[go: up one dir, main page]

EP3396171B1 - Vakuumgerät mit wellendichtung - Google Patents

Vakuumgerät mit wellendichtung Download PDF

Info

Publication number
EP3396171B1
EP3396171B1 EP17168193.5A EP17168193A EP3396171B1 EP 3396171 B1 EP3396171 B1 EP 3396171B1 EP 17168193 A EP17168193 A EP 17168193A EP 3396171 B1 EP3396171 B1 EP 3396171B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
stator
rotor element
vacuum device
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17168193.5A
Other languages
English (en)
French (fr)
Other versions
EP3396171A1 (de
Inventor
Christopher Kobus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP17168193.5A priority Critical patent/EP3396171B1/de
Priority to JP2018082060A priority patent/JP6778231B2/ja
Publication of EP3396171A1 publication Critical patent/EP3396171A1/de
Application granted granted Critical
Publication of EP3396171B1 publication Critical patent/EP3396171B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a vacuum device, in particular a vacuum pump, with a lubricant-free space and a lubricant-containing space and with a rotatably mounted shaft which is arranged at least in sections in the two spaces.
  • Vacuum pumps for the fore-vacuum range are, for example, single-stage or multi-stage Roots pumps, which are also known as Roots pumps or multi-stage Roots pumps, screw pumps, claw pumps, scroll pumps or rotary vane pumps.
  • rooms in which the lubricant is located can also be evacuated. This creates a flow of a mixture of lubricant and gas into spaces of the vacuum device in which the lubricant is not desired, for example into a suction space of a vacuum pump. If such a suction chamber is connected to a high vacuum area of a vacuum system, contamination of the high vacuum area can occur due to the flow of the mixture of lubricant and gas or the migration of the lubricant into the suction chamber of the vacuum pump. Technological processes or scientific investigations that require a lubricant-free high vacuum range can therefore be severely disrupted by the migration of the lubricant into the suction chamber of the vacuum pump.
  • the migration of the lubricant causes a deterioration in the lubricating properties in the areas in which the shaft of the vacuum device is supported. This will shorten the life of the vacuum device. In extreme cases, the component to be lubricated and thus the vacuum device as a whole can even fail completely.
  • labyrinth seals are often used. These seals have a gap between the two spaces, the length of which is deliberately increased in order to lengthen the flow path for the lubricant or for a mixture of lubricant and gas. Reliably sealing labyrinth seals therefore require considerable axial and radial installation space.
  • a vacuum device with the features of claim 1 and in particular in that a sealing device is provided between a lubricant-free space and a lubricant-containing space in which a rotatably mounted shaft is arranged at least in sections, through which the Shaft passes through.
  • the sealing device comprises a rotor element which is connected to the shaft in a rotationally fixed manner, and a first stator element which is arranged in a rotationally fixed manner between the spaces.
  • a first gap with an inlet opening which is open to the space containing the lubricant is formed between the first stator element and the rotor element.
  • the first gap also has an outlet opening which is opposite the inlet opening and is connected to a first expansion space which has a larger cross-sectional area than the first gap and which is formed by wall sections of the rotor element and the stator element.
  • the first expansion space is also connected to a lubricant sump.
  • the connection between the first expansion space and the lubricant sump can be a direct connection if the first expansion space and the lubricant sump adjoin one another, or an indirect connection in which further elements and spaces of the sealing device are between the first expansion space and the lubricant sump and possibly lubricant channels are arranged.
  • the sealing device is thus designed to separate a lubricant that originates from the space containing the lubricant and to divert it into the lubricant sump. Consequently, the sealing device also acts as a lubricant separator.
  • a transition from the first gap to the first expansion space is thus provided, in which the cross-sectional area preferably increases abruptly. According to Bernoulli's law, this reduces the speed of the molecules of the lubricant which pass through the first gap from the space containing a lubricant into the first expansion space. They also occur in the first expansion room local negative pressure areas during operation of the vacuum device, which lead to turbulence in the flow of the molecules of the lubricant.
  • the sealing device according to the invention Due to the presence of the first expansion space with an enlarged cross-sectional area compared to the first gap, no extension of the first gap is required in the sealing device according to the invention in order to improve the sealing effect of the sealing device.
  • the rotor element and the first stator element, between which the first gap and the first expansion space are located, are therefore smaller in size compared to corresponding sealing devices from the prior art.
  • the sealing device comprises a second stator element which is arranged on that side of the rotor element that faces the lubricant-free space, while the first stator element is arranged on the opposite side of the rotor element that faces the space that contains the lubricant.
  • the rotor element is thus arranged between two stator elements which each face the lubricant-free space and the space with lubricant.
  • With the second stator element further gaps and expansion spaces are formed between wall sections of the rotor element and the second stator element.
  • the second stator element thus almost doubles the probability that a molecule of the lubricant, which enters the sealing device from the space with lubricant, hits a wall section of the rotor element or of the first or second stator element. Furthermore, the path that a molecule of the lubricant has to cover from the space with lubricant to the lubricant-free space is considerably lengthened by the second stator element. Overall, the second stator element thus additionally improves the seal between the two spaces with lubricant or without lubricant.
  • the first and the second stator element are structurally identical. Alternatively or additionally, the first and the second stator element are constructed and / or arranged symmetrically with respect to the rotor element. A structurally identical and / or symmetrical design of the two stator elements simplifies their manufacture and their assembly on the vacuum device.
  • the rotor element is alternatively or additionally constructed symmetrically with respect to the first and the second stator element.
  • the rotor element thus has the same geometry both in the direction of the first and the second stator element, in particular with the constrictions or constrictions described above, between which sections of the two stator elements are located. This doubles the number of gaps and expansion spaces between the rotor element and the stator elements, which further improves the effect of the sealing device.
  • a second gap is formed between the first stator element and the rotor element, the inlet opening of which coincides with the first Expansion space communicating.
  • the second gap has an outlet opening opposite the inlet opening, which is connected to a second expansion space, which in turn has a larger cross-sectional area than the second gap and, like the first expansion space, is formed by wall sections of the rotor element and the stator element.
  • the sealing device thus has two transitions between a gap with a smaller cross-sectional area and an expansion space with a larger cross-sectional area along the path that molecules of the lubricant travel between the space containing a lubricant and the lubricant-free space.
  • This double transition between a gap and an expansion space and the associated reduction in the velocity of the lubricant molecules thus further increases the probability that the gas molecules will hit wall sections of the rotor element or the stator element and be diverted into the lubricant sump.
  • gaps and expansion spaces connected to them can be formed between the first stator element and the rotor element, so that overall there is a "cascading" of successive gaps and expansion spaces between the first stator element and the rotor element.
  • the effect of the transition between the respective columns and expansion spaces is multiplied with their number.
  • the rotor element preferably has an inner section through which the shaft passes in an axial direction, a central section which adjoins the inner section in a radial direction with respect to the shaft, and an outer section which joins in the radial direction adjoins the middle section.
  • the middle section has a smaller extension in the axial direction than the inner and outer sections.
  • the rotor element has an enlarged surface with which the molecules of the lubricant can come into contact. Furthermore, due to the constriction, the molecules of the lubricant are reflected on an outer surface of the inner section, so that they are deflected in the direction of an inner surface of the outer section and impinge on the inner surface of the outer section. This in turn increases the likelihood that the molecules of the lubricant will hit wall sections of the rotor element and be guided in the direction of the lubricant sump.
  • An inner portion of the first stator element is preferably arranged in the radial direction between the inner and outer portions of the rotor element. Wall sections of the respective inner section of the first stator element and of the rotor element form the first gap.
  • the first stator element and the rotor element thus have an "interlocking" arrangement. This leads to a lengthening of the path for the molecules of the lubricant between the space containing the lubricant and the lubricant-free space. This in turn improves the seal between these two spaces.
  • the first expansion space is formed in particular by wall sections of the inner section of the first stator element and by wall sections of the inner, middle and outer sections of the rotor element.
  • the first expansion space has, for example, three moving wall sections which are formed by the rotor element.
  • the movement of the wall sections increases the turbulence in the first expansion space.
  • the molecules of the lubricant as a whole preferentially move in a radial direction Direction, because due to the larger area of the outer section located further out in the axial direction compared to the inner section of the rotor element, they are more likely to impinge on the outer section of the rotor element and adhere to or be diverted from it.
  • the middle section of the rotor element preferably comprises an inner, a middle and an outer section, the middle section having a greater extent in the axial direction than the inner and the outer section.
  • the middle section of the rotor element which is constricted in comparison to the inner and outer sections of the rotor element, is thus divided into three further subsections, of which the middle subsection is widened in the axial direction compared to the two further subsections.
  • the rotor element thus has two constrictions, seen in the radial direction, which are located in the area of the inner and outer subsections of the central section.
  • the first stator element has at least one axial recess within which a recess extending in the axial direction Section of the rotor element is arranged.
  • the first stator element and the rotor element thus in turn have an "interlocking" arrangement in which the path for the molecules of the lubricant between the space with lubricant and the lubricant-free space is lengthened. This in turn improves the seal between the two spaces, since the molecules of the lubricant are more likely to hit wall sections.
  • the rotor element preferably has at least one constriction in a direction that is axial with respect to the shaft, in which an axial projection of the stator element is arranged in such a way that the first and second gap and the first and the second gap as well as the first and the second expansion space are formed.
  • the meshing of the rotor element and the stator element thus leads to the formation of two gaps and two expansion spaces. This gives the sealing device a compact structure in which, however, two transitions are provided between a respective gap and an expansion space.
  • the sealing device still has the advantage described above, due to the two transitions between a respective gap and expansion space, that the probability of molecules of the lubricant hitting wall sections is increased and thereby the seal between the lubricant-free space and the space is increased Lubricant is improved.
  • the first stator element also preferably has at least one drain opening which is in communication with the lubricant sump.
  • the outflow opening is arranged in particular on an outer circumference of the stator element.
  • the first expansion space which is formed by wall sections of both the rotor element and the stator element, is only indirectly connected to the lubricant sump in this embodiment.
  • the lubricant is thus by means of the Drain opening canalized in the direction of the lubricant sump, in particular the rotational movement of the rotary element and the associated preferred direction of the lubricant in the radial direction is used.
  • the vacuum device has, in particular, a housing within which the first and / or the second stator element are arranged in a rotationally fixed manner and the rotor element is rotatably arranged.
  • the housing also has an outflow channel for the lubricant, which is in connection with at least one outflow opening of the first and / or the second stator element and with the lubricant sump.
  • the drainage channel of the housing thus serves to “collect” the lubricant, in particular when the first and / or the second stator element have several drainage openings.
  • the first and / or the second stator element and / or the rotor element preferably have inclined surfaces which are provided for guiding and / or for dripping off the lubricant.
  • the inclined surfaces can also enlarge the expansion space or the expansion spaces between the rotor element and the two stator elements.
  • the inclined surfaces can be arranged in such a way that they support the transport of the lubricant due to the rotation of the rotor element in the radial direction.
  • an edge can be formed between an inclined surface and a straight surface, on which the lubricant drips off in a preferred direction.
  • a section of a vacuum device is shown, which is, for example, a vacuum pump, for example a Roots pump.
  • a shaft 13 which can be rotated about a shaft axis 14, is arranged in a housing 11 of the vacuum device.
  • the shaft 13 is supported by a bearing 15 which is shown in Figure 3B is shown schematically and which is located in a space 17 containing a lubricant within the housing 11.
  • the shaft 13 extends through a lubricant-free space 19 which is connected to a suction chamber, not shown, of the vacuum device or the vacuum pump.
  • a lubricant-free space 19 which is connected to a suction chamber, not shown, of the vacuum device or the vacuum pump.
  • the shaft 13 is driven to rotate by means of a motor in order, for example, to convey a gas from an inlet of the vacuum device or the vacuum pump to an outlet.
  • the pump chamber and also the lubricant-free chamber 19 are evacuated during the operation of the vacuum device or the vacuum pump.
  • the pressure in the lubricant-free space 19 is consequently lower than in the space 17 containing the lubricant.
  • a sealing device 21 is provided through which the shaft 13 passes and which is arranged between the two spaces 17, 19.
  • the sealing device 21 comprises a first stator element 23 and a second stator element 25, which are arranged non-rotatably in the housing 11.
  • the sealing device 21 comprises a rotor element 27 which is connected to the shaft 13 in a rotationally fixed manner.
  • the rotor element 27 is arranged in the axial direction between the first and the second stator element 23, 25 and is enclosed by these after the assembly of the sealing device 21.
  • the first and the second stator element 23, 25 as well as the rotor element 27 are ring-shaped and are arranged centered with respect to the shaft axis 14 (cf. Figures 1 to 3B ).
  • the first and second stator elements 23, 25 have a plurality of drainage openings 29 for the lubricant on the outer circumference, which are dimensioned and distributed in such a way that at least one drainage opening 29 is connected to a drainage channel 31 in the housing 11. This facilitates assembly, since the relative angular position of the stator elements 23, 25 is then only of subordinate importance. Via the outflow openings 29 of the first and second stator elements 23, 25, lubricant passes from the sealing device 21 into the outflow channel 31 and further into a lubricant sump (not shown).
  • the rotor element 27 has an inner section 33 which is connected to the shaft 13. In the area of the inner In section 33, the rotor element 27 has the greatest extent or width in an axial direction, ie parallel to the shaft axis 14. In a radial direction with respect to the shaft axis 14, the inner section 33 of the rotor element 27 is adjoined by a central section 35, in which the rotor element 27 has the smallest extension or width in the axial direction.
  • the rotor element 27 comprises an outer section 37 which, compared to the central section 35, in turn has a greater extension or width in the axial direction, but which is smaller than the extension of the inner section 33 in the axial direction.
  • the outer section 37 of the rotor element 27 also has a stepped profile on the outside, i.e. viewed in the radial direction, which is formed by inclined surfaces 39 and surfaces 41 running in the radial direction.
  • the first and the second stator element 23, 25 each have an inner section 43 with a projection 45 on the inner circumference (cf. Figure 3C , 3D and 3E ), which extends in the axial direction and in the direction of the central section 35 of the rotor element 27.
  • the projection 45 of the first and second stator elements 23, 25 each has an extension 47 which extends radially outward from the projection 45 of the stator element 23, 25 .
  • the inner section 43 of the first and the second stator element 23, 25 thus has an L-shape which comprises the projection 45 and the extension 47.
  • the projection 45 and the extension 47 of the respective stator element 23, 25 are thus arranged in the area of a constriction of the rotor element 27, which is formed by the central section 35 of the rotor element 27.
  • the outer section 37 of the rotor element 27 is also arranged in a recess 49 of the respective stator element 23, 25.
  • a first gap 51 is formed between the projection 45 of the first stator element 23 and the inner section 33 of the rotor element 27, which gap 51 has a small cross-sectional area and an inlet opening 53 and an outlet opening 55.
  • the inlet opening 53 of the first gap 51 is open to the space 17 containing the lubricant, while the outlet opening 55 is connected to a first expansion space 57.
  • the first expansion space 57 has a larger cross-sectional area than the first gap 51. Furthermore, the first expansion space 57 is formed by a respective wall section of the inner, middle and outer sections 33, 35, 37 of the rotor element 27 and by a wall section of an inner section 43 of the first stator element 23, this wall section being formed by the projection 45 and the extension 47 is formed.
  • FIG. 8 shows an enlarged area of the rotor element 27 and the first stator element 23, which is shown in FIG Figure 3D is denoted by B.
  • the mixture of gas and lubricant emerges from the outlet opening 55 of the first gap 51 in the sealing device 21 according to the invention, its speed is reduced according to Bernoulli's law, since the cross-sectional area of the first expansion space 57 is larger than the cross-sectional area of the first gap 51. Furthermore, turbulence occurs in the first expansion space 57 due to local negative pressure areas. This leads to the fact that in the first expansion space 57 the probability of molecules of the lubricant impinging on the wall sections of the rotor element 27 or of the first stator element 23 is significantly increased compared to the first gap 51.
  • a second gap 59 is also formed between an inner surface of the outer section 37 of the rotor element 27 and the extension 47 on the projection 45 of the first stator element 23.
  • An inlet opening 61 of the second gap 59 is connected to the first expansion space 57, while an outlet opening 63 of the second gap 59 is connected to a second expansion space 65.
  • the second expansion space 65 again has a larger cross-sectional area than the second gap 59, so that the speed of the mixture of gas and lubricant is again reduced when it enters the second expansion space 65. Furthermore, turbulence also occurs in the second expansion space 65 due to local negative pressure areas.
  • the second expansion space 65 is formed by wall sections of the outer section 37 of the rotor element 27 and by opposing wall sections of the first stator element 23. Due to the profiled outer surface of the outer Section 37 of the rotor element 27 with surfaces 41 running in the radial direction and inclined surfaces 39, the second expansion space 65 has an inner structure with constrictions and widenings, each of which has cross-sectional areas of different sizes. As a result, the turbulence within the second expansion space 65 is additionally increased compared to the first expansion space 57.
  • the second expansion space 65 is also adjoined by one of the outflow openings 29 of the first and second stator elements 23, 25 in the radial direction and by a further expansion space of the second stator element 25 in the axial direction.
  • the first and the second stator element 23, 25 are structurally identical and are only arranged on different sides of the rotor element 27.
  • the first and the second stator element 23, 25 are also arranged symmetrically to one another with respect to the rotor element 27. How to get in Figure 3C and 3D can see, the sequence of two further expansion spaces and two further gaps is repeated between the rotor element 27 and the second stator element 25 as between the rotor element 27 and the first stator element 23, but in the reverse order.
  • the molecules of the flow of gas and lubricant that enter the inlet opening 53 of the first gap 51 must go through a comparatively long and labyrinth-like path on the way to entering the lubricant-free space, within which several transitions between a respective gap with a small cross-sectional area and a respective expansion space with a larger cross-sectional area are arranged.
  • the probability within the sealing device 21 according to the invention is therefore significantly increased that molecules of the lubricant will strike a wall section of the rotor element 27 or the first or second stator element 23, 25.
  • the molecules of the lubricant are also driven by the rotational movement of the rotor element 27 is accelerated outward in the radial direction.
  • the sealing device 21 thus improves the separation of gas and lubricant which enter the sealing device 21 from the space 17 containing the lubricant.
  • FIGs 4A, 4B and 4C a second embodiment of the vacuum device according to the invention is shown.
  • This differs from the in Figures 1 to 3E illustrated embodiment on the one hand in that the middle section 35 of the rotor element 27 is divided into three sections, namely into an inner section 71, a middle section 73 and an outer section 75 greater width than the inner and outer subsections 71, 75. Since the first and the second stator element 23, 25 have corresponding projections, a structure with a total of ten columns and ten expansion spaces is thus formed overall between the rotor element 27 and the first or second stator element 23, 25.
  • the expansion spaces of the second embodiment have additional inclined surfaces which are formed by corresponding wall sections of the first and second stator elements 23, 25, respectively. Due to the larger number of gaps and expansion spaces compared to the first embodiment, the probability of molecules of the lubricant hitting wall sections of the rotor element 27 or of the first or second stator element 23, 25 is further increased in the second embodiment. This will make the seal of the lubricant * Free space 19 compared to the space 17 containing the lubricant with the sealing device 21 according to the second embodiment improved again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Vakuumgerät, insbesondere eine Vakuumpumpe, mit einem schmiermittelfreien Raum und einem ein Schmiermittel enthaltenden Raum sowie mit einer drehbar gelagerten Welle, die zumindest abschnittsweise in den beiden Räumen angeordnet ist.
  • Viele Vakuumgeräte, wie beispielsweise Vakuumpumpen im Vorvakuumbereich einer Vakuumanlage, weisen Lager- und Getriebeteile auf, die mit einem Schmiermittel geschmiert werden. Vakuumpumpen für den Vorvakuumbereich sind beispielsweise einstufige oder mehrstufige Wälzkolbenpumpen, die auch als Rootspumpen bzw. Multi-Stage-Rootspumpen bekannt sind, Schraubenpumpen, Klauenpumpen, Scrollpumpen oder Drehschieberpumpen.
  • Im Betrieb des Vakuumgeräts können auch Räume, in denen sich das Schmiermittel befindet, evakuiert werden. Dadurch entsteht eine Strömung eines Gemischs aus Schmiermittel und Gas in Räume des Vakuumgeräts hinein, in denen das Schmiermittel nicht erwünscht ist, beispielsweise in einen Schöpfraum einer Vakuumpumpe. Wenn ein solcher Schöpfraum mit einem Hochvakuumbereich einer Vakuumanlage verbunden ist, kann durch die Strömung des Gemischs aus Schmiermittel und Gas bzw. die Migration des Schmiermittels in den Schöpfraum der Vakuumpumpe eine Kontamination des Hochvakuumbereichs auftreten. Technologische Prozesse oder wissenschaftliche Untersuchungen, die einen schmiermittelfreien Hochvakuumbereich erfordern, können somit durch die Migration des Schmiermittels in den Schöpfraum der Vakuumpumpe empfindlich gestört werden.
  • Außerdem bewirkt die Migration des Schmiermittels eine Verschlechterung der Schmiereigenschaften in den Bereichen, in denen die Welle des Vakuumgeräts gelagert ist. Dadurch wird die Lebensdauer des Vakuumgeräts verkürzt. Im Extremfall kann sogar ein Totalausfall der zu schmierenden Komponente und somit des Vakuumgeräts insgesamt auftreten.
  • Um einen Raum, in dem ein Schmiermittel nicht erwünscht ist, in einem Vakuumgerät von einem Raum mit Schmiermittel zu trennen und die Migration des Schmiermittels zu unterbinden, gelangen häufig Labyrinthdichtungen zum Einsatz. Diese Dichtungen weisen zwischen den beiden Räumen einen Spalt auf, dessen Länge bewusst vergrößert wird, um dadurch den Strömungsweg für das Schmiermittel bzw. für ein Gemisch aus Schmiermittel und Gas zu verlängern. Zuverlässig dichtende Labyrinthdichtungen benötigen daher erheblichen axialen und radialen Bauraum.
  • Aus der EP 1 273 801 A2 ist ein Vakuumgerät gemäß dem Oberbegriff des Anspruchs 1, 2 oder 3 bekannt.
  • Die DE 10 2005 015 212 A1 beschreibt ein ähnliches Vakuumgerät.
  • Eine Aufgabe der Erfindung besteht darin, ein Vakuumgerät mit einer kompakten Dichtvorrichtung zu schaffen, bei welchem eine Migration eines Schmiermittels aus einem Raum mit Schmiermittel in einen Raum, in welchem das Vorhandensein eines Schmiermittels nicht erwünscht ist, zuverlässig verhindert wird.
  • Diese Aufgabe wird durch ein Vakuumgerät mit den Merkmalen des Anspruchs 1 gelöst und insbesondere dadurch, dass in diesem zwischen einem schmiermittelfreien Raum und einem ein Schmiermittel enthaltenden Raum, in welchen zumindest abschnittsweise eine drehbar gelagerte Welle angeordnet ist, eine Dichtvorrichtung vorgesehen ist, durch welche die Welle hindurchtritt. Die Dichtvorrichtung umfasst ein Rotorelement, das mit der Welle drehfest verbunden ist, und ein erstes Statorelement, das drehfest zwischen den Räumen angeordnet ist.
  • Erfindungsgemäß ist zwischen dem ersten Statorelement und dem Rotorelement ein erster Spalt mit einer Eintrittsöffnung gebildet, welche zu dem das Schmiermittel enthaltenden Raum offen ist. Der erste Spalt weist ferner eine Austrittsöffnung auf, welche der Eintrittsöffnung gegenüberliegt und mit einem ersten Expansionsraum verbunden ist, der eine größere Querschnittsfläche als der erste Spalt aufweist und der durch Wandabschnitte des Rotorelements und des Statorelements gebildet ist.
