EP1819461B1 - Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity - Google Patents
Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity Download PDFInfo
- Publication number
- EP1819461B1 EP1819461B1 EP05814950.1A EP05814950A EP1819461B1 EP 1819461 B1 EP1819461 B1 EP 1819461B1 EP 05814950 A EP05814950 A EP 05814950A EP 1819461 B1 EP1819461 B1 EP 1819461B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- mpa
- equal
- sheet
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 31
- 238000000034 method Methods 0.000 title claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 17
- 229910052742 iron Inorganic materials 0.000 title claims description 9
- 229910000617 Mangalloy Inorganic materials 0.000 title description 7
- 229910000975 Carbon steel Inorganic materials 0.000 title 1
- 229910000831 Steel Inorganic materials 0.000 claims description 103
- 239000010959 steel Substances 0.000 claims description 103
- 239000011572 manganese Substances 0.000 claims description 57
- 229910052748 manganese Inorganic materials 0.000 claims description 37
- 229910052799 carbon Inorganic materials 0.000 claims description 35
- 238000004519 manufacturing process Methods 0.000 claims description 34
- 239000000047 product Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 29
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 28
- 239000011265 semifinished product Substances 0.000 claims description 20
- 238000005266 casting Methods 0.000 claims description 19
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 238000001953 recrystallisation Methods 0.000 claims description 14
- LAUCTMALVHLLAL-UHFFFAOYSA-N [Mn].[C].[Fe] Chemical compound [Mn].[C].[Fe] LAUCTMALVHLLAL-UHFFFAOYSA-N 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 13
- 238000005096 rolling process Methods 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- 238000000265 homogenisation Methods 0.000 claims description 3
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910000734 martensite Inorganic materials 0.000 description 12
- 238000001556 precipitation Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000007547 defect Effects 0.000 description 9
- 239000012071 phase Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 239000010955 niobium Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QFGIVKNKFPCKAW-UHFFFAOYSA-N [Mn].[C] Chemical compound [Mn].[C] QFGIVKNKFPCKAW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- -1 aluminum nitrides Chemical class 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
Definitions
- the present invention relates to the manufacture of hot-rolled and cold-rolled sheets of austenitic iron-carbon-manganese steels having very high mechanical characteristics, and in particular a very advantageous combination of mechanical strength and elongation at break combined with excellent homogeneity. mechanical properties.
- hot-rolled sheets that is to say of thickness ranging from from 1 to 10 mm
- such characteristics are used to lighten ground connection parts, wheels, reinforcement parts such as door intrusion bars, or those intended for heavy vehicles (trucks , bus).
- trucks trucks , bus
- cold-rolled sheets ranging from approximately 0.2 mm to 6 mm
- the applications are aimed at manufacturing parts contributing to the safety and durability of motor vehicles or even external parts.
- steels with an austenitic structure such as Fe-C steels (up to 1.5%) - Mn (15 to 35%) (contents expressed by weight) and possibly containing other elements such as silicon, aluminum or chromium:
- EDE energy of stacking defect
- the mechanical twinning makes it possible to obtain a great capacity of work hardening: by obstructing the propagation of the dislocations, the twins participate in the increase of the flow limit.
- the EDE increases in particular with the carbon and manganese content.
- Austenitic steels Fe-0.6% C-22% Mn are thus known which are capable of deformation by twinning: Depending on the grain size, these steel compositions lead to tensile strength values ranging from 900 to 1150 MPa approximately. , in combination with a breaking strain ranging from 50 to 80%. There is, however, an unresolved need for hot or cold rolled steel sheets, with a strength significantly greater than 1150 MPa, also having good deformation capacity, and this without the addition of expensive alloys. It is sought to have steel sheets having a very homogeneous behavior during subsequent mechanical stresses.
- FR-A-2 829 775 describes a process for manufacturing a welded tube, of the type comprising a final stretching or hydroforming step, characterized in that: an alloy is produced; a semi-finished product is then cast from this alloy, a) either in the form of an ingot which is then roughed by hot rolling to transform it into a slab, or directly in the form of a slab said slab then being hot rolled in the form of a strip and then wound, b) either in the form of a thin strip; the strip is then stripped if the strip is oxidized at the surface; we then proceed to manufacture the welded tube by progressive forming of a sheet metal cut from the previous strip to bring its edges until docking, then by welding of said edges, then by elimination of the weld bead, then by cold drawing or hydroforming.
- the object of the invention is therefore to dispose of a sheet or a hot or cold rolled steel product, of economical manufacture, having a resistance greater than or equal to 1200 or even 1400 MPa in combination with a elongation such as product P: resistance (MPa) x elongation at rupture (%) is greater than 60,000 or 50,000 MPa% respectively at the resistance level mentioned above, a great homogeneity of mechanical properties during deformations or subsequent mechanical stresses and a structure free of martensite at any point during or after the deformation cold from this sheet or this product.
- the subject of the invention is a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, the product P of which (resistance (MPa) x elongation at break (%)) is greater than 65,000 MPa%, the nominal chemical composition of which includes, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements chosen from: Cr ⁇ 1%, Mo ⁇ 1.50%, Ni ⁇ 1%, Cu ⁇ 5% , Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the rest of the composition consisting of iron and unavoidable impurities resulting from the production, the surface fraction recrystallized from steel being equal to 100%, the surface fraction of precipitated carbides of the steel being equal to
- the invention also relates to a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel whose strength is greater than 1250 MPa, whose product P (strength (MPa) x elongation at break (%)) is greater at 65,000 MPa%, the nominal chemical composition of which includes, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements chosen from: Cr ⁇ 1%, Mo ⁇ 1.50%, Ni ⁇ 1%, Cu ⁇ 5%, Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the rest of the composition consisting of iron and unavoidable impurities resulting from the production, the recrystallized surface fraction of the steel being equal to 100%, the average grain size of the steel being less than 3 microns
- the local carbon content C L of the steel, and the local manganese content Mn L , expressed by weight, at all points of the austenitic steel sheet, are such that:% Mn L + 9.7% C L ⁇ 21.66
- the nominal silicon content of the steel is less than or equal to 0.6%
- the nominal nitrogen content of the steel is less than or equal to 0.050%.
