[go: up one dir, main page]

JP2010217301A - ベルト搬送装置および画像形成装置 - Google Patents

ベルト搬送装置および画像形成装置 Download PDF

Info

Publication number
JP2010217301A
JP2010217301A JP2009061363A JP2009061363A JP2010217301A JP 2010217301 A JP2010217301 A JP 2010217301A JP 2009061363 A JP2009061363 A JP 2009061363A JP 2009061363 A JP2009061363 A JP 2009061363A JP 2010217301 A JP2010217301 A JP 2010217301A
Authority
JP
Japan
Prior art keywords
belt
mark
endless belt
endless
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061363A
Other languages
English (en)
Inventor
Koichi Kudo
工藤宏一
Hideaki Kifune
木船英明
Takuro Kamiya
神谷拓郎
Junya Takigawa
瀧川潤也
Hiroaki Takagi
高木広彰
Yuichi Hirose
広瀬雄一
Kazuya Nagao
長尾和也
Toshihiro Okamoto
岡本敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009061363A priority Critical patent/JP2010217301A/ja
Priority to US12/659,564 priority patent/US8351830B2/en
Publication of JP2010217301A publication Critical patent/JP2010217301A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】ベルト斜行センシングにおいてベルト端部形状の影響を受けず、更に時間遅延が無く精度の高い検出が行われるベルト搬送装置を提供する。
【解決手段】ベルト搬送装置は、複数のローラに張架された無端状ベルトと、いずれか1つのローラに連結しこれを駆動させる駆動手段と、前記無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトの搬送速度を検出するベルト速度検出手段と、前記複数のベルト速度検出手段によりそれぞれ検出されたベルト搬送速度の差から前記無端状ベルトの走行方向における傾きを算出するベルト傾き算出手段とからなる。
【選択図】図6

Description

本発明は、ベルト搬送装置、特に複写機やプリンタ等の画像形成装置に用いられる各種のベルト搬送装置およびそれを備えた画像形成装置に関する。
また、本発明は、各種の機器における高精度な速度制御が必要なベルト状の無端移動部材の速度制御に利用でき、特に、各種の画像形成装置の画像形成に係わる中間転写ベルトや感光体などの無端移動部材を高精度に速度制御または位置制御するのに適している。そして、当該ベルト搬送装置をカラー画像形成装置に適用すれば、色ずれ等を防いで、常に高品質なフルカラー画像を形成することが可能になる。
従来、電子写真方式の画像形成装置において、転写媒体である中間転写ベルト、あるいは転写媒体である記録用紙の搬送手段として無端状搬送ベルトを用いた画像形成装置が知られている。これらの装置に使用されるベルトは複数のローラに張架され循環駆動されるが、このときベルトの搬送方向と直行する方向(主走査方向)にベルト位置が移動するベルト寄りやベルト搬送方向が主走査方向に傾斜するベルト斜行が発生することがある。
ベルト斜行が発生すると、中間転写ベルトや記録用紙など転写媒体上の画像形成位置にずれが生じるため、これが画像の歪みとなる。また、ブラック(以下、Kとする。)、イエロー(以下、Yとする。)、マゼンタ(以下、Mとする。)、シアン(以下、Cとする。)の単色画像を各々形成し、それらを転写媒体上で重ね合わせてカラー画像を得るカラー画像形成装置においては、画像形成位置のずれが、各色トナー画像間の色ずれとなって現れる。これらはいずれも画像品質劣化につながるため高画質の画像を得るためには、ベルト斜行に関して、何らかの対策を講じる必要がある。
上記問題に対処するため、種々の方法が提案されており、その一つとして、無端状ベルトに寄りガイド部材を設ける方法が採用されている。しかしながら無端状ベルトに発生した主走査方向の力を、ベルト表面に設けた寄りガイド部材をベルト搬送ローラ端面に当接させて規制し、無端状ベルトの寄りを抑制しているため、ベルトに形成する寄りガイド部材の主走査方向触れおよび搬送ローラ端面の振れに起因するベルト斜行は抑制することができず、主走査方向の位置ずれによる画像歪み、色ずれが発生する欠点がある。
それに対し、特許文献1(特開2005−148127)では、ベルトに設けた寄りガイド部材でベルトの寄りを規制する方式において、あらかじめ測定しておいたベルト一周期分の蛇行成分に基づき、感光体に形成する潜像の位置を制御する構成が記されている。
また、無端状ベルトに寄りガイド部材を設ける以外の方法としては、特許文献2(特開2006‐276427)では、無端状ベルトが搬送方向に対して傾斜した状態で搬送されることを検出する斜行検出手段と、この斜行検出手段によって無端状ベルトの斜行が検出された場合に、斜行検出手段によって検出された無端状ベルトの斜行量に基づいて、画像形成手段により画像の歪みを補正する構成が記されている。
しかし、特許文献1のような、無端状ベルトに寄りガイド部材を設けることで、ベルト寄りを抑制するとともに、ガイド部材では抑制できないベルト蛇行の影響を感光体上の潜像形成位置を制御することで抑制する方法には以下のような問題がある。
具体的には、ベルト搬送ローラ端面への触れ、および寄りガイド部材の主走査方向振れを含めたベルト一周期分の蛇行成分をあらかじめ測定するため、ローラ端面、およびガイド部材双方の振れに起因するベルト蛇行を抑制できるものの、無端ベルトおよび寄りガイド部材の経時的な変形や温度、湿度等の環境変化に伴う変形に対応するためには、蛇行成分の測定を頻繁に実施する必要があり、画像形成動作を頻繁に中断することとなるため、画像出力高速化の大きな妨げとなる。また、振動の影響等による動的な変形に対しては、対応が困難であるという問題もある。また、無端状ベルトに寄りガイド部材を設けることで、ベルト寄りを抑制する方法では、ベルトを高速で駆動した場合、寄りガイド部材に大きな外力が加わって、ベルトおよび寄りガイド部材の座屈や破損を招きやすく、画像出力高速化が困難である。
また、特許文献2のような、無端状ベルトに寄りガイド部材を設けず、ベルト斜行を検出することにより、感光体上の潜像形成位置を制御する方法では以下のような問題がある。
具体的にはベルト斜行を検出する第1の方法として、ステアリングローラの制御信号を用いる方法が挙げられる。しかし、ステアリングローラはベルト上の各部分が1周後に常に同じ位置を通過するよう傾斜を調整することでベルト寄りを補正するものであり、1周の間の各ローラ間でどのような斜行が生じるかは各ローラの傾斜状態により決定される。このため画像歪みや色ずれに影響する感光体からの画像転写面におけるベルト斜行は、ステアリングローラ傾斜のみで決定されるわけではない。温度変動や経時的変動等によりステアリングローラ以外のローラに傾斜が生じた場合、ステアリングローラの制御信号ではベルト斜行を正確に検出することはできず、正確なベルト斜行補正は不可能となる。
また、ベルト斜行を検出する第2の方法として、画像位置検出用のマークを中間転写ベルトの非画像領域に形成し、マーク検出手段によって検出する方法が挙げられる。しかし、この方法では画像位置検出用マークを形成するためには感光体に形成したマーク潜像をトナーで現像し中間転写ベルト上に転写する必要があり、常時ベルト斜行検出を行うためには大量のトナーが消費され、画像形成コストが増大する問題がある。また、通常の画像は中間転写ベルトから紙等の記録材に転写されるのに対し、画像位置検出用マークは転写されることなくクリーニング部材により除去する必要があり、中間転写ベルトクリーニングの負荷が増大するとともにクリーニング不良の原因ともなる。
さらに、ベルト斜行を検出する第3の方法として、感光体からの画像転写面のベルト搬送方向における複数位置でベルトエッジを検出する方法が挙げられる。しかし、この方法では本来、ステアリングローラ調整のためのベルトエッジ検出には1つだけ配置すればよいベルトエッジセンサを複数配置する必要があるため、コストが増加する。さらに、フルカラー画像形成のために複数の感光体が配置される画像転写面のベルト搬送方向に複数のベルトエッジセンサを配置することはレイアウト的に困難であり、ベルト周長増大による装置の大型化やコスト増大の原因となる。
また、ステアリングローラによるベルト寄り制御のための信号としてベルトエッジを検出しているため、エッジセンサによって検出されるエッジデータは、ベルトエッジの形状を含んだ形状となる。そのため、予め測定したエッジデータを参照してベルトの蛇行を制御するには、ベルトと同期を取る必要があるので、ベルトのホームポジションを検出するベルトホームセンサからの検出信号が必要となる。さらに、中間転写ベルトには、当該中間転写ベルトの製造誤差によって、その搬送方向と直交する方向に移動する所謂「ベルト蛇行」が生じることがある。そのため、中間転写ベルトのエッジを、エッジセンサによって検出し、エッジセンサによって検出された中間転写ベルトの端部位置に応じて、ステアリングローラを制御することにより、「ベルト蛇行」を防止して、中間転写ベルトの端部位置が一定となるように制御する際、中間転写ベルトは、中間転写ベルトの端部位置が一定となるように制御しても、中間転写ベルトの端部位置そのものが、所定の位置から周期的にずれている場合など、「ベルト蛇行」が残ってしまうおそれがある。そのため、予め、ステアリングローラの制御を行わない状態で、中間転写ベルトの端部位置の周期的な変動をエッジセンサによって検出しておき、中間転写ベルトの端部位置の周期的な変動を平均化したデータを、ステアリング制御回路などに設けられた記憶手段に記憶させておくようにしている。そして、上記記憶手段に記憶された中間転写ベルトの端部位置の変動情報に基づいて、実際に生じる中間転写ベルトの端部位置の変動を検出して、「ベルト蛇行」を防止するように構成されている。これらの要因により、装置コスト増大は避けられない構成である。
そこで、本発明は、上記問題を鑑みてなされたものであり、寄りガイド部材等のベルト高速駆動の障害となる構成を用いることなく、画像出力の大幅な高速化が可能であるとともに、簡単かつ低コストな構成で、正確に無端ベルトの主走査方向移動(寄り)を検出し、確実に補正するとともに、正確に無端ベルトの斜行を検出し、画像担持体画像形成位置を確実に補正することで、主走査方向の位置ずれによる画像歪み、色ずれを防止できる出力画像の大幅な高画質化が可能な画像形成装置を実現することを目的とする。
この目的は、本発明によれば、ベルト搬送装置が、複数のローラに張架された無端状ベルトと、いずれか1つのローラに連結しこれを駆動させる駆動手段と、無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトの搬送速度を検出するベルト速度検出手段と、複数のベルト速度検出手段によりそれぞれ検出されたベルト搬送速度の差から無端状ベルトの走行方向における傾きを算出するベルト傾き算出手段とからなることで解決される。
また、ベルト搬送装置は、複数のローラに張架された無端状ベルトと、いずれか1つのローラに連結しこれを駆動させる駆動手段と、無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトの搬送距離を検出するベルト搬送距離検出手段と、複数のベルト搬送距離検出手段によりそれぞれ検出されたベルト搬送距離の差から無端状ベルトの走行方向における傾きを算出するベルト傾き算出手段とからなっても好ましい。
また、ベルト速度検出手段は、無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、スケール部のマークを検出するマーク検出手段と、マーク検出手段の検出結果に基づいて無端状ベルトの速度を算出するベルト速度算出手段とからなると好ましい。
また、ベルト搬送距離検出手段は、無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、スケール部のマークを検出するマーク検出手段と、マーク検出手段の検出結果に基づいて無端状ベルトの移動距離を算出するベルト移動距離算出手段とからなると好ましい。
また、ベルト傾き算出手段は、複数のマーク検出手段からそれぞれから得られたマーク検知信号の時間差と、ベルト速度算出手段またはベルト移動距離算出手段により算出された結果に基づいて無端状ベルトの走行方向に対する傾きを算出すると好ましい。
また、スケール部は、無端状ベルトの走行方向と直交するベルト幅方向の両端部に設けられており、マーク検出手段は、スケール部に対応するようにベルト幅方向の両端部に設けられていると好ましい。
また、マーク検出手段は、無端状ベルトの走行方向の長さの中間位置の近傍に配置されていると好ましい。
また、無端状ベルトのベルト幅方向の一方端部に設けられたスケール部のマークの間隔と他方端部に設けられたスケール部のマークの間隔がそれぞれ略同一であると好ましい。
また、無端状ベルトのベルト幅方向の一方端部に設けられるマークの間隔が、他方端部に設けられるマークの間隔よりも大きいと好ましい。
また、無端状ベルトのベルト幅方向の一方端部に設けられるスケール部にはマークの間隔が異なる単一または複数のマーク間隔不連続部分を設けられており、他方端部には該マーク間隔不連続部分に対応する位置に一方端部に設けられるマークと異なる特定マークが設けられると好ましい。
また、特定マークはマーク間隔不連続部分を検出するためのマークであり、マーク検出手段は特定マークを検出すると不連続検知信号を出力すると好ましい。
また、無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトのベルト幅方向の位置を検出するベルト寄り検出手段を有すると好ましい。
また、ベルト寄り検出手段は、無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、スケール部のマークを検出するマーク検出手段と、マーク検出手段の検出結果に基づいて無端状ベルトのベルト幅方向の位置の変化を算出するベルト寄り量算出手段とからなると好ましい。
また、ベルト寄り検出手段からの検出結果に基づいて無端状ベルトをベルト幅方向に移動させるベルトの寄りを補正するベルト寄り補正手段を有すると好ましい。
また、マーク検出手段は、1次元または2次元のセンサであると好ましい。
また、本発明に従う画像形成装置は、複数の感光体と、該感光体上に潜像を形成する潜像形成手段と、該潜像形成手段により形成された潜像を可視化する現像手段と、感光体上に形成された可視像を一次転写する中間転写体と、該中間転写体上に転写された転写像を記録媒体に転写する二次転写手段とを備え、中間転写体を前述のベルト搬送装置とすると好ましい。
また、感光体上に形成される潜像の主走査方向位置を補正する潜像形成位置補正手段をさらに有し、該潜像形成位置補正手段は、ベルト傾き算出手段の算出結果に基づき感光体上に形成される潜像の形成位置を補正すると好ましい。
本発明に従うベルト搬送装置によれば、寄りガイド部材等を使用せず、無端ベルトの両端部において副走査方向に一定間隔で連続して設けられた複数のマークからなるスケール部と、これらマークを読み取るために副走査方向と直交する主走査方向に無端ベルトの両端部に配置されたマーク検出手段を使用することで、ベルト斜行センシングにおいてベルト端部形状の影響を受けることなく、マーク検出信号を用いて移動速度または移動距離によって斜行角度が求められ、これに基づき斜行補正や画像の補正が可能である。
さらに、本発明によれば、ベルトの搬送速度や移動距離が検出できていることから、別個のセンサを追加することなくベルト搬送速度の検知・制御を行うことができ、低コスト化が達成される。
また、マークが主走査方向に一定の大きさで形成されることで、両端に配置されたマーク検出手段の受光する光量および強度が変化するため、これに基づきベルトの主走査方向の移動距離を正確かつ簡単に演算される。
