EP1995336A1 - Low-density steel with good suitability for stamping - Google Patents
Low-density steel with good suitability for stamping Download PDFInfo
- Publication number
- EP1995336A1 EP1995336A1 EP07290624A EP07290624A EP1995336A1 EP 1995336 A1 EP1995336 A1 EP 1995336A1 EP 07290624 A EP07290624 A EP 07290624A EP 07290624 A EP07290624 A EP 07290624A EP 1995336 A1 EP1995336 A1 EP 1995336A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- rolled
- temperature
- rolling
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
- C21D8/0215—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/041—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/041—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
- C21D8/0415—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
Definitions
- the invention relates to a ferritic sheet of hot-rolled or cold-rolled steel, having a strength greater than 400 MPa and a density of less than about 7.3, and its manufacturing process.
- the microstructure at ambient temperature of the steels consists of an equiaxed ferrite matrix whose average grain size is less than 50 micrometers.
- Aluminum is mainly in solid solution in this matrix based on iron.
- These steels contain kappa precipitates (" ⁇ ") which are a ternary Fe 3 AlC x intermetallic phase. The presence of these precipitates in the ferritic matrix leads to a significant hardening.
- ⁇ precipitates must not be present in the form of a marked intergranular precipitation under penalty of a significant reduction in ductility: the inventors have shown that the ductility was reduced when the linear fraction of ferritic grain boundaries which present K precipitation was greater than or equal to 30%.
- this linear fraction f is given to the figure 1 : If we consider a particular grain whose contour is limited by successive grain boundaries of length L 1 , L 2 , .. L i , observations by microscopy show that this grain may have precipitates K along the joints over a length d 1 , ..d i ...
- the linear fraction comprising precipitates K is defined by the expression f: ⁇ s di means the total length of grain boundaries with precipitated ⁇ , relative to the surface (S) considered.
- ⁇ s Li represents the total length of the grain boundaries relative to the surface (S) considered.
- the expression f thus translates the degree of recovery of the ferritic grain boundaries by a precipitation K.
- the semi-finished products were heated to a temperature of 1220 ° C. and hot-rolled to obtain a sheet having a thickness of about 3.5 mm.
- the references I1-a, I1-b, I1-c, I1-d, 11-e designate, for example, five steel sheets manufactured under different conditions from the composition 11.
- Table 2 details the conditions of the successive hot rolling stages: The number N of rolling steps carried out at a hot rolling temperature greater than 1050 ° C. - Of these, the number N i of rolling steps whose reduction rate is greater than 30% The time t i flowing between each of the steps N i , and the rolling step immediately succeeding each of these - The end of rolling temperature T FL - The time interval tp flowing on cooling between 850 and 700 ° C - The winding temperature T bob Table 2: Manufacturing conditions during hot rolling landmark NOT N i t i (s) TFL (° C) tp (s) Tbob (° C) 14.5 11a I 4 3 20.6 900 21 700 26.8 2 I1b R 6 2 2 2 2 900 21 700 I1c R 4 1 8 900 1.3 700 26.5 i 1d I 5 3 23.5 900 21 700 20 7.7 5.2 I1E R 7 5 3.5 1050 20 700 3 2.5 i3a I 4 2 10 950 20 700 11 i3b
- Table 3 shows the density measured on the plates of Table 2 and certain mechanical and microstructural characteristics.
- the resistance Rm, the uniform elongation Au, the elongation at break A t, have thus been measured in the cross-machine direction with respect to rolling.
- the IV grain size was also measured by the method of linear intercepts according to the NF EN ISO 643 standard on a surface perpendicular to the direction transverse to the rolling. The measurement of d IV was carried out in the direction perpendicular to the thickness of the sheet. In order to obtain increased mechanical properties, it is more particularly desired to obtain a grain size of IV less than 100 microns.
- Table 3 Properties of hot-rolled sheets obtained from I1 and I3 steels.
- the steel sheets according to the invention are characterized by a grain size IV less than 100 micrometers and have a strength ranging from 505 to 645 MPa.
- the sheet I1c was laminated with an insufficient number of rolling steps with a rate greater than 30%, a time interpasse and a time interval t P too short.
- the consequences are identical to those noted on sheets I1b and I1e.
- the time interval tp being too low, a hardening precipitation of K precipitates and TiC carbides occurs only partially, which does not make it possible to take full advantage of the curing possibilities.
- the steel R1 has an insufficient titanium content which leads to a solid solution carbon content that is too high: the folding ability is then reduced.
- Steel R2 has an insufficient aluminum content which does not allow to obtain a density lower than 7.3.
- R3, R4, R5 and R6 steels contain too much aluminum and possibly carbon: their ductility is reduced due to the excessive precipitation of intermetallic phases or carbides
- Example 2 Cold-rolled and annealed sheets
- references I3a1, I3a2, 13a3, 13a4 designate four steel sheets manufactured under different conditions of cold rolling and annealing from the hot-rolled sheet 13a.
- Table 5 Production conditions for cold-rolled and annealed sheets landmark Ability to rolling to cold T ' V
- No satisfactory (cracks in cross-direction) I according to the invention.
- R reference Underlined Values: Not in accordance with the invention.
- Table 6 shows some of the mechanical, chemical, microstructural and sheet density characteristics of Table 5. This was measured by transverse tensile tests with respect to rolling, the yield strength Re, the resistance Rm, the uniform elongation Au, the elongation at break A t . By means of scanning electron microscopy observations, the presence of cleavage facets on the rupture surfaces of the test specimens was noted.
- the soil sol carbon content in solid solution was also measured.
- the ability to bend and press was evaluated. It was also noted the possible presence of scuffing consecutive deformations.
- microstructure of these recrystallized sheets consists of equiaxed ferrite whose average ⁇ - grain size was measured in the transverse rolling direction. The rate of recovery of ferritic grain boundaries by K precipitation was also measured using the Aphelion TM image analysis software .
- Table 6 Mechanical properties of cold-rolled and annealed sheets obtained from I1 and I3 steels.
- the steel sheets I1a1 and I3a1 have a solid solution carbon content, a ferritic equiaxed grain size, and a grain boundary recovery ratio that satisfies the conditions of the invention. As a result, the ability to bend, stamping, scratch resistance of these sheets, is high.
- the figure 4 illustrates the microstructure of the steel sheet I1a1 according to the invention.
- the figure 5 illustrates the microstructure of another steel sheet according to the invention, I3a1: note the presence of K precipitates of which only a small amount is present in intergranular form, which allows to maintain a high ductility.
- the steel sheet I1a2 was cooled at a too high speed after annealing: the carbon is then completely in solid solution, which causes a reduction in ductility of the matrix resulting in the local presence of fragile areas on the plates. facies of rupture.
- the sheet 13a2 has been cooled too fast and also leads to an excessive content of solid solution.
- the figure 6 illustrates the microstructure of the sheet I3a3: it was annealed at too high a temperature T ': the ⁇ precipitates present before the annealing were dissolved, their subsequent precipitation after cooling intervened in an excessive amount of intergranular form. This results in the local presence of fragile beaches on fracture facies.
- the I3a4 sheet was also annealed at a temperature which causes partial dissolution of the precipitates K.
- the carbon content in solid solution is excessive.
- the steel sheet I1c1 was made from a hot-rolled sheet not satisfying the requirements of the invention: the equiaxial grain size is too large, the crimping resistance and the stamping ability are insufficient.
- the hot-rolled sheet I3b which does not satisfy the criteria of the invention, is not suitable for deformation since transverse cracks appear during cold rolling.
- the steels according to the invention have good continuous galvanizing properties, in particular during an annealing cycle at 800 ° C. with a dew point temperature higher than -20 ° C.
- the steels according to the invention thus have a combination of properties (density, mechanical strength, deformability, weldability, coating) particularly interesting. These steel sheets are used with advantage for the manufacture of skin parts or structure in the automotive field.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Continuous Casting (AREA)
- Body Structure For Vehicles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
L'invention concerne une tôle ferritique d'acier laminée à chaud ou à froid, possédant une résistance supérieure à 400 MPa et une densité inférieure à 7,3 environ, ainsi que son procédé de fabrication.The invention relates to a ferritic sheet of hot-rolled or cold-rolled steel, having a strength greater than 400 MPa and a density of less than about 7.3, and its manufacturing process.
La diminution de la quantité de CO2 émis par les véhicules automobiles passe notamment par l'allègement des véhicules automobiles. Cet allègement peut être réalisé :
- grâce à une augmentation des caractéristiques mécaniques des aciers constituant les pièces structurales ou les pièces de peau, ou
- à caractéristiques mécaniques données, grâce à une réduction de la densité des aciers.
- La première voie fait l'objet de nombreuses recherches, des aciers dont la résistance mécanique va de 800MPa à plus de 1000MPa ont été proposés par l'industrie sidérurgique. La densité de ces aciers reste cependant voisine de 7,8, qui est la densité d'aciers conventionnels.