- the nominal aluminum content of the steel is less than or equal to 0.030%.
- the invention also relates to a process for manufacturing a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel, the strength of which is greater than 1250 MPa, of which the product P (resistance (MPa) x elongation at rupture (%)) is greater than 60,000 MPa%, characterized in that a hot-rolled sheet obtained by the above process is supplied, at least one cycle is carried out, each cycle consisting of cold rolling the sheet in one or several successive passes and then perform recrystallization annealing, the average austenitic grain size before the last cold rolling cycle followed by recrystallization annealing, being less than 15 microns.
- a hot-rolled sheet obtained by the above process is supplied, at least one cycle is carried out, each cycle consisting of cold rolling the sheet in one or several successive passes and then perform recrystallization annealing, the average austenitic grain size before the last cold rolling cycle followed by recrystallization annealing, being less than 15 microns.
- the invention also relates to a process for manufacturing a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, of which the product P (resistance (MPa) x elongation at break (%)) is greater than 50,000 MPa%, characterized in that, after the final recrystallization annealing, cold deformation is carried out with an equivalent deformation rate greater than or equal to 6%, and less than or equal to 17%.
- MPa resistance
- % x elongation at break
- the subject of the invention is also a method of manufacturing a cold-rolled sheet of austenitic iron-carbon-manganese steel whose resistance i is greater than 1400 MPa, of which the product P (resistance (MPa) x elongation at break ( %)) is greater than 50,000 MPa%, characterized in that a cold rolled and annealed sheet is supplied according to the invention, and that a cold deformation of this sheet is carried out with a higher equivalent deformation rate or equal to 6%, and less than or equal to 17%.
- the invention also relates to a process for manufacturing an austenitic steel sheet, characterized in that the conditions for casting or heating said semi-finished product, such as the temperature for casting said semi-finished product.
- semi-finished product the mixing of the liquid metal by electromagnetic forces, the heating conditions leading to a homogenization of carbon and manganese by diffusion, are chosen so that, at any point on the sheet, the local carbon content C L and the local manganese content Mn L , expressed by weight, are such that:% Mn L + 9.7% C L ⁇ 21.66
- the casting of the semi-finished product is carried out in the form of casting slabs or thin strips between counter-rotating steel cylinders.
- the invention also relates to the use of an austenitic sheet steel for the manufacture of reinforcing or structural elements or of external parts, in the automotive field.
- the invention also relates to the use of an austenitic steel sheet manufactured by means of a process described above, for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
- Manganese is also an essential element for - increasing resistance, increasing the energy of stacking defect and stabilizing the austenitic phase. If its nominal content is less than 16%, there is, as will be seen below, a risk of formation of martensitic phase which decreases most notably the ability to deform. Furthermore, when the nominal manganese content is greater than 19%, the twinning deformation mode is less favored compared to the sliding mode of perfect dislocations. In addition, for cost reasons, it is undesirable that the manganese content is high.
- Aluminum is a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a drawback. Manganese increases the solubility of nitrogen in liquid iron, and if too much aluminum is present in the steel, the nitrogen combining with the aluminum precipitates in the form of aluminum nitrides. interfering with the migration of grain boundaries during hot processing and very significantly increases the risk of cracks appearing.
- a nominal content of Al less than or equal to 0.050% makes it possible to avoid precipitation of AIN. Correlatively, the nominal nitrogen content must be less than or equal to 0.1% in order to avoid this precipitation and the formation of volume defects during solidification. This risk is particularly reduced when the nominal aluminum content is less than 0.030% as well as when the nominal nitrogen content is less than 0.050%.
- Silicon is also an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a nominal content of 2%, it reduces the elongation and tends to form undesirable oxides during certain assembly processes and must therefore be kept below this limit. This phenomenon is greatly reduced when the nominal silicon content is less than 0.6%.
- Sulfur and phosphorus are impurities which weaken grain boundaries. Their respective nominal content must be less than or equal to 0.030 and 0.050% in order to maintain sufficient hot ductility. When the nominal phosphorus content is less than 0.040%, the risk of brittleness is particularly reduced.
- Chromium can be used as an option to increase the strength of the steel by hardening in solid solution. However, since chromium decreases the stacking defect energy, its nominal content must be lower or equal to 1%. Nickel increases the stacking defect energy and contributes to obtaining a significant elongation at break. However, it is also desirable, for cost reasons, to limit the nominal nickel content to a maximum content less than or equal to 1%. Molybdenum can also be used for similar reasons, this element further delaying the precipitation of carbides. For efficiency and cost reasons, it is desirable to limit its nominal content to 1.5%, and preferably to 0.4%.
- adding copper to a nominal content less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper.
- copper is responsible for the appearance of hot sheet surface defects.
- Titanium, niobium and vanadium are also elements which can be used optionally to obtain hardening by precipitation of carbonitrides.
- the nominal Nb or V or Ti content is greater than 0.50%, excessive precipitation of carbonitrides can cause a reduction in ductility and drawability, which should be avoided.
- a steel is produced, the composition of which has been set out above. This production can be followed by casting in ingots, or continuously in the form of slabs with a thickness of the order of 200 mm. The casting can also be carried out in the form of thin slabs a few tens of millimeters thick, or of thin strips, between counter-rotating steel cylinders.
- the present description illustrates the application of the invention to flat products, it can be applied in the same way to the manufacture of long products made of Fe-C-Mn steel.
- These cast semi-finished products are first brought to a temperature of between 1100 and 1300 ° C. This is intended to reach at all points the temperature ranges favorable to the high deformations that the steel will undergo during rolling. However, the temperature should not be higher than 1300 ° C, on pain of being too close to the solidus temperature which could be reached in possible areas segregated into manganese and / or carbon, and of causing a start of local passage by a liquid state which would be harmful for hot forming.
- the stage of hot rolling of these semi-finished products starting between 1300 and 1100 ° C. can be done directly after casting so that a stage of reheating intermediary is not necessary in this case.
- the semi-finished product is hot rolled, for example to obtain a thickness of hot rolled strip of a few millimeters.
- the low aluminum content of the steel according to the invention makes it possible to avoid excessive precipitation of AIN which would harm hot deformability during rolling.
- the end of rolling temperature In order to avoid any cracking problem due to lack of ductility, the end of rolling temperature must be greater than or equal to 900 ° C.
- the inventors have demonstrated that the ductility properties of the sheets obtained are reduced when the recrystallized surface fraction of the steel is less than 100%. Consequently, if the hot rolling conditions have not led to a total recrystallization of the austenite, the inventors have demonstrated that it is necessary to observe, after the hot rolling phase, a time of waiting so that the recrystallized surface fraction is equal to 100%. This isothermal high-temperature maintenance phase after rolling thus causes total recrystallization.
- the inventors have used evidence that particularly high strength and elongation at break properties are obtained when the average austenitic grain size was less than or equal to 10 microns. Under these conditions, the breaking strength of the hot sheets thus obtained is greater than 1200 MPa and the product P (resistance x elongation at break) is greater than 65000 MPa%.
- the process includes a cold deformation step
- the sheet produced can be qualified as “hot rolled sheet” insofar as the rate of cold deformation is very minimal in comparison with the usual rates achieved during rolling. cold before annealing for the production of thin sheets, and insofar as the thickness of the sheet thus produced is within the usual range of thicknesses of hot-rolled sheets.
- the equivalent cold deformation rate is greater than 17%
- the reduction in elongation becomes such that the parameter P (resistance R x elongation at break A) cannot reach 50,000 MPa%.
- the sheet retains a good elongation capacity since the product P of the sheet thus obtained is greater than or equal to 50,000 MPa%.
- the inventors have also demonstrated that the structure must be completely recrystallized after annealing in order to achieve the desired properties. Simultaneously, when the average grain size is less than 5 microns, the resistance exceeds 1200 MPa, and the product P is greater than 65000 MPa%. When the average grain size obtained after annealing is less than 3 microns, the resistance exceeds 1250 MPa, the product P always being greater than 65000MPa%.
- FIG. 1 presents, in a carbon-manganese diagram (and iron complement) the calculated iso-energy curves of stacking defect whose values range from 5 to 30mJ / m 2 .
- the deformation mode is theoretically identical for any Fe-C-Mn alloy having the same EDE.
- the area of occurrence of martensite has also been shown in this diagram.
- the inventors have shown that, in order to assess the mechanical behavior, it is necessary to consider not only the nominal chemical composition of the alloy, for example its nominal or average content. carbon and manganese, but also its local content.
- local content is meant here the content measured by means of a device such as an electronic probe.
- a linear or surface scan using such a device makes it possible to appreciate the variation in the local content.
- the inventors have sought the specific conditions for obtaining very high mechanical characteristics simultaneously with a great homogeneity of these characteristics within a steel sheet.
- the combination of carbon (0.85% -1.05%) and manganese (16-19%) associated with the other characteristics of the invention leads to resistance values greater than 1200MPa and to a product (resistance x elongation at break) greater than 60,000, or even 65,000 MPa%.
- these steel compositions are in a field where the EDE is of the order of 19-24 mJ / m 2 , that is to say favorable to deformation by twinning.
- the inventors have also demonstrated that a variation in the local carbon or manganese content has a much smaller influence than that mentioned in the previous example.
- the inventors have shown that it was absolutely necessary to avoid the formation of martensite during deformation operations or the use of sheets under penalty of heterogeneity of mechanical characteristics on the parts.
- the inventors have determined that this condition is satisfied when, at any point on the sheets, the local carbon and manganese contents of the sheet are such that:% Mn L + 9.7% C L ⁇ 21.66.
- austenitic steel sheets are produced which not only have very high mechanical characteristics but also a very low dispersion of these characteristics.
- the person skilled in the art will adapt the manufacturing conditions so as to satisfy this relationship concerning the local contents, in particular by means of the casting conditions (casting temperature, stirring of the liquid metal by electromagnetic forces) or heating conditions leading to homogenization of carbon and manganese by diffusion.
- a semi-finished product of steel I according to the invention was reheated to a temperature of 1180 ° C and hot rolled to a temperature above 900 ° C to reach a thickness of 3 mm.
- a waiting time of 2 s was observed after rolling for complete recrystallization, then cooling was carried out at a speed greater than 20 ° C / s, followed by winding at room temperature.
- the reference steels were reheated to a temperature above 1150 ° C, rolled to a rolling end temperature above 940 ° C and then coiled at a temperature below 450 ° C.
- the recrystallized surface fraction is 100% for all steels, the fraction of precipitated carbides is equal to 0%, the average grain size between 9 and 10 microns.
- the steel according to the invention makes it possible to obtain an increased resistance of approximately 200 MPa with very comparable elongation.
- the steel sheet according to the invention was then subjected to a slight cold deformation by rolling with an equivalent deformation of 14%.
- This product with exceptionally high mechanical characteristics offers great possibilities of subsequent deformation due to its reserve of plasticity and its low anisotropy.
- the steel sheet produced according to the invention whose average grain size is 4 microns, therefore offers a particularly advantageous resistance-elongation combination and a significant increase in resistance compared to the reference steel. As with hot rolled sheets, these characteristics are obtained with very high homogeneity on the product, no trace of martensite is present after deformation.
- Equibiaxial expansion tests on a hemispherical punch 75 mm in diameter carried out on a cold-rolled and annealed sheet 1.6 mm thick according to the invention reveal a limit stamping height of 33 mm, which highlights a excellent deformability. Bending tests carried out on this same sheet also show that the critical deformation before the appearance of cracks is greater than 50%.
- the steel sheet produced according to the invention was subjected to cold deformation by rolling with an equivalent deformation rate of 8%:
- hot-rolled or cold-rolled steels according to the invention will be used with advantage for applications where capacity is sought. significant deformation and very high strength.
- advantage will be taken of their advantages for the manufacture of structural parts, reinforcing elements or even external parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
La présente invention concerne la fabrication de tôles laminées à chaud et à froid d'aciers austénitiques fer-carbone-manganèse présentant de très hautes caractéristiques mécaniques, et notamment une combinaison de résistance mécanique et d'allongement à rupture très avantageuse alliée à une excellente homogénéité de propriétés mécaniques.The present invention relates to the manufacture of hot-rolled and cold-rolled sheets of austenitic iron-carbon-manganese steels having very high mechanical characteristics, and in particular a very advantageous combination of mechanical strength and elongation at break combined with excellent homogeneity. mechanical properties.
Dans le domaine automobile, l'évolution du niveau d'équipement des véhicules rend encore plus nécessaire l'allègement de la structure métallique elle-même. Pour cela, chaque fonction doit être repensée pour améliorer ses performances et diminuer son poids. Différentes familles d'aciers ont été ainsi développées en vue de satisfaire à ces exigences toujours croissantes : par ordre chronologique, on citera par exemple les aciers à haute limite d'élasticité durcis par précipitation fine de niobium, vanadium ou titane, les aciers à structures Dual-Phase (ferrite comportant jusqu'à 25% de martensite), les aciers « TRIP » composés de ferrite, de martensite et d'austénite susceptible de se transformer sous déformation («Transformation Induced Plasticity ») Pour chaque type de structure, la résistance à la rupture et l'aptitude à la déformation sont des propriétés antagonistes, si bien qu'il n'est généralement pas possible d'obtenir des valeurs très élevées pour l'une des propriétés sans réduire drastiquement l'autre. Ainsi, pour les aciers TRIP, il est difficile d'obtenir simultanément une résistance supérieure à 900 MPa et un allongement supérieur à 25%. On citera encore les aciers à structure bainitique ou martensito-bainitique, dont la résistance peut atteindre 1200 MPa sur tôles laminées à chaud, mais où l'allongement n'est que de l'ordre de 10%. Si ces caractéristiques peuvent être satisfaisantes pour certaines applications, elles demeurent néanmoins insuffisantes dans le cas où l'on souhaite un allégement supplémentaire par la combinaison simultanée d'une résistance élevée et d'une grande aptitude pour les opérations ultérieures de déformation et pour l'absorption d'énergie.In the automotive field, changes in the level of equipment in vehicles makes it even more necessary to lighten the metal structure itself. For this, each function must be redesigned to improve its performance and reduce its weight. Different families of steels have thus been developed in order to satisfy these ever-increasing requirements: in chronological order, mention will be made, for example, of high yield strength steels hardened by fine precipitation of niobium, vanadium or titanium, structural steels Dual-Phase (ferrite containing up to 25% martensite), “TRIP” steels composed of ferrite, martensite and austenite liable to transform under deformation (“Transformation Induced Plasticity”) For each type of structure, the tensile strength and deformability are antagonistic properties, so that it is generally not possible to obtain very high values for one of the properties without drastically reducing the other. Thus, for TRIP steels, it is difficult to simultaneously obtain a strength greater than 900 MPa and an elongation greater than 25%. Mention will also be made of steels with a bainitic or martensitic-bainitic structure, the resistance of which can reach 1200 MPa on hot-rolled sheets, but where the elongation is only of the order of 10%. If these characteristics can be satisfactory for certain applications, they nevertheless remain insufficient in the case where additional lightening is desired by the simultaneous combination of a high resistance and a great aptitude for the subsequent deformation operations and for the energy absorption.