また、マーク検出手段として、安価で高精度の1次元または2次元のイメージセンサを使用することが出来る。
また、無端ベルトを主走査方向に移動させる寄り補正手段を用いることで、寄りガイド部材等を使用せず、正確かつ簡単にベルトの寄りを補正することが出来る。
また、両端部に設けられるマークの間隔を同一にすることで、簡単かつ正確にマーク検出信号を用いてベルト移動速度および移動距離を算出することが出来る。
また、他方の端部に設けられるマークの間隔が、一方の端部に設けられるマークの間隔より大きいことで、比較的コストがかかるスケール部を片側のみとし、他方はマークのみとすることでコストがより安価に抑えられる。
また、一方の端部に単一または複数の継ぎ目を有するマークが設けられ、他方の端部における、継ぎ目に対応する主走査方向の同一位置に、当該マークと異なる特定のマークが設けられることで、通常生じる継ぎ目にも対応することが出来る。
また、特定マークは不連続を検出するためのマークであり、マーク検出手段は特定マークを検出すると不連続検知信号を出力することで、1ピッチ以上のマークのずれにも対応することができる。
また、マーク検出手段が無端ベルトの転写面内における副走査方向の中間位置近傍に配置されることで、駆動ローラ近傍での無端ベルトの大きい変形による影響を回避して、ベルト面内方向の変形の影響を最低限に抑制することができる。
本発明に係るベルト搬送装置の第1実施例を示す図である。 図1のベルト搬送装置の模式図である。 中間転写ベルトの速度差および移動距離の差を算出することでベルト斜行を検知する原理を示す図である。 ベルトの斜行状態が変化するときの速度v1,v2の変化の様子を示す図である。 ベルトの斜行状態が変化するときの移動距離の変化の様子を示す図である。 本発明に係るベルト搬送装置の第2実施例を模式的に示した図である。 本発明に係る光学式のマークからなるスケールおよびセンサとしてのマーク検出手段の例を示す図である。 反射型のマーク201を用いたスケール部202の例を示す図である。 センサでの信号の時間と信号強度の関係を示す図である。 ベルト斜行検出の説明図であり、ベルト斜行が発生した様子を示す図である。 ベルト斜行が発生した状態での信号波形を示す図である。 ベルトの斜行角度がθ1からθ2に変化する際の移動距離を示す図である。 本発明に係るベルト搬送装置の第3実施例を示す図である。 本発明に係るベルト搬送装置の第4実施例を示す図である。 本発明に係るベルト搬送装置に適用されるベルト寄り検知手段の1実施例を模式的に示した図である。 図15において、主走査方向に中間転写ベルトが移動した場合、すなわちベルト寄りが発生した場合の信号波形を示す図である。 ベルト寄り検知手段の他の実施例としてイメージセンサを利用するときのセンサ部の模式図である。 ベルト寄り検知手段の他の実施例として撮像素子としてラインセンサを用いたときのマークとラインセンサの配置を示す図である。 本発明に係る画像形成装置における潜像形成位置補正手段の構成を示すブロック図である。 本発明に係るベルト寄り補正手段を示す図である。 カラー画像形成装置の一例を模式的に示す図である。 本発明に係る別な画像形成装置の一部を示す図である。
図21は、カラー画像形成装置1の一例を模式的に示しており、まず、この画像形成装置1について説明する。
当該カラー画像形成装置1では、図示のように給紙テーブル200上に装置本体100が載置されている。その装置本体100の上にはスキャナ300を取り付けると共に、その上に自動原稿給送装置(ADF)400を取り付けている。装置本体100内には、その略中央にベルト状の無端移動部材である中間転写ベルト10を有する転写装置20を設けており、中間転写ベルト10は駆動ローラ9と2つの従動ローラ15,16の間に張架されて図21において時計回りに回動するようになっている。
また、この中間転写ベルト10は、従動ローラ15の左方に設けられているクリーニング装置17により、その表面に画像転写後に残留する残留トナーが除去されるようになっている。その中間転写ベルト10の駆動ローラ9と従動ローラ15の間に架け渡された直線部分の上方には、その中間転写ベルト10の移動方向に沿って、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の4つのドラム状の感光体40Y,40M,40C,40Bk(以下、特定しない場合には単に感光体40と呼ぶ)が所定の間隔を置いて配設されている。そして、中間転写ベルト10の内側に各感光体40に対向して中間転写ベルト10を挟むように、4個の1次転写ローラ62が設けられている。
尚、図22に示すように、中間転写ベルト10には、ベルトテンションを調整するためのテンションローラ19を更に設けるようにしてもよい。
4個の各感光体40は、それぞれ図22に示すように反時計回りに回転可能であり、その各感光体40の回りには、帯電手段としてイエロー用帯電装置111、マゼンタ用帯電装置112、シアン用帯電装置113、ブラック用帯電装置114が配置されている。また、現像手段としてイエロー用現像装置131、マゼンタ用現像装置132、シアン用現像装置133、ブラック用現像装置134が配置されている。さらに、上述した1次転写ローラ62、および図示はしていないが感光体クリーニング装置、除電装置を設けており、それぞれ作像ユニット18を構成している。そして、その4個の作像ユニット18の上方に、露光ユニット21が設けられており、その中には図22に示すようにイエロー用露光装置121、マゼンタ用露光装置122、シアン用露光装置123、ブラック用露光装置124が配置されている。
そして、上記帯電装置、露光装置、現像装置により各感光体上に形成された各色のトナー画像が、中間転写ベルト10上に直接重ね合わせて順次転写されていくようになっている。
一方、中間転写ベルト10の下側には、その中間転写ベルト10上のトナー画像を記録紙であるシートPに転写する転写部となる2次転写装置22を設けている。その2次転写装置22は、2つのローラ23,23間に無端ベルトである2次転写ベルト24を掛け渡したものであり、その2次転写ベルト24が中間転写ベルト10を介して二次転写対向ローラ16に押し当たるようになっている。
この2次転写装置22は、2次転写ベルト24と中間転写ベルト10との間に送り込まれるシートPに、中間転写ベルト10上のトナー画像を一括転写する。
そして、2次転写装置22のシート搬送方向下流側には、シートP上のトナー画像を定着する定着装置25があり、そこでは無端ベルトである定着ベルト26に加圧ローラ27が押し当てられている。
なお、2次転写装置22は、画像転写後のシートを定着装置25へ搬送する機能も果たす。また、この2次転写装置22は、転写ローラや非接触のチャージャを使用した転写装置であってもよい。その2次転写装置22の下側には、シートの両面に画像を形成する際にシートを反転させるシート反転装置28を設けている。
このように、この装置本体100は、間接転写方式のタンデム型カラー画像形成装置1を構成している。
このカラー画像形成装置1によってカラーコピーをとるときは、自動原稿給送装置400の原稿台30上に原稿をセットする。また、手動で原稿をセットする場合には、自動原稿給送装置400を開いてスキャナ300のコンタクトガラス32上に原稿をセットし、自動原稿給送装置400を閉じてそれを押える。
そして、図示していないスタートキーを押すと、自動原稿給送装置4に原稿をセットしたときは、その原稿がコンタクトガラス32上に給送される。また、手動で原稿をコンタクトガラス32上にセットしたときは、直ちにスキャナ3が駆動し、第1走行体33および第2走行体34が走行を開始する。そして、第1走行体33の光源から光が原稿に向けて照射され、その原稿面からの反射光が第2走行体34に向かうと共に、その光が第2走行体34のミラーで反射して結像レンズ35を通して読取りセンサ36に入射して、原稿の内容が読み取られる。
また、上述したスタートキーの押下により、中間転写ベルト10が回動を開始する。さらに、それと同時に各感光体40Y,40M,40C,40Kが回転を開始して、その各感光体上にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk)の各単色トナー画像を形成する動作を開始する。そして、その各感光体上に形成された各色のトナー画像は、図21および図22で時計回りに回動する中間転写ベルト10上に重ね合わせて順次転写されていき、そこにフルカラーの合成カラー画像が形成される。
