EP3831803A1 - Procédé de production de 1,3-bisacyloxy-2-méthylène propane - Google Patents
Procédé de production de 1,3-bisacyloxy-2-méthylène propane Download PDFInfo
- Publication number
- EP3831803A1 EP3831803A1 EP19840196.0A EP19840196A EP3831803A1 EP 3831803 A1 EP3831803 A1 EP 3831803A1 EP 19840196 A EP19840196 A EP 19840196A EP 3831803 A1 EP3831803 A1 EP 3831803A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- catalyst
- reaction
- carbon atoms
- methylenepropane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 68
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N dimethylmethane Natural products CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 title 1
- 239000001294 propane Substances 0.000 title 1
- 239000003054 catalyst Substances 0.000 claims abstract description 73
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 41
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims abstract description 30
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 20
- 239000012190 activator Substances 0.000 claims abstract description 17
- 239000007791 liquid phase Substances 0.000 claims abstract description 17
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 13
- 150000003624 transition metals Chemical class 0.000 claims abstract description 13
- 230000000737 periodic effect Effects 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims description 80
- 125000004432 carbon atom Chemical group C* 0.000 claims description 49
- 125000001424 substituent group Chemical group 0.000 claims description 44
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 36
- FKAKGSJLTBVQOP-UHFFFAOYSA-N 2-(acetyloxymethyl)prop-2-enyl acetate Chemical group CC(=O)OCC(=C)COC(C)=O FKAKGSJLTBVQOP-UHFFFAOYSA-N 0.000 claims description 19
- -1 carboxylate salt Chemical class 0.000 claims description 19
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 125000003342 alkenyl group Chemical group 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 5
- 150000005323 carbonate salts Chemical class 0.000 claims description 5
- 150000002823 nitrates Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 25
- 239000000047 product Substances 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- IVKYUXHYUAMPMT-UHFFFAOYSA-N 2-methylprop-2-enyl acetate Chemical compound CC(=C)COC(C)=O IVKYUXHYUAMPMT-UHFFFAOYSA-N 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000006227 byproduct Substances 0.000 description 9
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000012018 catalyst precursor Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011949 solid catalyst Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 125000006018 1-methyl-ethenyl group Chemical group 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 125000004104 aryloxy group Chemical group 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000002940 palladium Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 150000002941 palladium compounds Chemical class 0.000 description 2
- NRNCYVBFPDDJNE-UHFFFAOYSA-N pemoline Chemical compound O1C(N)=NC(=O)C1C1=CC=CC=C1 NRNCYVBFPDDJNE-UHFFFAOYSA-N 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 235000019795 sodium metasilicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- ABKQFSYGIHQQLS-UHFFFAOYSA-J sodium tetrachloropalladate Chemical compound [Na+].[Na+].Cl[Pd+2](Cl)(Cl)Cl ABKQFSYGIHQQLS-UHFFFAOYSA-J 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000004685 tetrahydrates Chemical class 0.000 description 2
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006019 1-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000006021 1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- XJFZOSUFGSANIF-UHFFFAOYSA-N 3-chloro-2-(chloromethyl)prop-1-ene Chemical compound ClCC(=C)CCl XJFZOSUFGSANIF-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical class C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002933 cyclohexyloxy group Chemical group C1(CCCCC1)O* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001887 cyclopentyloxy group Chemical group C1(CCCC1)O* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007342 radical addition reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/28—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
- C07C67/297—Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/04—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
- C07C67/05—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
- C07C67/055—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
Definitions
- the present invention relates to a method for producing a 1,3-bisacyloxy-2-methylenepropane.
- a 1,3-bisacyloxy-2-methylenepropane has in one molecule thereof a 2,2-substituted carbon-carbon unsaturated bond applicable to radical addition reaction, hydrosilylation reaction, hydroformylation reaction, and the like, and two acyl groups applicable to saponification reaction, ester exchange reaction, and the like, and thereby can be used as a production raw material of various chemical products due to the reactivity thereof (see, for example, PTLs 1 and 2).