Dans le cas de tôles laminées à chaud, c'est-à-dire d'épaisseur allant environ de 1 à 10 mm, de telles caractéristiques sont mises à profit pour l'allégement de pièces de liaison au sol, de roues, de pièces de renfort telles que les barres anti-intrusion de portières, ou celles destinées à des véhicules lourds (camions, bus). Pour des tôles laminées à froid (allant environ de 0,2 mm à 6 mm), les applications visent la fabrication de pièces participant à la sécurité et à la durabilité des véhicules automobiles ou encore de pièces extérieures. Pour satisfaire ces exigences simultanées de résistance et de ductilité, on connaît des aciers à structure austénitique, tels que les aciers Fe-C(jusqu'à 1,5%)-Mn(15 à 35%) (teneurs exprimées en poids) et contenant éventuellement d'autres éléments tels que le silicium, l'aluminium ou le chrome: A une température donnée, le mode de déformation des aciers austénitiques ne dépend que de l'énergie de défaut d'empilement ou « EDE », grandeur physique qui ne dépend elle-même que de la composition et de la température : Lorsque l'EDE décroît, on passe successivement d'un mode de déformation par glissement des dislocations, puis par maclage, et enfin par transformation martensitique. Parmi ces modes, le maclage mécanique permet d'obtenir une grande capacité d'écrouissage : en faisant obstacle à la propagation des dislocations, les macles participent à l'augmentation de la limite d'écoulement. L'EDE augmente notamment avec la teneur en carbone et en manganèse.In the case of hot-rolled sheets, that is to say of thickness ranging from from 1 to 10 mm, such characteristics are used to lighten ground connection parts, wheels, reinforcement parts such as door intrusion bars, or those intended for heavy vehicles (trucks , bus). For cold-rolled sheets (ranging from approximately 0.2 mm to 6 mm), the applications are aimed at manufacturing parts contributing to the safety and durability of motor vehicles or even external parts. To meet these simultaneous strength and ductility requirements, steels with an austenitic structure are known, such as Fe-C steels (up to 1.5%) - Mn (15 to 35%) (contents expressed by weight) and possibly containing other elements such as silicon, aluminum or chromium: At a given temperature, the mode of deformation of austenitic steels depends only on the energy of stacking defect or "EDE", physical quantity which itself only depends on the composition and the temperature: When the EDE decreases, one passes successively from a mode of deformation by sliding of the dislocations, then by twinning, and finally by martensitic transformation. Among these modes, the mechanical twinning makes it possible to obtain a great capacity of work hardening: by obstructing the propagation of the dislocations, the twins participate in the increase of the flow limit. The EDE increases in particular with the carbon and manganese content.
On connaît ainsi des aciers austénitiques Fe-0,6%C-22%Mn susceptibles de se déformer par maclage : Selon la taille de grain, ces compositions d'aciers conduisent à des valeurs de résistance en traction allant de 900 à 1150 MPa environ, en combinaison avec une déformation à rupture allant de 50 à 80%. Il existe cependant un besoin non résolu de disposer de tôles d'acier laminées à chaud ou à froid, de résistance significativement supérieure à 1150 MPa, présentant également une bonne capacité de déformation, et ceci sans addition d'alliages coûteux. On cherche à disposer de tôles d'aciers présentant un comportement très homogène lors de sollicitations mécaniques ultérieures.Austenitic steels Fe-0.6% C-22% Mn are thus known which are capable of deformation by twinning: Depending on the grain size, these steel compositions lead to tensile strength values ranging from 900 to 1150 MPa approximately. , in combination with a breaking strain ranging from 50 to 80%. There is, however, an unresolved need for hot or cold rolled steel sheets, with a strength significantly greater than 1150 MPa, also having good deformation capacity, and this without the addition of expensive alloys. It is sought to have steel sheets having a very homogeneous behavior during subsequent mechanical stresses.
Le but de l'invention est donc de disposer-d'une tôle ou d'un produit d'acier laminé à chaud ou à froid, de fabrication économique, présentant une résistance supérieure ou égale à 1200, voire 1400 MPa en combinaison avec un allongement tel que le produit P : résistance (MPa) x allongement à rupture (%) soit supérieur à 60000 ou 50000 MPa% respectivement au niveau de résistance mentionné ci-dessus, une grande homogénéité de propriétés mécaniques lors de déformations ou de sollicitations mécaniques ultérieures et une structure exempte de martensite en tout point pendant ou après la déformation à froid à partir de cette tôle ou de ce produit.The object of the invention is therefore to dispose of a sheet or a hot or cold rolled steel product, of economical manufacture, having a resistance greater than or equal to 1200 or even 1400 MPa in combination with a elongation such as product P: resistance (MPa) x elongation at rupture (%) is greater than 60,000 or 50,000 MPa% respectively at the resistance level mentioned above, a great homogeneity of mechanical properties during deformations or subsequent mechanical stresses and a structure free of martensite at any point during or after the deformation cold from this sheet or this product.
A cet effet, l'invention a pour objet une tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids : 0,85% ≤ C ≤ 1,05%, 16%≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0,050%, S ≤ 0,030%, P≤ 0,050%, N ≤ 0,1%, et à titre optionnel, un ou plusieurs éléments choisis parmi: Cr ≤ 1%, Mo ≤ 1,50%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0,50%, Nb ≤ 0,50%, V ≤ 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée de l'acier étant égale à 100%, la fraction surfacique de carbures précipités de l'acier étant égale à 0%, la taille moyenne de grain de l'acier étant inférieure ou égale à 10 microns.To this end, the subject of the invention is a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, the product P of which (resistance (MPa) x elongation at break (%)) is greater than 65,000 MPa%, the nominal chemical composition of which includes, the contents being expressed by weight: 0.85% ≤ C ≤ 1.05%, 16% ≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0.050%, S ≤ 0.030%, P≤ 0.050%, N ≤ 0.1%, and optionally, one or more elements chosen from: Cr ≤ 1%, Mo ≤ 1.50%, Ni ≤ 1%, Cu ≤ 5% , Ti ≤ 0.50%, Nb ≤ 0.50%, V ≤ 0.50%, the rest of the composition consisting of iron and unavoidable impurities resulting from the production, the surface fraction recrystallized from steel being equal to 100%, the surface fraction of precipitated carbides of the steel being equal to 0%, the average grain size of the steel being less than or equal to 10 microns.
L'invention a également pour objet une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids : 0,85% ≤ C ≤ 1,05%, 16%≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0,050%, S ≤ 0,030%, P≤ 0,050%, N ≤ 0,1%, et à titre optionnel, un ou plusieurs éléments choisis parmi : Cr ≤ 1%, Mo ≤ 1,50%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0,50%, Nb ≤ 0,50%, V ≤ 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée de l'acier étant égale à 100%, la taille moyenne de grain de l'acier étant inférieure à 3 microns.The invention also relates to a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel whose strength is greater than 1250 MPa, whose product P (strength (MPa) x elongation at break (%)) is greater at 65,000 MPa%, the nominal chemical composition of which includes, the contents being expressed by weight: 0.85% ≤ C ≤ 1.05%, 16% ≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0.050%, S ≤ 0.030%, P≤ 0.050%, N ≤ 0.1%, and optionally, one or more elements chosen from: Cr ≤ 1%, Mo ≤ 1.50%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0.50%, Nb ≤ 0.50%, V ≤ 0.50%, the rest of the composition consisting of iron and unavoidable impurities resulting from the production, the recrystallized surface fraction of the steel being equal to 100%, the average grain size of the steel being less than 3 microns.
La teneur locale en carbone CL de l'acier, et la teneur locale en manganèse MnL, exprimées en poids, en tout point de la tôle d'acier austénitique, sont telles que : %MnL + 9,7 %CL≥21,66 Préférentiellement, la teneur nominale en silicium de l'acier est inférieure ou égale à 0,6%The local carbon content C L of the steel, and the local manganese content Mn L , expressed by weight, at all points of the austenitic steel sheet, are such that:% Mn L + 9.7% C L ≥21.66 Preferably, the nominal silicon content of the steel is less than or equal to 0.6%
Selon un mode préféré, la teneur nominale en azote de l'acier est inférieure ou égale à 0,050%.According to a preferred mode, the nominal nitrogen content of the steel is less than or equal to 0.050%.
Préférentiellement encore, la teneur nominale en aluminium de l'acier est inférieure ou égale à 0,030%.Also preferably, the nominal aluminum content of the steel is less than or equal to 0.030%.
Selon un mode préféré, la teneur nominale en phosphore de l'acier est inférieure ou égale à 0,040%
L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1400 MPa, dont le produit P((résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, selon lequel on élabore un acier dont la composition nominale comprend, les teneurs étant exprimées en poids :0,85% ≤ C ≤ 1,05%, 16%≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0,050%, S ≤ 0,030%, P≤ 0,050%, N ≤ 0,1%, et à titre optionnel, un ou plusieurs éléments choisis parmi :Cr ≤ 1%, Mo ≤ 1,50%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0,50%, Nb ≤ 0,50%, V ≤ 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration,
- on procède à la coulée d'un demi-produit à partir de cet acier
- on porte le demi-produit de la composition d'acier à une température comprise entre 1100 et 1300°C,
- on lamine le demi-produit jusqu'à une température de fin de laminage supérieure ou égale à 900°C
- on observe si nécessaire un temps d'attente de telle sorte que la fraction surfacique recristallisée de l'acier soit égale à 100%,
- on refroidit la tôle à une vitesse supérieure ou égale à 20°C/s,
- on bobine la tôle à une température inférieure ou égale à 400°C,
The invention also relates to a process for manufacturing a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, of which the product P ((resistance (MPa) x elongation at break ( %)) is greater than 50,000 MPa%, according to which a steel is produced whose nominal composition comprises, the contents being expressed by weight: 0.85% ≤ C ≤ 1.05%, 16% ≤ Mn ≤ 19%, Si ≤ 2%, Al ≤ 0.050%, S ≤ 0.030%, P≤ 0.050%, N ≤ 0.1%, and optionally, one or more elements chosen from: Cr ≤ 1%, Mo ≤ 1.50%, Ni ≤ 1%, Cu ≤ 5%, Ti ≤ 0.50%, Nb ≤ 0.50%, V ≤ 0.50%, the rest of the composition consisting of iron and unavoidable impurities resulting from the production ,
- we proceed to the casting of a semi-finished product from this steel
- the semi-finished product of the steel composition is brought to a temperature between 1100 and 1300 ° C.,
- the semi-finished product is rolled up to a temperature at the end of rolling greater than or equal to 900 ° C.
- a waiting time is observed if necessary so that the recrystallized surface fraction of the steel is equal to 100%,
- the sheet is cooled at a speed greater than or equal to 20 ° C / s,
- the sheet is coiled at a temperature less than or equal to 400 ° C.,
L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse, dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 60000 MPa%, caractérisé en ce qu'on approvisionne une tôle laminée à chaud obtenu par le procédé ci-dessus, on effectue au moins un cycle, chaque cycle consistant à laminer à froid la tôle en une ou plusieurs passes successives puis effectuer un recuit de recristallisation, la taille moyenne de grain austénitique avant le dernier cycle de laminage à froid suivi d'un recuit de recristallisation, étant inférieure à 15 microns.The invention also relates to a process for manufacturing a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel, the strength of which is greater than 1250 MPa, of which the product P (resistance (MPa) x elongation at rupture (%)) is greater than 60,000 MPa%, characterized in that a hot-rolled sheet obtained by the above process is supplied, at least one cycle is carried out, each cycle consisting of cold rolling the sheet in one or several successive passes and then perform recrystallization annealing, the average austenitic grain size before the last cold rolling cycle followed by recrystallization annealing, being less than 15 microns.