一方、上述したスタートキーの押下により、給紙テーブル2内の選択された給紙段の給紙ローラ42が回転し、ペーパーバンク43の中の選択された1つの給紙カセット44からシートPが繰り出され、それが分離ローラ45により1枚に分離されて給紙路46に搬送される。そのシートPは、搬送ローラ47により装置本体1内の給紙路48に搬送され、レジストローラ49に突き当たって一旦停止する。
また、手差し給紙の場合には、手差しトレイ51上にセットされたシートPが給紙ローラ50の回転により繰り出され、それが分離ローラ52により1枚に分離されて手差し給紙路53に搬送され、レジストローラ49に突き当たって一旦停止状態になる。
そのレジストローラ49は、中間転写ベルト10上の合成カラー画像に合わせた正確なタイミングで回転を開始し、一旦停止状態にあったシートPを中間転写ベルト10と2次転写装置22との間に送り込む。そして、そのシートP上に2次転写装置22でカラー画像が転写される。
そのカラー画像が転写されたシートPは、搬送装置としての機能も有する2次転写装置22により定着装置25へ搬送され、そこで熱と加圧力が加えられることにより転写されたカラー画像が定着される。その後、そのシートPは、切換爪55により排出側に案内され、排出ローラ56により排紙トレイ57上に排出されて、そこにスタックされる。
また、両面コピーモードが選択されているときには、片面に画像を形成したシートPを切換爪55によりシート反転装置28側に搬送し、そこで反転させて再び転写位置へ導き、今度は裏面に画像を形成した後に、排出ローラ56により排紙トレイ57上に排出する。
図1は、本発明に係るベルト搬送装置11の第1実施例を示している。
ベルト搬送装置11は、駆動ローラ9、従動ローラ15、2次転写対向ローラ16に張架された中間転写ベルト(無端状ベルト)10を駆動モータ12によって作動させる装置である。駆動モータ12は、それに連結した減速機13を介して駆動ローラ9に接続され、駆動ローラ9を回転させることにより中間転写ベルト10を回動させる。また、上述の画像形成装置1に適用される中間転写ベルト10に適用する場合には、速度検出手段14によってベルト表面に形成されたマークをセンシングしてベルト表面速度を検知しながら駆動モータ12を制御することでベルト表面速度を一定に保つことができる。
次に、ベルト斜行センシングの方法について説明する。
図2は、前記ベルト搬送装置11の模式図を示し、ここでは駆動モータ12や減速機13などは省略してある。
図2において、速度検出手段14は速度センサ101,102として表わされており、中間転写ベルト10の搬送方向に直交する方向の2箇所に設置してある。図2では速度検手段としての速度センサを中間転写ベルト10の両端に設置した例を示したが、必ずしも両端である必要はない。
また、速度検出手段14としては、表面速度を計測する様々な手段が使用可能であり、いずれを用いても本発明の一般性は失われない。速度検出手段14の例としては、例えばベルト表面に接触しても構わない場合は、ローラーエンコーダと呼ばれるような、ロータリーエンコーダの回転軸に回転ローラが付けられ、接触した物体との摩擦により回転ローラが回転することでローラの回転速度を計測する物が挙げられる。また、非接触の計測手段としては、レーザードップラー速度計や、光学マウスで採用されているようなイメージ検出型の方法、またはベルト表面にリニアスケールを貼付けリニアエンコーダセンサを使って計測する方法、さらには光学マークや磁気マークを周期的に設けマークを読み取るセンサで読み取ったときの信号周期から速度を計算するなどの方法等が挙げられる。
速度センサ101,102でマークが検出されると、マーク検出信号が出力される。そして、マーク検出信号は、速度算出手段103,104によって速度信号105,106に変換され、差分演算部107によって速度差が演算される。例えば、速度信号としては速度に応じた電圧信号に変換すれば、差分演算部107で単純に電圧の差を演算することで、速度差の電圧信号が得られる。また、速度信号として、速度に応じた周波数パルス信号に変換されていれば、差分演算部107では周波数差を演算すれば良い。
差分演算部107から出力された速度差信号から、傾き算出手段108によってベルト斜行量(ベルトスキュー量)が計算される。
算出されたベルト斜行量に基づいて、例えば、ベルト搬送装置の傾き制御手段109によって傾きを機械的に補正することが可能となる。または画像生成手段110で出力画像を歪みに応じて補正することも可能であり、または露光コントローラ115によって露光タイミングを調整することによってベルト斜行による画像歪みを補正することも可能となる。
次に、図3を用いて中間転写ベルト10の速度差および移動距離の差を算出することでベルト斜行を検知する原理について説明する。
図3(a)は、ベルト斜行の無いときのベルト搬送装置の模式図を示し、ベルトの走行方向(以下「副走査方向」という。)とベルトエッジが平行になっている状態を示している。図3(b)は、ベルトの斜行が始まりその斜行角度が徐々に変化している状態を示している。図3(c)は、ベルトの斜行角度が一定になり斜行が安定した状態を示している。
ここで、速度観測位置はベルトの走行方向に直交する方向(以下「主走査方向」という。)のベルト両端部分とし、観測される速度をそれぞれv1,v2とする。基準線A−Aはベルトの副走査方向に平行なラインとして示してある。
図4は、ベルトの斜行状態が変化するときの速度v1,v2の変化の様子を示す。図3(a)のベルトの斜行が生じていない初期状態、および図3(c)のベルトの斜行が安定した状態では、ベルト両端の搬送速度は変化せず、v1=v2になっている。
ここで、図3(b)のようにベルトの斜行角度が徐々に変化しながら、図3(c)のように斜行角度θが安定した状態に移行する場合を考える。図3(b)の徐々に斜行角度が変化している状態では、図4のようにv1は増加し、v2は減少する。図3(c)のように角度θで斜行角度が一定になれば、v1,v2は、図4(c)のように同じ速度に戻っていく。
図4のようにベルト斜行によってベルトの2点間の速度変化が生じるため、その速度差を観測することによって、ベルト斜行の変化が観測できる。
図5はこのときの移動距離の変化の様子を示している。累積の移動距離は、速度がプラスであれば右肩上がりのグラフになってしまうので、一定線速で走行しているときの累積移動距離との差P1,P2を示している。移動距離は速度の積分値であるので、図3(b)および図4(b)における速度が変化している(斜行角度が変化している)区間では距離偏差が発生する。図3(c)および図4(c)における斜行角度が一定角度で安定した状態では、移動距離は一定偏差を持って一定値となる。v1の計測位置とv2の計測位置では、観測位置の間隔をLとすると、d = L tanθとなる。ここで、移動距離の差dは、それぞれの速度v1,v2を積分した距離の差から求められ、よって、斜行角度θも求められる。
以上のようにして、ベルトの主走査方向の2点間の速度差によって「斜行の変化」、移動距離の差によって「斜行角度」が得られることが分かる。
図6は、本発明に係るベルト搬送装置の第2実施例を模式的に示している。
本実施例では、矢印で示された中間転写ベルト10の副走査方向にわたり所定間隔で連続するように該中間転写ベルト10上に設けられた複数のマーク201からなるスケール部202と、前記スケール部202のマーク201を読み取るマーク検出手段203,204と、上記マーク検出手段203,204の出力によって前記中間転写ベルト10の移動速度または移動距離を算出する算出手段により構成されている。
図示のように、ベルトの主走査方向の両端にスケール部202と、センサとしてのマーク検出手段203,204が配置されている。スケール部202およびマーク検出手段203,204は、一般的には光学センサが使い易いが、磁気マークと磁気センサ、または金属マークと静電容量センサなどの組合せでも構わない。
図7は、本発明における光学式マークからなるスケール、および光学式センサとしてのマーク検出手段の例を示す。反射率の変化をもたらすマークを用いる場合には、マーク検出手段としては、図示のような反射型の光センサが利用できる。図示のように、LEDなどの光源205から放出された光ビーム208はレンズ206で集光されてスケール部202に当たり、そこで反射し、反射光は受光素子207で受光される。
図8は、反射型のマーク201を用いたスケール部202の例を示す。中間転写ベルト10が黒色で反射率が低い場合には、マーク201としては反射率の高い白色の散乱マークや全反射のマークが利用できる。ベルトの寄りが発生しても光ビーム208がマーク201に当たって、安定して検出されるように、マーク201としては図示のようにベルトの主走査方向に長さを持っていると望ましい。
図9は、時間と信号強度の関係を示しており、上記の構成で中間転写ベルト10が搬送されたときのマーク検出手段からの出力例である。受光素子207で得られる信号は、反射率の高いマークからのマーク検知部分210では反射強度が大きいので高くなり、反射強度が低いマークのない部分では低いレベルになる。信号はこのままアナログ電圧で利用しても良いし、電送ノイズに強くするためにコンパレータを使ってデジタル化しても良い。
ここで、スケール部202のマーク201が一定間隔で形成されていれば、得られるマーク検出手段からの信号周期は、中間転写ベルト10の搬送速度に応じた周期となる。ここで信号周期をT、マーク201の間隔をPとすれば、ベルト速度VはV=P/Tで表わされる。また、マーク201を検出した数を計数することにより中間転写ベルト10の移動距離も算出される。
次に、図10、図11、図12を用いてマーク検知信号の時間差(位相差)からベルト斜行を算出する方法について説明する。図10において、一点鎖線がベルト斜行のない状態のベルト搬送状態を示しており、実線がベルトが主走査方向に角度θだけ斜行しているベルトの搬送状態を示している。
ベルトを搬送する各ローラの傾き等の影響により、画像転写面において中間転写ベルト10は角度θで傾いた方向に搬送されている。このため、図10に示すように、画像転写面に形成される画像が角度θで傾くとともに、各像担持体に形成される画像(イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(Bk))の中間転写ベルト上の転写位置は主走査方向にずれる。その結果、画像歪みやカラー画像における色ずれが発生する。
また、中間転写ベルト10の副走査方向の速度を検出するために設けられたマーク201をマーク検出手段203,204が検出するタイミングも、ベルトの斜行角度θの影響で変化する。従って、マーク201をベルトの主走査方向に2箇所に形成し、それぞれのマーク201に対向する位置に配置されたマーク検出手段203,204でマークを検出することで、中間転写ベルト10の斜行が検出される。
図11は、それぞれのマーク検出手段203,204で検出された信号を示す。中間転写ベルトの斜行角度θが変化した場合、2か所の主走査方向の検出位置におけるマーク検出周期の位相差が変化することから、この位相差の変化を検出することで中間転写ベルトの斜行角度の変化を検出することができる。通常、画像形成装置の起動時等に実施される画像形成位置の調整後に発生するベルト斜行角度変化に応じて、画像形成位置補正手段によって感光体上の画像形成位置を補正することで中間転写ベルト上の主走査方向の画像形成位置を補正することにより、画像歪みやカラー画像における色ずれを補正することができる。
図11において、ベルト斜行変化前における、2つのマーク検出手段203,204での検出信号の位相差をt1、ベルト斜行変化後の検出信号の位相差をt2とする。t1<t2である場合、図10において中間転写ベルトは角度θが増加する方向(反時計回り)に回転したことになる。ここで、ベルト斜行変化前の角度をθ1、ベルト斜行変化後の角度をθ2、2つのマーク検出手段203,204の間隔をL、ベルトの副走査方向の搬送速度をVとすれば、図12に示すように、
L×sinθ2−L×sinθ1=t2×V−t1×V の関係が成り立つ。
ここで、θ1,θ2は微小な角度であるため、sinθをθとして、
L×θ2−L×θ1=t2×V−t1×V となる。
よって、画像形成位置の調整後に変化した角度変化(θ2−θ1)は、
θ2−θ1=(t2−t1)V/L となる。これから、ベルト速度検出手段203,204での検出信号の位相差の変化(t2−t1)を用いて、角度変化(θ2−θ1)を求めることができる。
以上のように、一定間隔のマーク201からなるスケール部202とマーク検出手段203,204を用いることで、簡易にベルト斜行が求められる。マークセンサでの周期や二つのセンサの時間遅れを高速なクロックを用いたカウンタにより計算することで、高精度に速度や斜行を算出でき、また、デジタル信号を利用できるためノイズにも強くなる。
図13は、本発明に係るベルト搬送装置の第3実施例を示す。
本実施例では、前記の実施例とは異なり、中間転写ベルト10の両端に設けたマークのうち、一方は連続したピッチで構成されるマーク201からなるスケール部202であり、他方は、いずれかのマーク201の位置に対応する、大きめの間隔を置いた同一の特定のマーク201のみで構成されている。いずれかのスケール部202のマーク201と特定のマーク201は主走査方向上に位置し、対応しているので、特定のマーク201とスケール部202のマーク201とのずれが1ピッチ以内であれば、これらの速度差または時間差をセンサ204,203で計測し、第2実施例と同様にして中間転写ベルト10の斜行角度を検出することができる。
これにより、比較的コストがかかるスケールを片側のみとし、他方はマークのみとすることでコストがより安価に抑えられる。
図14は、本発明に係るベルト搬送装置の第4実施例を示す。
本発明では、中間転写ベルト10へのマーク形成方法として、一定間隔で連続する複数のマーク201が形成された可撓性部材としての樹脂テープを、ベルトの無端移動方向一側部に接着する方法を採用している。この方法のほか、ベルトの成形時にマーク201を同時に成形する方法もあるが、この方法ではベルト全体の収縮率が不均一であるときにマーク間隔を一定にできない。しかし、本発明の接着方法によれば、ベルトの収縮率が不均一であっても、これがマークの間隔に影響することはなく、マーク間隔を一定にできる。しかし、ベルトの製造時の公差により、製造されるベルトによってベルト周長が異なる。その結果、図示のように、樹脂テープの先端と後端をつなぐ部分に他と異なる間隔の継ぎ目251が発生する。
また、マーク検出手段203からスケール部202までの距離を一定に保つためにも、中間転写ベルト10にスケール部202が重ならないように、継ぎ目251の箇所ではスケール部202の両端部を離して貼り付ける必要がある。
そうすると、継ぎ目251の箇所のマーク検出手段203の出力は信号強度が一定時間落ちることから、その箇所の反対側に、継ぎ目251の大きさに対応する、不連続を特定するための特定マーク201を配置している。そして、その不連続特定マーク201は、ベルトの無端移動に伴ってマーク検出手段204に対向するときに検出され、この際一定の不連続検知信号が連続的に出力される。この不連続検知信号が出力されている時間と継ぎ目251の出力されている時間が一致すれば、ベルト両端の速度差は存在しない。これらの時間がずれていれば、ベルト両端の速度差が存在することになる。この場合、例えば不連続検知信号の先端部分と継ぎ目251の出力の先端部分の時間差や、継ぎ目251の出力の後端部分とマークの出力の時間差を利用して、第2実施例と同様にベルトの傾きが検出される。
本実施例では1ピッチ以上のマークのずれにも対応することができ、マークのカウントも不要になる。
図15は、本発明に係るベルト搬送装置に適用されるベルトの主走査方向の移動(ベルト寄り)の検知手段の実施例を示している。
本実施例では、スケール部202のマーク201は主走査方向に一定の大きさで形成されており、マーク検出手段203,204からの光ビーム220,221には主走査方向の広がりを持たせてある。そして、図15に示すように基準の検出位置をマーク201に対して、左側のマーク検出手段203(以下「センサL」という。)は左に、右側のマーク検出手段204(以下「センサR」という。)は右にずらして配置されている。
いわゆるベルト寄りが生じると、ベルト位置によってマークの検知幅が変化するため、左右のセンサL,Rでの受光光量も変化し、従って、これらセンサの信号強度も変化するため主走査方向のベルト位置変化を検出することが可能となる。
図16は、この状態における、主走査方向に中間転写ベルト10が移動した場合、すなわちベルト寄りが発生した場合のマーク検出手段で検出される信号波形を示す。中間転写ベルト10が右側に寄った場合にはセンサRの信号231の出力は上昇し、センサLの信号230は低下する(図16(1)参照)。逆に左側に寄った場合にはセンサLの信号230が強くなり、センサRの信号231は弱くなる(図16(2)参照)。なお、中間転写ベルト10の寄りが無ければ、センサL,Rの信号230,231の信号強度はほぼ同一となる(図16(3)参照)。
このようにセンサRとLの信号強度を比較することによって、中間転写ベルト10の主走査方向の位置、すなわちベルト寄りが検出できる。
2つのマーク検出手段203,204を以上のように構成することで、ベルトの移動速度およびベルト斜行に加えて、ベルト寄りも計測することができるため、それぞれの計測のために別個のセンサを設けることが不要になり、部品点数の削減および低コスト化が実現される。
図17,18は、ベルト寄り検知手段の他の実施例を示している。
本実施例では、マークセンサの受光素子207の代わりにイメージセンサ241を利用しており、図17は、イメージセンサ241を利用するときのセンサ部の模式図を示している。LEDなどの光源から放出された光ビームはスケール部に当たり、そこで反射し、反射光はイメージセンサ241で受光され、受光量に応じた強度の信号が出力され、信号処理部を経て、位置演算部でベルトの位置データが出力される。図18は、撮像素子としてラインセンサ241を用いたときのマーク201とラインセンサ241の配置を示す。
イメージセンサ241を利用するときと受光素子207を利用するときの違いは、受光素子207ではマーク201の移動が時間による信号変化として検知されるが、イメージセンサ241ではサンプリングを行った時のマークの位置が観測されることである。よって、イメージセンサ241を中間転写ベルト10の両端部に2個配置して、同時にサンプリングすることで、それぞれのセンサで観測されたマーク201の位置情報が得られるので、ベルト寄りによるマーク201の位置変化を直接読み取ることができる。
また、図15に示すように、基準の検出位置をスケールのマーク201に対して、左側のセンサLは左に、右側のセンサRは右にずらしてセンシングを行えば、マーク201の主走査方向の位置を直接読み取ることができる。
また、中間転写ベルト10の搬送に伴い、各マーク201がラインセンサ241に対向し、検知される周期により、各マーク201の副走査方向の移動が検出される。この情報により中間転写ベルト10の副走査方向の速度も検出できる。
尚、上記実施例で説明してきた検出マーク201をベルトに等間隔に形成する場合、ベルト周長誤差により検出マークの間隔が異なってしまうため、ベルト全周にわたり等間隔に検出マークを形成するためにはベルト毎に最適な間隔を求め、高精度に検出マーク201を形成する必要があり、ベルトの製作コストが増大するという問題がある。
しかし、主走査方向に複数の検出パターンを設け、検出パターン未形成部を補完するように配置し、マーク検出手段を適宜選択することで、中間転写ベルトの全周にわたってマーク検出をすることが可能となる。具体的には、一定間隔のマークをベルト上に設置する開始位置をずらすことで、他のマークの間隔と異なる、最初と最後のマークの間隔のギャップ部分の位置を副走査方向にずらしてもよい。このように主走査方向に複数の検出パターンを設けることで、ギャップ部分の長さだけ中間転写ベルト全周長よりも短いマークを形成することができる。これにより、マーク形成が容易となり、コスト低減の効果をもたらす。また、検出マーク形成の作業が容易となり、高精度なマーク形成が可能になる。
この場合、図10に示されるように、中間転写ベルト10の主走査方向における複数位置に形成されたマーク201は、それぞれマーク検出手段203,204により検出されて、中間転写ベルト10の副走査方向の速度および主走査方向の移動が検出される。マーク検出204での検出信号は、前記ギャップ部分を回避しながらベルト速度を検出するために、一方のマーク検出手段204でギャップ部分が検出されると切り替え手段により他方のマーク検出手段203に切り替えて検出信号を生成することで、中間転写ベルト10の全周にわたる検出が可能となる。同様に、前記ギャップ部分を回避しながらベルト寄りを検出するために、一方のマーク検出手段でギャップ部分が検出されると切り替え手段により他方のマーク検出手段に切り替えて検出信号を生成する。
このとき、マーク検出手段203,204の検出信号(マーク検出手段203,204からの検出信号を切り替え手段により切り替えた検出信号)から中間転写ベルト10の位置を演算する回路を設けることで、この回路からの信号を、マーク検出手段203,204からの検出信号を平均化した信号または一方が他方を補完した信号として、中間転写ベルト10の速度制御およびベルト寄り補正に用いることができる。
また、図10に示されるように、マーク検出手段203,204を画像転写面内の副走査方向における同等位置に配置してもよい。中間転写ベルト10は樹脂材料により形成されることが多く、温度、湿度等の環境条件の変動によりベルトの副走査方向の伸びが発生する。よって、マーク検出手段203,204を画像転写面内の副走査方向の異なる位置に配置すると、中間転写ベルト10の副走査方向の伸びの影響でマーク検出周期の位相が変動してしまい、ベルト斜行の検知に誤差が生じる恐れがある。従って、マーク検出手段203,204を画像転写面内の副走査方向における同等位置に配置することにより、環境変動によるベルト伸びの影響を最低限に抑制することができる。
また、図10のように、マーク検出手段203,204を画像転写面内の副走査方向の中間位置近傍に配置してもよい。しばしば樹脂材料により形成される中間転写ベルト10は、ベルト10が掛け回されるローラに比べて剛性が大幅に低いため、ローラの傾斜により発生するベルト面内方向の応力により変形が生じることがあり、この変形はローラ近傍で大きくなる。よって、マーク検出手段203,204を画像転写面内のローラ近傍に配置すると、ベルト面内方向の変形の影響でベルト斜行検知に誤差が生じうる。そこで、マーク検出手段203,204を画像転写面内の副走査方向の中間位置近傍に配置することにより、ベルト面内方向の変形の影響を最低限に抑制しながらベルトの斜行補正および寄り補正を実現することが可能となる。
次に、画像形成位置補正手段について説明する。
中間転写ベルトの角度変化に対応して主走査方向の画像形成位置を補正するための補正手段としては、ステアリングローラ以外のローラをステアリングローラと同様の構成動作により傾斜させる方法や、感光体上に潜像を形成する光書込み手段の光路中に光軸角度変更手段を設けて感光体上の潜像形成位置を変化させる手段等がある。ここで、ステアリングローラ以外のローラを傾斜させてベルト斜行を補正する場合、ベルト斜行を補正することでベルト寄りが変化し、ベルト寄りを補正することでベルト斜行が変化するため、複雑な制御を行う高機能制御系が必要となり、コストが増大する問題がある。また、光書込み手段の光路中に光軸角度変更手段を設ける場合も高精度で信頼性の高い光学手段を具備する必要があり、コストが増大する。
これに対し、図19は、本発明に係る画像形成装置における潜像形成位置補正手段の構成を示すブロック図である。同図において、プリンタドライバ部601から転送された画像信号は、画像書き込み制御部602を構成する画像信号生成部603に入力される。また、エンジン制御部604からのエンジン制御情報も画像書き込み制御部602に入力される。画像信号生成部603では、入力された画像信号をエンジン制御情報に従った処理にて画像処理される。この際、画像信号生成部603では実際に記録紙上に画像を展開するため、画像形成に用いる最小画素を定義する画素クロック信号(wclk)にて処理される。この画素クロック信号は、画素クロック生成部605にてエンジン制御部604からの解像度、感光体の線速等の情報により所定の周波数のクロック信号(wclk)を生成し、画像信号生成部603および逓倍回路部606に入力される。画像信号生成部603で画像処理された実画像信号は書込位置制御部607に入力される。書込位置制御部607には、他にレーザ書き込み装置608の同期検知部609から同期検知信号(DETP)、中間転写ベルト10上のベルト斜行検出手段204からの斜行情報により作成したベルト変位信号(Δa)、エンジン制御部604からのエンジン制御情報が入力される。同期検知信号(DETP)は、レーザビームを感光体40Bk上に露光させる際に主走査方向の書込開始位置を一定に保つための信号である。