  • Der erste Expansionsraum steht ferner mit einem Schmiermittelsumpf in Verbindung. Bei der Verbindung zwischen dem ersten Expansionsraum und dem Schmiermittelsumpf kann es sich um eine unmittelbare Verbindung handeln, wenn der erste Expansionsraum und der Schmiermittelsumpf aneinander angrenzen, oder um eine mittelbare Verbindung, bei welcher zwischen dem ersten Expansionsraum und dem Schmiermittelsumpf weitere Elemente und Räume der Dichtvorrichtung und eventuell Schmiermittelkanäle angeordnet sind. Insgesamt ist die Dichtvorrichtung somit ausgebildet, um ein Schmiermittel, das aus dem das Schmiermittel enthaltenden Raum stammt, abzuscheiden und in den Schmiermittelsumpf abzuleiten. Folglich wirkt die Dichtvorrichtung auch als Schmiermittel-Abscheidevorrichtung.
  • In der Dichtvorrichtung des erfindungsgemäßen Vakuumgeräts ist somit ein Übergang vom ersten Spalt zum ersten Expansionsraum vorgesehen, bei welchem die Querschnittsfläche bevorzugt abrupt zunimmt. Dadurch verringert sich gemäß dem Bernoullischen Gesetz die Geschwindigkeit der Moleküle des Schmiermittels, welche durch den ersten Spalt aus dem ein Schmiermittel enthaltenden Raum in den ersten Expansionsraum gelangen. Darüber hinaus treten im ersten Expansionsraum während des Betriebs des Vakuumgeräts lokale Unterdruckbereiche auf, die zu Turbulenzen in der Strömung der Moleküle des Schmiermittels führen.
  • Die Verringerung der Geschwindigkeit der Moleküle des Schmiermittels und die Turbulenzen führen zu einer deutlichen Erhöhung der Wahrscheinlichkeit für ein Auftreffen der Moleküle des Schmiermittels auf Wandabschnitte des Rotorelements und des Statorelements, die den ersten Expansionsraum bilden. Dadurch wird im Vergleich zu ähnlich kompakten Dichtvorrichtungen aus dem Stand der Technik eine größere Menge an Schmiermittel abgeschieden und in den Schmiermittelsumpf geleitet. Umgekehrt ist die Wahrscheinlichkeit erheblich verringert, dass Moleküle des Schmiermittels durch die Dichtvorrichtung insgesamt hindurch in den schmiermittelfreien Raum gelangen.
  • Aufgrund des Vorhandenseins des ersten Expansionsraums mit im Vergleich zum ersten Spalt vergrößerter Querschnittsfläche ist bei der erfindungsgemäßen Dichtvorrichtung keine Verlängerung des ersten Spalts erforderlich, um die Dichtwirkung der Dichtvorrichtung zu verbessern. Das Rotorelement und das erste Statorelement, zwischen denen sich der erste Spalt und der erste Expansionsraum befinden, weisen daher im Vergleich zu entsprechenden Dichtvorrichtungen aus dem Stand der Technik eine kleinere Baugröße auf.
  • Ferner umfasst die Dichtvorrichtung ein zweites Statorelement, das an derjenigen Seite des Rotorelements angeordnet ist, die dem schmiermittelfreien Raum zugewandt ist, während das erste Statorelement an der gegenüberliegenden Seite des Rotorelements angeordnet ist, die dem Raum zugewandt ist, der das Schmiermittel enthält. Das Rotorelement ist somit zwischen zwei Statorelementen angeordnet, die jeweils dem schmiermittelfreien Raum und dem Raum mit Schmiermittel zugewandt sind. Mit dem zweiten Statorelement werden weitere Spalte und Expansionsräume zwischen Wandabschnitten des Rotorelements und des zweiten Statorelements gebildet.
  • Durch das zweite Statorelement wird somit die Wahrscheinlichkeit nahezu verdoppelt, dass ein Molekül des Schmiermittels, das aus dem Raum mit Schmiermittel in die Dichtvorrichtung eintritt, auf einen Wandabschnitt des Rotorelements oder des ersten bzw. zweiten Statorelements auftrifft. Ferner wird der Weg, den ein Molekül des Schmiermittels vom Raum mit Schmiermittel bis zum schmiermittelfreien Raum zurücklegen muss, durch das zweite Statorelement erheblich verlängert. Insgesamt verbessert somit das zweite Statorelement zusätzlich die Abdichtung zwischen den beiden Räumen mit Schmiermittel bzw. ohne Schmiermittel.
  • Das erste und das zweite Statorelement sind baugleich. Alternativ oder zusätzlich sind das erste und das zweite Statorelement bezüglich des Rotorelements symmetrisch aufgebaut und/oder angeordnet. Eine baugleiche und/oder symmetrische Ausführung der beiden Statorelemente vereinfacht deren Herstellung sowie deren Montage am Vakuumgerät.
  • Ferner ist das Rotorelement alternativ oder zusätzlich bezüglich des ersten und des zweiten Statorelements symmetrisch aufgebaut. Das Rotorelement weist somit sowohl in Richtung des ersten als auch des zweiten Statorelements die gleiche Geometrie auf, insbesondere mit den vorstehend beschriebenen Verengungen bzw. Einschnürungen, zwischen denen sich jeweils Abschnitte der beiden Statorelemente befinden. Dadurch wird die Anzahl der Spalte und Expansionsräume zwischen dem Rotorelement und den Statorelementen verdoppelt, wodurch die Wirkung der Dichtvorrichtung weiter verbessert wird.
  • Vorteilhafte Ausführungen der Erfindung sind in den Unteransprüchen, der Beschreibung und in der Zeichnung angegeben.
  • Gemäß einer Ausführungsform ist zwischen dem ersten Statorelement und dem Rotorelement ein zweiter Spalt gebildet, dessen Eintrittsöffnung mit dem ersten Expansionsraum in Verbindung steht. Der zweite Spalt weist gegenüberliegend zu der Eintrittsöffnung eine Austrittsöffnung auf, die mit einem zweiten Expansionsraum verbunden ist, der wiederum eine größere Querschnittsfläche als der zweite Spalt aufweist und ebenso wie der erste Expansionsraum durch Wandabschnitte des Rotorelements und des Statorelements gebildet ist.
  • Die Dichtvorrichtung verfügt bei dieser Ausführungsform somit entlang des Weges, den Moleküle des Schmiermittels zwischen dem ein Schmiermittel enthaltenden Raum und dem schmiermittelfreien Raum zurücklegen, über zwei Übergänge zwischen jeweils einem Spalt mit einer kleineren Querschnittsfläche und einem Expansionsraum mit größerer Querschnittsfläche. Durch diesen doppelten Übergang zwischen jeweils einem Spalt und einem Expansionsraum und der mit diesem Übergang verbundenen Verringerung der Geschwindigkeit der Moleküle des Schmiermittels wird somit die Wahrscheinlichkeit weiter vergrößert, dass die Gasmoleküle auf Wandabschnitte des Rotorelements oder des Statorelements auftreffen und in den Schmiermittelsumpf abgeleitet werden.
  • Ferner können zwischen dem ersten Statorelement und dem Rotorelement weitere Spalte und mit diesen verbundene Expansionsräume gebildet sein, so dass insgesamt zwischen dem ersten Statorelement und dem Rotorelement eine "Kaskadierung" jeweils aufeinanderfolgender Spalte und Expansionsräume vorhanden ist. Dadurch wird entsprechend die Wirkung des Übergangs zwischen den jeweiligen Spalten und Expansionsräumen mit deren Anzahl vervielfacht.
  • Vorzugsweise weist das Rotorelement einen inneren Abschnitt, durch welchen die Welle in einer axialen Richtung hindurchtritt, einen mittleren Abschnitt, der sich in einer bezogen auf die Welle radialen Richtung an den inneren Abschnitt anschließt, und einen äußeren Abschnitt auf, der sich in der radialen Richtung an den mittleren Abschnitt anschließt. Der mittlere Abschnitt weist in der axialen Richtung eine kleinere Erstreckung als der innere und der äußere Abschnitt auf. Mit anderen Worten ist das Rotorelement bei dieser Ausführungsform in der radialen Richtung gesehen im mittleren Abschnitt eingeschnürt.
  • Durch diese Einschnürung bzw. kleinere Erstreckung des mittleren Abschnitts in der axialen Richtung weist das Rotorelement eine vergrößerte Oberfläche auf, mit der die Moleküle des Schmiermittels in Kontakt gelangen können. Ferner werden die Moleküle des Schmiermittels aufgrund der Einschnürung an einer Außenfläche des inneren Abschnitts reflektiert, so dass sie in Richtung einer Innenfläche des äußeren Abschnitts umgelenkt werden und auf die Innenfläche des äußeren Abschnitts auftreffen. Dadurch wird wiederum die Wahrscheinlichkeit erhöht, dass die Moleküle des Schmiermittels auf Wandabschnitte des Rotorelements auftreffen und in Richtung des Schmiermittelsumpfs geleitet werden.
  • Ein innerer Abschnitt des ersten Statorelements ist bevorzugt in der radialen Richtung zwischen dem inneren und dem äußeren Abschnitt des Rotorelements angeordnet. Dabei bilden Wandabschnitte des jeweiligen inneren Abschnitts des ersten Statorelements und des Rotorelements den ersten Spalt. Das erste Statorelement und das Rotorelement weisen somit eine "ineinandergreifende" Anordnung auf. Dies führt zu einer Verlängerung des Weges für die Moleküle des Schmiermittels zwischen dem das Schmiermittel enthaltenden Raum und dem schmiermittelfreien Raum. Dadurch wird wiederum die Abdichtung zwischen diesen beiden Räumen verbessert.
  • Der erste Expansionsraum ist insbesondere durch Wandabschnitte des inneren Abschnitts des ersten Statorelements und durch Wandabschnitte des inneren, des mittleren und des äußeren Abschnitts des Rotorelements gebildet. Der erste Expansionsraum weist beispielsweise drei sich bewegende Wandabschnitte auf, die durch das Rotorelement gebildet sind. Durch die Bewegung der Wandabschnitte wird einerseits die Turbulenz im ersten Expansionsraum vergrößert. Andererseits bewegen sich die Moleküle des Schmiermittels insgesamt bevorzugt in radialer Richtung, da sie aufgrund der größeren Fläche des in axialer Richtung weiter außen liegenden äußeren Abschnitts im Vergleich zum inneren Abschnitt des Rotorelements mit größerer Wahrscheinlichkeit auf den äußeren Abschnitt des Rotorelements auftreffen und an diesem anhaften bzw. abgeleitet werden.
  • Der mittlere Abschnitt des Rotorelements umfasst vorzugsweise einen inneren, einen mittleren und einen äußeren Teilabschnitt, wobei der mittlere Teilabschnitt in der axialen Richtung eine größere Erstreckung als der innere und der äußere Teilabschnitt aufweist. Der mittlere Abschnitt des Rotorelements, der im Vergleich zum inneren und äußeren Abschnitt des Rotorelements eingeschnürt ist, ist somit in drei weitere Teilabschnitte unterteilt, von denen der mittlere Teilabschnitt im Vergleich zu den beiden weiteren Teilabschnitten in axialer Richtung verbreitert ist. Das Rotorelement weist somit bei dieser Ausführungsform in radialer Richtung gesehen zwei Einschnürungen auf, die sich im Bereich des inneren und des äußeren Teilabschnitts des mittleren Abschnitts befinden.