- Une seconde voie passe par l'addition d'éléments susceptibles de réduire la densité des aciers : Le brevet
EP1485511
On connaît par ailleurs des aciers contenant une addition d'environ 8% d'aluminium : on peut cependant rencontrer des difficultés lors de la fabrication de ces aciers, en particulier lors du laminage à froid. On peut également rencontrer des problèmes de chiffonnage lors de l'emboutissage de ces aciers. Lorsque ceux-ci contiennent plus de 0,010% C, une précipitation de phases carburées peut augmenter la fragilité. L'utilisation de tels aciers pour la fabrication de pièces structurales est alors impossible.The reduction in the amount of CO 2 emitted by motor vehicles includes the lightening of motor vehicles. This relief can be achieved:
- thanks to an increase in the mechanical characteristics of the steels constituting the structural parts or the pieces of skin, or
- with given mechanical characteristics, thanks to a reduction of the density of the steels.
- The first channel is the subject of much research, steels whose mechanical strength ranges from 800 MPa to more than 1000 MPa have been proposed by the steel industry. The density of these steels however remains close to 7.8, which is the density of conventional steels.
- A second way involves the addition of elements that can reduce the density of the steels: The patent
EP1485511
Steels containing an addition of approximately 8% of aluminum are also known: however, difficulties can be encountered during the manufacture of these steels, in particular during cold rolling. There may also be problems of scouring during the stamping of these steels. When these contain more than 0.010% C, precipitation of carburized phases may increase brittleness. The use of such steels for the manufacture of structural parts is then impossible.
Le but de l'invention est de proposer des tôles d'acier laminées à chaud ou à froid présentant simultanément :
- une densité inférieure à 7,3 environ
- une résistance Rm supérieure à 400MPa
- une bonne aptitude à la déformation, en particulier au laminage et une excellente résistance au chiffonnage,
- une bonne soudabilité et une bonne revêtabilité
A cet effet, l'invention a pour objet une tôle en acier dont la composition comprend, les teneurs étant exprimées en poids : 0,001≤ C ≤0,15%, Mn ≤ 1 %, Si ≤ 1,5%, 6% ≤Al ≤ 10%, 0,020% ≤ Ti ≤ 0,5%, S ≤ 0,050%, P ≤ 0, 1 % et, à titre optionnel, un ou plusieurs éléments choisis parmi : Cr ≤ 1%, Mo ≤ 1%, Ni ≤ 1%, Nb ≤ 0.1%, V ≤ 0,2%, B ≤ 0,01%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.
Selon un mode particulier, la composition comprend : 0,001 % ≤C ≤ 0,010%, Mn ≤ 0,2%.
Selon un mode préféré, la composition comprend : 0,010 % < C ≤ 0,15%, 0,2% < Mn ≤ 1%.
Préférentiellement, la composition comprend :7,5 % ≤Al ≤ 10%.
Très préférentiellement, la composition comprend : 7,5 % ≤Al ≤ 8,5%.
Selon un mode préféré, la tôle est constituée de ferrite équiaxe dont la taille moyenne de grain dα est inférieure 50 micromètres, la fraction linéaire f de précipités intergranulaires K étant inférieure à 30%.
Selon un mode particulier, la tôle est constituée de ferrite dont la taille moyenne de grain dIV mesurée sur une surface perpendiculaire à la direction transverse par rapport au laminage est inférieure à 100 micromètres.
La teneur en carbone en solution solide est préférentiellement inférieure à 0,005% en poids.
Selon un mode préféré, la résistance de la tôle est supérieure ou égale à 400MPa.
A titre préférentiel, la résistance de la tôle est supérieure ou égale à 600MPa.
L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à chaud selon lequel on approvisionne un acier de composition selon l'une des compositions ci-dessus, on coule l'acier sous forme de demi-produit qu'on porte à une température supérieure ou égale à 1150°C. On lamine à chaud le demi-produit pour obtenir une tôle, grâce à au moins deux étapes de laminage effectuées à des températures supérieures à 1050°C, le taux de réduction de chacune des étapes étant supérieur ou égal à 30%, le temps s'écoulant entre chacune des étapes de laminage, et l'étape de laminage suivante, étant supérieur ou égal à 10 s. On achève le laminage à une température TFL supérieure ou égale à 900°C, on refroidit la tôle de telle sorte que l'intervalle de temps tp s'écoulant entre 850 et 700°C soit supérieur à 3 s, pour obtenir une précipitation de précipités κ, puis on bobine la tôle à une température Tbob comprise entre 500 et 700°C.
Selon un mode particulier, la coulée est effectuée directement sous forme de brames minces ou de bandes minces entre cylindres contra-rotatifs.
L'invention a également pour objet un procédé de fabrication d'une tôle en acier laminée à froid et recuite selon lequel on approvisionne une tôle d'acier laminée à chaud fabriquée selon un des modes ci-dessus, puis on lamine à froid la tôle avec un taux de réduction compris entre 30 et 90%, de façon à obtenir une tôle laminée à froid. On chauffe ensuite la tôle laminée à froid à une température T' avec une vitesse Vc supérieure à 3°C/s, puis on refroidit la tôle à une vitesse VR inférieure à 100°C/s, la température T' et la vitesse VR étant choisies de façon à obtenir une recristallisation complète, une fraction linéaire f de précipités intergranulaires K inférieure à 30% et une teneur en carbone en solution solide inférieure à 0,005% en poids.
On chauffe préférentiellement la tôle laminée à froid à une température T' comprise entre 750 et 950°C.
Selon un mode particulier de fabrication d'une tôle laminée à froid et recuite, on approvisionne une tôle de composition : 0,010 % < C ≤ 0,15%, 0,2% < Mn ≤ 1%, Si ≤ 1,5%, 6% ≤AI ≤ 10%, 0,020% ≤ Ti ≤ 0,5%, S ≤ 0,050%, P ≤ 0, 1 % et, à titre optionnel, un ou plusieurs éléments choisis parmi : Cr ≤ 1%, Mo ≤ 1%, Ni ≤ 1%, Nb ≤ 0.1%, V ≤ 0,2%, B ≤ 0,01%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, et on chauffe la tôle laminée à froid à une température T' choisie de façon à éviter la dissolution de précipités K.
Selon un mode particulier, on approvisionne une tôle de composition ci-dessus et on chauffe la tôle laminée à froid à une température T' comprise entre 750 et 800°C.
L'invention a également pour objet l'utilisation de tôles d'acier selon l'un des modes ci-dessus ou fabriquées selon l'un des modes ci-dessus pour la fabrication de pièces de peau ou de pièces structurales dans le domaine automobile.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées ci-jointes selon lesquelles :
- La
figure 1 définit schématiquement la fraction linéaire f de joints de grains ferritiques comportant une précipitation intergranulaire - La
figure 2 présente la microstructure d'une tôle d'acier laminée à chaud selon l'invention. - La
figure 3 présente la microstructure d'une tôle d'acier laminée à chaud fabriquée selon des conditions ne satisfaisant pas à l'invention - Les
figures 4 et5 illustrent la microstructure de deux tôles laminées à froid et recuites selon l'invention. - La
figure 6 présente la microstructure d'une tôle d'acier laminée à froid et recuite fabriquée selon des conditions ne satisfaisant pas à l'invention
L'invention est notamment relative à un procédé de fabrication permettant de contrôler la précipitation de carbures intermétalliques, la microstructure, et la texture dans des aciers comportant notamment des combinaisons particulières de carbone, d'aluminium et de titane.
En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle important sur la formation de la microstructure et sur les propriétés mécaniques :
- Selon l'invention, la teneur en carbone est comprise entre 0,001% et 0,15%: au dessous de 0,001%, on ne peut obtenir un durcissement significatif. Lorsque la teneur en carbone est supérieure à 0,15%, l'aptitude au laminage à froid des aciers est faible.
- Lorsque la teneur en manganèse excède 1%, il existe un risque de stabilisation de l'austénite résiduelle à température ambiante en raison du caractère gammagène de cet élément. Les aciers selon l'invention ont une microstructure ferritique à température ambiante. Différents modes particuliers de l'invention peuvent être mis en oeuvre, en fonction de la teneur en carbone et en manganèse de l'acier :
- Lorsque la teneur en carbone est comprise entre 0,001 et 0,010% et lorsque la teneur en manganèse est inférieure ou égale à 0,2%, la résistance Rm minimale obtenue est de 400MPa.
- Lorsque la teneur en carbone est supérieure à 0,010% et inférieure ou égale à 0,15%, et lorsque la teneur en manganèse est supérieure à 0,2% et inférieure ou égale à 1%, la résistance minimale obtenue est de 600 MPa. Dans les gammes des teneurs en carbone présentées ci-dessus, les inventeurs ont mis en évidence que cet élément contribuait à un durcissement important par une précipitation de carbures (TiC ou précipités kappa) et par un affinement du grain ferritique. L'addition de carbone ne conduit qu'à une faible perte de ductilité si la précipitation de carbures n'est pas intergranulaire ou si le carbone n'est pas en solution solide.
- Au même titre que l'aluminium, le silicium est un élément permettant de réduire la densité de l'acier. Cependant, une addition excessive de silicium, au delà de 1,5%, provoque la formation d'oxydes fortement adhérents et l'apparition éventuelle de défauts de surface, conduisant notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé. De plus, cette addition excessive diminue la ductilité.
- L'aluminium est un élément important de l'invention : lorsque sa teneur est inférieure à 6% en poids, une réduction suffisante de la densité ne peut être obtenue. Lorsque sa teneur est supérieure à 10%, il existe un risque de formation de phases intermétalliques fragilisantes Fe3Al et FeAl.
Préférentiellement, la teneur en aluminium est comprise entre 7,5 et 8,5% : dans cette gamme, on obtient un allégement satisfaisant sans diminution de la ductilité.
- L'acier contient également une teneur minimale en titane de 0,020% qui contribue à limiter la teneur en carbone en solution solide en quantité inférieure à 0,005% en poids, grâce à une précipitation de TiC. Le carbone en solution solide a un effet néfaste sur la ductilité du fait qu'il réduit la mobilité des dislocations. Au delà de 0,5% de titane, la précipitation de carbures de titane intervient en quantité trop importante, et la ductilité est réduite.
- Une addition éventuelle de bore limitée à 0,010% contribue également à une réduction du carbone en solution solide.
- La teneur en soufre est inférieure à 0,050% de façon à limiter une précipitation éventuelle de TiS qui diminuerait la ductilité.
- Pour des raisons de ductilité à chaud, la teneur en phosphore est également limitée à 0,1%.
- du chrome, du molybdène, ou du nickel en quantité inférieure ou égale à 1%. Ces éléments apportent un durcissement complémentaire par solution solide.
- Des éléments de micro-alliage, comme le niobium et le vanadium en quantité respectivement inférieure à 0,1 et 0,2% en poids, peuvent être ajoutés pour obtenir un durcissement complémentaire par précipitation.
La structure des aciers selon l'invention comporte une distribution homogène de grains ferritiques fortement désorientés : la désorientation forte entre grains voisins permet d'éviter le défaut de chiffonnage : ce défaut se caractérise, lors de la mise en forme à froid de tôles, par l'apparition localisée et prématurée de bandes suivant le sens de laminage, formant un relief. Ce phénomène est dû à la présence de groupement de grains recristallisés et faiblement désorientés, car provenant d'un même grain originel avant recristallisation. Une structure sensible au chiffonnage est caractérisée par une distribution spatiale de texture.
Lorsque le phénomène de chiffonnage est présent, les propriétés mécaniques en sens travers (notamment l'allongement uniforme) et l'aptitude à la mise en forme sont fortement réduites. Les aciers selon l'invention ne présentent pas de sensibilité au chiffonnage lors de la mise en forme, en raison de leur texture favorable.The object of the invention is to propose hot-rolled or cold-rolled steel sheets having simultaneously:
- a density of less than about 7.3
- a resistance R m greater than 400 MPa
- good deformability, in particular rolling and excellent resistance to creasing,
- good weldability and good coating
For this purpose, the subject of the invention is a steel sheet whose composition comprises, the contents being expressed by weight: 0.001 C C ≤ 0.15%, Mn ≤ 1%, Si ≤ 1.5%, 6% ≤ Al ≤ 10%, 0.020% ≤ Ti ≤ 0.5%, S ≤ 0.050%, P ≤ 0, 1% and, optionally, one or more elements selected from: Cr ≤ 1%, Mo ≤ 1%, Ni ≤ 1%, Nb ≤ 0.1%, V ≤ 0.2%, B ≤ 0.01%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
In a particular embodiment, the composition comprises: 0.001% ≤C ≤ 0.010%, Mn ≤ 0.2%.
According to a preferred embodiment, the composition comprises: 0.010% <C ≤ 0.15%, 0.2% <Mn ≤ 1%.
Preferably, the composition comprises: 7.5% ≤Al ≤ 10%.
Very preferably, the composition comprises: 7.5% ≤Al ≤ 8.5%.
According to a preferred embodiment, the sheet consists of equiaxed ferrite whose average grain size α is less than 50 microns, the linear fraction f of intergranular precipitates K being less than 30%.
According to a particular embodiment, the sheet is made of ferrite whose average grain size d IV measured on a surface perpendicular to the direction transverse to the rolling is less than 100 micrometers.
The carbon content in solid solution is preferably less than 0.005% by weight.
In a preferred embodiment, the strength of the sheet is greater than or equal to 400 MPa.
As a preference, the strength of the sheet is greater than or equal to 600 MPa.
The subject of the invention is also a process for manufacturing a hot-rolled steel sheet according to which a steel of composition is supplied according to one of the above compositions, the steel is cast in the form of a semi-finished product. that is heated to a temperature greater than or equal to 1150 ° C. The semi-finished product is hot-rolled to obtain a sheet, by means of at least two rolling steps carried out at temperatures above 1050 ° C., the reduction rate of each of the steps being greater than or equal to 30%, the time flowing between each of the rolling steps, and the next rolling step being greater than or equal to 10 s. The rolling is completed at a temperature T FL greater than or equal to 900 ° C, the sheet is cooled so that the time interval tp flowing between 850 and 700 ° C is greater than 3 s, to obtain a precipitation of precipitates κ, then the sheet is reeled at a temperature T bob of between 500 and 700 ° C.
In a particular embodiment, the casting is carried out directly in the form of thin slabs or thin strips between contra-rotating rolls.
The invention also relates to a method of manufacturing a cold-rolled and annealed steel sheet according to which a hot-rolled steel sheet manufactured according to one of the above modes is supplied, then the sheet is cold-rolled. with a reduction ratio of between 30 and 90%, so as to obtain a cold-rolled sheet. The cold-rolled sheet is then heated to a temperature T 'with a speed V c greater than 3 ° C./s, then the sheet is cooled at a speed V R less than 100 ° C./s, the temperature T' and the V R speed being chosen so as to obtain a complete recrystallization, a linear fraction f of intergranular precipitates K less than 30% and a carbon content in solid solution less than 0.005% by weight.
The cold-rolled sheet is preferably heated to a temperature T 'of between 750 and 950 ° C.
According to a particular method of manufacturing a cold-rolled and annealed sheet, a sheet of composition is supplied: 0.010% <C ≤ 0.15%, 0.2% <Mn ≤ 1%, Si ≤ 1.5%, 6% ≤ ≤ 10%, 0.020% ≤ Ti ≤ 0.5%, S ≤ 0.050%, P ≤ 0, 1% and, optionally, one or more elements selected from: Cr ≤ 1%, Mo ≤ 1 %, Ni ≤ 1%, Nb ≤ 0.1%, V ≤ 0.2%, B ≤ 0.01%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation, and the cold-rolled sheet is heated to a temperature T 'chosen so as to avoid the dissolution of precipitates K.
According to a particular embodiment, supplying a sheet of composition above and heating the cold-rolled sheet to a temperature T 'of between 750 and 800 ° C.
The invention also relates to the use of steel sheets according to one of the above modes or manufactured in one of the above modes for the manufacture of skin parts or structural parts in the automotive field .
Other features and advantages of the invention will become apparent from the description below, given by way of example and with reference to the appended accompanying figures in which:
- The
figure 1 schematically defines the linear fraction f of ferritic grain boundaries with intergranular precipitation - The
figure 2 presents the microstructure of a hot-rolled steel sheet according to the invention. - The
figure 3 presents the microstructure of a hot-rolled steel sheet manufactured under conditions not satisfying the invention - The
figures 4 and5 illustrate the microstructure of two cold-rolled and annealed sheets according to the invention. - The
figure 6 presents the microstructure of a cold-rolled and annealed steel sheet manufactured under conditions not satisfying the invention
The invention relates in particular to a manufacturing method for controlling the precipitation of intermetallic carbides, the microstructure, and the texture in steels including particular combinations of carbon, aluminum and titanium.
With regard to the chemical composition of steel, carbon plays an important role in the formation of the microstructure and in the mechanical properties:
- According to the invention, the carbon content is between 0.001% and 0.15%: below 0.001%, significant curing can not be obtained. When the carbon content is greater than 0.15%, the cold rollability of the steels is low.
- When the manganese content exceeds 1%, there is a risk of stabilization of the residual austenite at room temperature because of the gamma-genic nature of this element. The steels according to the invention have a ferritic microstructure at ambient temperature. Different particular embodiments of the invention may be implemented, depending on the carbon and manganese content of the steel:
- When the carbon content is between 0.001 and 0.010% and when the manganese content is less than or equal to 0.2%, the minimum resistance R m obtained is 400 MPa.