この信号は、レーザ書き込み装置608中のポリゴンミラー611にて反射偏向されたレーザビームの感光体40Bk上の走査領域外に配置された同期検知板からの出力信号であり、同期検知板にはフォトダイオード等の受光素子が同期検出センサとして配役され、同期検出センサは入射されるレーザビームを光電変換して同期検知信号(DETP)を出力する。ベルト変位信号(Δa)は、中間転写ベルト10の主走査方向変位を示す信号であり、ベルト寄り補正手段によるベルト寄り補正中に不可避的に発生する、画像転写面内における中間転写ベルト10の主走査方向変位をベルト斜行検出手段204から算出した信号である。書込位置制御部607では、同期検知信号(DETP)に対し画像信号生成部603からの実画像信号を所定のタイミングで合成し、光源である半導体レーザを駆動させる信号を生成している。この際、ベルト変位信号(Δa)に応じて同期検知信号から実画像信号を書き込む開始タイミングを制御している。書込位置制御部607には、前記画素クロック生成部605にて生成された画素クロック信号(wclk)を逓倍処理された斜行補正クロック信号(dclk)が入力される。この斜行補正クロック信号(dclk)は、画像形成可能な最小画素を定義する画素クロック信号(wclk)を逓倍処理して得られる、画素クロック信号よりも高周波な信号である。また、斜行補正クロック信号(dclk)は、転写スリット位置センサの検出分解能に応じた周波数のクロック信号であり、斜行補正クロック信号(dclk)の1クロックがベルト斜行検出手段204の1分解能に相当している。ベルト斜行検出手段204からのベルト変位信号(Δa)を算出し、書込位置制御部607に同期検知信号(DETP)とベルト変位信号(Δa)が入力される。このベルト変位信号(Δa)が0の場合の同期検知信号から実画像信号の主走査方向開始位置までがA(=N×wclk)とすると、Δa>0が検出された場合には、同期検知信号から実画像書出しタイミングまでの遅延時間をA+Δa×dclkと変更し、ベルト斜行が無い場合に対し実画像書出し開始位置を遅らせる。他方、Δa<0の場合は、上記遅延時間をA−Δa×dclkとし相対的に実画像書出し開始タイミングを速める。レーザ駆動部612には、書込位置制御部607で合成されたレーザ駆動信号が入力される。レーザ駆動信号のON/OFFによりレーザ駆動部612に実装された半導体レーザが点灯/消灯動作を繰り返し駆動される。半導体レーザを駆動することにより出射されたレーザビームはレーザ書き込み装置608に入射し、複数のレンズ、ミラー等を透過、反射し光路中を進行する。光路途中に配置されたポリゴンミラー611にて回転偏向され、感光体40Bk上に主走査方向へレーザビームが露光する。この露光から出力画像が得られるまでの過程は前述した通りである。
次に、ベルトの寄り補正手段について説明する。図20は、本発明に係るベルト寄り補正手段を示す。
中間転写ベルト10は、複数のほぼ平行なローラにより張架されており、その中の1つの駆動ローラ9によりベルト搬送方向に駆動される。駆動ローラ9および従動ローラ15、2次転写対向ローラ16は、所定位置に固定されているのに対し、テンションローラ19の回転軸の両端は矢印方向に付勢され、中間転写ベルト10はほぼ一定のテンションで張架されている。
また、中間転写ベルト10に生じた寄り、つまり主走査方向の移動を補正する補正ローラ29が設けられている。補正ローラ29の回転軸の一端は、ピボット軸受等で回転軸の直行方向に揺動可能に支持され、他端はアクチュエータ37により矢印方向に往復移動可能に支持されている。
ベルト寄り検出手段203,204からのベルト寄り量に関する情報に基づき、アクチュエータ37を駆動し、発生した主走査方向の移動と逆の方向に中間転写ベルト10が移動するように補正ローラ29を揺動させることで、ベルト寄りは一定範囲に制御され、別個の寄りガイド部材等を設けることなくベルト寄りを抑制することができる。
9 駆動ローラ
10 中間転写ベルト
15 従動ローラ
16 2次転写対向ローラ
29 ベルト寄り補正ローラ
201 マーク
202 スケール部
203,204 マーク検出手段、ベルト斜行検出手段
特開2005−148127号明細書 特開2006−276427号明細書

Claims (17)

  1. 複数のローラに張架された無端状ベルトと、
    いずれか1つのローラに連結しこれを駆動させる駆動手段と、
    前記無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトの搬送速度を検出するベルト速度検出手段と、
    前記複数のベルト速度検出手段によりそれぞれ検出されたベルト搬送速度の差から前記無端状ベルトの走行方向における傾きを算出するベルト傾き算出手段とからなることを特徴とするベルト搬送装置。
  2. 複数のローラに張架された無端状ベルトと、
    いずれか1つのローラに連結しこれを駆動させる駆動手段と、
    前記無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトの搬送距離を検出するベルト搬送距離検出手段と、
    前記複数のベルト搬送距離検出手段によりそれぞれ検出されたベルト搬送距離の差から前記無端状ベルトの走行方向における傾きを算出するベルト傾き算出手段とからなることを特徴とするベルト搬送装置。
  3. 請求項1記載のベルト搬送装置において、
    前記ベルト速度検出手段は、
    前記無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、
    前記スケール部のマークを検出するマーク検出手段と、
    前記マーク検出手段の検出結果に基づいて前記無端状ベルトの速度を算出するベルト速度算出手段とからなることを特徴とするベルト搬送装置。
  4. 請求項2記載のベルト搬送装置において、
    前記ベルト搬送距離検出手段は、
    前記無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、
    前記スケール部のマークを検出するマーク検出手段と、
    前記マーク検出手段の検出結果に基づいて前記無端状ベルトの移動距離を算出するベルト移動距離算出手段とからなることを特徴とするベルト搬送装置。
  5. 請求項3または4記載のベルト搬送装置において、
    前記ベルト傾き算出手段は、前記複数のマーク検出手段からそれぞれから得られたマーク検知信号の時間差と、前記ベルト速度算出手段または前記ベルト移動距離算出手段により算出された結果に基づいて前記無端状ベルトの走行方向に対する傾きを算出することを特徴とするベルト搬送装置。
  6. 請求項5記載のベルト搬送装置において、
    前記スケール部は、前記無端状ベルトの走行方向と直交するベルト幅方向の両端部に設けられており、
    前記マーク検出手段は、前記スケール部に対応するようにベルト幅方向の両端部に設けられていることを特徴とするベルト搬送装置。
  7. 請求項6記載のベルト搬送装置において、
    前記マーク検出手段は、前記無端状ベルトの走行方向の長さの中間位置の近傍に配置されていることを特徴とするベルト搬送装置。
  8. 請求項6または7記載のベルト搬送装置において、
    前記無端状ベルトのベルト幅方向の一方端部に設けられた前記スケール部のマークの間隔と他方端部に設けられた前記スケール部のマークの間隔がそれぞれ略同一であることを特徴とするベルト搬送装置。
  9. 請求項6または7記載のベルト搬送装置において、
    前記無端状ベルトのベルト幅方向の一方端部に設けられる前記マークの間隔が、他方端部に設けられる前記マークの間隔よりも大きいことを特徴とするベルト搬送装置。
  10. 請求項6または7記載のベルト搬送装置において、
    前記無端状ベルトのベルト幅方向の一方端部に設けられる前記スケール部にはマークの間隔が異なる単一または複数のマーク間隔不連続部分を設けられており、他方端部には該マーク間隔不連続部分に対応する位置に前記一方端部に設けられるマークと異なる特定マークが設けられることを特徴とするベルト搬送装置。
  11. 請求項10記載のベルト搬送装置において、
    前記特定マークは前記マーク間隔不連続部分を検出するためのマークであり、前記マーク検出手段は前記特定マークを検出すると不連続検知信号を出力することを特徴とするベルト搬送装置。
