成長し、第5〜7層を成長しない以外の条件はすべて実施例1に同じで、気相成長を終了した。エピタキシャル膜の第1〜第4のエピタキシャル層の膜厚はそれぞれ5μm、38μm、14μm、20μmであった。
【0121】
第4層のキャリア濃度は表面にショットキーバリアバイオードを作製してC−V法で測定して7×1015cm−3であった。
【0122】
次にp層を形成するためにZnAs2を拡散源としてp型不純物であるZnと何もコーティングしないエピタキシャルウエハを石英アンプル内に封入し、760゜Cの温度で拡散させて表面から4μmの深さまでにpn接合を形成した。
【0123】
p層のキャリア濃度は、日本バイオ・ラッド・ラボラトリー社のセミコンダクタ・プロファイル・プロッタPN4300によって測定した。p層のキャリア濃度表面側は1.5×1019cm−3であった。
【0124】
続いて、真空蒸着による電極形成等を行って300μm×300μm×280μm(厚さ)の角柱型発光ダイオードを形成して、輝度値は10A/cm2エポシキコートなしで測定した。5チップで順方向電圧1.9±0.1Vで光出力は48でピーク波長は650±1であった。
【0125】
【発明の効果】
上記の実施例と比較例の説明から明らかなように、本発明によれば、化合物半導体エピタキシャルウエハとして、GaAsPエピタキシャルウエハを用いることにより特に高い光出力をもつLEDを実現できる。これにより、GaAsPのLED需要の増加が期待される。
【0126】
なお、上記実施例説明において、単結晶基板はGaPを例にしたが、GaAsでも本発明としての効果は同じである。また、エピタキシャル層がInGaP、InGaAsP、AlGaInPでも効果も同じである。
【図面の簡単な説明】
【図1】本発明のりん化ひ化ガリウムエピタキシャルウェハの層構成の断面を説明する図である。
【図2】りん化ひ化ガリウムエピタキシャルウェハの一般的層構成の断面を説明する図である。
【図3】本発明の対象とする発光ダイオードの一般的構成の断面を説明する図である。
【符号の説明】
10 単結晶基板、
11 グレード組成層、
12 一定組成層、
13 低キャリア濃度領域、
14 ホモ層、
15 高キャリア濃度領域、
16 エピタキシャル層、
17 pn接合、
18 電極
20 GaP単結晶基板、
21 GaAs1−xPxグレード組成層、
22 GaAs1−x0Px0一定組成層、
23 窒素ドープGaAs1−x0Px0低キャリア濃度一定組成層、
24 GaPホモ層
30 p層
31 pn接合よりバンドギャップが大きい層
32 p層内のグレード組成層
Claims (17)
- 単結晶基板上に、少なくともGa、Pを構成元素として含有する化合物半導体のエピタキシャル層を有する発光ダイオード用のエピタキシャルウエハであって、
該エピタキシャル層中にpn接合を有し、該pn接合からエピタキシャル層表面側に2μm以上離れた領域に、バンドギャップが該pn接合部分よりも大きく、厚みが2〜200μmであるエピタキシャル層を有し,且つ
該バンドギャップがpn接合部分よりも大きいエピタキシャル層が,厚み2〜60μmのグレード組成層を含むことを特徴とするエピタキシャルウエハ。 - 前記pn接合部分のエピタキシャル層組成が、間接遷移型のバンド構造を有する組成であることを特徴とする請求項1記載のエピタキシャルウエハ。
- 前記pn接合部分のGaP混晶比が0.45より大きく1以下であることを特徴とする請求項1又は2に記載のエピタキシャルウエハ。
- 前記pn接合部分のエピタキシャル層組成が、GaAs1-xPx(0.45<x≦1)であることを特徴とする請求項3記載のエピタキシャルウエハ。
- 前記pn接合部分のエピタキシャル層には、窒素がドープされていることを特徴とする請求項1〜4のいずれかに記載のエピタキシャルウエハ。
- 前記pn接合は、ホモ接合であることを特徴とする請求項1〜5のいずれかに記載のエピタキシャルウエハ。
- 前記バンドギャップがpn接合部分よりも大きいエピタキシャル層が、前記pn接合部分よりGaP混晶比の組成が大きい一定組成層を含むことを特徴とする請求項1〜6のいずれかに記載のエピタキシャルウエハ。
- 前記バンドギャップがpn接合部分よりも大きいエピタキシャル層が、GaP混晶比がpn接合部分よりも0.02以上大きい部分を含むことを特徴とする請求項1〜7のいずれかに記載のエピタキシャルウエハ。
- 前記pn接合のエピタキシャル層表面側がp層であり、該p層の層厚は4〜202μmであることを特徴とする請求項1〜8のいずれかに記載のエピタキシャルウエハ。
- 前記基板はGaP基板であり、該基板とpn接合との間にはグレード組成層を有することを特徴とする請求項1〜9のいずれかに記載のエピタキシャルウエハ。
- 前記p層のキャリア濃度が、0.2〜70×1018cm-3であることを特徴とする請求項9に記載のエピタキシャルウエハ。
- 前記p層のドーパントが、亜鉛及び/又はマグネシウムであることを特徴とする請求項9に記載のエピタキシャルウエハ。
- 請求項1〜12のいずれかに記載のエピタキシャルウエハから製造してなることを特徴とする発光ダイオード。
- 請求項1〜12のいずれかに記載のエピタキシャルウエハの製造方法において、p型のエピタキシャル層を、p型ドーピングガスとして亜鉛又はマグネシウムの有機金属化合物を用いた気相成長法で成長することを特徴とするエピタキシャルウエハの製造方法。
- 前記気相成長法が、ハロゲン輸送法であることを特徴とする請求項14記載のエピタキシャルウエハの製造方法。
- 前記気相成長法が、ハイドライド法であることを特徴とする請求項14記載のエピタキシャルウエハの製造方法。