  • Durch diese Einschnürungen und eine entsprechende Anordnung von Abschnitten des ersten Statorelements können somit weitere Spalte und Expansionsräume zwischen dem ersten Statorelement und dem Rotorelement gebildet werden. Außerdem ist wiederum der Weg zwischen dem Raum, der das Schmiermittel enthält, und dem schmiermittelfreien Raum durch die zwei Einschnürungen verlängert. Durch die mehreren Spalte und Expansionsräume zwischen dem ersten Statorelement und dem Rotorelement sowie durch die Verlängerung des Weges zwischen den beiden Räumen wird wiederum die Wahrscheinlichkeit vergrößert, dass Moleküle des Schmiermittels auf Wandabschnitte des ersten Statorelements oder des Rotorelements auftreffen, so dass die Abdichtung des schmiermittelfreien Raums gegenüber dem Raum mit Schmiermittel verbessert ist.
  • Gemäß einer weiteren Ausführungsform weist das erste Statorelement zumindest eine axiale Aussparung auf, innerhalb derer ein sich in axialer Richtung erstreckender Abschnitt des Rotorelements angeordnet ist. Das erste Statorelement und das Rotorelement weisen somit wiederum eine "ineinandergreifende" Anordnung auf, bei welcher der Weg für die Moleküle des Schmiermittels zwischen dem Raum mit Schmiermittel und dem schmiermittelfreien Raum verlängert ist. Dadurch wird wiederum die Abdichtung zwischen den beiden Räumen verbessert, da die Moleküle des Schmiermittels mit größerer Wahrscheinlichkeit auf Wandabschnitte auftreffen.
  • Bevorzugt weist das Rotorelement in einer bezogen auf die Welle axialen Richtung zumindest eine Verengung auf, in der ein axialer Vorsprung des Statorelements derart angeordnet ist, dass durch die Verengung des Rotorelements und den axialen Vorsprung des Statorelements der erste und der zweite Spalt sowie der erste und der zweite Expansionsraum gebildet sind. Bei dieser Ausführungsform führt somit das Ineinandergreifen des Rotorelements und des Statorelements zur Ausbildung zweier Spalte und zweier Expansionsräume. Dadurch erhält die Dichtvorrichtung einen kompakten Aufbau, in welchem jedoch zwei Übergänge zwischen einem jeweiligen Spalt und einem Expansionsraum vorgesehen sind. Trotz des kompakten Aufbaus weist die Dichtvorrichtung weiterhin aufgrund der zwei Übergänge zwischen einem jeweiligen Spalt und Expansionsraum den vorstehend beschriebenen Vorteil auf, dass die Wahrscheinlichkeit für das Auftreffen von Molekülen des Schmiermittels auf Wandabschnitte vergrößert ist und dadurch die Abdichtung zwischen dem schmiermittelfreien Raum und dem Raum mit Schmiermittel verbessert wird.
  • Das erste Statorelement weist ferner vorzugsweise zumindest eine Abflussöffnung auf, die mit dem Schmiermittelsumpf in Verbindung steht. Die Abflussöffnung ist insbesondere an einem Außenumfang des Statorelements angeordnet. Der erste Expansionsraum, der durch Wandabschnitte sowohl des Rotorelements als auch des Statorelements gebildet ist, steht bei dieser Ausführungsform nur mittelbar mit dem Schmiermittelsumpf in Verbindung. Das Schmiermittel wird somit mittels der Abflussöffnung in Richtung des Schmiermittelsumpfs kanalisiert, wobei insbesondere die Drehbewegung des Rotationselements und die damit verbundene Vorzugsrichtung des Schmiermittels in radialer Richtung ausgenutzt wird.
  • Das Vakuumgerät weist insbesondere ein Gehäuse auf, innerhalb dessen das erste und/oder das zweite Statorelement drehfest sowie das Rotorelement drehbar angeordnet sind. Das Gehäuse weist ferner einen Abflusskanal für das Schmiermittel auf, der mit zumindest einer Abflussöffnung des ersten und/oder des zweiten Statorelements und mit dem Schmiermittelsumpf in Verbindung steht. Der Abflusskanal des Gehäuses dient somit zum "Aufsammeln" des Schmiermittels, insbesondere dann, wenn das erste und/oder das zweite Statorelement mehrere Abflussöffnungen aufweisen.
  • Das erste und/oder das zweite Statorelement und/oder das Rotorelement weisen vorzugsweise Schrägflächen auf, die zum Führen und/oder für das Abtropfen des Schmiermittels vorgesehen sind. Die Schrägflächen können außerdem den Expansionsraum bzw. die Expansionsräume zwischen dem Rotorelement und den beiden Statorelementen vergrößern. Ferner lassen sich die Schrägflächen derart anordnen, dass sie den Transport des Schmiermittels aufgrund der Rotation des Rotorelements in radialer Richtung unterstützen. Außerdem kann zwischen einer Schrägfläche und einer geraden Fläche eine Kante gebildet sein, an welcher das Schmiermittel in eine bevorzugte Richtung abtropft.
  • Die Erfindung wird nachfolgend rein beispielhaft anhand möglicher Ausbildungen der Erfindung unter Bezugnahme auf die beigefügte Zeichnung erläutert. Es zeigen:
  • Fig. 1
    eine Explosionsansicht eines Abschnitts einer ersten Ausführungsform eines erfindungsgemäßen Vakuumgeräts,
    Fig. 2
    eine vergrößerte Perspektivansicht einer Dichtvorrichtung des Vakuumgeräts von Fig. 1,
    Fig. 3A
    eine Vorderansicht auf den Abschnitt des Vakuumgeräts von Fig. 1,
    Fig. 3B
    eine Schnittansicht entlang der in Fig. 3A dargestellten Linie,
    Fig. 3C und 3D
    einen vergrößerten Ausschnitt von Fig. 3B, der dort mit A bezeichnet ist,
    Fig. 3E
    einen vergrößerten Ausschnitt von Fig. 3D, der dort mit B bezeichnet ist,
    Fig. 4A
    eine Vorderansicht auf einen Abschnitt einer zweiten Ausführungsform eines erfindungsgemäßen Vakuumgeräts,
    Fig. 4B
    eine Schnittansicht entlang der in Fig. 4A dargestellten Linie und
    Fig. 4C
    einen vergrößerten Ausschnitt von Fig. 4B, der dort mit A bezeichnet ist.
  • In Fig. 1 ist ein Abschnitt eines Vakuumgeräts gezeigt, bei dem es sich beispielsweise um eine Vakuumpumpe handelt, z.B. eine Wälzkolbenpumpe. In einem Gehäuse 11 des Vakuumgeräts ist eine Welle 13 angeordnet, die um eine Wellenachse 14 drehbar ist. Die Welle 13 ist mittels eines Lagers 15 gelagert, das in Fig. 3B schematisch dargestellt ist und das sich in einem ein Schmiermittel enthaltenden Raum 17 innerhalb des Gehäuses 11 befindet.
  • Ferner erstreckt sich die Welle 13 durch einen schmiermittelfreien Raum 19 hindurch, der mit einem nicht dargestellten Schöpfraum des Vakuumgeräts bzw. der Vakuumpumpe in Verbindung steht. Bei Betrieb des Vakuumgeräts bzw. der Vakuumpumpe wird die Welle 13 mittels eines Motors drehend angetrieben, um beispielsweise ein Gas von einem Einlass des Vakuumgeräts bzw. der Vakuumpumpe zu einem Auslass zu fördern. Dadurch werden der Schöpfraum und auch der schmiermittelfreie Raum 19 während des Betriebs des Vakuumgeräts bzw. der Vakuumpumpe evakuiert. Im schmiermittelfreien Raum 19 herrscht folglich ein geringerer Druck als in dem das Schmiermittel enthaltenden Raum 17.
  • Zur Abdichtung des schmiermittelfreien Raums 19 gegenüber dem Raum 17 mit Schmiermittel ist eine Dichtvorrichtung 21 vorgesehen, durch welche die Welle 13 hindurchtritt und die zwischen den beiden Räumen 17, 19 angeordnet ist. Die Dichtvorrichtung 21 umfasst ein erstes Statorelement 23 und ein zweites Statorelement 25, die drehfest in dem Gehäuse 11 angeordnet sind. Ferner umfasst die Dichtvorrichtung 21 ein Rotorelement 27, das drehfest mit der Welle 13 verbunden ist. Das Rotorelement 27 ist in axialer Richtung zwischen dem ersten und dem zweiten Statorelement 23, 25 angeordnet und wird nach der Montage der Dichtvorrichtung 21 von diesen umschlossen. Das erste und das zweite Statorelement 23, 25 sowie das Rotorelement 27 sind ringförmig ausgebildet und bezüglich der Wellenachse 14 zentriert angeordnet (vgl. Fig. 1 bis 3B).
  • Das erste und das zweite Statorelement 23, 25 weisen am Außenumfang mehrere Abflussöffnungen 29 für das Schmiermittel auf, die so dimensioniert und verteilt angeordnet sind, dass zumindest eine Abflussöffnung 29 mit einem Abflusskanal 31 im Gehäuse 11 in Verbindung steht. Dies erleichtert die Montage, da die relative Winkellage der Statorelemente 23, 25 dann nur von untergeordneter Bedeutung ist. Über die Abflussöffnungen 29 des ersten und des zweiten Statorelements 23, 25 gelangt Schmiermittel aus der Dichtvorrichtung 21 in den Abflusskanal 31 und weiter in einen nicht dargestellten Schmiermittelsumpf.
  • Wie in Fig. 2, 3B und 3C zu erkennen ist, weist das Rotorelement 27 einen inneren Abschnitt 33 auf, der mit der Welle 13 in Verbindung steht. Im Bereich des inneren Abschnitts 33 weist das Rotorelement 27 in einer axialen Richtung, d.h. parallel zur Wellenachse 14, die größte Erstreckung bzw. Breite auf. In einer radialen Richtung bezogen auf die Wellenachse 14 schließt sich an den inneren Abschnitt 33 des Rotorelements 27 ein mittlerer Abschnitt 35 an, in welchem das Rotorelement 27 in axialer Richtung die geringste Erstreckung bzw. Breite aufweist.
  • Darüber hinaus umfasst das Rotorelement 27 einen äußeren Abschnitt 37, der im Vergleich zum mittleren Abschnitt 35 in axialer Richtung wiederum eine größere Erstreckung bzw. Breite aufweist, die jedoch geringer ist als die Erstreckung des inneren Abschnitts 33 in axialer Richtung. Der äußere Abschnitt 37 des Rotorelements 27 weist ferner an der Außenseite, d.h. in radialer Richtung gesehen, ein gestuftes Profil auf, das durch Schrägflächen 39 und in radialer Richtung verlaufende Flächen 41 gebildet ist.
  • Das erste und das zweite Statorelement 23, 25 weisen jeweils am Innenumfang einen inneren Abschnitt 43 mit einem Vorsprung 45 auf (vgl. Fig. 3C, 3D und 3E), der sich jeweils in axialer Richtung und in Richtung des mittleren Abschnitts 35 des Rotorelements 27 erstreckt. An einem Ende, das dem mittleren Abschnitt 35 des Rotorelements 27 zugewandt ist, weist der Vorsprung 45 des ersten bzw. zweiten Statorelements 23, 25 jeweils einen Fortsatz 47 auf, der sich vom Vorsprung 45 des Statorelements 23, 25 in radialer Richtung nach außen erstreckt. Der innere Abschnitt 43 des ersten und des zweiten Statorelements 23, 25 weist somit eine L-Form auf, die den Vorsprung 45 und den Fortsatz 47 umfasst.