  12. 請求項1乃至11のいずれか1項に記載のベルト搬送装置において、
    前記無端状ベルトの走行方向と直交するベルトの幅方向の複数個所に配置され、該無端状ベルトのベルト幅方向の位置を検出するベルト寄り検出手段を有することを特徴とするベルト搬送装置。
  13. 請求項12記載のベルト搬送装置において、
    前記ベルト寄り検出手段は、
    前記無端状ベルトにその走行方向に所定間隔で連続的に設けられたマークからなるスケール部と、
    前記スケール部のマークを検出するマーク検出手段と、
    前記マーク検出手段の検出結果に基づいて前記無端状ベルトのベルト幅方向の位置の変化を算出するベルト寄り量算出手段とからなることを特徴とするベルト搬送装置。
  14. 請求項12または13記載のベルト搬送装置において、
    前記ベルト寄り検出手段からの検出結果に基づいて前記無端状ベルトをベルト幅方向に移動させるベルトの寄りを補正するベルト寄り補正手段を有することを特徴とするベルト搬送装置。
  15. 請求項3乃至14のいずれか1項に記載のベルト搬送装置において、
    前記マーク検出手段は、1次元または2次元のセンサであることを特徴とするベルト搬送装置。
  16. 複数の感光体と、該感光体上に潜像を形成する潜像形成手段と、該潜像形成手段により形成された潜像を可視化する現像手段と、前記感光体上に形成された可視像を一次転写する中間転写体と、該中間転写体上に転写された転写像を記録媒体に転写する二次転写手段とを備えた画像形成装置において、
    前記中間転写体を請求項1乃至15のいずれか1項に記載のベルト搬送装置としたことを特徴とする画像形成装置。
  17. 請求項16記載の画像形成装置において、
    前記感光体上に形成される潜像の主走査方向位置を補正する潜像形成位置補正手段をさらに有し、
    該潜像形成位置補正手段は、前記ベルト傾き算出手段の算出結果に基づき前記感光体上に形成される潜像の形成位置を補正することを特徴とする画像形成装置。
JP2009061363A 2009-03-13 2009-03-13 ベルト搬送装置および画像形成装置 Pending JP2010217301A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009061363A JP2010217301A (ja) 2009-03-13 2009-03-13 ベルト搬送装置および画像形成装置
US12/659,564 US8351830B2 (en) 2009-03-13 2010-03-12 Belt conveying device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061363A JP2010217301A (ja) 2009-03-13 2009-03-13 ベルト搬送装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2010217301A true JP2010217301A (ja) 2010-09-30

Family

ID=42976263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061363A Pending JP2010217301A (ja) 2009-03-13 2009-03-13 ベルト搬送装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2010217301A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006452A (ja) * 2014-06-20 2016-01-14 京セラドキュメントソリューションズ株式会社 定着装置および画像形成装置
JP2018010255A (ja) * 2016-07-15 2018-01-18 株式会社リコー ベルト装置、定着装置および画像形成装置
JP2021059074A (ja) * 2019-10-08 2021-04-15 セイコーエプソン株式会社 印刷装置、印刷装置の制御方法、及び、制御プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266239A (ja) * 1993-03-17 1994-09-22 Fujitsu Ltd カラー像形成装置
JP2004029133A (ja) * 2002-06-21 2004-01-29 Ricoh Co Ltd 画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266239A (ja) * 1993-03-17 1994-09-22 Fujitsu Ltd カラー像形成装置
JP2004029133A (ja) * 2002-06-21 2004-01-29 Ricoh Co Ltd 画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006452A (ja) * 2014-06-20 2016-01-14 京セラドキュメントソリューションズ株式会社 定着装置および画像形成装置
JP2018010255A (ja) * 2016-07-15 2018-01-18 株式会社リコー ベルト装置、定着装置および画像形成装置
JP2021059074A (ja) * 2019-10-08 2021-04-15 セイコーエプソン株式会社 印刷装置、印刷装置の制御方法、及び、制御プログラム
JP7413705B2 (ja) 2019-10-08 2024-01-16 セイコーエプソン株式会社 印刷装置、印刷装置の制御方法、及び、制御プログラム

Similar Documents

Publication Publication Date Title
US8351830B2 (en) Belt conveying device and image forming apparatus
JP4884151B2 (ja) 位置検知装置、速度検出装置、移動制御装置、ベルト搬送装置、回転体駆動装置、および画像形成装置
JP4429895B2 (ja) 無端移動部材駆動制御装置及び画像形成装置と無端移動部材の移動速度制御方法
EP1424609A2 (en) Color shift correcting method, optical writing device and image forming apparatus
JP4885072B2 (ja) 位置検出装置、および画像形成装置
JP4651363B2 (ja) 無端移動部材駆動制御装置及び画像形成装置と無端移動部材の移動速度制御方法
JP5509778B2 (ja) ベルト搬送装置と画像形成装置
JPH09175687A (ja) ベルト搬送装置
JP5102518B2 (ja) 画像形成装置
JP4390633B2 (ja) 無端移動部材搬送装置および画像形成装置
JP2006154162A (ja) ベルト速度制御装置、プログラム、画像形成装置及びベルト速度制御方法
JP2010217301A (ja) ベルト搬送装置および画像形成装置
JP5073366B2 (ja) 画像形成装置
JP5510272B2 (ja) 画像形成装置
JP2008129518A (ja) ベルト移動装置及び画像形成装置
JP4654708B2 (ja) 画像形成装置
JP2009186495A (ja) 画像形成装置
JP5321274B2 (ja) 画像形成装置
JP2005345359A (ja) 走行体マークセンサ、回転体駆動装置及び画像形成装置
JP5257169B2 (ja) 画像形成装置
JP5640755B2 (ja) 画像形成装置
JP2009020172A (ja) 画像形成装置
JP4300084B2 (ja) 画像形成装置
JP2009180884A (ja) 画像形成装置
JP2010191349A (ja) 位置検出装置と画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Effective date: 20130305

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702