- 前記気相成長法が、有機金属気相成長法であることを特徴とする請求項14記載のエピタキシャルウエハの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6016199A JP3625677B2 (ja) | 1999-03-08 | 1999-03-08 | エピタキシャルウエハと発光ダイオード及び、その製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6016199A JP3625677B2 (ja) | 1999-03-08 | 1999-03-08 | エピタキシャルウエハと発光ダイオード及び、その製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000261030A JP2000261030A (ja) | 2000-09-22 |
JP3625677B2 true JP3625677B2 (ja) | 2005-03-02 |
Family
ID=13134162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6016199A Expired - Fee Related JP3625677B2 (ja) | 1999-03-08 | 1999-03-08 | エピタキシャルウエハと発光ダイオード及び、その製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3625677B2 (ja) |
-
1999
- 1999-03-08 JP JP6016199A patent/JP3625677B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000261030A (ja) | 2000-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0497350B1 (en) | Crystal growth method for gallium nitride-based compound semiconductor | |
JPH08139361A (ja) | 化合物半導体発光素子 | |
JP3143040B2 (ja) | エピタキシャルウエハおよびその製造方法 | |
US6831304B2 (en) | P-n junction type boron phosphide-based semiconductor light-emitting device and production method thereof | |
TWI389338B (zh) | A light-emitting element manufacturing method, a compound semiconductor wafer, and a light-emitting element | |
JP3625686B2 (ja) | 化合物半導体エピタキシャルウエハとその製造方法及び、これを用いて製造される発光ダイオード | |
JPH08255929A (ja) | 半導体発光素子の製法 | |
JP4024965B2 (ja) | エピタキシャルウエハおよび発光ダイオード | |
JP3625677B2 (ja) | エピタキシャルウエハと発光ダイオード及び、その製造方法 | |
JP3762575B2 (ja) | 発光ダイオード | |
JP3633806B2 (ja) | エピタキシャルウエハ及び、これを用いて製造される発光ダイオード | |
JP2006186005A (ja) | 窒化物系化合物半導体、その製造方法及びその用途 | |
JP4572942B2 (ja) | エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ | |
JP2001036138A (ja) | エピタキシャルウエハの製造方法 | |
JP2009212112A (ja) | エピタキシャルウェーハ | |
JP3525704B2 (ja) | りん化ひ化ガリウムエピタキシャルウエハ及び発光ダイオード | |
JP2001036133A (ja) | エピタキシャルウエハおよび発光ダイオード | |
JP3140037B2 (ja) | 半導体発光素子 | |
JPH05343740A (ja) | りん化ひ化ガリウムエピタキシャルウエハ | |
JP4156873B2 (ja) | エピタキシャルウエハの製造方法 | |
US20170155016A9 (en) | Nitride semiconductor crystal and method of fabricating the same | |
JP2004153169A (ja) | p形リン化硼素半導体層の製造方法、化合物半導体素子、ツェナーダイオード、及び発光ダイオード | |
JP3785705B2 (ja) | りん化ひ化ガリウム混晶エピタキシャルウエハおよび発光ダイオード | |
JP4376373B2 (ja) | 半導体発光素子用エピタキシャルウェハ、その製造方法および半導体発光素子 | |
JP5862472B2 (ja) | エピタキシャルウェーハの製造方法及びエピタキシャルウェーハ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040929 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20041021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041130 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |