EP2155915B1 - Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced - Google Patents
Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced Download PDFInfo
- Publication number
- EP2155915B1 EP2155915B1 EP08805523.1A EP08805523A EP2155915B1 EP 2155915 B1 EP2155915 B1 EP 2155915B1 EP 08805523 A EP08805523 A EP 08805523A EP 2155915 B1 EP2155915 B1 EP 2155915B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- sheet
- rolled
- cold
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 123
- 239000010959 steel Substances 0.000 title claims description 123
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000000034 method Methods 0.000 title claims description 15
- 239000000203 mixture Substances 0.000 claims description 45
- 229910001566 austenite Inorganic materials 0.000 claims description 40
- 229910000734 martensite Inorganic materials 0.000 claims description 34
- 229910052804 chromium Inorganic materials 0.000 claims description 30
- 229910001563 bainite Inorganic materials 0.000 claims description 23
- 229910052750 molybdenum Inorganic materials 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 20
- 229910052796 boron Inorganic materials 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 238000005097 cold rolling Methods 0.000 claims description 13
- 239000011265 semifinished product Substances 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000005266 casting Methods 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000005554 pickling Methods 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- 238000003303 reheating Methods 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 239000011651 chromium Substances 0.000 description 33
- 229910000859 α-Fe Inorganic materials 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 19
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 17
- 229910052710 silicon Inorganic materials 0.000 description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 16
- 239000010936 titanium Substances 0.000 description 14
- 239000011733 molybdenum Substances 0.000 description 13
- 238000000137 annealing Methods 0.000 description 12
- 239000011572 manganese Substances 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000010960 cold rolled steel Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 3
- 229910000794 TRIP steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007571 dilatometry Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000885 Dual-phase steel Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VCTOKJRTAUILIH-UHFFFAOYSA-N manganese(2+);sulfide Chemical class [S-2].[Mn+2] VCTOKJRTAUILIH-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
Definitions
- the invention relates to the manufacture of cold-rolled and annealed thin sheets of steels having a strength greater than 1200 MPa and an elongation at break greater than 8%.
- the automotive sector and the general industry are notably fields of application for these steel sheets.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Laminated Bodies (AREA)
Description
L'invention concerne la fabrication de tôles minces laminées à froid et recuites d'aciers présentant une résistance supérieure à 1200 MPa et un allongement à rupture supérieur à 8%. Le secteur automobile et l'industrie générale constituent notamment des domaines d'application de ces tôles d'aciers.The invention relates to the manufacture of cold-rolled and annealed thin sheets of steels having a strength greater than 1200 MPa and an elongation at break greater than 8%. The automotive sector and the general industry are notably fields of application for these steel sheets.
Il existe en particulier dans l'industrie automobile un besoin continu d'allègement des véhicules et d'accroissement de la sécurité. On a proposé successivement différentes familles d'aciers pour répondre à ce besoin de résistance accrue : on a tout d'abord proposé des aciers comportant des éléments de micro-alliage. Leur durcissement est dû à la précipitation de ces éléments et à l'affinement de la taille de grains. On a ensuite assisté au développement d'aciers « Dual-Phase » où la présence de martensite, constituant d'une grande dureté, au sein d'une matrice ferritique plus douce, permet d'obtenir une résistance supérieure à 450MPa associée à une bonne aptitude au formage à froid.In particular, there is a continuing need in the automotive industry for lighter vehicles and increased safety. Different families of steels have been successively proposed to meet this need for increased strength: first, steels comprising micro-alloy elements have been proposed. Their hardening is due to the precipitation of these elements and the refinement of the grain size. We then witnessed the development of "Dual-Phase" steels where the presence of martensite, constituting a great hardness, in a softer ferritic matrix, allows to obtain a resistance greater than 450MPa associated with good cold forming ability.
Afin d'accroître encore la résistance, on a développé des aciers présentant un comportement « TRIP » (Transformation Induced Plasticity ») avec des combinaisons de propriétés (résistance-aptitude à la déformation) très avantageuses : ces propriétés sont liées à la structure de ces aciers constituée d'une matrice ferritique comportant de la bainite et de l'austénite résiduelle. La présence de ce dernier constituant confère une ductilité élevée à une tôle non déformée. Sous l'effet d'une déformation ultérieure, par exemple lors d'une sollicitation uniaxiale, l'austénite résiduelle d'une pièce en acier TRIP se transforme progressivement en martensite, ce qui se traduit par une consolidation importante et retarde l'apparition d'une déformation localisée.In order to further increase the resistance, steels having a "TRIP" (Transformation Induced Plasticity) behavior with very advantageous combinations of properties (resistance-ability to deformation) have been developed: these properties are related to the structure of these structures. steels consisting of a ferritic matrix comprising bainite and residual austenite. The presence of the latter component gives a high ductility to a non-deformed sheet. Under the effect of a subsequent deformation, for example during a uniaxial loading, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant consolidation and delays the appearance of 'localized deformation.
Des tôles d'aciers Dual Phase ou TRIP ont été proposées, avec un niveau de résistance maximal de l'ordre de 1000MPa. L'obtention de niveaux de résistance significativement supérieurs, par exemple 1200-1400MPa se heurte à différentes difficultés :
- L'accroissement de résistance mécanique nécessite une analyse chimique nettement plus chargée en éléments d'alliage, au détriment de l'aptitude au soudage de ces aciers.
- On observe un accroissement de la différence de dureté entre la matrice ferritique et les constituants durcissants : ceci a pour conséquence une concentration locale des contraintes et des déformations et un endommagement plus précoce, comme en témoigne la baisse de l'allongement.
- On observe également un accroissement de la fraction des constituants durcissants au sein de la matrice ferritique : dans ce cas, les îlots, initialement isolés et de petite taille lorsque la résistance est faible, deviennent progressivement connexes et forment des constituants de grande taille qui favorisent là encore un endommagement précoce.
- The increase in mechanical strength requires a much more heavily loaded chemical analysis of alloying elements, to the detriment of the weldability of these steels.
- An increase in the difference in hardness between the ferritic matrix and the hardening constituents is observed: this results in a local concentration of stresses and deformations and an earlier damage, as evidenced by the decrease in elongation.
- There is also an increase in the fraction of hardening components within the ferritic matrix: in this case, the islets, initially isolated and small when the resistance is low, become progressively connected and form large constituents which favor there still early damage.
Les possibilités d'obtenir simultanément de très hauts niveaux de résistance et certaines autres propriétés d'usage au moyen d'aciers TRIP ou à microstructure Dual Phase, semblent ainsi limitées. Pour atteindre une résistance encore plus élevée, c'est à dire un niveau supérieur à 800-1000 MPa, on a développé des aciers dits « multiphasés » à structure majoritairement bainitique. Dans l'industrie automobile ou dans l'industrie générale, des tôles d'aciers multiphasés de moyenne épaisseur sont utilisées avec profit pour des pièces structurales telles que traverses de pare-chocs, montants, renforts divers.The possibilities of simultaneously obtaining very high levels of resistance and certain other properties of use using TRIP or Dual Phase microstructure steels thus seem limited. To achieve an even higher resistance, ie a level greater than 800-1000 MPa, so-called "multiphase" steels have a predominantly bainitic structure. In the automotive industry or in the general industry, multi-phase steel sheets of medium thickness are used with advantage for structural parts such as bumper crosspieces, uprights, various reinforcements.
En particulier, dans le domaine des tôles d'acier multiphasés laminées à froid de plus de 980MPa, le brevet
Le brevet
Par ailleurs, l'invention vise à mettre à disposition un procédé de fabrication de tôles minces dont de faibles variations des paramètres n'entraînent pas de modifications importantes de la microstructure ou des propriétés mécaniques. L'invention vise également à mettre à disposition une tôle d'acier aisément fabricable par laminage à froid, c'est à dire dont la dureté après l'étape de laminage à chaud est limitée de telle sorte que les efforts de laminage restent modérés lors de l'étape de laminage à froid.Furthermore, the invention aims to provide a method of manufacturing thin sheets, small variations of the parameters do not lead to significant changes in the microstructure or mechanical properties. The invention also aims to provide a sheet of steel easily fabricated by cold rolling, that is to say whose hardness after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.
Elle vise également à disposer d'une tôle d'acier mince apte au dépôt éventuel d'un revêtement métallique selon les procédés usuels.It also aims to have a thin steel sheet suitable for the possible deposit of a metal coating according to the usual methods.
Elle vise également à disposer d'une tôle d'acier peu sensible à un endommagement par découpe et apte à l'expansion de trou.It also aims to have a steel sheet insensitive to damage by cutting and able to expand the hole.
Elle vise encore à disposer d'un acier présentant une bonne aptitude au soudage au moyen des procédés d'assemblage usuels tels que le soudage par résistance par points.It also aims to have a steel having good weldability by means of conventional assembly methods such as spot resistance welding.
Dans ce but, l'invention a pour objet une tôle d'acier laminée à froid et recuite de résistance supérieure à 1200 MPa, dont la composition comprend, les teneurs étant exprimées en poids : 0,10% ≤ C ≤ 0,25%, 1%≤ Mn ≤ 3%, Al ≥ 0,010 %, Si≤2,990%, S ≤ 0,015%, P ≤ 0,1%, N≤0,008%, étant entendu que 1 % ≤Si+Al ≤3%, la composition comprenant éventuellement: 0,05% ≤ V ≤ 0,15%, B≤0,005%, Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que Cr+(3 x Mo) ≥0,3%, Ti en quantité telle que Ti/N≥4 et que Ti≤0,040%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la microstructure dudit acier comprenant 15 à 90% de bainite, le solde étant constitué de martensite et d'austénite résiduelle.For this purpose, the subject of the invention is a cold-rolled and annealed steel sheet with a resistance greater than 1200 MPa, the composition of which comprises the contents being expressed by weight: 0.10% ≤ C ≤ 0.25% , 1% ≤ Mn ≤ 3%, Al ≥ 0.010%, Si≤2.990%, S ≤ 0.015%, P ≤ 0.1%, N ≤0.008%, with the proviso that 1% ≤Si + Al ≤3%, the composition optionally comprising: 0.05% ≤ V ≤ 0.15%, B≤0.005%, Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr + (3 × Mo) ≥0.3%, Ti in an amount such that Ti / N≥4 and that Ti 00.040%, the rest of the composition consisting of iron and unavoidable impurities resulting from the elaboration, the microstructure of said steel comprising 15 to 90% of bainite, the balance consisting of martensite and residual austenite.