- When the carbon content is greater than 0.010% and less than or equal to 0.15%, and when the manganese content is greater than 0.2% and less than or equal to 1%, the minimum resistance obtained is 600 MPa. In the ranges of carbon contents presented above, the inventors have demonstrated that this element contributes to a significant hardening by a precipitation of carbides (TiC or kappa precipitates) and a refinement of the ferritic grain. The addition of carbon only leads to a small loss of ductility if the precipitation of carbides is not intergranular or if the carbon is not in solid solution.
- Like silicon, silicon is an element that reduces the density of steel. However, excessive addition of silicon, above 1.5%, causes the formation of strongly adherent oxides and the possible appearance of surface defects, leading in particular to a lack of wettability in dip galvanizing operations. In addition, this excessive addition decreases ductility.
- Aluminum is an important element of the invention: when its content is less than 6% by weight, a sufficient reduction of the density can not be obtained. When its content is greater than 10%, there is a risk of formation of Fe 3 Al and FeAl embrittling intermetallic phases.
Preferably, the aluminum content is between 7.5 and 8.5%: in this range, satisfactory lightening is obtained without reducing the ductility.
- The steel also contains a minimum titanium content of 0.020% which helps to limit the carbon content in solid solution in an amount of less than 0.005% by weight, thanks to a precipitation of TiC. Carbon in solid solution has a deleterious effect on ductility because it reduces the mobility of dislocations. Beyond 0.5% titanium, the precipitation of titanium carbides occurs in too large a quantity, and the ductility is reduced.
- A possible addition of boron limited to 0.010% also contributes to a reduction of carbon in solid solution.
- The sulfur content is less than 0.050% so as to limit any precipitation of TiS which would decrease the ductility.
- For reasons of hot ductility, the phosphorus content is also limited to 0.1%.
- chromium, molybdenum, or nickel in an amount of 1% or less. These elements provide additional hardening by solid solution.
- Microalloy elements, such as niobium and vanadium in amounts of less than 0.1 and 0.2% by weight, respectively, can be added to obtain additional hardening by precipitation.
The structure of the steels according to the invention comprises a homogeneous distribution of highly disoriented ferritic grains: the strong disorientation between neighboring grains makes it possible to avoid the crimping defect: this defect is characterized, during the cold forming of sheets, by the localized and premature appearance of strips in the direction of rolling, forming a relief. This This phenomenon is due to the presence of a group of recrystallized and weakly disoriented grains, originating from the same original grain before recrystallization. A scuff sensitive structure is characterized by spatial texture distribution.
When the scuffing phenomenon is present, the cross-machine mechanical properties (especially the uniform elongation) and the formability are greatly reduced. The steels according to the invention do not show any sensitivity to creasing during the shaping, because of their favorable texture.
Selon une forme de l'invention, la microstructure à température ambiante des aciers est constituée d'une matrice de ferrite équiaxe dont la taille de grain moyenne est inférieure à 50 micromètres. L'aluminium est majoritairement en solution solide dans cette matrice à base de fer. Ces aciers contiennent des précipités kappa (« κ ») qui sont une phase intermétallique ternaire Fe3AlCx. La présence de ces précipités dans la matrice ferritique conduit à un durcissement important. Ces précipités κ ne doivent cependant pas être présents sous forme d'une précipitation intergranulaire marquée sous peine d'une réduction importante de la ductilité : les inventeurs ont mis en évidence que la ductilité était réduite lorsque la fraction linéaire de joints de grains ferritiques qui présentent une précipitation K, était supérieure ou égale à 30%. La définition de cette fraction linéaire f est donnée à la
L'expression f traduit donc le taux de recouvrement des joints de grains ferritiques par une précipitation K.The expression f thus translates the degree of recovery of the ferritic grain boundaries by a precipitation K.
Selon une autre forme de l'invention, le grain ferritique n'est pas équiaxe mais sa taille moyenne dIV est inférieure à 100 micromètres. dIV désigne la taille de grain mesurée par la méthode des intercepts linéaires sur une surface (S) représentative perpendiculaire à la direction transverse par rapport au laminage. La mesure de dIV est effectuée selon la direction perpendiculaire à l'épaisseur de la tôle. Cette morphologie de grain non équiaxe, présentant un allongement dans le sens du laminage, peut être par exemple présente sur des tôles d'acier laminées à chaud selon l'invention.
La mise en oeuvre du procédé de fabrication d'une tôle laminée à chaud selon l'invention est la suivante :
- On approvisionne un acier de composition selon l'invention.
- On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots, ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs. Ce mode de fabrication sous forme de produits minces est particulièrement avantageux, car il permet d'obtenir plus facilement une structure fine qui favorise la réalisation de l'invention comme on le verra plus loin. Au moyen de ses connaissances générales, l'homme du métier saura déterminer les conditions de coulée satisfaisant à la fois la nécessité d'obtenir une structure fine et équiaxe après la coulée, et celle de satisfaire les exigences usuelles d'une coulée industrielle.
Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1150°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.
A la suite de nombreux essais, les inventeurs ont mis en évidence qu'il était possible d'éviter le problème de chiffonnage et d'obtenir une très bonne emboutissabilité et une bonne ductilité, au moyen du procédé de fabrication comportant les étapes suivantes :
- On lamine à chaud le demi-produit pour obtenir une tôle, par une succession d'étapes de laminage. Chacune des étapes correspond à une réduction d'épaisseur du produit par le passage au sein de cylindres de laminoir. Dans des conditions industrielles, ces étapes sont réalisées lors du dégrossissage du demi-produit sur un train à bandes. Le taux de réduction associé à chacune de ces étapes est défini par : (épaisseur du demi-produit après étape de laminage- épaisseur avant laminage)/ (épaisseur avant laminage) Selon l'invention, au moins deux de ces étapes sont réalisées à des températures supérieures à 1050°C, le taux de réduction de chacune d'elles est supérieur ou égal à 30%. L'intervalle de temps ti entre chacune des déformations de taux supérieur à 30% et la déformation ultérieure est supérieur ou égal à 10 s de façon à obtenir une recristallisation totale à l'issue de cet intervalle de temps ti. Les inventeurs ont mis en évidence que cette combinaison particulière de conditions conduisait à un affinement très important de la structure à chaud. On promeut ainsi une recristallisation grâce à des températures de laminage supérieures à la température de non-recristallisation Tnr.
Les inventeurs ont également mis en évidence qu'une structure initiale fine, telle que celle obtenue après une coulée directe, était favorable pour accélérer la recristallisation. - On achève le laminage à une température TFL supérieure ou égale à 900°C, de façon à obtenir une recristallisation complète.
- On refroidit ensuite la tôle obtenue : les inventeurs ont mis en évidence qu'une précipitation particulièrement efficace de précipités K et de carbures TiC était obtenue lorsque l'intervalle de temps tp s'écoulant au refroidissement entre 850 et 700°C était supérieur à 3 s. On obtient de la sorte une précipitation intense favorable au durcissement.
- On bobine ensuite la tôle à une température Tbob comprise entre 500 et 700°C. Cette étape achève la précipitation de TiC.
- On approvisionne une tôle laminée à chaud, fabriquée selon le procédé décrit ci-dessus. Naturellement, si l'état de surface de la tôle l'exige, on effectuera un décapage au moyen d'un procédé connu en soi.
- On effectue ensuite un laminage à froid, le taux de réduction étant compris entre 30 et 90%
- On chauffe ensuite la tôle laminée à froid avec une vitesse de réchauffage Vc supérieure à 3°C/s, ceci afin d'éviter une restauration qui diminuerait la capacité à la recristallisation ultérieure. Le réchauffage est effectué jusqu'à une température de recuit T' qui sera choisie de façon à obtenir une recristallisation complète de la structure initiale fortement écrouie.
On choisira la température de recuit T' et la vitesse VR de façon à obtenir sur le produit final :
- Une recristallisation complète
- Une fraction linéaire f de précipités intergranulaires κ inférieure à 30%
- Une teneur en carbone en solution solide inférieure à 0,005%.
Plus particulièrement, lorsque la teneur en carbone est supérieure à 0,010 % et inférieure ou égale à 0,15% et lorsque la teneur en manganèse est supérieure à 0,2% et inférieure ou égale à 1%, on choisira la température T' de façon à éviter en outre la dissolution de précipités K présents avant le recuit. En effet, si ces précipités sont dissous, la précipitation ultérieure au refroidissement lent interviendra sous forme intergranulaire fragilisante : une température de recuit trop importante conduirait à la redissolution des précipités K formés lors de la fabrication de la tôle laminée à chaud et diminuerait la résistance mécanique. A cette fin, on choisira préférentiellement une température T' comprise entre 750 et 800°C.
A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.According to another form of the invention, the ferritic grain is not equiaxed but its average size d IV is less than 100 micrometers. d IV denotes the grain size measured by the method of linear intercepts on a representative surface (S) perpendicular to the direction transverse to the rolling. The measurement of d IV is made in the direction perpendicular to the thickness of the sheet. This non-equiaxial grain morphology, having an elongation in the direction of rolling, may for example be present on hot-rolled steel sheets according to the invention.