L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa% caractérisé en ce qu'on effectue, après le recuit final de recristallisation, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%.The invention also relates to a process for manufacturing a cold-rolled and annealed sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, of which the product P (resistance (MPa) x elongation at break (%)) is greater than 50,000 MPa%, characterized in that, after the final recrystallization annealing, cold deformation is carried out with an equivalent deformation rate greater than or equal to 6%, and less than or equal to 17%.
L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid en acier austénitique fer-carbone-manganèse dont la i résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, caractérisé en ce l'on approvisionne une tôle laminée à froid et recuite selon l'invention, et que l'on effectue une déformation à froid de cette tôle avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%.The subject of the invention is also a method of manufacturing a cold-rolled sheet of austenitic iron-carbon-manganese steel whose resistance i is greater than 1400 MPa, of which the product P (resistance (MPa) x elongation at break ( %)) is greater than 50,000 MPa%, characterized in that a cold rolled and annealed sheet is supplied according to the invention, and that a cold deformation of this sheet is carried out with a higher equivalent deformation rate or equal to 6%, and less than or equal to 17%.
L'invention a également pour objet un procédé de fabrication d'une tôle d'acier austénitique caractérisé en ce que les conditions de coulée ou de réchauffage dudit demi-produit, telles que la température de coulée dudit. demi-produit, le brassage du métal liquide par forces électromagnétiques, les conditions de réchauffage conduisant à une homogénéisation du carbone et du manganèse par diffusion, sont choisies pour que, en tout point de la tôle, la teneur locale en carbone CL et la teneur locale en manganèse MnL, exprimées en poids, soient telles que : %MnL + 9,7 %CL≥21,66The invention also relates to a process for manufacturing an austenitic steel sheet, characterized in that the conditions for casting or heating said semi-finished product, such as the temperature for casting said semi-finished product. semi-finished product, the mixing of the liquid metal by electromagnetic forces, the heating conditions leading to a homogenization of carbon and manganese by diffusion, are chosen so that, at any point on the sheet, the local carbon content C L and the local manganese content Mn L , expressed by weight, are such that:% Mn L + 9.7% C L ≥21.66
Selon un mode préféré, la coulée du demi-produit est effectuée sous forme de coulée de brames ou de bandes minces entre cylindres d'acier contra-rotatifs.According to a preferred embodiment, the casting of the semi-finished product is carried out in the form of casting slabs or thin strips between counter-rotating steel cylinders.
L'invention a également pour objet l'utilisation d'une tôle d'acier austénitique pour la fabrication d'éléments de renfort ou structuraux ou de pièces extérieures, dans le domaine automobile.The invention also relates to the use of an austenitic sheet steel for the manufacture of reinforcing or structural elements or of external parts, in the automotive field.
L'invention a également pour objet l'utilisation d'une tôle d'acier austénitique fabriquée au moyen d'un procédé décrit ci-dessus, pour la fabrication d'éléments de renfort ou structuraux ou de pièces extérieures, dans le domaine automobile.The invention also relates to the use of an austenitic steel sheet manufactured by means of a process described above, for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence à la
Après de nombreux essais, les inventeurs ont montré que les différentes exigences rapportées ci-dessus étaient satisfaites en observant les conditions suivantes :
En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et les propriétés mécaniques obtenues : En combinaison avec une teneur en manganèse allant de 16 à 19% en poids, une teneur nominale en carbone supérieure à 0,85% permet d'obtenir une structure austénitique stable. Cependant, pour une teneur nominale en carbone supérieure à 1,05% il devient difficile d'éviter une précipitation de carbures qui intervient au cours de certains cycles thermiques de fabrication industrielle, en particulier lors du refroidissement au bobinage, et qui dégrade la ductilité et la ténacité. De plus, l'augmentation de la teneur en carbone diminue la soudabilité.After numerous tests, the inventors have shown that the various requirements reported above are satisfied by observing the following conditions:
Regarding the chemical composition of steel, carbon plays a very important role on the formation of the microstructure and the mechanical properties obtained: In combination with a manganese content ranging from 16 to 19% by weight, a nominal content in carbon greater than 0.85% provides a stable austenitic structure. However, for a nominal carbon content greater than 1.05%, it becomes difficult to avoid a precipitation of carbides which occurs during certain thermal cycles of industrial manufacture, in particular during cooling on the winding, and which degrades the ductility and tenacity. In addition, increasing the carbon content decreases the weldability.
Le manganèse est-également un élément indispensable pour - accroître la résistance, augmenter l'énergie de défaut d'empilement et stabiliser la phase austénitique. Si sa teneur nominale est inférieure à 16%, il existe, comme on le verra plus loin, un risque de formation de phase martensitique qui diminue très notablement l'aptitude à la déformation. Par ailleurs, lorsque la teneur nominale en manganèse est supérieure à 19%, le mode de déformation par maclage est moins favorisé par rapport au mode de glissement de dislocations parfaites. De plus, pour des questions de coût, il n'est pas souhaitable que la teneur en manganèse soit élevée.Manganese is also an essential element for - increasing resistance, increasing the energy of stacking defect and stabilizing the austenitic phase. If its nominal content is less than 16%, there is, as will be seen below, a risk of formation of martensitic phase which decreases most notably the ability to deform. Furthermore, when the nominal manganese content is greater than 19%, the twinning deformation mode is less favored compared to the sliding mode of perfect dislocations. In addition, for cost reasons, it is undesirable that the manganese content is high.