- NPL 1 describes a method for producing 1,3-diacetoxy-2-methylenepropane through reaction of 1,3-dichloro-2-methylenepropane and sodium acetate.
- the production method generates an inorganic by-product, which generally becomes a waste material, in the equimolar amount or more with respect to the product. Accordingly, a production method that does not generate an inorganic by-product is demanded from the standpoint of the reduction of environmental load.
- PTL 3 describes a method for producing 1,3-diacetoxy-2-methylenepropane through reaction of methallyl acetate, acetic acid, water, and oxygen in a gas phase in the presence of the particular catalyst.
- PTL 4 describes a method for producing 1,3-diacetoxy-2-methylenepropane through reaction by feeding a mixed gas containing isobutylene, acetic acid, and oxygen to a palladium catalyst in a gas phase, and describes that methallyl acetate by-produced is recycled and added to the reaction gas.
- a method for producing an unsaturated ester through reaction of a terminal olefin compound, a carboxylic acid, and oxygen in a liquid phase in the presence of a solid catalyst has been known.
- PTL 5 describes that 10.0 g of acetic acid, 1.00 g of a hydrocarbon mixture containing 30% of isobutylene, and oxygen gas are subjected to liquid phase reaction at a reaction temperature of 85°C in the presence of 1.00 g of the particular solid catalyst, and thereby methallyl acetate is obtained with a selectivity of 92% and a conversion of isobutylene of 71%, but there is no description about the production of a 1,3-bisacyloxy-2-methylenepropane.
- NPL 1 Macromolecules, 1993, 26(4), pp. 737-743
- a problem to be solved by the present invention is to provide a method for producing a 1,3-bisacyloxy-2-methylenepropane that does not generate an inorganic by-product in the equimolar amount or more with respect to the product and is improved in production efficiency and cost.
- the present inventors have found that the problem can be solved by employing a particular liquid phase condition in the production of a 1,3-bisacyloxy-2-methylenepropane through oxidative reaction of isobutylene and a carboxylic acid, and the present invention has been completed by performing further investigations based on the knowledge.
- the present invention is as follows.
- a method for producing a 1,3-bisacyloxy-2-methylenepropane that does not generate an inorganic by-product in the equimolar amount or more with respect to the product and is improved in production efficiency and cost can be provided.
- the method for producing the 1,3-bisacyloxy-2-methylenepropane represented by the general formula (II) (which may be hereinafter abbreviated as a “1,3-bisacyloxy-2-methylenepropane (II)”) of the present invention includes reacting the carboxylic acid represented by the general formula (I) (which may be hereinafter abbreviated as a “carboxylic acid (I)”), isobutylene, and oxygen, in the presence of a catalyst containing a carrier having carried thereon palladium and a transition metal of Group 11 in the periodic table, and a catalyst activator, in a liquid phase.
- reaction formula in a preferred embodiment of the present invention is as follows.
- R has the same meaning as R in the general formulae (I) and (II).
- the costs of energy and equipment can be suppressed by employing the reaction under a liquid phase condition.
- R represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, which may have a substituent, a cycloalkyl group having 3 to 8 carbon atoms, which may have a substituent, an alkenyl group having 2 to 6 carbon atoms, which may have a substituent, or an aryl group having 6 to 14 carbon atoms, which may have a substituent.
- the alkyl group having 1 to 8 carbon atoms represented by R may be linear or branched, and examples thereof include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, a n-pentyl group, a n-hexyl group, and a n-octyl group.
- one or more hydrogen atom may be substituted by a substituent.
- the substituent include a cycloalkyl group having 3 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, and a silyl group.
- the number of the substituent is preferably 1 to 3.
- the substituents may be the same as or different from each other.
- Examples of the cycloalkyl group having 3 to 8 carbon atoms as the substituent include the same ones as exemplified for the cycloalkyl group having 3 to 8 carbon atoms represented by R described later.