The method of manufacturing a hot-rolled sheet according to the invention is implemented as follows:
- A steel composition is provided according to the invention.
- A semi-finished product is cast from this steel. This casting may be carried out in ingots, or continuously in the form of slabs of thickness of the order of 200 mm. The casting can also be carried out in the form of thin slabs of a few tens of millimeters thick, or thin strips, between contra-rotating steel rolls. This method of manufacture in the form of thin products is particularly advantageous, because it makes it easier to obtain a fine structure which favors the realization of the invention as will be seen later. By means of his general knowledge, the skilled person will determine the casting conditions satisfying both the need to obtain a fine and equiaxed structure after casting, and that of meeting the usual requirements of an industrial casting.
Naturally, in the case of direct casting of thin slabs or thin strips between contra-rotating rolls, the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting so that an intermediate reheating step is not necessary in this case .
After numerous tests, the inventors have demonstrated that it was possible to avoid the problem of scouring and to obtain very good drawability and good ductility, by means of the manufacturing process comprising the following steps:
- The semi-finished product is hot rolled to obtain a sheet, by a succession of rolling steps. Each of the steps corresponds to a reduction in the thickness of the product by passing through rolling mill rolls. Under industrial conditions, these steps are performed when roughing the semi-finished product on a band train. The reduction rate associated with each of these steps is defined by: (thickness of the semi-finished product after rolling step-thickness before rolling) / (thickness before rolling) According to the invention, at least two of these steps are carried out at temperatures above 1050 ° C, the reduction rate of each of them is greater than or equal to 30%. The time interval t i between each of the rate deformations greater than 30% and the subsequent deformation is greater than or equal to 10 s so as to obtain a total recrystallization at the end of this time interval t i . The inventors have demonstrated that this particular combination of conditions led to a very important refinement of the hot structure. This promotes recrystallization through rolling temperatures above the non-recrystallization temperature Tnr.
The inventors have also demonstrated that a fine initial structure, such as that obtained after direct casting, was favorable to accelerate the recrystallization. - The rolling is completed at a temperature T FL greater than or equal to 900 ° C, so as to obtain a complete recrystallization.
- The sheet obtained is then cooled: the inventors have demonstrated that a particularly effective precipitation of precipitates K and TiC carbides was obtained when the time interval tp flowing at cooling between 850 and 700 ° C was greater than 3 s. In this way, an intense precipitation is obtained which is favorable to hardening.
- The sheet is then reeled at a temperature T bob of between 500 and 700 ° C. This step completes the precipitation of TiC.
- A hot-rolled sheet is supplied, manufactured according to the method described above. Naturally, if the surface state of the sheet requires it, stripping will be carried out by means of a method known per se.
- Cold rolling is then carried out, the reduction ratio being between 30 and 90%
- The cold-rolled sheet is then heated with a heating rate V c greater than 3 ° C./s, in order to avoid a restoration which would reduce the capacity for subsequent recrystallization. Reheating is performed up to an annealing temperature T 'which will be chosen so as to obtain a complete recrystallization of the initial structure hardened.
The annealing temperature T 'and the speed V R will be chosen so as to obtain on the final product:
- A complete recrystallization
- A linear fraction f of intergranular precipitates κ less than 30%
- Carbon content in solid solution less than 0.005%.
More particularly, when the carbon content is greater than 0.010% and less than or equal to 0.15% and when the manganese content is greater than 0.2% and less than or equal to 1%, the temperature T 'of in addition to preventing the dissolution of precipitates K present before the annealing. In fact, if these precipitates are dissolved, the subsequent precipitation after slow cooling will take place in embrittling intergranular form: a too high annealing temperature would lead to the redissolution of the precipitates K formed during the manufacture of the hot-rolled sheet and reduce the mechanical strength. . For this purpose, a temperature T 'of between 750 and 800 ° C. will preferably be chosen.
By way of non-limiting example, the following results will show the advantageous characteristics conferred by the invention.
On a élaboré des aciers par coulée sous la forme de demi-produits d'épaisseur de 50 mm environ. Leurs compositions, exprimées en pourcentage pondéral, figurent au tableau 1 ci-dessous.
Valeurs soulignées : Non conforme à l'invention.
Underlined values: Not in accordance with the invention.
Les demi-produits ont été réchauffés à une température de 1220°C et laminés à chaud pour obtenir une tôle d'une épaisseur de 3,5 mm environ.The semi-finished products were heated to a temperature of 1220 ° C. and hot-rolled to obtain a sheet having a thickness of about 3.5 mm.
A partir d'une même composition, certains aciers ont fait l'objet de différentes conditions de laminage à chaud. Les références I1-a, I1-b, I1-c, I1-d, 11-e désignent par exemple cinq tôles d'aciers fabriquées selon des conditions différentes à partir de la composition 11.From the same composition, some steels have been subjected to different hot rolling conditions. The references I1-a, I1-b, I1-c, I1-d, 11-e designate, for example, five steel sheets manufactured under different conditions from the composition 11.
Pour les aciers I1 à 13, le tableau 2 détaille les conditions des étapes successives de laminage à chaud :
- Le nombre N d'étapes de laminage effectuées à une température de laminage à chaud supérieure à 1050°C
- Parmi celles-ci, le nombre Ni d'étapes de laminage dont le taux de réduction est supérieur à 30%
- Le temps ti s'écoulant entre chacune des étapes Ni, et l'étape de laminage succédant immédiatement à chacune de celles-ci
- La température de fin de laminage TFL
- L'intervalle de temps tp s'écoulant au refroidissement entre 850 et 700°C
- La température de bobinage Tbob
(°C)
(s)
(°C)
Valeurs soulignées : Non conformes à l'invention.
The number N of rolling steps carried out at a hot rolling temperature greater than 1050 ° C.
- Of these, the number N i of rolling steps whose reduction rate is greater than 30%
The time t i flowing between each of the steps N i , and the rolling step immediately succeeding each of these
- The end of rolling temperature T FL
- The time interval tp flowing on cooling between 850 and 700 ° C
- The winding temperature T bob
(° C)
(s)
(° C)
Underlined Values: Not in accordance with the invention.
Le tableau 3 présente la densité mesurée sur les tôles du tableau 2 et certaines caractéristiques mécaniques et microstructurales. On a ainsi mesuré, en sens travers par rapport au laminage, la résistance Rm, l'allongement uniforme Au, l'allongement à rupture At. On a également mesuré la taille de grains dIV par la méthode des intercepts linéaires selon la norme NF EN ISO 643 sur une surface perpendiculaire à la direction transverse par rapport au laminage. La mesure de dIV a été effectuée selon la direction perpendiculaire à l'épaisseur de la tôle Dans le but d'obtenir des propriétés mécaniques accrues, on recherche plus particulièrement une taille de grain dIV inférieure à 100 micromètres.
Valeurs soulignées : Non conformes à l'invention.
Underlined Values: Not in accordance with the invention.
Les tôles d'acier selon l'invention, dont la microstructure est illustrée par exemple à la
Les tôles I1b et I1e ont été laminées avec un temps interpasse trop court. Leur structure est alors grossière et non recristallisée ou insuffisamment recristallisée comme le montre la
La tôle I1c a été laminée avec un nombre insuffisant d'étapes de laminage avec un taux supérieur à 30%, un temps interpasse et un intervalle de temps tP trop courts. Les conséquences sont identiques à celles notées sur les tôles I1b et I1e. L'intervalle de temps tp étant trop faible, une précipitation durcissante de précipités K et de carbures TiC ne se produit que partiellement, ce qui ne permet pas de tirer le plein parti des possibilités de durcissement.The sheet I1c was laminated with an insufficient number of rolling steps with a rate greater than 30%, a time interpasse and a time interval t P too short. The consequences are identical to those noted on sheets I1b and I1e. The time interval tp being too low, a hardening precipitation of K precipitates and TiC carbides occurs only partially, which does not make it possible to take full advantage of the curing possibilities.
Les demi-produits réalisés à partir des aciers de référence R1 à R6 ont été laminés pour fabriquer des tôles laminées à chaud dans des conditions de fabrication identiques à celles de l'acier I3a du tableau 2. Les propriétés obtenues sur ces tôles sont portées au tableau 4.
(MPa)
(MPa)
(%)
(%)
Valeurs soulignées : Non conformes à l'invention.
(MPa)
(MPa)
(%)
(%)
Underlined Values: Not in accordance with the invention.
L'acier R1 possède une teneur insuffisante en titane ce qui conduit à une teneur en carbone en solution solide trop importante : l'aptitude au pliage est alors réduite.The steel R1 has an insufficient titanium content which leads to a solid solution carbon content that is too high: the folding ability is then reduced.