  • Der Vorsprung 45 und der Fortsatz 47 des jeweiligen Statorelements 23, 25 sind somit im Bereich einer Einschnürung des Rotorelements 27 angeordnet, die durch den mittleren Abschnitt 35 des Rotorelements 27 gebildet ist. Umgekehrt ist auch der äußere Abschnitt 37 des Rotorelements 27 in einer Aussparung 49 des jeweiligen Statorelements 23, 25 angeordnet. Nach der Montage der Dichtvorrichtung 21 bilden somit Wandabschnitte des Rotorelements 27 mit Wandabschnitten des ersten und des zweiten Statorelements 23, 25 eine labyrinthartige Struktur mit unterschiedlich großen Querschnittsflächen.
  • Zwischen dem Vorsprung 45 des ersten Statorelements 23 und dem inneren Abschnitt 33 des Rotorelements 27 ist ein erster Spalt 51 gebildet, der eine kleine Querschnittsfläche sowie eine Eintrittsöffnung 53 und eine Austrittsöffnung 55 aufweist. Die Eintrittsöffnung 53 des ersten Spalts 51 ist zu dem das Schmiermittel enthaltenden Raum 17 offen, während die Austrittsöffnung 55 mit einem ersten Expansionsraum 57 verbunden ist.
  • Der erste Expansionsraum 57 weist eine größere Querschnittsfläche als der erste Spalt 51 auf. Ferner ist der erste Expansionsraum 57 durch einen jeweiligen Wandabschnitt des inneren, mittleren und äußeren Abschnitts 33, 35, 37 des Rotorelements 27 und durch einen Wandabschnitt eines inneren Abschnitts 43 des ersten Statorelements 23 gebildet, wobei dieser Wandabschnitt durch den Vorsprung 45 und den Fortsatz 47 gebildet ist.
  • Da bei Betrieb des Vakuumgeräts bzw. der Vakuumpumpe in dem schmiermittelfreien Raum 19 ein geringerer Druck vorliegt als in dem das Schmiermittel enthaltenden Raum 17, tritt aufgrund der Druckdifferenz zwischen den beiden Räumen 17, 19 ein Gemisch aus einem Gas und Schmiermittel in die Eintrittsöffnung 53 des ersten Spalts 51 ein, wie dies in Fig. 3E gezeigt ist. Fig. 3E stellt einen Bereich des Rotorelements 27 und des ersten Statorelements 23 vergrößert dar, der in Fig. 3D mit B bezeichnet ist.
  • Es wurde erkannt, dass innerhalb des ersten Spalts 51 eine nahezu laminare Strömung des Gemischs aus Gas und Schmiermittel vorliegt. Beim Vorbeiströmen von Molekülen des Schmiermittels an Wänden des ersten Spalts 51 setzen sich zwar Moleküle des Schmiermittels an diesen Wänden ab. Aufgrund der nahezu laminaren Strömung des Gemischs aus Schmiermittel und Gas treffen jedoch die Moleküle des Schmiermittels, die sich in einem mittleren Bereich des ersten Spalts 51 zwischen den Wänden bewegen, nicht auf die Wände. Diese Moleküle des Schmiermittels würden folglich weiterhin in den schmiermittelfreien Raum 19 gelangen, wenn die Räume 17, 19 lediglich durch einen Spalt mit konstanter Querschnittsfläche verbunden wären, wie dies im Stand der Technik üblich ist.
  • Wenn das Gemisch aus Gas und Schmiermittel jedoch bei der erfindungsgemäßen Dichtvorrichtung 21 aus der Austrittsöffnung 55 des ersten Spalts 51 austritt, verringert sich dessen Geschwindigkeit gemäß dem Bernoullischen Gesetz, da die Querschnittsfläche des ersten Expansionsraums 57 größer als die Querschnittsfläche des ersten Spalts 51 ist. Ferner treten aufgrund lokaler Unterdruckbereiche Turbulenzen im ersten Expansionsraum 57 auf. Dies führt dazu, dass im ersten Expansionsraum 57 die Wahrscheinlichkeit für ein Auftreffen von Molekülen des Schmiermittels auf die Wandabschnitte des Rotorelements 27 bzw. des ersten Statorelements 23 im Vergleich zum ersten Spalt 51 deutlich erhöht ist.
  • Zwischen einer Innenfläche des äußeren Abschnitts 37 des Rotorelements 27 und dem Fortsatz 47 am Vorsprung 45 des ersten Statorelements 23 ist ferner ein zweiter Spalt 59 gebildet. Eine Eintrittsöffnung 61 des zweiten Spalts 59 steht mit dem ersten Expansionsraum 57 in Verbindung, während eine Austrittsöffnung 63 des zweiten Spalts 59 mit einem zweiten Expansionsraum 65 verbunden ist. Der zweite Expansionsraum 65 weist wiederum eine größere Querschnittsfläche als der zweite Spalt 59 auf, so dass die Geschwindigkeit des Gemischs aus Gas und Schmiermittel wiederum beim Eintreten in den zweiten Expansionsraum 65 verringert wird. Ferner treten wiederum auch im zweiten Expansionsraum 65 Turbulenzen aufgrund lokaler Unterdruckbereiche auf.
  • Der zweite Expansionsraum 65 ist durch Wandabschnitte des äußeren Abschnitts 37 des Rotorelements 27 und durch gegenüberliegende Wandabschnitte des ersten Statorelements 23 gebildet. Aufgrund der profilierten Außenfläche des äußeren Abschnitts 37 des Rotorelements 27 mit in radialer Richtung verlaufenden Flächen 41 und Schrägflächen 39 weist der zweite Expansionsraum 65 eine innere Struktur mit Verengungen und Erweiterungen auf, die jeweils unterschiedlich große Querschnittsflächen aufweisen. Dadurch wird die Turbulenz innerhalb des zweiten Expansionsraums 65 im Vergleich zum ersten Expansionsraum 57 zusätzlich erhöht. An den zweiten Expansionsraum 65 schließt ferner in radialer Richtung eine der Abflussöffnungen 29 des ersten und des zweiten Statorelements 23, 25 sowie in axialer Richtung ein weiterer Expansionsraum des zweiten Statorelements 25 an.
  • Das erste und das zweite Statorelement 23, 25 sind baugleich und lediglich auf unterschiedlichen Seiten des Rotorelements 27 angeordnet. Das erste und das zweite Statorelement 23, 25 sind ferner bezüglich des Rotorelements 27 symmetrisch zueinander angeordnet. Wie man in Fig. 3C und 3D erkennen kann, wiederholt sich somit zwischen dem Rotorelement 27 und dem zweiten Statorelement 25 die Abfolge zweier weiterer Expansionsräume und zweier weiterer Spalte wie zwischen dem Rotorelement 27 und dem ersten Statorelement 23, jedoch in umgekehrter Reihenfolge. Somit müssen die Moleküle der Strömung aus Gas und Schmiermittel, die in die Eintrittsöffnung 53 des ersten Spalts 51 eintreten, auf dem Weg bis zum Eintreten in den schmiermittelfreien Raum einen vergleichsweise langen und labyrinthartigen Weg durchlaufen, innerhalb dessen mehrere Übergänge zwischen einem jeweiligen Spalt mit einer kleinen Querschnittsfläche und einem jeweiligen Expansionsraum mit größerer Querschnittsfläche angeordnet sind.
  • Im Vergleich zu einem oder mehreren Spalten mit einer konstanten Querschnittsfläche ist somit innerhalb der erfindungsgemäßen Dichtvorrichtung 21 die Wahrscheinlichkeit deutlich erhöht, dass Moleküle des Schmiermittels auf einen Wandabschnitt des Rotorelements 27 bzw. des ersten oder zweiten Statorelements 23, 25 auftreffen. Die Moleküle des Schmiermittels werden ferner auch durch die Rotationsbewegung des Rotorelements 27 in radialer Richtung nach außen beschleunigt. Dadurch bewegen sie sich entlang der in radialer Richtung verlaufenden Flächen 41, entlang der Schrägflächen 39 des äußeren Abschnitts 37 des Rotorelements 27 und entlang einer Schrägfläche 67 des ersten bzw. zweiten Statorelements 21, 23 zur Abflussöffnung 29 des Statorelements 23, 25 und in den Abflusskanal 31 im Gehäuse 11, der wiederum mit dem nicht dargestellten Schmiermittelsumpf in Verbindung steht. Die erfindungsgemäße Dichtvorrichtung 21 verbessert somit die Trennung von Gas und Schmiermittel, welche aus dem das Schmiermittel enthaltenden Raum 17 in die Dichtvorrichtung 21 eintreten.
  • In Fig. 4A, 4B und 4C ist eine zweite Ausführungsform des erfindungsgemäßen Vakuumgeräts dargestellt. Diese unterscheidet sich von der in Fig. 1 bis Fig. 3E dargestellten Ausführungsform einerseits dadurch, dass der mittlere Abschnitt 35 des Rotorelements 27 in drei Teilabschnitte unterteilt ist, und zwar in einen inneren Teilabschnitt 71, einen mittleren Teilabschnitt 73 und einen äußeren Teilabschnitt 75. Dabei weist der mittlere Teilabschnitt 73 eine größere Erstreckung in axialer Richtung bzw. größere Breite als der innere und äußere Teilabschnitt 71, 75 auf. Da das erste und das zweite Statorelement 23, 25 entsprechende Vorsprünge aufweisen, ist somit insgesamt zwischen dem Rotorelement 27 und dem ersten bzw. zweiten Statorelement 23, 25 eine Struktur mit insgesamt zehn Spalten und zehn Expansionsräumen gebildet.
  • Darüber hinaus weisen die Expansionsräume der zweiten Ausführungsform im Gegensatz zur ersten Ausführungsform zusätzliche Schrägflächen auf, die durch entsprechende Wandabschnitte des ersten bzw. zweiten Statorelements 23, 25 gebildet sind. Aufgrund der größeren Anzahl von Spalten und Expansionsräumen im Vergleich zur ersten Ausführungsform ist somit bei der zweiten Ausführungsform die Wahrscheinlichkeit für das Auftreffen von Molekülen des Schmiermittels auf Wandabschnitte des Rotorelements 27 bzw. des ersten oder zweiten Statorelements 23, 25 weiter erhöht. Dadurch wird die Abdichtung des schmiermittel* freien Raums 19 gegenüber dem das Schmiermittel enthaltenden Raum 17 mit der Dichtvorrichtung 21 gemäß der zweiten Ausführungsform nochmals verbessert.
  • Bezugszeichenliste
  • 11
    Gehäuse
    13
    Welle
    14
    Wellenachse
    15
    Lager
    17
    Schmiermittel enthaltender Raum
    19
    schmiermittelfreier Raum
    21
    Dichtvorrichtung
    23
    erstes Statorelement
    25
    zweites Statorelement
    27
    Rotorelement
    29
    Abflussöffnung des Statorelements
    31
    Abflusskanal
    33
    innerer Abschnitt des Rotorelements
    35
    mittlerer Abschnitt des Rotorelements
    37
    äußerer Abschnitt des Rotorelements
    39
    Schrägfläche des Rotors
    41
    in radialer Richtung verlaufende Fläche des Rotors
    43
    innerer Abschnitt des Statorelements
    45
    Vorsprung des Statorelements
    47
    Fortsatz
    49
    Aussparung des Statorelements
    51
    erster Spalt
    53
    Eintrittsöffnung des ersten Spalts
    55
    Austrittsöffnung des ersten Spalts
    57
    erster Expansionsraum
    59
    zweiter Spalt
    61
    Eintrittsöffnung des zweiten Spalts
    63
    Austrittsöffnung des zweiten Spalts
    65
    zweiter Expansionsraum
    67
    Schrägfläche des Stators
    71
    innerer Teilabschnitt
    73
    mittlerer Teilabschnitt
    75
    äußerer Teilabschnitt