L'invention a également pour objet une tôle d'acier de composition ci-dessus, d'allongement à rupture supérieur à 10%, caractérisée en ce que Mo< 0,005%, Cr<0,005%, B=0, la microstructure de l'acier comprenant 65 à 90% de bainite, le solde étant constitué d'îlots de martensite et d'austénite résiduelleThe subject of the invention is also a sheet of steel with the above composition, with an elongation at break greater than 10%, characterized in that Mo <0.005%, Cr <0.005%, B = 0, the microstructure of the steel comprising 65 to 90% bainite, the balance consisting of islands of martensite and residual austenite
L'invention a également pour objet une tôle d'acier de composition ci-dessus, caractérisée en ce qu'elle contient :Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que Cr+(3 x Mo) ≥0,3%, B=0, la microstructure de l'acier comprenant 65 à 90% de bainite, le solde étant constitué d'îlots de martensite et d'austénite résiduelleThe invention also relates to a steel sheet of the above composition, characterized in that it contains: Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr + (3 × Mo) ≥ 0.3%, B = 0, the microstructure of the steel comprising 65 to 90% of bainite, the remainder being islands of martensite and residual austenite
L'invention a encore pour objet une tôle d'acier de composition ci-dessus, de résistance supérieure à 1400MPa, d'allongement à rupture supérieur à 8%, caractérisée en ce qu'elle contient : Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que Cr+(3 x Mo) ≥0,3%, la microstructure de l'acier comprenant 45 à 65% de bainite, le solde étant constitué d'îlots de martensite et d'austénite résiduelle L'invention a également pour objet une tôle d'acier de composition ci-dessus, de résistance supérieure à 1600MPa, d'allongement à rupture supérieur à 8%, caractérisée en ce qu'elle contient: Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que : Cr+(3 x Mo) ≥0,3%, la microstructure de l'acier comprenant 15 à 45% de bainite, le solde étant constitué de martensite et d'austénite résiduelle.The subject of the invention is also a steel sheet of the above composition, with a resistance greater than 1400 MPa, with an elongation at break greater than 8%, characterized in that it contains: Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr + (3 x Mo) ≥0.3%, the microstructure of the steel comprising 45 to 65% of bainite, the remainder being islands of martensite and residual austenite L Another subject of the invention is a steel sheet of the above composition, with a resistance greater than 1600 MPa, with an elongation at break greater than 8%, characterized in that it contains: Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that: Cr + (3 x Mo) ≥0.3%, the microstructure of the steel comprising 15 to 45% of bainite, the remainder consisting of martensite and residual austenite.
Selon un mode particulier, la composition comprend : 0,19% ≤ C ≤ 0,23% Selon un mode préféré, la composition comprend : 1,5% ≤Mn ≤ 2,5% Préférentiellement, la composition comprend : 1,2% ≤Si ≤ 1,8% A titre préféré, la composition comprend : 1,2% ≤Al ≤ 1,8% Selon un mode particulier, la composition comprend : 0,05% ≤ V ≤ 0,15% 0,004 ≤N ≤ 0,008%.According to one particular embodiment, the composition comprises: 0.19% ≤ C ≤ 0.23% According to a preferred mode, the composition comprises: 1.5% ≤ Mn ≤ 2.5% Preferably, the composition comprises: 1.2% ≤Si ≤ 1.8% Preferably, the composition comprises: 1.2% ≤Al ≤ 1.8% According to a particular embodiment, the composition comprises: 0.05% ≤ V ≤ 0.15% 0.004 ≤ N ≤ 0.008%.
A titre préférentiel, la composition comprend : 0,12% ≤ V ≤ 0,15% Selon un mode préféré, la composition comprend : 0,0005≤ B≤ 0,003%.Preferably, the composition comprises: 0.12% ≤ V ≤ 0.15% According to a preferred mode, the composition comprises: 0.0005 B B 0,00 0.003%.
Préférentiellement, la taille moyenne des îlots de martensite et d'austénite résiduelle est inférieure à 1 micromètre, la distance moyenne entre les îlots étant inférieure à 6 micromètres.Preferably, the average size of the islands of martensite and residual austenite is less than 1 micrometer, the average distance between the islands being less than 6 microns.
L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid de résistance supérieure à 1200 MPa, d'allongement à rupture supérieur à 10%, selon lequel on approvisionne un acier de composition : 0,10% ≤ C ≤ 0,25%, 1%≤ Mn ≤ 3%, Al ≥ 0,010 %, Si≤2,990%, étant entendu que :1% ≤Si+Al ≤3%, S ≤ 0,015%, P≤ 0,1%, N≤0,008%, Mo<0,005%, Cr<0,005%, B=0, la composition comprenant éventuellement : 0,05% ≤ V ≤ 0,15%, Ti en quantité telle que Ti/N≥4 et que Ti≤0,040%. On procède à la coulée d'un demi-produit à partir de cet acier, puis on porte le demi-produit à une température supérieure à 1150°C et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud. On bobine et on décape la tôle, puis on lamine à froid celle-ci avec un taux de réduction compris entre 30 et 80% de façon à obtenir une tôle laminée à froid. On réchauffe la tôle laminée à froid à une vitesse Vc comprise entre 5 et 15°C/s jusqu'à une température T1 comprise entre Ac3 et Ac3+20°C, pendant un temps t1 compris entre 50 et 150s puis on refroidit la tôle à une vitesse VR1 supérieure à 40°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre (Ms-30°C et Ms+30°C). On maintient la tôle à ladite température T2 pendant un temps t2 compris entre 150 et 350s puis on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante. L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid de résistance supérieure à 1200 MPa, d'allongement à rupture supérieur à 8%, selon lequel on approvisionne un acier de composition :0,10% ≤ C ≤ 0,25%, 1%≤ Mn ≤ 3% , Al ≥ 0,010 %, Si≤2,990%, étant entendu que 1% ≤Si+Al ≤3%, S ≤ 0,015%, P≤ 0,1%, N≤0,008%, Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que Cr+(3 x Mo) ≥0,3%, éventuellement 0,05% ≤ V ≤ 0,15%, B≤0,005%, Ti en quantité telle que Ti/N≥4 et que Ti≤0,040%. On procède à la coulée d'un demi-produit à partir de cet acier, on porte le demi-produit à une température supérieure à 1150°C, puis on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud. On bobine la tôle, on décape celle-ci, puis on lamine à froid la tôle avec un taux de réduction compris entre 30 et 80% de façon à obtenir une tôle laminée à froid. On réchauffe la tôle laminée à froid à une vitesse Vc comprise entre 5 et 15°C/s jusqu'à une température T1 comprise entre Ac3 et Ac3+20°C, pendant un temps t1 compris entre 50 et 150s puis on refroidit celle-ci à une vitesse VR1 supérieure à 25°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre Bs et (Ms - 20°C) On maintient la tôle à la température T2 pendant un temps t2 compris entre 150 et 350s puis on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante.The subject of the invention is also a process for manufacturing a cold-rolled steel sheet with a resistance greater than 1200 MPa, with an elongation at break greater than 10%, according to which a composition steel is supplied: 0.10 % ≤ C ≤ 0.25%, 1% ≤ Mn ≤ 3%, Al ≥ 0.010%, Si≤2.990%, provided that: 1% ≤Si + Al ≤3%, S ≤ 0.015%, P≤ 0, 1%, N≤0.008%, Mo <0.005%, Cr <0.005%, B = 0, the composition optionally comprising: 0.05% ≤V ≤ 0.15%, Ti in an amount such that Ti / N≥4 and than Ti≤0.040%. A semi-finished product is cast from this steel, then the semi-finished product is heated to a temperature above 1150 ° C. and the semi-finished product is hot-rolled to obtain a hot-rolled sheet. The sheet is reeled and stripped and then cold rolled with a reduction ratio of between 30 and 80% so as to obtain a cold-rolled sheet. The cold-rolled sheet is heated at a speed V c of between 5 and 15 ° C./s up to a temperature T 1 of between Ac 3 and Ac 3 + 20 ° C., for a time t 1 of between 50 and 150 seconds. cools the sheet at a speed V R1 greater than 40 ° C / s and less than 100 ° C / s to a temperature T 2 between (M s -30 ° C and M s + 30 ° C). The sheet is maintained at said temperature T 2 for a time t 2 of between 150 and 350 seconds and then cooling is carried out at a speed V R2 of less than 30 ° C./s up to room temperature. The subject of the invention is also a process for manufacturing a cold-rolled steel sheet with a resistance greater than 1200 MPa and an elongation at break greater than 8%, according to which a steel with a composition of 0.10 is supplied. % ≤ C ≤ 0.25%, 1% ≤ Mn ≤ 3%, Al ≥ 0.010%, Si≤2.990%, provided that 1% ≤Si + Al ≤3%, S ≤ 0.015%, P≤ 0.1 %, N≤0.008%, Mo ≤ 0.25%, Cr ≤ 1.65%, with the proviso that Cr + (3 x Mo) ≥0.3%, optionally 0.05% ≤ V ≤ 0.15%, B ≤0.005%, Ti in an amount such that Ti / N≥4 and Ti≤0.040%. A semifinished product is cast from this steel, the semi-finished product is heated to a temperature above 1150 ° C., and then the semi-finished product is hot-rolled to obtain a hot-rolled sheet. We reel the sheet, it is scoured, and then cold rolled sheet with a reduction rate of between 30 and 80% to obtain a cold rolled sheet. The cold-rolled sheet is heated at a speed V c of between 5 and 15 ° C./s up to a temperature T 1 of between Ac 3 and Ac 3 + 20 ° C., for a time t 1 of between 50 and 150 seconds. it cools at a speed V R1 greater than 25 ° C / s and less than 100 ° C / s to a temperature T 2 between B s and (M s - 20 ° C) The sheet is maintained at temperature T 2 for a time t 2 of between 150 and 350 seconds, then cooling is carried out at a speed V R2 of less than 30 ° C./s up to room temperature.
La température T1 est préférentiellement comprise entre Ac3+10°C et Ac3+20°C.The temperature T 1 is preferably between Ac3 + 10 ° C to Ac3 + 20 ° C.
L'invention a également pour objet l'utilisation d'une tôle d'acier laminée à froid et recuite selon l'un des modes ci-dessus, ou fabriquée par un procédé selon l'un des modes ci-dessus, pour la fabrication de pièces de structure ou d'éléments de renfort, dans le domaine automobile.The invention also relates to the use of a cold rolled steel sheet annealed in one of the above modes, or manufactured by a method according to one of the above modes, for the manufacture structural parts or reinforcement elements, in the automotive field.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées ci-jointes :
- La
figure 1 présente un exemple de structure d'une tôle d'acier selon l'invention, la structure étant révélée par réactif LePera. - La
figure 2 présente un exemple de structure d'une tôle d'acier selon l'invention, la structure étant révélée par réactif Nital.
- The
figure 1 shows an example of structure of a steel sheet according to the invention, the structure being revealed by LePera reagent. - The
figure 2 shows an example of structure of a steel sheet according to the invention, the structure being revealed by Nital reagent.
Les inventeurs ont mis en évidence que des problèmes ci-dessus étaient résolus lorsque la tôle d'acier mince laminée à froid et recuite présentait une microstructure bainitique, avec en complément des îlots de martensite et d'austénite résiduelle, ou îlots « M-A ». Pour les aciers dont la résistance est la plus élevée, supérieure à 1600MPa, la microstructure comporte une quantité plus importante de martensite et d'austénite résiduelle.The inventors have demonstrated that the above problems were solved when the annealed cold-rolled thin steel sheet exhibited a bainitic microstructure, with in addition islands of martensite and residual austenite, or "M-A" islands. For steels with the highest strength greater than 1600 MPa, the microstructure contains a greater amount of martensite and residual austenite.
En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et sur les propriétés mécaniques : en liaison d'autres éléments de la composition (Cr, Mo, Mn) et avec le traitement thermique de recuit après laminage à froid, il augmente la trempabilité et permet d'obtenir une transformation bainitique. Les teneurs en carbone selon l'invention conduisent également à la formation d'îlots de martensite et d'austénite résiduelle dont la quantité, la morphologie, la composition permettent d'obtenir les propriétés visées ci-dessus.With regard to the chemical composition of steel, carbon plays a very important role in the formation of the microstructure and in the mechanical properties: in combination with other elements of the composition (Cr, Mo, Mn) and with the annealing heat treatment after cold rolling, it increases the hardenability and allows to obtain a bainitic transformation. The carbon contents according to the invention also lead to the formation of islands of martensite and residual austenite whose quantity, morphology, composition make it possible to obtain the properties referred to above.
Le carbone retarde également la formation de la ferrite pro-eutectoïde après traitement thermique de recuit après laminage à froid: dans le cas contraire, la présence de cette phase de faible dureté provoquerait un endommagement local trop important à l'interface avec la matrice dont la dureté est plus élevée. La présence de ferrite proeutectoïde issue du recuit doit donc être évitée pour obtenir des niveaux élevés de résistance mécanique.The carbon also retards the formation of the pro-eutectoid ferrite after annealing heat treatment after cold rolling: otherwise, the presence of this phase of low hardness would cause excessive local damage at the interface with the matrix. Hardness is higher. The presence of proeutectoid ferrite resulting from the annealing must therefore be avoided in order to obtain high levels of mechanical strength.
Selon l'invention, la teneur en carbone est comprise entre 0,10 et 0,25% en poids: Au dessous de 0,10%, une résistance suffisante ne peut pas être obtenue et la stabilité de l'austénite résiduelle n'est pas satisfaisante. Au delà de 0,25%, la soudabilité est réduite en raison de la formation de microstructures de trempe dans la Zone Affectée par la Chaleur.According to the invention, the carbon content is between 0.10 and 0.25% by weight: Below 0.10%, sufficient strength can not be obtained and the stability of the residual austenite is not not satisfactory. Beyond 0.25%, the weldability is reduced due to the formation of quenching microstructures in the heat-affected zone.
Selon un mode préféré, la teneur en carbone est comprise entre 0,19 et 0,23% : au sein de cette plage, la soudabilité est très satisfaisante, et la quantité, la stabilité et la morphologie des îlots M-A sont particulièrement adaptées pour obtenir un couple favorable de propriétés mécaniques (résistance-allongement)According to a preferred mode, the carbon content is between 0.19 and 0.23%: within this range, the weldability is very satisfactory, and the quantity, the stability and the morphology of the islets MA are particularly adapted to obtain a favorable pair of mechanical properties (resistance-elongation)
En quantité comprise entre 1 et 3% en poids, une addition de manganèse, élément à caractère gammagène, permet d'éviter la formation de ferrite proeutectoïde lors du refroidissement au recuit après laminage à froid. Le manganèse contribue également à désoxyder l'acier lors de l'élaboration en phase liquide. L'addition de manganèse participe également à un durcissement efficace en solution solide et à l'obtention d'une résistance accrue. Préférentiellement, le manganèse est compris entre 1,5 et 2,5% de façon à ce que ces effets soient obtenus, et ce sans risque de formation de structure en bandes néfaste.In an amount of between 1 and 3% by weight, an addition of manganese, a gamma-type element, makes it possible to avoid the formation of proeutectoid ferrite during cooling after annealing after cold rolling. Manganese also helps to deoxidize steel during liquid phase processing. The addition of manganese also contributes to effective solid solution hardening and increased strength. Preferably, the manganese is between 1.5 and 2.5% so that these effects are obtained, and without risk of formation of harmful band structure.
Le silicium et l'aluminium jouent de façon conjointe un rôle important selon l'invention.Silicon and aluminum play an important role together according to the invention.
Le silicium retarde la précipitation de la cémentite lors du refroidissement à partir de l'austénite après recuit. Une addition de silicium selon l'invention contribue donc à stabiliser une quantité suffisante d'austénite résiduelle sous forme d'îlots qui se transforment ultérieurement et progressivement en martensite sous l'effet d'une déformation. Une autre partie de l'austénite se transforme directement en martensite lors du refroidissement après recuit. L'aluminium est un élément très efficace pour la désoxydation de l'acier. A ce titre, sa teneur est supérieure ou égale à 0,010%. Comme le silicium, il stabilise l'austénite résiduelle.Silicon delays the precipitation of cementite during cooling from the austenite after annealing. An addition of silicon according to the invention Thus, it helps to stabilize a sufficient quantity of residual austenite in the form of islets which subsequently transform and progressively become martensite under the effect of a deformation. Another part of the austenite is transformed directly into martensite during cooling after annealing. Aluminum is a very effective element for the deoxidation of steel. As such, its content is greater than or equal to 0.010%. Like silicon, it stabilizes residual austenite.
Les effets de l'aluminium et du silicium sur la stabilisation de l'austénite sont voisins ; lorsque les teneurs en silicium et en aluminium sont telles que : 1%≤Si+Al≤3%, une stabilisation satisfaisante de l'austénite est obtenue, ce qui permet de former les microstructures recherchées tout en conservant des propriétés d'usage satisfaisantes. Compte tenu du fait que la teneur minimale en aluminium est de 0,010%, la teneur en silicium est inférieure ou égale à 2,990%.The effects of aluminum and silicon on the stabilization of austenite are similar; when the silicon and aluminum contents are such that: 1% ≤Si + Al≤3%, a satisfactory stabilization of the austenite is obtained, which makes it possible to form the desired microstructures while retaining satisfactory use properties. Given that the minimum aluminum content is 0.010%, the silicon content is less than or equal to 2.990%.
La teneur en silicium est de préférence comprise entre 1,2 et 1,8% pour stabiliser une quantité d'austénite résiduelle suffisante et pour éviter une oxydation intergranulaire lors de l'étape de bobinage à chaud précédant le laminage à froid. On évite aussi de la sorte la formation d'oxydes fortement adhérents et l'apparition éventuelle de défauts de surface conduisant notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé.The silicon content is preferably between 1.2 and 1.8% to stabilize a sufficient amount of residual austenite and to avoid intergranular oxidation during the hot winding step preceding the cold rolling. This also avoids the formation of strongly adherent oxides and the possible appearance of surface defects leading in particular to a lack of wettability in dip galvanizing operations.
Ces effets sont également obtenus lorsque la teneur en aluminium est de préférence comprise entre 1,2 et 1,8%. A teneur équivalente, les effets de l'aluminium sont en effet semblables à ceux exposés ci-dessus pour le silicium, mais le risque d'apparition de défauts superficiels est cependant moindre.These effects are also obtained when the aluminum content is preferably between 1.2 and 1.8%. At equivalent content, the effects of aluminum are indeed similar to those described above for silicon, but the risk of occurrence of superficial defects is however less.
Les aciers selon l'invention comportent éventuellement du molybdène et/ou du chrome : le molybdène augmente la trempabilité, évite la formation de ferrite pro-eutectoïde et affine efficacement la microstructure bainitique. Cependant, une teneur supérieure à 0,25% en poids augmente le risque de former une microstructure majoritairement martensitique au détriment de la formation de bainite.The steels according to the invention optionally comprise molybdenum and / or chromium: molybdenum increases quenchability, avoids the formation of pro-eutectoid ferrite and effectively refines the bainitic microstructure. However, a content greater than 0.25% by weight increases the risk of forming a predominantly martensitic microstructure to the detriment of bainite formation.
Le chrome contribue également à éviter la formation de ferrite pro-eutectoïde et à l'affinement de la microstructure bainitique. Au delà de 1,65%, le risque d'obtenir une structure majoritairement martensitique est important. Comparé au molybdène, son effet est cependant moins marqué ; selon l'invention, les teneurs en chrome et en molybdène sont telles que : Cr+(3 x Mo) ≥0,3%. Les coefficients du chrome et du molybdène dans cette relation traduisent leur influence sur la trempabilité, en particulier l'aptitude respective de ces éléments à éviter la formation de ferrite pro-eutectoïde dans les conditions de refroidissement particulières de l'invention.Chromium also helps to prevent the formation of pro-eutectoid ferrite and the refinement of the bainitic microstructure. Beyond 1.65%, the risk of obtaining a predominantly martensitic structure is important. Compared to molybdenum, its effect is however less marked; according to the invention, the chromium and molybdenum contents are such that: Cr + (3 × Mo) ≥0.3%. The coefficients of chromium and molybdenum in this relationship reflect their influence on the quenchability, in particular the respective ability of these elements to avoid the formation of pro-eutectoid ferrite under the particular cooling conditions of the invention.
Selon un mode économique de l'invention, l'acier peut comporter des teneurs en molybdène et en chrome très faibles ou nulles, c'est à dire des teneurs inférieures à 0,005% en poids pour ces deux éléments, et 0% de bore.According to an economic mode of the invention, the steel may comprise very low or zero molybdenum and chromium contents, ie contents of less than 0.005% by weight for these two elements, and 0% boron.
Pour obtenir une résistance supérieure à 1400MPa, l'addition de chrome et/ou de molybdène est requise, dans des quantités mentionnées ci-dessus. Lorsque la teneur en soufre est supérieure à 0,015%, l'aptitude à la mise en forme est réduite en raison de la présence excessive de sulfures de manganèse.To obtain a strength greater than 1400 MPa, the addition of chromium and / or molybdenum is required, in amounts mentioned above. When the sulfur content is greater than 0.015%, the shaping ability is reduced due to the excessive presence of manganese sulphides.
La teneur en phosphore est limitée à 0,1% de façon à maintenir une ductilité à chaud suffisante.The phosphorus content is limited to 0.1% so as to maintain sufficient hot ductility.
La teneur en azote est limitée à 0,008% pour éviter un vieillissement éventuel.The nitrogen content is limited to 0.008% to avoid possible aging.
L'acier selon l'invention contient éventuellement du vanadium en quantité comprise entre 0,05 et 0,15%. En particulier, lorsque la teneur en azote est comprise conjointement entre 0,004 et 0,008%, la précipitation du vanadium peut intervenir lors du recuit après laminage à froid sous forme de fins carbonitrures qui confèrent un durcissement supplémentaire.The steel according to the invention optionally contains vanadium in an amount of between 0.05 and 0.15%. In particular, when the nitrogen content is between 0.004 and 0.008%, the precipitation of vanadium can occur during annealing after cold rolling in the form of fine carbonitrides which give additional hardening.
Lorsque la teneur en vanadium est comprise entre 0,12 et 0,15% en poids, l'allongement uniforme ou à rupture est particulièrement augmenté.When the vanadium content is between 0.12 and 0.15% by weight, the uniform or breaking elongation is particularly increased.
L'acier peut éventuellement comprendre du bore en quantité inférieure ou égale à 0,005%. Selon un mode préféré, l'acier contient préférentiellement entre 0,0005 et 0,003% de bore, ce qui contribue à la suppression de la ferrite pro-eutectoïde en présence de chrome et/ou de molybdène. En complément des autres éléments d'addition, l'ajout de bore en quantité mentionnée ci-dessus permet d'obtenir une résistance supérieure à 1400 MPa.The steel may optionally comprise boron in an amount of less than or equal to 0.005%. In a preferred embodiment, the steel preferentially contains between 0.0005 and 0.003% of boron, which contributes to the suppression of pro-eutectoid ferrite in the presence of chromium and / or molybdenum. In addition to the other elements of addition, the addition of boron in quantity mentioned above makes it possible to obtain a resistance greater than 1400 MPa.
L'acier peut éventuellement comprendre du titane en quantité telle que Ti/N≥4 et que Ti≤0,040%, ce qui permet la formation de carbonitrures de titane et augmente le durcissement.The steel may optionally comprise titanium in an amount such as Ti / N≥4 and Ti≤0.040%, which allows the formation of titanium carbonitrides and increases the hardening.
Le reste de la composition est constitué d'impuretés inévitables résultant de l'élaboration. Les teneurs de ces impuretés, telles que Sn, Sb, As, sont inférieures à 0,005%.The rest of the composition consists of unavoidable impurities resulting from the elaboration. The contents of these impurities, such as Sn, Sb, As, are less than 0.005%.
Selon un mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1200MPa, la microstructure de l'acier est composée de 65 à 90% de bainite, ces teneurs se référant à des pourcentages surfaciques, le solde est constitué d'îlots de martensite et d'austénite résiduelle (îlots de composés M-A)According to one embodiment of the invention intended for the manufacture of steel sheets with a resistance greater than 1200 MPa, the microstructure of the steel is composed of 65 to 90% of bainite, these contents referring to surface percentages, the balance consists of islands of martensite and residual austenite (islets of MA compounds)
Cette structure en majorité bainitique, ne comportant pas de ferrite proeutectoïde de faible dureté, présente une capacité d'allongement à rupture supérieure à 10%.This bainitic structure, which does not contain proeutectoid ferrite of low hardness, has an elongation capacity greater than 10%.
Selon l'invention, les îlots M-A régulièrement dispersés dans la matrice ont une taille moyenne inférieure à 1 micromètre.According to the invention, the M-A islands regularly dispersed in the matrix have an average size of less than 1 micrometer.
La
On a mis en évidence qu'une morphologie spécifique des îlots M-A était à rechercher particulièrement : lorsque la taille moyenne des îlots est inférieure à 1 micromètre et lorsque la distance moyenne entre ces îlots est inférieure à 6 micromètres, on obtient simultanément les effets suivants :
- un endommagement limité en raison de l'absence d'amorçage de la rupture sur des îlots M-A de grande taille
- un durcissement significatif en raison de la proximité de nombreux constituants M-A de faible taille
- limited damage due to lack of breakout initiation on large MA islands
- a significant hardening due to the proximity of many small MA constituents
Selon un autre mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1400MPa et d'allongement à rupture supérieur à 8%, la microstructure est composée de 45 à 65% de bainite, le solde étant constitué d'îlots de martensite et d'austénite résiduelle.According to another embodiment of the invention intended for the manufacture of steel sheets having a strength of greater than 1400 MPa and an elongation at break greater than 8%, the microstructure is composed of 45 to 65% of bainite, the balance being consisting of islands of martensite and residual austenite.
Selon un autre mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1600MPa et d'allongement à rupture supérieur à 8%, la microstructure est composée de 15 à 45% de bainite, le solde étant constitué de martensite et d'austénite résiduelle.According to another embodiment of the invention intended for the manufacture of steel sheets with a resistance greater than 1600 MPa and an elongation at break greater than 8%, the microstructure is composed of 15 to 45% of bainite, the balance being consisting of martensite and residual austenite.
La mise en oeuvre du procédé de fabrication d'une tôle mince laminée à froid et recuite selon l'invention est la suivante :
- On approvisionne un acier de composition selon l'invention
- On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs.
- A composition steel is supplied according to the invention
- A semi-finished product is cast from this steel. This casting can be carried out in ingots or continuously in the form of slabs of the order of 200mm thickness. The casting can also be carried out in the form of thin slabs of a few tens of millimeters thick, or thin strips, between contra-rotating steel rolls.
Les demi-produits coulés sont tout d'abord portés à une température supérieure à 1150°C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage. Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1150°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.The cast semifinished products are first brought to a temperature higher than 1150 ° C. to reach at any point a temperature favorable to the high deformations which the steel will undergo during rolling. Naturally, in the case of a direct casting of thin slabs or thin strips between contra-rotating rolls, the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting. that an intermediate heating step is not necessary in this case.
On lamine à chaud le demi-produit. Un avantage de l'invention est que les caractéristiques finales et la microstructure de la tôle laminée à froid et recuite sont relativement peu dépendantes de la température de fin de laminage et du refroidissement suivant le laminage à chaud.The semi-finished product is hot-rolled. An advantage of the invention is that the final characteristics and the microstructure of the cold-rolled and annealed sheet are relatively independent of the end-of-rolling temperature and the cooling after hot rolling.
On bobine ensuite la tôle à chaud. La température de bobinage est préférentiellement inférieure à 550°C pour limiter la dureté de la tôle laminée à chaud et l'oxydation intergranulaire en surface. Une dureté trop importante de la tôle laminée à chaud conduit à des efforts excessifs lors du laminage ultérieur à froid ainsi éventuellement qu'à des défauts en rives.The sheet is then reeled hot. The winding temperature is preferably less than 550 ° C to limit the hardness of the hot-rolled sheet and the intergranular oxidation at the surface. Too much hardness of the hot-rolled sheet leads to excessive forces during subsequent cold rolling and possibly to edge defects.
On décape ensuite la tôle laminée à chaud selon un procédé connu en lui-même de façon à conférer à celle-ci un état de surface propre au laminage à froid. Ce dernier est effectué en réduisant l'épaisseur de la tôle laminée à chaud de 30 à 80%.The hot-rolled sheet is then etched according to a method known per se in order to give the latter a surface state suitable for cold rolling. This is done by reducing the thickness of the hot-rolled sheet by 30 to 80%.
On effectue ensuite un traitement thermique de recuit, préférentiellement par un recuit en continu, qui comporte les phases suivantes :
- Une phase de chauffage avec une vitesse Vc comprise entre 5 et 15°C/s. jusqu'à une température T1. Lorsque Vc est supérieure à 15°C/s, la recristallisation de la tôle écrouie par le laminage à froid peut ne pas être totale. Une valeur minimale de 5°C/s est requise pour la productivité. Une vitesse Vc comprise entre 5 et 15°C/s permet d'obtenir une taille de grain d'austénite particulièrement adaptée à la microstructure finale désirée.
- A heating phase with a speed V c of between 5 and 15 ° C / s. up to a temperature T 1 . When V c is greater than 15 ° C / s, the recrystallization of the cold-worked sheet by cold rolling may not be complete. A minimum value of 5 ° C / s is required for productivity. A speed V c of between 5 and 15 ° C./s makes it possible to obtain an austenite grain size that is particularly adapted to the desired final microstructure.
La température T1 est comprise entre Ac3 et Ac3+20°C, la température Ac3 correspondant à la transformation totale en austénite lors du chauffage. Ac3 dépend de la composition de l'acier et de la vitesse de chauffage et peut être déterminée par exemple par dilatométrie. L'austénitisation totale permet de limiter la formation ultérieure de ferrite proeutectoïde. Il est important que la température T1 soit inférieure à Ac3+20°C dans le but d'éviter un grossissement exagéré du grain austénitique. Au sein de cette plage (Ac3-Ac3+20°C), les caractéristiques du produit final sont peu sensibles à une variation de température T1.The temperature T 1 is between A c3 and A c3 + 20 ° C, the temperature A c3 corresponding to the total conversion to austenite during heating. A c3 depends on the composition of the steel and the heating rate and can be determined for example by dilatometry. Total austenitization limits the subsequent formation of proeutectoid ferrite. It is important that the temperature T 1 be less than A c3 + 20 ° C in order to avoid exaggerated magnification of the austenitic grain. Within this range (A c3 -A c3 + 20 ° C), the characteristics of the final product are insensitive to a temperature variation T 1 .
Très préférentiellement, la température T1 est comprise entre Ac3+10°C et Ac3+20°C. Dans ces conditions, les inventeurs ont mis en évidence que la taille de grain austénitique est plus homogène et plus fine, ce qui conduit par la suite à la formation d'une microstructure finale présentant elle aussi ces caractéristiques.
- Un maintien à la température T1 pendant un temps t1 compris entre 50s et 150s. Cette étape conduit à une homogénéisation de l'austénite.
- A maintenance temperature T 1 for a time t 1 between 50s and 150s. This step leads to a homogenization of the austenite.
L'étape suivante du procédé dépend de la teneur en chrome et en molybdène de l'acier :
- Lorsque l'acier ne comporte pratiquement pas de chrome, de molybdène et de bore, c'est à dire lorsque Cr<0,005%, Mo<0,005%, B=0%, on effectue un refroidissement avec une vitesse VR1 supérieure à 40°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre Ms-30°C et Ms+30°C. Pour ces conditions de vitesse de refroidissement, la diffusion du carbone dans l'austénite est limitée. Cet effet est saturé au delà de 100°C/s. Un maintien est réalisé à cette température T2 pendant un temps t2 compris entre 150 et 350s. MS désigne la température de début de transformation martensitique. Cette température dépend de la composition de l'acier mis en oeuvre et peut être déterminée par exemple par dilatométrie. Ces conditions permettent d'éviter la formation de ferrite proeutectoïde lors du refroidissement. On obtient également dans ces conditions une transformation bainitique de la plus grande partie de l'austénite. La fraction restante est transformée en martensite ou est éventuellement stabilisée sous forme d'austénite résiduelle.
- Lorsque l'acier comporte une teneur en chrome et en molybdène telles que Mo ≤ 0,25%, Cr ≤ 1,65%, et Cr+(3 x Mo) ≥0,3%, on effectue un refroidissement avec une vitesse VR1 supérieure à 25°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre (Bs et Ms-20°C) Un maintien est réalisé à cette température T2 pendant un temps t2 compris entre 150 et 350s. Bs désigne la température de début de transformation bainitique. Ces conditions permettent d'obtenir les mêmes caractéristiques microstructurales que ci-dessus. L'addition de chrome et/ou de molybdène permet en particulier de garantir que la formation de ferrite proeutectoïde n'intervient pas. Dans les limites de vitesse de refroidissement VR1 selon l'invention, les caractéristiques finales du produit sont relativement peu sensibles à une variation de cette vitesse VR1.
- L'étape suivante du procédé est identique, que le produit comporte ou non du chrome et/ou du molybdène : on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante. En particulier, lorsque la température T2 est peu élevée au sein des plages selon l'invention, le refroidissement à une vitesse VR2 inférieure à 30°C /s provoque un revenu des îlots de martensite nouvellement formée, ce qui est favorable en termes de propriétés d'usage.
- When the steel has practically no chromium, molybdenum and boron, that is to say when Cr <0.005%, Mo <0.005%, B = 0%, cooling is carried out with a speed V R1 greater than 40 ° C / s and less than 100 ° C / s to a temperature T 2 between M s -30 ° C and M s + 30 ° C. For these cooling rate conditions, carbon diffusion in the austenite is limited. This effect is saturated beyond 100 ° C / s. Hold is performed at this temperature T 2 for a time t 2 between 150 and 350s. M S denotes the martensitic transformation start temperature. This temperature depends on the composition of the steel used and can be determined for example by dilatometry. These conditions prevent the formation of proeutectoid ferrite during cooling. In these conditions, a bainitic transformation of most of the austenite is also obtained. The remaining fraction is converted to martensite or is optionally stabilized as a residual austenite.
- When the steel has a content of chromium and molybdenum such that Mo ≤ 0.25%, Cr ≤ 1.65%, and Cr + (3 x Mo) ≥0.3%, cooling is carried out with a speed V R1 greater than 25 ° C / s and less than 100 ° C / s to a temperature T 2 between (B s and M s -20 ° C) Hold is performed at this temperature T 2 for a time t 2 included between 150 and 350s. B s denotes the bainitic transformation start temperature. These conditions make it possible to obtain the same microstructural characteristics as above. The addition of chromium and / or molybdenum makes it possible in particular to ensure that the formation of proeutectoid ferrite does not occur. Within the cooling speed limits V R1 according to the invention, the final characteristics of the product are relatively insensitive to a variation of this speed V R1 .
- The next step in the process is the same, whether or not the product contains chromium and / or molybdenum: a speed V R2 of less than 30 ° C / s to ambient temperature. In particular, when the temperature T 2 is low within the ranges according to the invention, cooling at a speed V R2 of less than 30 ° C./s causes a return of the islands of newly formed martensite, which is favorable in terms of of use properties.
On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Outre les aciers I-1 à I-5 ayant servi à la fabrication de tôles selon l'invention, on a indiqué à titre de comparaison la composition d'aciers R-1 à R-5 ayant servi à la fabrication de tôles de référence.
Des demi-produits correspondant aux compositions ci-dessus ont été réchauffés à 1200°C, laminés à chaud jusqu'à une épaisseur de 3 mm et bobinés à une température inférieure à 550°C. Les tôles ont été ensuite laminées à froid jusqu'à une épaisseur de 0,9 mm soit un taux de réduction de 70%. A partir d'une même composition, certains aciers ont fait l'objet de différentes conditions de fabrication. Les références I1-a, I1-b et I1-c, I1-d désignent par exemple quatre tôles d'aciers fabriquées selon des conditions différentes à partir de la composition d'acier I1. Le tableau 2 indique les conditions de fabrication des tôles recuites après laminage à froid. La vitesse de réchauffage Vc est de 10°C/s dans tous les cas.Semi-products corresponding to the above compositions were heated to 1200 ° C, hot rolled to a thickness of 3 mm and coiled at a temperature below 550 ° C. The sheets were then cold rolled to a thickness of 0.9 mm or a reduction rate of 70%. From the same composition, some steels have been subject to different manufacturing conditions. References I1-a, I1-b and I1-c, I1-d designate for example four steel sheets manufactured under different conditions from the steel composition I1. Table 2 shows the manufacturing conditions of the annealed sheets after cold rolling. The heating rate V c is 10 ° C / s in all cases.
Les températures de transformation Ac3, Bs et Ms ont été également portées au tableau 2.The transformation temperatures A c3 , B s and M s were also reported in Table 2.
On a également indiqué les différents constituants microstructuraux mesurés par microscopie quantitative : fraction surfacique de bainite, martensite et d'austénite résiduelle.The different microstructural constituents measured by quantitative microscopy were also reported: surface fraction of bainite, martensite and residual austenite.
Les îlots M-A ont été mis en évidence par le réactif de LePera. Leur morphologie a été examinée au moyen d'un logiciel d'analyse d'images Scion®.
Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement uniforme Au, allongement à rupture At) ont été portées au tableau 3 ci-dessous. Le rapport Re/Rm a été également indiqué.The tensile mechanical properties obtained (yield strength Re, resistance Rm, uniform elongation Au, elongation at break At) were given in Table 3 below. The Re / Rm ratio was also indicated.