- Examples of the aryl group having 6 to 14 carbon atoms as the substituent include the same ones as exemplified for the aryl group having 6 to 14 carbon atoms represented by R described later.
- alkoxy group having 1 to 8 carbon atoms as the substituent examples include linear, branched, and cyclic alkoxy groups, such as a methoxy group, an ethoxy group, a propoxy group, a t-butoxy group, a pentyloxy group, a cyclopentyloxy group, a hexyloxy group, a cyclohexyloxy group, a 2-ethylhexyloxy group, and an octyloxy group.
- Examples of the aryloxy group having 6 to 14 carbon atoms as the substituent include a phenoxy group and a naphthoxy group.
- silyl group as the substituent examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group, and a triphenylsilyl group.
- the cycloalkyl group having 3 to 8 carbon atoms represented by R may be any of monocyclic, polycyclic, and condensed ring, and examples thereof include a cyclopropyl group, a cyclopentyl group, and a cyclohexyl group.
- one or more hydrogen atom may be substituted by a substituent.
- substituents include an alkyl group having 1 to 8 carbon atoms that is the same as the examples of the alkyl group having 1 to 8 carbon atoms represented by R described above, a cycloalkyl group having 3 to 8 carbon atoms that is the same as the examples of the cycloalkyl group having 3 to 8 carbon atoms represented by R described above, and an aryl group having 6 to 14 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an aryloxy group having 6 to 14 carbon atoms, and a silyl group that are the same as the examples of the substituent described above.
- the number of the substituent is preferably 1 to 3.
- the substituents may be the same as or different from each other.
- Examples of the alkenyl group having 2 to 6 carbon atoms represented by R include an ethenyl group (vinyl group), a 1-methylethenyl group, a 1-propenyl group, a 2-propenyl group (allyl group), a 1-methyl-1-propenyl group, a 1-methyl-2-propenyl group, a 1-butenyl group, a 2-butenyl group, and a 3-butenyl group.
- one or more hydrogen atom may be substituted by a substituent.
- substituents include the same ones as exemplified for the substituent that may be had in the case where R represents an alkyl group having 1 to 8 carbon atoms.
- the number of the substituent is preferably 1 to 3.
- the substituents may be the same as or different from each other.
- the aryl group having 6 to 14 carbon atoms represented by R may be any of monocyclic, polycyclic, and condensed ring, and examples thereof include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
- one or more hydrogen atom may be substituted by a substituent.
- substituents include the same ones as exemplified for the substituent that may be had in the case where R represents a cycloalkyl group having 3 to 8 carbon atoms.
- the number of the substituent is preferably 1 to 3.
- the substituents may be the same as or different from each other.
- R preferably represents an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 6 carbon atoms, more preferably one selected from the group consisting of a methyl group, an ethyl group, a n-propyl group, a 2-propyl group, a n-butyl group, 2-butyl, an isobutyl group, an ethenyl group, and a 1-methylethenyl group, further preferably a methyl group or a 1-methylethenyl group, and most preferably a methyl group.
- the carboxylic acid (I) is most preferably acetic acid
- the 1,3-bisacyloxy-2-methylenepropane (II) is most preferably 1,3-diacetoxy-2-methylenepropane.
- the catalyst used in the production method of the present invention is a catalyst containing a carrier having carried thereon palladium and a transition metal of Group 11 in the periodic table.
- the catalyst may be a commercially available product and may be synthesized by a known method.
- the carrier used may be, for example, a porous substance.
- the carrier include an inorganic carrier, such as silica, alumina, silica-alumina, diatom earth, montmorillonite, zeolite, titania, zirconia, and activated carbon; and a polymer compound, such as polystyrene, polyethylene, polyamide, and cellulose. These may be used alone or as a combination of two or more kinds thereof.
- an inorganic carrier is preferred, silica or alumina is more preferred, and silica is further preferred.
- Silica may contain impurities other than SiO 2 .