L'acier R2 possède une teneur en aluminium insuffisante ce qui ne permet pas d'obtenir une densité inférieure à 7,3.Steel R2 has an insufficient aluminum content which does not allow to obtain a density lower than 7.3.
Les aciers R3, R4, R5 et R6 contiennent une teneur trop importante en aluminium et éventuellement en carbone : leur ductilité est réduite en raison de la précipitation excessive de phases intermétalliques ou de carburesR3, R4, R5 and R6 steels contain too much aluminum and possibly carbon: their ductility is reduced due to the excessive precipitation of intermetallic phases or carbides
A partir des tôles d'aciers laminées à chaud I1-a et I3-a (selon l'invention) et I1-c et I-3b (ne satisfaisant pas aux conditions de l'invention), on a effectué un laminage à froid avec une réduction de 75% pour obtenir des tôles de 0,9mm d'épaisseur environ. L'aptitude au laminage à froid a été relevée durant cette étape. On a ensuite effectué un recuit caractérisé par une vitesse de chauffage Vc=10°C/s. Les températures de recuit T' et les vitesses de refroidissement VR ont été portées au tableau 5. Dans ces conditions, le recuit entraîne une recristallisation complète.From the sheets of hot-rolled steel I1-a and I3-a (according to the invention) and I1-c and I-3b (not satisfying the conditions of the invention), a cold-rolling was carried out with a reduction of 75% to obtain sheets approximately 0.9mm thick. The cold rolling ability was noted during this step. An annealing characterized by a heating rate V c = 10 ° C./s. The annealing temperatures T 'and the cooling rates V R are given in Table 5. Under these conditions, annealing results in complete recrystallization.
A partir d'une même tôle laminée à chaud, certains aciers ont fait l'objet de différentes conditions de laminage à froid et de recuit. Les références I3a1, I3a2, 13a3, 13a4, désignent par exemple quatre tôles d'aciers fabriquées selon des conditions différentes de laminage à froid et de recuit à partir de la tôle laminée à chaud 13a.
laminage à
froid
satisfaisante
(fissures en
sens travers)
Valeurs soulignées : Non conformes à l'invention.
rolling to
cold
satisfactory
(cracks in
cross-direction)
Underlined Values: Not in accordance with the invention.
Le tableau 6 présente certaines caractéristiques mécaniques, chimiques, microstructurales et de densité des tôles du tableau 5. On a ainsi mesuré par des essais de traction en sens travers par rapport au laminage, la limite d'élasticité Re, la résistance Rm, l'allongement uniforme Au, l'allongement à rupture At. Au moyen d'observations par microscopie électronique à balayage, on a relevé la présence éventuelle de facettes de clivage sur les surfaces de rupture des éprouvettes d'essais.Table 6 shows some of the mechanical, chemical, microstructural and sheet density characteristics of Table 5. This was measured by transverse tensile tests with respect to rolling, the yield strength Re, the resistance Rm, the uniform elongation Au, the elongation at break A t . By means of scanning electron microscopy observations, the presence of cleavage facets on the rupture surfaces of the test specimens was noted.
La teneur en carbone Csol en solution solide a été également mesurée. L'aptitude au pliage et à l'emboutissage ont été évaluées. On a également relevé la présence éventuelle de chiffonnage consécutif aux déformations.The soil sol carbon content in solid solution was also measured. The ability to bend and press was evaluated. It was also noted the possible presence of scuffing consecutive deformations.
La microstructure de ces tôles recristallisées est constituée de ferrite équiaxe dont la taille moyenne de grain dα a été mesurée dans le sens transverse du laminage. On a également mesuré le taux de recouvrement f des joints de grains ferritiques par une précipitation K, au moyen du logiciel d'analyses d'images Aphelion™.
(MPa)
(MPa)
(%)
rupture
(%)
(%)
au pliage et à
l'emboutissage
Valeurs soulignées : Non conformes à l'invention.
(MPa)
(MPa)
(%)
breaking
(%)
(%)
folding and
stamping
Underlined Values: Not in accordance with the invention.
Les tôles d'aciers I1a1 et I3a1 présentent une teneur en carbone en solution solide, une taille de grain équiaxe ferritique et un taux de recouvrement f des joints de grains qui satisfont aux conditions de l'invention. Par suite, l'aptitude au pliage, à l'emboutissage, la résistance au chiffonnage de ces tôles, est élevée.The steel sheets I1a1 and I3a1 have a solid solution carbon content, a ferritic equiaxed grain size, and a grain boundary recovery ratio that satisfies the conditions of the invention. As a result, the ability to bend, stamping, scratch resistance of these sheets, is high.
La
La
En comparaison, la tôle d'acier I1a2 a été refroidie à une vitesse trop importante après recuit : le carbone est alors totalement en solution solide, ce qui entraine une réduction de ductilité de la matrice se traduisant par la présence locale de plages fragiles sur les facies de rupture. De même, la tôle 13a2 a été refroidie à une vitesse trop importante et conduit également à une teneur excessive en solution solide.In comparison, the steel sheet I1a2 was cooled at a too high speed after annealing: the carbon is then completely in solid solution, which causes a reduction in ductility of the matrix resulting in the local presence of fragile areas on the plates. facies of rupture. Similarly, the sheet 13a2 has been cooled too fast and also leads to an excessive content of solid solution.
La
La tôle I3a4 a été également recuite à une température qui entraîne une dissolution partielle des précipités K. La teneur en carbone en solution solide est excessive.The I3a4 sheet was also annealed at a temperature which causes partial dissolution of the precipitates K. The carbon content in solid solution is excessive.
La tôle d'acier I1c1 a été fabriquée à partir d'une tôle laminée à chaud ne satisfaisant pas aux conditions de l'invention : la taille de grain équiaxe est trop importante, la résistance au chiffonnage et l'aptitude à l'emboutissage sont insuffisantes.The steel sheet I1c1 was made from a hot-rolled sheet not satisfying the requirements of the invention: the equiaxial grain size is too large, the crimping resistance and the stamping ability are insufficient.
La tôle I3b laminée à chaud, ne satisfaisant pas aux critères de l'invention, n'est pas apte à la déformation puisque des fissures transversales apparaissent lors du laminage à froid.The hot-rolled sheet I3b, which does not satisfy the criteria of the invention, is not suitable for deformation since transverse cracks appear during cold rolling.
Des essais de soudabilité par résistance par points ont été effectués sur la tôle d'acier I1a1, soit en soudage homogène (soudage de deux tôles de même composition) soit en soudage hétérogène (soudage avec une tôle d'acier sans interstitiel de composition, exprimée en pourcentage pondéral : 0,002%C, 0,01%Si, 0,15%Mn, 0,04%Al, 0,015%Nb, 0.026%Ti) Les examens montrent que les joints soudés sont exempts de défauts.Spot resistance weldability tests were carried out on the I1a1 steel sheet, either in homogeneous welding (welding of two sheets of the same composition) or in heterogeneous welding (welding with a sheet of steel without interstitial composition, expressed in weight percent: 0.002% C, 0.01% Si, 0.15% Mn, 0.04% Al, 0.015% Nb, 0.026% Ti) Examinations show that the welded joints are free from defects.
Dans le cas de traitement thermique ultérieur des joints soudés, l'addition de 0,096%Ti garantit l'absence de carbone en solution solide en zone affectée par la chaleur.In the case of subsequent heat treatment of the welded joints, the addition of 0.096% Ti guarantees the absence of solid solution carbon in the heat-affected zone.
Les aciers selon l'invention présentent une bonne aptitude à la galvanisation en continu, en particulier, lors d'un cycle de recuit à 800°C avec une température de point de rosée supérieure à -20°C.The steels according to the invention have good continuous galvanizing properties, in particular during an annealing cycle at 800 ° C. with a dew point temperature higher than -20 ° C.
Les aciers selon l'invention présentent donc une combinaison de propriétés (densité, une résistance mécanique, aptitude à la déformation, soudabilité, revêtabilité) particulièrement intéressante. Ces tôles d'aciers sont utilisées avec profit pour la fabrication de pièces de peau ou de structure dans le domaine automobile.The steels according to the invention thus have a combination of properties (density, mechanical strength, deformability, weldability, coating) particularly interesting. These steel sheets are used with advantage for the manufacture of skin parts or structure in the automotive field.