Dans certains cas on a déterminé l'énergie de rupture à -40°C à partir d'éprouvettes de résilience du type Charpy V d'épaisseur réduite à 1,4mm. On a également évalué l'endommagement lié à une découpe (cisaillage ou poinçonnage par exemple) qui pourrait éventuellement diminuer les capacités de déformation ultérieure d'une pièce découpée. Dans ce but, on a découpé par cisaillage des éprouvettes de dimension 20 x 80 mm2. Une partie de ces éprouvettes a été ensuite soumise à un polissage des bords. Les éprouvettes ont été revêtues de grilles photodéposées puis soumises à une traction uniaxiale jusqu'à rupture. Les valeurs des déformations principales ε1 parallèles au sens de la sollicitation ont été mesurées au plus près de l'amorçage de la rupture à partir des grilles déformées. Cette mesure a été effectuée sur les éprouvettes à bords découpés mécaniquement et sur les éprouvettes à bords polis. La sensibilité à la découpe est évaluée par le facteur d'endommagement : Δ = ε1(bords découpés)-ε1(bords polis)/ ε1(bords polis).In some cases, the breaking energy at -40 ° C was determined from Charpy V type resilience specimens reduced to 1.4 mm thickness. Damage related to a cut (for example, shearing or punching) has also been evaluated which could possibly reduce the capacity for subsequent deformation of a cut piece. For this purpose, 20 × 80 mm 2 specimens were cut by shearing. Some of these specimens were then polished at the edges. The specimens were coated with photodeposited grids and then subjected to uniaxial traction until rupture. The values of the principal deformations ε 1 parallel to the direction of the stress have been measured as close as possible to the initiation of the rupture from the deformed grids. This measurement was carried out on the specimens with mechanically cut edges and on the specimens with polished edges. The sensitivity to cutting is evaluated by the damage factor: Δ = ε 1 (cut edges) -ε 1 (polished edges) / ε 1 (polished edges).
Pour certaines tôles, on a également évalué l'endommagement au voisinage de bords découpés à partir d'échantillons de 105x105mm2 comportant un trou d'un diamètre initial de 10mm. On mesure l'augmentation relative du diamètre du trou après introduction d'un poinçon conique jusqu'à ce qu'une fissure apparaisse.
Les tôles de composition conforme à l'invention et fabriquées selon les conditions de l'invention (I1-a, I2-a-b, 13-a, 14, 15) présentent une combinaison de propriétés mécaniques particulièrement avantageuse : d'une part une résistance mécanique supérieure à 1200 MPa, d'autre part un allongement à rupture toujours supérieur ou égal à 10%. Les aciers selon l'invention présentent également une énergie de rupture Charpy V à -40°C supérieure à 40 Joules/cm2. Ceci permet la fabrication de pièces résistant à la propagation brutale d'un défaut notamment en cas de sollicitations dynamiques. Les microstructures des aciers avec une résistance minimale de 1200MPa et un allongement à rupture minimal de 10% selon l'invention comportent une teneur en bainite comprise entre 65 et 90%, le solde étant constitué d'îlots MA. La
Les aciers selon l'invention présentent également une bonne résistance à l'endommagement en cas de découpe puisque le facteur d'endommagement Δ est limité à -23%. Une tôle d'acier ne présentant pas ces caractéristiques (R5) peut présenter un facteur endommagement de 43%. Les tôles selon l'invention présentent ont une bonne aptitude à l'expansion de trou.The steels according to the invention also have good resistance to damage in case of cutting since the damage factor Δ is limited to -23%. A steel sheet that does not have these characteristics (R5) may have a 43% damage factor. The sheets according to the invention have good hole expansion capability.
Les aciers selon l'invention présentent également une bonne aptitude au soudage homogène : pour des paramètres de soudage adaptés aux épaisseurs rapportés ci-dessus, les joints soudés sont exempts de fissures à froid ou à chaud.The steels according to the invention also have good weldability: for welding parameters adapted to the thicknesses mentioned above, the welded joints are free of cold or hot cracks.
Les tôles d'acier I1-b et I1-c ont été recuites à une température T1 trop faible, la transformation austénitique n'est pas complète. En conséquence la microstructure comporte de la ferrite proeutectoïde (40% pour I1b, 20% pour I1-c) et une teneur excessive en îlots M-A. La résistance mécanique est alors diminuée par la présence de ferrite proeutectoïde.The steel sheets I1-b and I1-c were annealed at a temperature T 1 too low, the austenitic transformation is not complete. As a result, the microstructure comprises proeutectoid ferrite (40% for I1b, 20% for I1-c) and an excessive content of MA islands. The mechanical strength is then reduced by the presence of proeutectoid ferrite.
Pour la tôle d'acier I1-d, la température de maintien T2 est supérieure à Ms+30°C : la transformation bainitique qui intervient à plus haute température donne naissance à une structure plus grossière et conduit à une résistance mécanique insuffisante.For the steel sheet I1-d, the holding temperature T 2 is greater than Ms + 30 ° C: the bainitic transformation which occurs at a higher temperature gives rise to a coarser structure and leads to insufficient mechanical strength.
Pour la tôle d'acier I-2c, la vitesse de refroidissement VR1 après recuit n'est pas suffisante, la microstructure formée est plus hétérogène et l'allongement à rupture est réduit au dessous de 10%.For the steel sheet I-2c, the cooling rate V R1 after annealing is not sufficient, the microstructure formed is more heterogeneous and the elongation at break is reduced to less than 10%.
Pour la tôle I-3b, la température de maintien T2 est inférieure à Ms-20°C : en conséquence, le refroidissement VR1 provoque l'apparition d'une bainite formée à basse température et de martensite, associées à un allongement insuffisant.For the sheet I-3b, the holding temperature T 2 is less than Ms-20 ° C: consequently, the cooling V R1 causes the appearance of a bainite formed at low temperature and martensite, associated with insufficient elongation .
L'acier R1 a une teneur en (silicium+aluminium) insuffisante, la température de maintien T2 est inférieure à Ms-20°C. En raison de la teneur insuffisante en (Si+Al), la quantité d'îlots M-A formée est insuffisante pour obtenir une résistance supérieure ou égale à 1200MPa.The steel R1 has an insufficient (silicon + aluminum) content, the holding temperature T 2 is less than Ms-20 ° C. Due to the insufficient content of (Si + Al), the amount of islets MA formed is insufficient to obtain a resistance greater than or equal to 1200 MPa.
Les aciers R2 et R3 ont des teneurs en carbone, manganèse, silicium+aluminium, insuffisantes. La quantité de composés M-A formés est inférieure à 10%. En outre, la température de recuit T1 inférieure à Ac3 conduit à une teneur excessive en ferrite proeutectoïde et en cémentite, et à une résistance insuffisante.R2 and R3 steels have insufficient carbon, manganese, silicon + aluminum contents. The amount of MA compounds formed is less than 10%. In addition, the annealing temperature T 1 lower than A c3 leads to an excessive content of proeutectoid ferrite and cementite, and insufficient strength.
L'acier R4 a une teneur insuffisante en (Si+Al) La vitesse de refroidissement VR1 est notamment trop faible. L'enrichissement de l'austénite en carbone au refroidissement est alors insuffisant pour permettre la formation de martensite et pour obtenir les propriétés de résistance et d'allongement visées par l'invention.The steel R4 has an insufficient content of (Si + Al) The cooling rate V R1 is in particular too low. The enrichment of carbon austenite during cooling is then insufficient to allow the formation of martensite and to obtain the strength and elongation properties of the invention.
L'acier R5 présente également une teneur insuffisante en (Si+Al) La vitesse de refroidissement insuffisamment rapide après le recuit conduit à une teneur excessive en ferrite proeutectoïde et à une résistance mécanique insuffisante.Steel R5 also has an insufficient content of (Si + Al) The insufficiently fast cooling rate after annealing leads to excessive proeutectoid ferrite content and insufficient mechanical strength.
Partant du procédé de fabrication de la tôle d'acier I2-a, une tôle d'acier I2-d été fabriquée selon un procédé présentant des caractéristiques identiques, à l'exception de la température T1 égale à 830°C, soit la température Ac3. Dans le cas où T1 est égale à Ac3, l'aptitude à l'expansion de trou conique est de 25%. Quand la température T1 est égale à 850°C (Ac3+20°C), l'aptitude à l'expansion est accrue jusqu'à 31%.Starting from the manufacturing process of the steel sheet I2-a, an I2-d steel sheet has been manufactured according to a process having identical characteristics, with the exception of the temperature T 1 equal to 830 ° C. temperature A c3 . In the case where T 1 is equal to A c3 , the cone hole expansion ability is 25%. When the temperature T 1 is 850 ° C (Δ c3 + 20 ° C), the expandability is increased to 31%.
Ainsi, l'invention permet la fabrication de tôles d'aciers alliant une très haute résistance et une ductilité élevée. Les tôles d'aciers selon l'invention sont utilisées avec profit pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile et de l'industrie générale.Thus, the invention allows the manufacture of steel sheets combining a very high strength and high ductility. The steel sheets according to the invention are used profitably for the manufacture of structural parts or reinforcement elements in the automotive field and general industry.
Claims (15)
- Cold-rolled and annealed sheet steel with a strength higher than 1200 MPa and elongation at break higher than 8%, the composition of which is as follows, the contents being expressed in weight:
the remainder of the composition being formed from iron and inevitable impurities resulting from smelting, wherein the microstructure of said steel amounts to 15 to 90% bainite, the balance being formed from martensite and residual austenite. - Sheet steel according to claim 1 with a strength higher than 1400 MPa, an elongation at break higher than 8%, characterised in that it contains
- Sheet steel according to claim 1 with a strength higher than 1600 MPa, an elongation at break higher than 8%, characterised in that it contains
- Sheet steel according to any one of claims 1 to 10, characterised in that the average size of said islands of martensite and residual austenite is less than 1 micrometre, and the average distance between said islands is less than 6 micrometres.