- the form of the carrier is not particularly limited, and may be appropriately selected depending on the reaction mode. Specific examples of the form thereof include a powder form, a spherical form, and a pellet form, and a spherical form is preferred.
- the particle diameter is not particularly limited, and is preferably 1 to 10 mm. In the case where the particle diameter is 10 mm or less, the raw materials can readily penetrate sufficiently into the interior of the catalyst, and the reaction can readily proceed effectively. In the case where the particle diameter is 1 mm or more, the carrier can readily exhibit the function thereof sufficiently.
- the catalyst used contains the carrier having palladium carried thereon.
- Palladium herein may be in the form of metallic palladium or a palladium compound.
- the palladium compound is not particularly limited, and examples thereof include palladium chloride, palladium acetate, palladium nitrate, palladium sulfate, sodium chloropalladate, potassium chloropalladate, and barium chloropalladate.
- the carrier further has a transition metal of Group 11 in the periodic table, such as copper and gold, carried thereon, in addition to palladium described above.
- the transition metals may be used alone or as a combination of two or more kinds thereof. Among these, copper and gold are preferred, and gold is more preferred, from the standpoint of the enhancement of the production efficiency.
- the use form of the transition metal of Group 11 in the periodic table in the preparation of the catalyst is not particularly limited, and examples of the form include compound forms, such as a nitrate salt, a carbonate salt, a sulfate salt, an organic acid salt, and a halide.
- the ratio of palladium and the transition metal of Group 11 in the periodic table is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass, of the transition metal of Group 11 in the periodic table per 1 part by mass of palladium.
- the preparation method of the catalyst containing a carrier having palladium and a transition metal of Group 11 in the periodic table carried thereon is not particularly limited, and for example, the catalyst may be obtained by performing sequentially the following steps (1) to (4).
- the catalyst obtained by the aforementioned preparation method preferably has a specific surface area of 10 to 250 m 2 /g and a pore volume of 0.1 to 1.5 mL/g.
- the ratio of palladium and the carrier in the catalyst is preferably 10 to 1,000 parts by mass, and more preferably 30 to 500 parts by mass, of the carrier per 1 part by mass of palladium.
- the amount of the carrier is 10 parts by mass or more per 1 part by mass of palladium, the dispersion state of palladium can be enhanced to improve the reaction result.
- the amount of the carrier is 1,000 parts by mass or less per 1 part by mass of palladium, the industrial practicality can be enhanced.
- the amount of the catalyst used in the production method of the present invention is not particularly limited, and is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass, further preferably 0.5 to 8% by mass, and still further preferably 1.0 to 5% by mass, based on the total mass of the carboxylic acid (I) and isobutylene, from the standpoint of the enhancement of the production efficiency.
- the catalyst activator used in the production method of the present invention may be used in the form carried on the catalyst in advance, or may be charged in the reaction device along with the reaction mixture.
- the catalyst activator include a hydroxide, a nitrate salt, a carboxylate salt, or a carbonate salt of an alkali metal, such as sodium, potassium, and cesium; and a hydroxide, a nitrate salt, a carboxylate salt, or a carbonate salt of an alkaline earth metal, such as magnesium, calcium, and barium.
- These catalyst activators may be used alone or as a combination of two or more kinds thereof.
- a salt of the carboxylic acid (I) is preferred, an alkali metal salt of the carboxylic acid (I) is more preferred, and potassium acetate is further preferred, from the standpoint of the availability and the reaction activity.
- the amount of the catalyst activator used is not particularly limited, and is preferably 1 to 20% by mass, and more preferably 3 to 15% by mass, based on the total amount of the mass of the carrier and the amount of the catalyst activator used as 100% by mass.
- Oxygen used in the production method of the present invention may be atomic and/or molecular oxygen, and is preferably molecular oxygen.
- a mixed gas with an inert gas such as nitrogen, argon, helium, and carbon dioxide, is preferably used.
- the oxygen concentration is controlled to such a range that the gas inside the system does not have an explosive composition.
- Examples of the method of supplying molecular oxygen or a mixed gas containing molecular oxygen to the reaction system include a method of supplying to the liquid phase portion in the reaction system, a method of supplying to the gas phase portion therein, and a method of supplying to both the liquid phase portion and the gas phase portion.
- Molecular oxygen or a mixed gas containing molecular oxygen is preferably supplied to the reaction system at an oxygen partial pressure in a range of 0.01 to 200 atm (gauge pressure), and more preferably 0.1 to 100 atm (gauge pressure).
- the reaction of the carboxylic acid (I), isobutylene, and oxygen in the presence of the catalyst and the catalyst activator in a liquid phase in the production method of the present invention may be performed by using a solvent or without a solvent.
- Examples of the solvent that is used depending on necessity in the production method of the present invention include a hydrocarbon (including an aliphatic hydrocarbon and an aromatic hydrocarbon), such as hexane, heptane, methylcyclohexane, and benzene; a heterocyclic compound, such as pyridine and quinoline; an ether, such as diethyl ether, tetrahydrofuran, methyl tert-butyl ether, and cyclopentyl methyl ether; a ketone, such as acetone, methyl ethyl ketone, and isobutyl methyl ketone; an ester, such as a carboxylate ester, diethyl carbonate, and propylene carbonate; an amide, such as dimethylformamide and dimethylacetamide; a nitrile, such as acetonitrile and benzonitrile; and an alcohol, such as methanol, ethanol, isopropyl alcohol, and
- the amount of the solvent used is not particularly limited, as far as the reaction is not adversely affected, and is generally approximately 0.1 to 1,000 times amount, and is preferably 0.4 to 100 times amount from the standpoint of the productivity, all based on the total mass of the carboxylic acid (I) and isobutylene.
- the amount of the carboxylic acid (I) used is preferably more than 1 mol and 50 mol or less per 1 mol of the isobutylene.
- the amount of the carboxylic acid (I) used i.e., the amount thereof used per 1 mol of the isobutylene
- the amount of the isobutylene used is preferably 45 mol or less, more preferably 40 mol or less, and further preferably 35 mol or less. In the case where the amount thereof used is 1 mol or more, a further excellent production efficiency can be obtained.
- the process for recovering the excessive carboxylic acid (I) can be shortened, which is economically advantageous.
- the amount thereof used is the total amount thereof placed.
- the reaction conditions such as the reaction temperature, the reaction pressure, and the reaction time, in the production method of the present invention may be appropriately determined depending on the kinds and the combination of the carboxylic acid (I), isobutylene, and the solvent used depending on necessity, the composition of the catalyst, and the like, and are not particularly limited.
- the reaction temperature is preferably in a range of 80 to 200°C. In the case where the reaction temperature is 80°C or more, the 1,3-bisacyloxy-2-methylenepropane (II) can be efficiently produced without excessive decrease of the reaction rate.
- the reaction temperature is more preferably 90°C or more, and further preferably 120°C of more. In the case where the reaction temperature is 200°C or less, side reaction including combustion can be prevented from occurring, and thereby the 1,3-bisacyloxy-2-methylenepropane (II) can be efficiently produced, and the corrosion of the reaction device due to the carboxylic acid can be suppressed.
- the reaction temperature is more preferably 180°C or less, and further preferably 160°C or less.
- the reaction time may be in a range, for example, of 0.5 to 12 hours.
- the reaction time may be 1 hour or more from the standpoint of the production efficiency, and may be 10 hours or less or 8 hours or less from the same standpoint.
- the reaction mode in the production method of the present invention may be either a continuous system or a batch system, and is not particularly limited.
- the catalyst may be charged in the reaction device at one time along with the raw materials
- the catalyst in the case where a continuous system is used as the reaction mode, for example, the catalyst may be charged in the reaction device in advance, or may be continuously charged in the reaction device along with the raw materials.
- the catalyst may be used in the form of any of a fixed bed, a fluidized bed, and a suspension bed.