Claims (17)
0,001 % ≤C ≤ 0,010%
Mn ≤ 0,2%Steel sheet according to claim 1, characterized in that its composition comprises, the contents being expressed by weight
0.001% ≤C ≤ 0.010%
Mn ≤ 0.2%
0,010 % < C ≤ 0,15%
0,2% < Mn ≤ 1%Steel sheet according to claim 1, characterized in that its composition comprises, the contents being expressed by weight
0.010% <C ≤ 0.15%
0.2% <Mn ≤ 1%
Priority Applications (22)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07290624A EP1995336A1 (en) | 2007-05-16 | 2007-05-16 | Low-density steel with good suitability for stamping |
CN2008800160910A CN101755057B (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
PL08805524T PL2155916T5 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
DE602008003801T DE602008003801D1 (en) | 2007-05-16 | 2008-04-29 | STEEL OF LOW DENSITY WITH GOOD EMBOSSING CHARACTERISTICS |
PCT/FR2008/000610 WO2008145872A1 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
KR1020097023754A KR101476866B1 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping properties |
RU2009146543/02A RU2436849C2 (en) | 2007-05-16 | 2008-04-29 | Steel of low density with good deformability at forming |
US12/600,085 US9580766B2 (en) | 2007-05-16 | 2008-04-29 | Low-density steel having good drawability |
BRPI0811610-5A2A BRPI0811610A2 (en) | 2007-05-16 | 2008-04-29 | LOW DENSITY STEEL PRESENTING FITNESS FITNESS |
MX2009012221A MX2009012221A (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability. |
CA2687327A CA2687327C (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
UAA200912894A UA99827C2 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability, steel sheet and method for production and use thereof |
JP2010507948A JP5552045B2 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping performance |
AT08805524T ATE490348T1 (en) | 2007-05-16 | 2008-04-29 | LOW DENSITY STEEL WITH GOOD EMBOSSING PROPERTIES |
ES08805524.9T ES2356186T5 (en) | 2007-05-16 | 2008-04-29 | Low density steel that shows good drawing behavior |
KR1020147027952A KR20140129365A (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
EP08805524.9A EP2155916B2 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
ARP080102046A AR066569A1 (en) | 2007-05-16 | 2008-05-15 | HOT LAMINATED FERRITIC STEEL SHEET AND PROCESS FOR MANUFACTURING |
ZA200907619A ZA200907619B (en) | 2007-05-16 | 2009-10-30 | Low-density steel having good drawability |
MA32326A MA31363B1 (en) | 2007-05-16 | 2009-11-03 | Low-density steel has good formability. |
JP2013206098A JP5728547B2 (en) | 2007-05-16 | 2013-10-01 | Low density steel with good stamping performance |
US15/374,827 US9765415B2 (en) | 2007-05-16 | 2016-12-09 | Low density steel having good drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07290624A EP1995336A1 (en) | 2007-05-16 | 2007-05-16 | Low-density steel with good suitability for stamping |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1995336A1 true EP1995336A1 (en) | 2008-11-26 |
Family
ID=38823590
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07290624A Withdrawn EP1995336A1 (en) | 2007-05-16 | 2007-05-16 | Low-density steel with good suitability for stamping |
EP08805524.9A Active EP2155916B2 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08805524.9A Active EP2155916B2 (en) | 2007-05-16 | 2008-04-29 | Low density steel with good stamping capability |
Country Status (18)
Country | Link |
---|---|
US (2) | US9580766B2 (en) |
EP (2) | EP1995336A1 (en) |
JP (2) | JP5552045B2 (en) |
KR (2) | KR101476866B1 (en) |
CN (1) | CN101755057B (en) |
AR (1) | AR066569A1 (en) |
AT (1) | ATE490348T1 (en) |
BR (1) | BRPI0811610A2 (en) |
CA (1) | CA2687327C (en) |
DE (1) | DE602008003801D1 (en) |
ES (1) | ES2356186T5 (en) |
MA (1) | MA31363B1 (en) |
MX (1) | MX2009012221A (en) |
PL (1) | PL2155916T5 (en) |
RU (1) | RU2436849C2 (en) |
UA (1) | UA99827C2 (en) |
WO (1) | WO2008145872A1 (en) |
ZA (1) | ZA200907619B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2406404B1 (en) * | 2009-03-11 | 2017-08-23 | Salzgitter Flachstahl GmbH | Method for producing a hot rolled strip from ferritic steel by horizontal strip casting |
CN109868420A (en) * | 2017-12-04 | 2019-06-11 | 现代自动车株式会社 | Ferritic steel |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5257239B2 (en) * | 2009-05-22 | 2013-08-07 | 新日鐵住金株式会社 | High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same |
EP2817428B2 (en) * | 2012-02-20 | 2019-06-19 | Tata Steel Nederland Technology B.V. | High strength bake-hardenable low density steel and method for producing said steel |
CN104220609B (en) * | 2012-04-11 | 2016-08-17 | 塔塔钢铁荷兰科技有限责任公司 | High intensity is without brilliant gap low density steel and the preparation method of described steel |
WO2013178887A1 (en) | 2012-05-31 | 2013-12-05 | Arcelormittal Investigación Desarrollo Sl | Low-density hot- or cold-rolled steel, method for implementing same and use thereof |
TWI484049B (en) * | 2012-07-20 | 2015-05-11 | Nippon Steel & Sumitomo Metal Corp | Steel |
KR20150082199A (en) | 2012-09-14 | 2015-07-15 | 타타 스틸 네덜란드 테크날러지 베.뷔. | High strength and low density particle-reinforced steel with improved e-modulus and method for producing said steel |
CN103691741A (en) * | 2012-09-27 | 2014-04-02 | 日立金属株式会社 | Manufacturing method of making fe-a1 alloy strip steel |
CN103884624A (en) * | 2012-12-21 | 2014-06-25 | 鞍钢股份有限公司 | Crystal boundary density measuring method |
EP2767601B1 (en) * | 2013-02-14 | 2018-10-10 | ThyssenKrupp Steel Europe AG | Cold rolled steel flat product for deep drawing applications and method for its production |
PL2767602T3 (en) * | 2013-02-14 | 2019-10-31 | Thyssenkrupp Steel Europe Ag | Cold rolled steel flat product for deep drawing applications and method for its production |
CR20170156A (en) | 2014-10-20 | 2017-09-22 | Arcelormittal | METHOD OF PRODUCTION OF LEAF CONTAINING A SILICON STEEL SHEET OF NON-ORIENTED GRAIN, STEEL SHEET OBTAINED AND USE OF THIS. |
EP3405593B1 (en) * | 2016-01-20 | 2020-05-20 | ThyssenKrupp Steel Europe AG | Flat steel product and method for manufacturing |
WO2017163098A1 (en) | 2016-03-25 | 2017-09-28 | Arcelormittal | Process for manufacturing cold-rolled and welded steel sheets, and sheets thus produced |
CN106011652B (en) * | 2016-06-28 | 2017-12-26 | 宝山钢铁股份有限公司 | A kind of excellent cold rolling low-density steel plate of phosphorus characteristic and its manufacture method |
CN105908089B (en) | 2016-06-28 | 2019-11-22 | 宝山钢铁股份有限公司 | A kind of hot-dip low density steel and its manufacturing method |
RU2627079C1 (en) * | 2016-11-17 | 2017-08-03 | Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") | Method of manufacture of high-strengthen corrosive-resistant hot-rolled steel with low specific weight |
CN106756478B (en) * | 2016-12-07 | 2018-03-27 | 钢铁研究总院 | A kind of economical seawater corrosion resistance low-density low-alloy steel and preparation method thereof |
CN108359897B (en) * | 2018-03-19 | 2020-01-31 | 武汉钢铁有限公司 | precipitation strengthening ferritic steels with yield strength of 1000MPa and production method thereof |
CN111378908B (en) * | 2020-03-18 | 2021-10-01 | 云南昆钢耐磨材料科技股份有限公司 | Preparation method of alloy steel lining plate |
CN112226701B (en) * | 2020-09-11 | 2021-12-31 | 北京科技大学 | High-aluminum-content fine-grain low-density full-high-temperature ferrite steel and preparation method thereof |
CN112877606B (en) * | 2021-01-12 | 2022-03-08 | 钢铁研究总院 | Ultrahigh-strength full-austenite low-density steel and preparation method thereof |
CN114480988B (en) * | 2021-12-27 | 2023-01-06 | 北京科技大学 | A kind of multi-phase composite high-strength high-toughness low-density steel and its preparation method |
US12082533B2 (en) | 2022-03-10 | 2024-09-10 | Vermeer Manufacturing Company | Wrap material guide pan for round baler |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1044801A (en) * | 1963-01-30 | 1966-10-05 | Yawata Iron & Steel Co | Improvements in or relating to aluminum steels |
JPH0456748A (en) * | 1990-06-22 | 1992-02-24 | Kawasaki Steel Corp | Steel for welding structure excellent in vibration damping capacity |
EP0826787A2 (en) * | 1996-08-27 | 1998-03-04 | Fried. Krupp AG Hoesch-Krupp | Light structural steel and its use for car parts and facades |