- Process for the production of a cold-rolled sheet steel with a strength higher than 1200 MPa, an elongation at break higher than 10%, according to which• a steel is supplied with the composition according to claim 2, then• semi-finished product is cast from this steel, then• said semi-finished product is brought to a temperature higher than 1150°C, then• said semi-finished product is hot rolled to obtain a hot-rolled sheet, then• said sheet is wound, then• said hot-rolled sheet is pickled, then• said sheet is cold rolled at a reduction rate in the range of between 30 and 80% in order to obtain a cold-rolled sheet, then• said cold-rolled sheet is reheated at a rate Vc in the range of between 5 and 15°C/s to a temperature T1 in the range of between Ac3 and Ac3+20°C during a time t1 in the range of between 50 and 150s, then said sheet is cooled at a rate VR1 higher than 40°C/s and lower than 100°C/s to a temperature T2 in the range of between (Ms-30°C and Ms+30°C), said sheet is maintained at said temperature T2 for a time t2 in the range of between 150 and 350s, then a cooling is conducted at a rate VR2 lower than 30°C/s to ambient temperature.
- Process for the production of a cold-rolled sheet steel with a strength higher than 1200 MPa, an elongation at break higher than 8%, according to which• a steel is supplied with the composition according to any one of claims 1 or 3 to 5, wherein the contents of Mo and Cr are such that Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr+(3 x Mo) ≥ 0.3%, then• a cold-rolled sheet is produced using a process comprising the steps of casting, reheating, hot rolling, winding, pickling, cold rolling according to claim 12, then• said cold-rolled sheet is reheated at a rate Vc in the range of between 5 and 15°C/s to a temperature T1 in the range of between Ac3 and Ac3+20°C for a time t1 in the range of between 50 and 150s, then said sheet is cooled at a rate VR1 higher than 25°C/s and lower than 100°C/s to a temperature T2 in the range of between Bs and (Ms-20°C), said sheet is maintained at said temperature T2 for a time t2 in the range of between 150 and 350s, then a cooling is conducted at a rate VR2 lower than 30°C/s to ambient temperature.
- Production process according to claim 12 or 13, characterised in that the temperature T1 is preferably in the range of between Ac3+10°C and Ac3+20°C.
- Use of a sheet steel cold-rolled and annealed according to any one of claims 1 to 11 or produced by a process according to any one of claims 12 to 14 for the production of structural parts or reinforcing elements in the automotive field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08805523.1T PL2155915T5 (en) | 2007-05-11 | 2008-04-28 | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07290598A EP1990431A1 (en) | 2007-05-11 | 2007-05-11 | Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby |
PCT/FR2008/000609 WO2008145871A2 (en) | 2007-05-11 | 2008-04-28 | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2155915A2 EP2155915A2 (en) | 2010-02-24 |
EP2155915B1 true EP2155915B1 (en) | 2017-10-25 |
EP2155915B2 EP2155915B2 (en) | 2022-04-27 |
Family
ID=38596874
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07290598A Withdrawn EP1990431A1 (en) | 2007-05-11 | 2007-05-11 | Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby |
EP08805523.1A Active EP2155915B2 (en) | 2007-05-11 | 2008-04-28 | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07290598A Withdrawn EP1990431A1 (en) | 2007-05-11 | 2007-05-11 | Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby |
Country Status (16)
Country | Link |
---|---|
US (4) | US20100307644A1 (en) |
EP (2) | EP1990431A1 (en) |
JP (1) | JP5398701B2 (en) |
KR (1) | KR101523395B1 (en) |
CN (1) | CN101765668B (en) |
AR (1) | AR066508A1 (en) |
BR (1) | BRPI0821572B1 (en) |
CA (1) | CA2686940C (en) |
ES (1) | ES2655476T5 (en) |
HU (1) | HUE035549T2 (en) |
MA (1) | MA31555B1 (en) |
MX (1) | MX2009011927A (en) |
PL (1) | PL2155915T5 (en) |
RU (1) | RU2437945C2 (en) |
WO (1) | WO2008145871A2 (en) |
ZA (1) | ZA200907430B (en) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1990431A1 (en) * | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby |
EP2123786A1 (en) * | 2008-05-21 | 2009-11-25 | ArcelorMittal France | Method of manufacturing very high-resistance, cold-laminated dual-phase steel sheets, and sheets produced thereby |
CN101928875A (en) * | 2009-06-22 | 2010-12-29 | 鞍钢股份有限公司 | High-strength cold-rolled steel sheet with good forming performance and preparation method thereof |
JP5703608B2 (en) * | 2009-07-30 | 2015-04-22 | Jfeスチール株式会社 | High strength steel plate and manufacturing method thereof |
EP2627790B1 (en) * | 2010-10-12 | 2014-10-08 | Tata Steel IJmuiden BV | Method of hot forming a steel blank and the hot formed part |
UA112771C2 (en) * | 2011-05-10 | 2016-10-25 | Арселормітталь Інвестігасьон І Десароло Сл | STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS |
IN2014DN00269A (en) | 2011-07-06 | 2015-06-05 | Nippon Steel & Sumitomo Metal Corp | |
US9115416B2 (en) | 2011-12-19 | 2015-08-25 | Kobe Steel, Ltd. | High-yield-ratio and high-strength steel sheet excellent in workability |
ES2733320T3 (en) | 2012-01-13 | 2019-11-28 | Nippon Steel Corp | Hot stamped steel and method to produce the same |
RU2581334C2 (en) * | 2012-01-13 | 2016-04-20 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Cold-rolled steel sheet and method of its fabrication |
JP5516785B2 (en) * | 2012-03-29 | 2014-06-11 | Jfeスチール株式会社 | Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same |
JP2013209728A (en) * | 2012-03-30 | 2013-10-10 | Jfe Steel Corp | Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof |
JP5860333B2 (en) | 2012-03-30 | 2016-02-16 | 株式会社神戸製鋼所 | High yield ratio high strength cold-rolled steel sheet with excellent workability |
IN2014DN08618A (en) | 2012-04-10 | 2015-05-22 | Nippon Steel & Sumitomo Metal Corp | |
JP2014019928A (en) * | 2012-07-20 | 2014-02-03 | Jfe Steel Corp | High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet |
EP2690184B1 (en) * | 2012-07-27 | 2020-09-02 | ThyssenKrupp Steel Europe AG | Produit plat en acier laminé à froid et son procédé de fabrication |
CN102766807A (en) * | 2012-07-31 | 2012-11-07 | 内蒙古包钢钢联股份有限公司 | Boron contained bainite steel plate and manufacturing method thereof |
BR112015005216A2 (en) * | 2012-09-14 | 2022-07-26 | Salzgitter Mannesmann Prec Gmbh | ALLOY STEEL FOR HIGH STRENGTH AND LOW ALLOY STEEL |
WO2015011511A1 (en) * | 2013-07-24 | 2015-01-29 | Arcelormittal Investigación Y Desarrollo Sl | Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets |
DE102013013067A1 (en) * | 2013-07-30 | 2015-02-05 | Salzgitter Flachstahl Gmbh | Silicon-containing microalloyed high-strength multiphase steel having a minimum tensile strength of 750 MPa and improved properties and processes for producing a strip of this steel |
EP2840159B8 (en) | 2013-08-22 | 2017-07-19 | ThyssenKrupp Steel Europe AG | Method for producing a steel component |
CN113416892A (en) * | 2014-02-05 | 2021-09-21 | 安赛乐米塔尔股份公司 | Thermoformable, air hardenable, weldable steel sheet |
CN103952635B (en) * | 2014-05-13 | 2016-09-14 | 东北特钢集团北满特殊钢有限责任公司 | High-strength steel of manganese and silicon containing and preparation method thereof |
ES2761683T3 (en) * | 2014-05-29 | 2020-05-20 | Nippon Steel Corp | Heat-treated steel material and manufacturing method thereof |
CN104018069B (en) * | 2014-06-16 | 2016-01-20 | 武汉科技大学 | A kind of high-performance low-carbon is containing Mo bainitic steel and preparation method thereof |
WO2016001700A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength, ductility and formability |
WO2016001702A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength coated steel sheet having improved strength, ductility and formability |
WO2016001710A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength coated steel having improved strength and ductility and obtained sheet |
WO2016001704A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for manufacturing a high strength steel sheet and sheet obtained |
WO2016001708A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet |
WO2016001706A1 (en) | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
DE102014017274A1 (en) * | 2014-11-18 | 2016-05-19 | Salzgitter Flachstahl Gmbh | Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel |
WO2016132165A1 (en) * | 2015-02-19 | 2016-08-25 | Arcelormittal | Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating |
DE102015112886A1 (en) * | 2015-08-05 | 2017-02-09 | Salzgitter Flachstahl Gmbh | High-strength aluminum-containing manganese steel, a process for producing a steel flat product from this steel and steel flat product produced therefrom |
WO2017109539A1 (en) | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet |
US10941476B2 (en) | 2016-01-22 | 2021-03-09 | Jfe Steel Corporation | High strength steel sheet and method for producing the same |
WO2018115935A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
WO2018115936A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
WO2018115933A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof |
WO2018215813A1 (en) * | 2017-05-22 | 2018-11-29 | Arcelormittal | Method for producing a steel part and corresponding steel part |
WO2018220430A1 (en) * | 2017-06-02 | 2018-12-06 | Arcelormittal | Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof |
WO2018234839A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | Zinc coated steel sheet with high resistance spot weldability |
WO2019111029A1 (en) | 2017-12-05 | 2019-06-13 | Arcelormittal | Cold rolled and annealed steel sheet and method of manufacturing the same |
WO2019122963A1 (en) | 2017-12-19 | 2019-06-27 | Arcelormittal | Cold rolled and heat treated steel sheet and a method of manufacturing thereof |
CN109576579A (en) * | 2018-11-29 | 2019-04-05 | 宝山钢铁股份有限公司 | It is a kind of with high hole expansibility and compared with the 980MPa grade cold-rolled steel sheet and its manufacturing method of high-elongation |