- purification may be performed after the aforementioned reaction.
- the 1,3-bisacyloxy-2-methylenepropane (II) formed through the aforementioned reaction can be isolated by separating the catalyst and then purifying the reaction solution.
- the measure for separating the catalyst is not particularly limited and may be an ordinary solid-liquid separation measure, and examples thereof used include filtration methods, such as natural filtration, pressure filtration, filtration under reduced pressure, and centrifugal filtration.
- the measure for purifying the reaction solution is not particularly limited and may be a distillation method, an extraction method, column chromatography, or the like. These methods may be performed in combination. Among these, a distillation method and an extraction method are preferred.
- the raw materials and the solvent separated by the purification may be used again for the reaction.
- the catalyst separated may also be used again in the reaction.
- the production method of the present invention exemplified by the aforementioned embodiments can produce the 1,3-bisacyloxy-2-methylenepropane (II) as the target product with a high conversion, a high selectivity, and a high yield, without the formation of the inorganic by-product in the equimolar amount or more with respect to the target product.
- II 1,3-bisacyloxy-2-methylenepropane
- reaction mixture The solution after the reaction (reaction mixture) was analyzed by using a gas chromatograph GC2014 (produced by Shimadzu Corporation, FID detector) and a capillary column (produced by Agilent Technologies, Inc., DB-1, length: 30 m, inner diameter: 0.25 mm, thickness: 0.25 pm) under the following condition.
- gas chromatograph GC2014 produced by Shimadzu Corporation, FID detector
- capillary column produced by Agilent Technologies, Inc., DB-1, length: 30 m, inner diameter: 0.25 mm, thickness: 0.25 pm
- the catalyst after the reduction was rinsed with water and dried at 110°C for 4 hours. Thereafter, the carrier having metallic palladium was placed in an aqueous solution containing 13.34 g (136 mmol) of potassium acetate, the entire amount of the aqueous solution was absorbed thereby, and then dried at 110°C for 4 hours to prepare the catalyst 1.
- the reaction was performed by performing the same procedure as in Example 1 except that the catalyst 2 was used instead of the catalyst 1, and the reaction was performed for 6 hours.
- the analysis of the resulting reaction solution by the aforementioned method revealed that the conversion of isobutylene was 66%, the selectivity to 1,3-diacetoxy-2-methylenepropane was 10%, and the selectivity to methallyl acetate was 85%.
- the yield of 1,3-diacetoxy-2-methylenepropane obtained was 0.3 g (1.6 mmol), and the production efficiency of 1,3-diacetoxy-2-methylenepropane was 0.037 g(product)/(g(catalyst) ⁇ hr).
- Example 1 and Comparative Examples 1 and 2 shown above are shown in Table 1.
- Table 1 Reaction phase Catalyst Reaction time Conversion * 3 Selectivity * 1 Yield * 3 Production efficiency * 2
- Example 1 liquid phase catalyst 1 5 hours 100% 83% 83% 0.55
- Comparative Example 1 liquid phase catalyst 2 6 hours 66% 10% 7% 0.037
- Comparative Example 2 gas phase catalyst 1 4 hours - - 0.8% 0.16
- Example 1 shows an excellent selectivity, from which it is understood that an inorganic by-product is not formed in the equimolar amount or more with respect to the product. It is also understood from the conversion, the selectivity, and the yield that Examples are excellent in production efficiency as compared to Comparative Examples.
- a 1,3-bisacyloxy-2-methylenepropane can be produced without the generation of an inorganic by-product in the equimolar amount or more with high production efficiency and cost efficiency.