Claims (15)

  1. Vakuumgerät, insbesondere Vakuumpumpe, mit einem schmiermittelfreien Raum (19) und einem ein Schmiermittel enthaltenden Raum (17) sowie mit einer drehbar gelagerten Welle (13), die zumindest abschnittsweise in den beiden Räumen (17, 19) angeordnet ist, wobei zwischen den Räumen (17, 19) eine Dichtvorrichtung (21) vorgesehen ist, durch welche die Welle (13) hindurchtritt, wobei die Dichtvorrichtung (21) umfasst:
    ein Rotorelement (27), das mit der Welle (13) drehfest verbunden ist,
    ein erstes Statorelement (23), das drehfest zwischen den Räumen (17, 19) angeordnet ist,
    wobei zwischen dem ersten Statorelement (25) und dem Rotorelement (27) ein erster Spalt (51) mit einer Eintrittsöffnung (53) gebildet ist, welche zu dem das Schmiermittel enthaltenden Raum (17) offen ist,
    wobei der erste Spalt (51) gegenüberliegend zu der Eintrittsöffnung (53) eine Austrittsöffnung (55) aufweist, die mit einem ersten Expansionsraum (57) verbunden ist, der eine größere Querschnittsfläche als der erste Spalt (51) aufweist und der durch Wandabschnitte des Rotorelements (27) und des ersten Statorelements (23) gebildet ist, und
    wobei der erste Expansionsraum (57) mit einem Schmiermittelsumpf in Verbindung steht,
    wobei die Dichtvorrichtung (21) ein zweites Statorelement (25) umfasst, das an derjenigen Seite des Rotorelements (27) angeordnet ist, die dem schmiermittelfreien Raum (19) zugewandt ist, während das erste Statorelement (23) an der gegenüberliegenden Seite des Rotorelements (27) angeordnet ist, die dem ein Schmiermittel enthaltenden Raum (17) zugewandt ist,
    dadurch gekennzeichnet, dass
    das erste und das zweite Statorelement (23, 25) baugleich sind.
  2. Vakuumgerät nach dem Oberbegriff des Anspruchs 1,
    dadurch gekennzeichnet, dass
    das erste und das zweite Statorelement (23, 25) bezüglich des Rotorelements (27) symmetrisch aufgebaut und/oder angeordnet sind.
  3. Vakuumgerät nach dem Oberbegriff des Anspruchs 1,
    dadurch gekennzeichnet, dass
    das Rotorelement (27) bezüglich des ersten und zweiten Statorelements (23, 25) symmetrisch aufgebaut ist.
  4. Vakuumgerät nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das erste und das zweite Statorelement (23, 25) bezüglich des Rotorelements (27) symmetrisch aufgebaut und/oder angeordnet sind.
  5. Vakuumgerät nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das Rotorelement (27) bezüglich des ersten und zweiten Statorelements (23, 25) symmetrisch aufgebaut ist.
  6. Vakuumgerät nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zwischen dem ersten Statorelement (23) und dem Rotorelement (27) ein zweiter Spalt (59) gebildet ist, dessen Eintrittsöffnung (61) mit dem ersten Expansionsraum (57) in Verbindung steht, und dass der zweite Spalt (59) gegenüberliegend zu der Eintrittsöffnung (61) eine Austrittsöffnung (63) aufweist, die mit einem zweiten Expansionsraum (65) verbunden ist, der eine größere Querschnittsfläche als der zweite Spalt (59) aufweist und der durch Wandabschnitte des Rotorelements (27) und des ersten Statorelements (23) gebildet ist.
  7. Vakuumgerät nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Rotorelement (27) einen inneren Abschnitt (33), durch welchen die Welle (13) in einer axialen Richtung hindurchtritt, einen mittleren Abschnitt (35), der sich in einer bezogen auf die Welle (13) radialen Richtung an den inneren Abschnitt (33) anschließt, und einen äußeren Abschnitt (37) aufweist, der sich in der radialen Richtung an den mittleren Abschnitt (35) anschließt, wobei der mittlere Abschnitt (35) in der axialen Richtung eine kleinere Erstreckung als der innere und der äußere Abschnitt (33, 37) aufweist.
  8. Vakuumgerät nach Anspruch 7,
    dadurch gekennzeichnet, dass
    ein innerer Abschnitt (43) des ersten Statorelements (23) in der radialen Richtung zwischen dem inneren und dem äußeren Abschnitt (33, 37) des Rotorelements (27) angeordnet ist und Wandabschnitte des jeweiligen inneren Abschnitts (43) des ersten Statorelements (23) und des Rotorelements (27) den ersten Spalt (51) bilden.
  9. Vakuumgerät nach Anspruch 7 oder 8,
    dadurch gekennzeichnet, dass
    der erste Expansionsraum (57) durch Wandabschnitte des inneren Abschnitts (43) des ersten Statorelements (23) und durch Wandabschnitte des inneren, des mittleren und des äußeren Abschnitts (33, 35, 37) des Rotorelements (27) gebildet ist.
  10. Vakuumgerät nach einem der Ansprüche 7 bis 9,
    dadurch gekennzeichnet, dass
    der mittlere Abschnitt (35) des Rotorelements (27) einen inneren, einen
    mittleren und einen äußeren Teilabschnitt (71, 73, 75) umfasst, wobei der mittlere Teilabschnitt (73) in der axialen Richtung eine größere Erstreckung als der innere und der äußere Teilabschnitt (71, 75) aufweist.
  11. Vakuumgerät nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das erste Statorelement (23) zumindest eine axiale Aussparung (49) aufweist, innerhalb derer ein sich in axialer Richtung erstreckender Abschnitt (37) des Rotorelements (27) angeordnet ist.
  12. Vakuumgerät nach einem der Ansprüche 6 bis 11,
    dadurch gekennzeichnet, dass
    das Rotorelement (27) in einer bezogen auf die Welle (13) axialen Richtung zumindest eine Verengung (35) aufweist, in der ein axialer Vorsprung (45) des ersten Statorelements (23) derart angeordnet ist, dass durch die Verengung (35) des Rotorelements (27) und den axialen Vorsprung (45) des ersten Statorelements (23) der erste und der zweite Spalt (51, 59) sowie der erste und der zweite Expansionsraum (57, 65) gebildet sind.
  13. Vakuumgerät nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das erste Statorelement (23) zumindest eine Abflussöffnung (29) aufweist, die mit dem Schmiermittelsumpf in Verbindung steht und die insbesondere an einem Außenumfang des Statorelements (23) angeordnet ist.
  14. Vakuumgerät nach einem der vorstehenden Ansprüche,
    gekennzeichnet durch
    ein Gehäuse (11), innerhalb dessen das erste und/oder das zweite Statorelement (23, 25) drehfest sowie das Rotorelement (27) drehbar angeordnet sind und das einen Abflusskanal (31) für das Schmiermittel aufweist, der mit zumindest einer Abflussöffnung (29) des ersten und/oder des zweiten Statorelements (23, 25) und mit dem Schmiermittelsumpf in Verbindung steht.
  15. Vakuumgerät nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Rotorelement (27) und/oder das erste und/oder das zweite Statorelement (23, 25) Schrägflächen (39, 67) aufweisen, die zum Führen und/oder für das Abtropfen des Schmiermittels vorgesehen sind.
EP17168193.5A 2017-04-26 2017-04-26 Vakuumgerät mit wellendichtung Active EP3396171B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17168193.5A EP3396171B1 (de) 2017-04-26 2017-04-26 Vakuumgerät mit wellendichtung
JP2018082060A JP6778231B2 (ja) 2017-04-26 2018-04-23 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17168193.5A EP3396171B1 (de) 2017-04-26 2017-04-26 Vakuumgerät mit wellendichtung