ES2939457T3 (en) * | 2018-11-30 | 2023-04-24 | Arcelormittal | Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof |
CN109894812B (en) * | 2019-02-13 | 2021-09-24 | 舞阳钢铁有限责任公司 | Method for producing Cr-Mo steel plate by using small single blank |
CN112159931B (en) * | 2020-09-28 | 2022-08-12 | 首钢集团有限公司 | A kind of 1000MPa grade medium manganese TRIP steel with continuous yielding and preparation method thereof |
CN113215493B (en) * | 2021-05-11 | 2022-01-07 | 北京理工大学 | A kind of high-strength grenade steel and preparation method thereof |
CN114807746B (en) * | 2021-05-28 | 2022-12-30 | 广西柳钢华创科技研发有限公司 | HRB500E twisted steel bar produced by high-speed bar |
CN113699456B (en) * | 2021-09-01 | 2022-06-21 | 山东盛阳金属科技股份有限公司 | Production process of 254SMo super austenitic stainless steel hot continuous rolling plate coil |
CN115261704B (en) * | 2022-07-29 | 2023-01-24 | 攀钢集团攀枝花钢铁研究院有限公司 | Medium-strength hot-rolled bainite rail manufacturing method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004190050A (en) | 2002-12-06 | 2004-07-08 | Kobe Steel Ltd | High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part |
EP1676932A1 (en) | 2004-12-28 | 2006-07-05 | Kabushiki Kaisha Kobe Seiko Sho | High strength thin steel sheet having high hydrogen embrittlement resisting property |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350121A (en) * | 1991-05-27 | 1992-12-04 | Nippon Steel Corp | Method for manufacturing steel sheets with excellent high-temperature strength properties |
FR2729974B1 (en) | 1995-01-31 | 1997-02-28 | Creusot Loire | HIGH DUCTILITY STEEL, MANUFACTURING PROCESS AND USE |
JPH0925538A (en) * | 1995-05-10 | 1997-01-28 | Kobe Steel Ltd | High strength cold rolled steel sheet excellent in pitting corrosion resistance and crushing characteristic, high strength galvanized steel sheet, and their production |
JPH09263838A (en) * | 1996-03-28 | 1997-10-07 | Kobe Steel Ltd | Production of high strength cold rolled steel sheet excellent in stretch-flange formability |
JP3450985B2 (en) * | 1997-04-10 | 2003-09-29 | 新日本製鐵株式会社 | High-strength cold-rolled steel sheet having good shape and excellent bendability and manufacturing method thereof |
US6254698B1 (en) | 1997-12-19 | 2001-07-03 | Exxonmobile Upstream Research Company | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof |
JP2000080440A (en) * | 1998-08-31 | 2000-03-21 | Kawasaki Steel Corp | High strength cold rolled steel sheet and its manufacture |
JP2001226741A (en) * | 2000-02-15 | 2001-08-21 | Kawasaki Steel Corp | High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor |
JP2001267386A (en) | 2000-03-22 | 2001-09-28 | Sony Corp | Test circuit for semiconductor device |
JP3958921B2 (en) * | 2000-08-04 | 2007-08-15 | 新日本製鐵株式会社 | Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same |
JP4304350B2 (en) | 2002-08-20 | 2009-07-29 | 雅則 平野 | Polynucleotide synthesis method |
FR2847271B1 (en) * | 2002-11-19 | 2004-12-24 | Usinor | METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET |
JP2005168405A (en) * | 2003-12-11 | 2005-06-30 | Ajinomoto Co Inc | Method for producing dipeptide |
EP1559798B1 (en) * | 2004-01-28 | 2016-11-02 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same |
DE602005013442D1 (en) * | 2004-04-22 | 2009-05-07 | Kobe Steel Ltd | High-strength and cold-rolled steel sheet with excellent ductility and clad steel sheet |
JP4254663B2 (en) * | 2004-09-02 | 2009-04-15 | 住友金属工業株式会社 | High strength thin steel sheet and method for producing the same |
JP2006089775A (en) * | 2004-09-21 | 2006-04-06 | Nisshin Steel Co Ltd | Method for producing tyre core having excellent durability |
RU2292404C1 (en) | 2005-07-15 | 2007-01-27 | Открытое акционерное общество "Северсталь" | Strip making method for producing tubes |
JP4772496B2 (en) * | 2005-12-27 | 2011-09-14 | 新日本製鐵株式会社 | High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof |
EP1832667A1 (en) | 2006-03-07 | 2007-09-12 | ARCELOR France | Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets. |
EP1990431A1 (en) * | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby |
-
2007
- 2007-05-11 EP EP07290598A patent/EP1990431A1/en not_active Withdrawn
-
2008
- 2008-04-28 KR KR1020097023517A patent/KR101523395B1/en active Active
- 2008-04-28 BR BRPI0821572-3A patent/BRPI0821572B1/en active IP Right Grant
- 2008-04-28 CN CN2008800153809A patent/CN101765668B/en active Active
- 2008-04-28 WO PCT/FR2008/000609 patent/WO2008145871A2/en active Search and Examination
- 2008-04-28 ES ES08805523T patent/ES2655476T5/en active Active
- 2008-04-28 JP JP2010506964A patent/JP5398701B2/en active Active
- 2008-04-28 EP EP08805523.1A patent/EP2155915B2/en active Active
- 2008-04-28 HU HUE08805523A patent/HUE035549T2/en unknown
- 2008-04-28 CA CA2686940A patent/CA2686940C/en active Active
- 2008-04-28 RU RU2009145940/02A patent/RU2437945C2/en active
- 2008-04-28 PL PL08805523.1T patent/PL2155915T5/en unknown
- 2008-04-28 US US12/599,166 patent/US20100307644A1/en not_active Abandoned
- 2008-04-28 MX MX2009011927A patent/MX2009011927A/en active IP Right Grant
- 2008-05-09 AR ARP080101971A patent/AR066508A1/en active IP Right Grant
-
2009
- 2009-10-23 ZA ZA200907430A patent/ZA200907430B/en unknown
- 2009-11-03 MA MA32328A patent/MA31555B1/en unknown
-
2016
- 2016-08-22 US US15/243,610 patent/US10612106B2/en active Active
-
2019
- 2019-10-03 US US16/592,341 patent/US11414722B2/en active Active
-
2022
- 2022-01-13 US US17/575,300 patent/US20220136078A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004190050A (en) | 2002-12-06 | 2004-07-08 | Kobe Steel Ltd | High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part |
EP1676932A1 (en) | 2004-12-28 | 2006-07-05 | Kabushiki Kaisha Kobe Seiko Sho | High strength thin steel sheet having high hydrogen embrittlement resisting property |
Non-Patent Citations (2)
Title |
---|
IMOSE: "Heating and cooling technology in the continuous annealing", TRANSACTIONS ISIU, vol. 25, 1985, pages 911 - 932, XP055276436 |
SUGIMOTO ET AL., ISIJ INTERNATIONAL, vol. 40, no. 9, 2000, pages 902 - 908, XP009048166 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2155915B1 (en) | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced | |
EP1913169B1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
EP3307921B1 (en) | High-strength steel and production method | |
EP2171112B1 (en) | Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained | |
EP2707514B1 (en) | Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets | |
EP1994192B1 (en) | Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced | |
EP2291547B1 (en) | Method for manufacturing very high strength, cold-rolled, dual phase steel sheets, and sheets thus produced | |
EP3783116B1 (en) | Pre-coated sheets allowing the production of press-hardened and coated steel parts | |
EP2718469B1 (en) | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate | |
EP3084014B1 (en) | High strength steel and method of production of the same | |
EP2707513B1 (en) | Method for the production of very-high-strength martensitic steel and sheet or part thus obtained | |
CA2680623C (en) | Steel for tool-less hot forming or quenching with improved ductility | |
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP2707515B1 (en) | Producing method for very high yield strength martensitic steel sheet and steel sheet obtained | |
EP3631033A1 (en) | Method for producing high-strength steel parts with improved ductility, and parts obtained by said method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091211 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100415 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170607 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 940011 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008052677 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2655476 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180125 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E035549 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180125 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602008052677 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
26 | Opposition filed |
Opponent name: TATA STEEL IJMUIDEN BV Effective date: 20180725 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180428 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: TATA STEEL IJMUIDEN BV Effective date: 20180725 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171025 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 940011 Country of ref document: AT Kind code of ref document: T Effective date: 20171025 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: TITRE |
|
27A | Patent maintained in amended form |
Effective date: 20220427 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602008052677 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T5 Ref document number: E 26330 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2655476 Country of ref document: ES Kind code of ref document: T5 Effective date: 20220929 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240320 Year of fee payment: 17 Ref country code: CZ Payment date: 20240326 Year of fee payment: 17 Ref country code: GB Payment date: 20240321 Year of fee payment: 17 Ref country code: SK Payment date: 20240326 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240327 Year of fee payment: 17 Ref country code: SE Payment date: 20240320 Year of fee payment: 17 Ref country code: PL Payment date: 20240320 Year of fee payment: 17 Ref country code: IT Payment date: 20240320 Year of fee payment: 17 Ref country code: FR Payment date: 20240320 Year of fee payment: 17 Ref country code: BE Payment date: 20240320 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240502 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240322 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240401 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240327 Year of fee payment: 17 |