- a 1,3-bisacyloxy-2-methylenepropane can be used as a production raw material of various industrially useful compounds.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018141805 | 2018-07-27 | ||
PCT/JP2019/028950 WO2020022364A1 (fr) | 2018-07-27 | 2019-07-24 | Procédé de production de 1,3-bisacyloxy-2-méthylène propane |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3831803A1 true EP3831803A1 (fr) | 2021-06-09 |
EP3831803A4 EP3831803A4 (fr) | 2022-04-27 |
EP3831803B1 EP3831803B1 (fr) | 2024-09-04 |
Family
ID=69180739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840196.0A Active EP3831803B1 (fr) | 2018-07-27 | 2019-07-24 | Procédé de production de 1,3-bisacyloxy-2-méthylène propane |
Country Status (6)
Country | Link |
---|---|
US (1) | US11384045B2 (fr) |
EP (1) | EP3831803B1 (fr) |
JP (1) | JP7291141B2 (fr) |
CN (2) | CN112469688A (fr) |
TW (1) | TWI805814B (fr) |
WO (1) | WO2020022364A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112341314B (zh) * | 2020-11-11 | 2021-11-02 | 北京水木滨华科技有限公司 | 一种由异丁烯制备2-甲基-1,3-丙二醇的方法 |
WO2024080374A1 (fr) * | 2022-10-14 | 2024-04-18 | 株式会社クラレ | Composition |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1138366A (en) * | 1965-05-13 | 1969-01-01 | Ici Ltd | Improvements in and relating to the production of unsaturated compounds |
US4057575A (en) * | 1967-09-25 | 1977-11-08 | Union Oil Company Of California | Process for the preparation of unsaturated esters |
JPS4728965Y1 (fr) | 1968-09-13 | 1972-08-31 | ||
DE1909964C3 (de) | 1969-02-27 | 1973-09-27 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von 2 Methylen 1,3 diacetoxy propan |
CH545259A (de) * | 1969-07-02 | 1973-12-15 | Bayer Ag | Verfahren zur Herstellung von Allylalkohol |
US3872163A (en) * | 1972-01-19 | 1975-03-18 | Kuraray Co | Method of preparing 1,4-diacyloxy-2-butenes |
JPS5227710A (en) * | 1975-06-27 | 1977-03-02 | Kuraray Co Ltd | Process for preparation of unsaturated esters |
JPS53127409A (en) | 1977-04-11 | 1978-11-07 | Sumitomo Chem Co Ltd | Preparation of unsaturated ester |
DE3101002A1 (de) * | 1981-01-15 | 1982-08-05 | Basf Ag, 6700 Ludwigshafen | Diacyloxyalkadiene und ihre herstellung |
US4602103A (en) * | 1984-10-29 | 1986-07-22 | Sun Refining And Marketing Company | Process for the oxidation of butenes to linear acetates |
JPH02264781A (ja) | 1989-04-05 | 1990-10-29 | Toshiba Silicone Co Ltd | アクリロキシ基を有する有機ケイ素化合物 |
JP3540392B2 (ja) * | 1993-10-06 | 2004-07-07 | 三菱化学株式会社 | 不飽和グリコ−ルジエステルの製造法及びこの方法に用いる触媒 |
JPH07100383A (ja) | 1993-10-06 | 1995-04-18 | Mitsubishi Chem Corp | 共役ジエンのアシロキシ化触媒及びこれを用いた不飽和グリコ−ルジエステルの製造法 |
US5859287A (en) * | 1997-10-30 | 1999-01-12 | Celanese International Corporation | Process for preparing vinyl acetate utilizing a catalyst comprising palladium, gold, and any of certain third metals |
JP2001162163A (ja) * | 1999-12-07 | 2001-06-19 | Nippon Shokubai Co Ltd | 金属含有組成物及びエステル化合物の製造法 |
GB0223215D0 (en) * | 2002-10-07 | 2002-11-13 | Bp Chem Int Ltd | Processs |
JP2004256459A (ja) * | 2003-02-26 | 2004-09-16 | Nippon Shokubai Co Ltd | カルボン酸エステルの製造方法 |
JP4551109B2 (ja) * | 2004-04-14 | 2010-09-22 | エヌ・イーケムキャット株式会社 | 触媒の製造方法 |
JP2008173629A (ja) * | 2006-12-20 | 2008-07-31 | Showa Denko Kk | アシルオキシ化反応用触媒およびその製造方法 |