Publications (2)

Publication Number Publication Date
EP3396171A1 EP3396171A1 (de) 2018-10-31
EP3396171B1 true EP3396171B1 (de) 2021-11-10

Family

ID=58632882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17168193.5A Active EP3396171B1 (de) 2017-04-26 2017-04-26 Vakuumgerät mit wellendichtung

Country Status (2)

Country Link
EP (1) EP3396171B1 (de)
JP (1) JP6778231B2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112377422B (zh) * 2020-11-17 2022-05-03 山东大洋矿用设备有限公司 一种基于伯努利原理的安全防堵污水泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250378U (de) * 1985-09-17 1987-03-28
JPS63112625U (de) * 1987-01-16 1988-07-20
JPH0251768U (de) * 1988-10-05 1990-04-12
JPH02110764U (de) * 1989-02-23 1990-09-05
JP4617615B2 (ja) * 2001-07-05 2011-01-26 株式会社豊田自動織機 真空ポンプにおける油洩れ防止構造
DE102005015212A1 (de) * 2005-04-02 2006-10-05 Leybold Vacuum Gmbh Wellendichtung
JP2008002576A (ja) * 2006-06-22 2008-01-10 Hitachi Ltd シール装置
DE102010045881A1 (de) * 2010-09-17 2012-03-22 Pfeiffer Vacuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
JP6778231B2 (ja) 2020-10-28
JP2018184955A (ja) 2018-11-22
EP3396171A1 (de) 2018-10-31

Similar Documents

Publication Publication Date Title
DE69932206T2 (de) Kreiselverdichter
EP3657021B1 (de) Vakuumpumpe
DE3932228A1 (de) Turbovakuumpumpe
DE102019206205B3 (de) Gleitringdichtungsanordnung, insbesondere für heiße Medien, sowie Pumpenanordnung
EP2295812A1 (de) Vakuumpumpe
DE102017110087A1 (de) Eine Kassettendichtungsvorrichtung sowie ein Lager mit einer solchen Kassettendichtungsvorrichtung
DE4209126C2 (de) Peripheralpumpe
DE3722164C2 (de) Turbomolekularpumpe
EP2039941B1 (de) Vakuumpumpe
EP2933497A2 (de) Vakuumpumpe
EP3112688B2 (de) Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe
EP3396171B1 (de) Vakuumgerät mit wellendichtung
EP3608545B1 (de) Vakuumpumpe
EP2431568A2 (de) Montagemittel und Abschirmung für eine Vakuumpumpe
EP3693610B1 (de) Molekularvakuumpumpe
EP4194700B1 (de) Vakuumpumpe mit einer holweck-pumpstufe mit veränderlicher holweck-geometrie
EP4108932B1 (de) Rezipient und system mit rezipient und hochvakuumpumpe
EP3845764B1 (de) Vakuumpumpe und vakuumpumpensystem
EP3133290B1 (de) Vakuumpumpe
EP3564538B1 (de) Vakuumsystem und verfahren zur herstellung eines solchen
EP3327293B1 (de) Vakuumpumpe mit mehreren einlässen
EP4155549B1 (de) Vakuumpumpe mit verbessertem saugvermögen der holweck-pumpstufe
EP3628883B1 (de) Vakuumpumpe
EP4474654A1 (de) Turbomolekularvakuumpumpe
WO2013182306A1 (de) Hydraulische dichtungsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190425

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101AFI20210526BHEP

Ipc: F04D 29/063 20060101ALI20210526BHEP

Ipc: F04D 29/10 20060101ALI20210526BHEP

Ipc: F04D 29/08 20060101ALN20210526BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101AFI20210601BHEP

Ipc: F04D 29/063 20060101ALI20210601BHEP

Ipc: F04D 29/10 20060101ALI20210601BHEP

Ipc: F04D 29/08 20060101ALN20210601BHEP

INTG Intention to grant announced

Effective date: 20210621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1446337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011951

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220211

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011951

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1446337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211110