JP2001271148A (en) * | 2000-03-27 | 2001-10-02 | Nisshin Steel Co Ltd | HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE |
WO2003076673A2 (en) * | 2002-03-11 | 2003-09-18 | Usinor | High-resistant, low-density hot laminated sheet steel and method for the production thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH056748A (en) | 1991-06-21 | 1993-01-14 | Mitsubishi Electric Corp | Flat cathode-ray tube |
BR9404223A (en) * | 1993-04-26 | 1995-11-21 | Nippon Steel Corp | Thin steel sheet having an excellent straightening-flanging capacity and process for producing the same |
US5595706A (en) * | 1994-12-29 | 1997-01-21 | Philip Morris Incorporated | Aluminum containing iron-base alloys useful as electrical resistance heating elements |
JP2001001053A (en) * | 1999-04-22 | 2001-01-09 | Aisin Seiki Co Ltd | Roll-formed part and bumper for automobile |
AUPR048000A0 (en) * | 2000-09-29 | 2000-10-26 | Bhp Steel (Jla) Pty Limited | A method of producing steel |
JP4056748B2 (en) * | 2002-01-21 | 2008-03-05 | 花王株式会社 | How to determine the quality of fly ash |
JP4235077B2 (en) * | 2003-06-05 | 2009-03-04 | 新日本製鐵株式会社 | High strength low specific gravity steel plate for automobile and its manufacturing method |
JP4430502B2 (en) * | 2004-02-24 | 2010-03-10 | 新日本製鐵株式会社 | Method for producing low specific gravity steel sheet with excellent ductility |
JP5062985B2 (en) * | 2004-10-21 | 2012-10-31 | 新日鉄マテリアルズ株式会社 | High Al content steel plate with excellent workability and method for producing the same |
JP4324072B2 (en) * | 2004-10-21 | 2009-09-02 | 新日本製鐵株式会社 | Lightweight high strength steel with excellent ductility and its manufacturing method |
JP4299774B2 (en) * | 2004-12-22 | 2009-07-22 | 新日本製鐵株式会社 | High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same |
US20070227634A1 (en) * | 2005-03-16 | 2007-10-04 | Mittal Steel Gandrange | Forged or Stamped Average or Small Size Mechanical Part |
ES2528427T3 (en) * | 2005-08-05 | 2015-02-09 | Jfe Steel Corporation | High tensile steel sheet and procedure to produce it |
JP4797807B2 (en) * | 2006-05-30 | 2011-10-19 | Jfeスチール株式会社 | High-rigidity low-density steel plate and manufacturing method thereof |
-
2007
- 2007-05-16 EP EP07290624A patent/EP1995336A1/en not_active Withdrawn
-
2008
- 2008-04-29 UA UAA200912894A patent/UA99827C2/en unknown
- 2008-04-29 BR BRPI0811610-5A2A patent/BRPI0811610A2/en active IP Right Grant
- 2008-04-29 RU RU2009146543/02A patent/RU2436849C2/en active
- 2008-04-29 DE DE602008003801T patent/DE602008003801D1/en active Active
- 2008-04-29 WO PCT/FR2008/000610 patent/WO2008145872A1/en active Application Filing
- 2008-04-29 ES ES08805524.9T patent/ES2356186T5/en active Active
- 2008-04-29 CN CN2008800160910A patent/CN101755057B/en active Active
- 2008-04-29 MX MX2009012221A patent/MX2009012221A/en active IP Right Grant
- 2008-04-29 PL PL08805524T patent/PL2155916T5/en unknown
- 2008-04-29 US US12/600,085 patent/US9580766B2/en active Active
- 2008-04-29 JP JP2010507948A patent/JP5552045B2/en active Active
- 2008-04-29 CA CA2687327A patent/CA2687327C/en active Active
- 2008-04-29 KR KR1020097023754A patent/KR101476866B1/en active IP Right Grant
- 2008-04-29 KR KR1020147027952A patent/KR20140129365A/en not_active Application Discontinuation
- 2008-04-29 AT AT08805524T patent/ATE490348T1/en active
- 2008-04-29 EP EP08805524.9A patent/EP2155916B2/en active Active
- 2008-05-15 AR ARP080102046A patent/AR066569A1/en active IP Right Grant
-
2009
- 2009-10-30 ZA ZA200907619A patent/ZA200907619B/en unknown
- 2009-11-03 MA MA32326A patent/MA31363B1/en unknown
-
2013
- 2013-10-01 JP JP2013206098A patent/JP5728547B2/en active Active
-
2016
- 2016-12-09 US US15/374,827 patent/US9765415B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1044801A (en) * | 1963-01-30 | 1966-10-05 | Yawata Iron & Steel Co | Improvements in or relating to aluminum steels |
JPH0456748A (en) * | 1990-06-22 | 1992-02-24 | Kawasaki Steel Corp | Steel for welding structure excellent in vibration damping capacity |
EP0826787A2 (en) * | 1996-08-27 | 1998-03-04 | Fried. Krupp AG Hoesch-Krupp | Light structural steel and its use for car parts and facades |
JP2001271148A (en) * | 2000-03-27 | 2001-10-02 | Nisshin Steel Co Ltd | HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE |
WO2003076673A2 (en) * | 2002-03-11 | 2003-09-18 | Usinor | High-resistant, low-density hot laminated sheet steel and method for the production thereof |
Non-Patent Citations (1)
Title |
---|
SCHNEIDER ANDRE ET AL: "Iron Aluminium Alloys with Strengthening Carbides and Intermetallic Phases for High-Temperature Applications", STEEL RESEARCH INTERNATIONAL, VERLAG STAHLEISEN GMBH., DUSSELDORF, DE, vol. 75, no. 1, January 2004 (2004-01-01), pages 55 - 61, XP009093993, ISSN: 1611-3683 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2406404B1 (en) * | 2009-03-11 | 2017-08-23 | Salzgitter Flachstahl GmbH | Method for producing a hot rolled strip from ferritic steel by horizontal strip casting |
CN109868420A (en) * | 2017-12-04 | 2019-06-11 | 现代自动车株式会社 | Ferritic steel |
Also Published As
Publication number | Publication date |
---|---|
CA2687327C (en) | 2012-06-26 |
DE602008003801D1 (en) | 2011-01-13 |
BRPI0811610A2 (en) | 2014-11-04 |
EP2155916A1 (en) | 2010-02-24 |
JP2010526939A (en) | 2010-08-05 |
ES2356186T3 (en) | 2011-04-05 |
JP2014040668A (en) | 2014-03-06 |
KR20100019443A (en) | 2010-02-18 |
KR20140129365A (en) | 2014-11-06 |
ES2356186T5 (en) | 2015-06-19 |
KR101476866B1 (en) | 2014-12-26 |
MX2009012221A (en) | 2009-12-01 |
RU2009146543A (en) | 2011-06-27 |
RU2436849C2 (en) | 2011-12-20 |
JP5552045B2 (en) | 2014-07-16 |
UA99827C2 (en) | 2012-10-10 |
US20170101694A1 (en) | 2017-04-13 |
CN101755057A (en) | 2010-06-23 |
PL2155916T3 (en) | 2011-05-31 |
EP2155916B2 (en) | 2015-03-11 |
US9765415B2 (en) | 2017-09-19 |
JP5728547B2 (en) | 2015-06-03 |
US9580766B2 (en) | 2017-02-28 |
US20100300585A1 (en) | 2010-12-02 |
ATE490348T1 (en) | 2010-12-15 |
PL2155916T5 (en) | 2016-06-30 |
EP2155916B1 (en) | 2010-12-01 |
MA31363B1 (en) | 2010-05-03 |
CN101755057B (en) | 2012-03-28 |
ZA200907619B (en) | 2010-05-26 |
CA2687327A1 (en) | 2008-12-04 |
AR066569A1 (en) | 2009-08-26 |
WO2008145872A1 (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2155916B1 (en) | Low density steel with good stamping capability | |
EP2855725B1 (en) | Low-density hot- or cold-rolled steel, method for implementing same and use thereof | |
EP1844173B1 (en) | Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby | |
EP1649069B1 (en) | Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced | |
EP2630269B1 (en) | Hot or cold rolled steel sheet, its manufacturing method and its use in the automotive industry | |
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP1913169B1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
EP2718469B1 (en) | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate | |
EP2689045B1 (en) | Hot-rolled steel sheet and associated production method | |
EP2155915B1 (en) | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced | |
EP2707513B1 (en) | Method for the production of very-high-strength martensitic steel and sheet or part thus obtained | |
EP2707514B1 (en) | Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets | |
EP3084014B1 (en) | High strength steel and method of production of the same | |
EP3167091B1 (en) | Hot-rolled steel sheet and associated manufacturing method | |
EP2245203B1 (en) | Austenitic stainless steel sheet and method for obtaining this sheet | |
EP1427866B1 (en) | Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube | |
EP2257652B1 (en) | Method of manufacturing sheets of austenitic stainless steel with high mechanical properties | |
WO2011036351A1 (en) | Ferritic stainless steel having high drawability properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17P | Request for examination filed |
Effective date: 20090526 |
|
17Q | First examination report despatched |
Effective date: 20090629 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: RS Payment date: 20090526 Extension state: MK Payment date: 20090526 Extension state: HR Payment date: 20090526 Extension state: BA Payment date: 20090526 Extension state: AL Payment date: 20090526 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20091224 |