JP6110678B2 (ja) | 2012-02-10 | 2017-04-05 | 株式会社クラレ | ヒドロキシメチル基含有ビニルアルコール系重合体 |
-
2019
- 2019-07-24 EP EP19840196.0A patent/EP3831803B1/fr active Active
- 2019-07-24 US US17/261,967 patent/US11384045B2/en active Active
- 2019-07-24 WO PCT/JP2019/028950 patent/WO2020022364A1/fr unknown
- 2019-07-24 CN CN201980049168.2A patent/CN112469688A/zh active Pending
- 2019-07-24 JP JP2020532432A patent/JP7291141B2/ja active Active
- 2019-07-24 CN CN202311563621.6A patent/CN117567273A/zh active Pending
- 2019-07-26 TW TW108126498A patent/TWI805814B/zh active
Also Published As
Publication number | Publication date |
---|---|
JP7291141B2 (ja) | 2023-06-14 |
TWI805814B (zh) | 2023-06-21 |
CN117567273A (zh) | 2024-02-20 |
US11384045B2 (en) | 2022-07-12 |
US20210347721A1 (en) | 2021-11-11 |
WO2020022364A1 (fr) | 2020-01-30 |
JPWO2020022364A1 (ja) | 2021-08-02 |
CN112469688A (zh) | 2021-03-09 |
EP3831803A4 (fr) | 2022-04-27 |
TW202016062A (zh) | 2020-05-01 |
EP3831803B1 (fr) | 2024-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roembke et al. | Application of (phosphine) gold (I) carboxylates, sulfonates and related compounds as highly efficient catalysts for the hydration of alkynes | |
US8263813B2 (en) | Method for isomerizing olefinically unsaturated alcohols | |
US11643382B2 (en) | Method for producing 1-acyloxy-2-methyl-2-propene | |
EP3280695B1 (fr) | Production de deux esters à l'aide d'un catalyseur homogène | |
EP3831803B1 (fr) | Procédé de production de 1,3-bisacyloxy-2-méthylène propane | |
JPS5943937B2 (ja) | 不飽和ジエステルの製造法 | |
Lee et al. | Pd-catalyzed substitution reactions with organoindium reagents in situ generated from indium and allyl or propargyl halides | |
US10843998B2 (en) | Method for producing bis-acyloxylated exomethylene compound | |
JPS628113B2 (fr) | ||
JP5888322B2 (ja) | シュウ酸ジエステル製造用触媒及び当該触媒を用いたシュウ酸ジエステルの製造方法 | |
EP3792239A1 (fr) | Hydrogénation sélective | |
JP4029228B2 (ja) | α,β−不飽和カルボン酸エステルの製造方法 | |
JP2018197218A (ja) | 不均一系パラジウム触媒を用いたシクロアルカジエンまたはシクロアルケン構造を有する化合物の脱水素反応による芳香族化合物の製造方法 | |
EP0108332B1 (fr) | Préparation de diesters de l'acide acétonedicarboxylique | |
CN102548942A (zh) | 酮的制造方法 | |
JPS64938B2 (fr) | ||
JPH11315049A (ja) | 3−アシロキシシクロヘキセンの製造方法 | |
JPH11315050A (ja) | 3−アシロキシシクロヘキセンの製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20220328 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07B 61/00 20060101ALI20220322BHEP Ipc: C07C 69/16 20060101ALI20220322BHEP Ipc: C07C 67/055 20060101AFI20220322BHEP |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20231124 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07B 61/00 20060101ALI20240313BHEP Ipc: C07C 69/16 20060101ALI20240313BHEP Ipc: C07C 67/055 20060101AFI20240313BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240404 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019058440 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241204 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241204 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241204 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241205 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1720270 Country of ref document: AT Kind code of ref document: T Effective date: 20240904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240904 |