L'aluminium est un élément particulièrement efficace pour la désoxydation de l'acier. Comme le carbone, il augmente l'énergie de défaut d'empilement. Cependant, sa présence excessive dans des aciers à forte teneur en manganèse présente un inconvénient. En effet, le manganèse augmente la solubilité de l'azote dans le fer liquide, et si une quantité d'aluminium trop importante est présente dans l'acier, l'azote se combinant avec l'aluminium précipite sous forme de nitrures d'aluminium gênant la migration des joints de grain lors de la transformation à chaud et augmente très notablement le risque d'apparitions de fissures. Une teneur nominale en Al inférieure ou égale à 0,050 % permet d'éviter une précipitation d'AIN. Corrélativement, la teneur nominale en azote doit être inférieure ou égale à 0,1% afin d'éviter cette précipitation et la formation de défauts volumiques lors de la solidification. Ce risque est particulièrement réduit lorsque la teneur nominale en aluminium est inférieure à 0,030% ainsi que lorsque la teneur nominale en azote est inférieure à 0,050%.Aluminum is a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a drawback. Manganese increases the solubility of nitrogen in liquid iron, and if too much aluminum is present in the steel, the nitrogen combining with the aluminum precipitates in the form of aluminum nitrides. interfering with the migration of grain boundaries during hot processing and very significantly increases the risk of cracks appearing. A nominal content of Al less than or equal to 0.050% makes it possible to avoid precipitation of AIN. Correlatively, the nominal nitrogen content must be less than or equal to 0.1% in order to avoid this precipitation and the formation of volume defects during solidification. This risk is particularly reduced when the nominal aluminum content is less than 0.030% as well as when the nominal nitrogen content is less than 0.050%.
Le silicium est également un élément efficace pour désoxyder l'acier ainsi que pour durcir en phase solide. Cependant, au-delà d'une teneur nominale de 2%, il diminue l'allongement et tend à former des oxydes indésirables lors de certains procédés d'assemblage et doit donc être tenu inférieur à cette limite. Ce phénomène est fortement réduit lorsque la teneur nominale en silicium est inférieure à 0,6%.Silicon is also an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a nominal content of 2%, it reduces the elongation and tends to form undesirable oxides during certain assembly processes and must therefore be kept below this limit. This phenomenon is greatly reduced when the nominal silicon content is less than 0.6%.
Le soufre et le phosphore sont des impuretés fragilisant les joints de grains. Leur teneur respective nominale doit être inférieure ou égale à 0,030 et 0,050% afin de maintenir une ductilité à chaud suffisante. Lorsque la teneur nominale en phosphore est inférieure à 0,040%, le risque de fragilité est particulièrement réduit.Sulfur and phosphorus are impurities which weaken grain boundaries. Their respective nominal content must be less than or equal to 0.030 and 0.050% in order to maintain sufficient hot ductility. When the nominal phosphorus content is less than 0.040%, the risk of brittleness is particularly reduced.
Le chrome peut être utilisé à titre optionnel pour augmenter la résistance de l'acier par durcissement en solution solide. Cependant, le chrome diminuant l'énergie de défaut d'empilement, sa teneur nominale doit être inférieure ou égale à 1%. Le nickel augmente l'énergie de défaut d'empilement et contribue à obtenir un allongement à rupture important. Cependant, il est également souhaitable, pour des questions de coûts, de limiter la teneur nominale en nickel à une teneur maximale inférieure ou égale à 1%. Le molybdène peut également être utilisé pour des raisons similaires, cet élément retardant en outre la précipitation des carbures. Il est souhaitable pour des questions de d'efficacité et de coûts, de limiter sa teneur nominale à 1,5%, et préférentiellement à 0,4%.Chromium can be used as an option to increase the strength of the steel by hardening in solid solution. However, since chromium decreases the stacking defect energy, its nominal content must be lower or equal to 1%. Nickel increases the stacking defect energy and contributes to obtaining a significant elongation at break. However, it is also desirable, for cost reasons, to limit the nominal nickel content to a maximum content less than or equal to 1%. Molybdenum can also be used for similar reasons, this element further delaying the precipitation of carbides. For efficiency and cost reasons, it is desirable to limit its nominal content to 1.5%, and preferably to 0.4%.
De même, à titre optionnel, une addition de cuivre jusqu'à une teneur nominale inférieure ou égale à 5% est un moyen de durcir l'acier par précipitation de cuivre métallique. Cependant, au-delà de cette teneur, le cuivre est responsable de l'apparition de défauts de surface en tôle à chaud. Le titane, le niobium et le vanadium sont également des éléments pouvant être utilisés optionnellement pour obtenir un durcissement par précipitation de carbonitrures. Cependant, lorsque la teneur nominale en Nb ou en V ou en Ti est supérieure à 0,50%, une précipitation excessive de carbonitrures peut provoquer une réduction de la ductilité et de l'emboutissabilité, ce qui doit être évité.Likewise, optionally, adding copper to a nominal content less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper. However, beyond this content, copper is responsible for the appearance of hot sheet surface defects. Titanium, niobium and vanadium are also elements which can be used optionally to obtain hardening by precipitation of carbonitrides. However, when the nominal Nb or V or Ti content is greater than 0.50%, excessive precipitation of carbonitrides can cause a reduction in ductility and drawability, which should be avoided.
La mise en œuvre du procédé de fabrication selon l'invention est la suivante : On élabore un acier dont la composition a été exposée ci-dessus. Cette élaboration peut être suivie d'une coulée en lingots, ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs. Bien entendu, si la présente description illustre l'application de l'invention aux produits plats, celle-ci peut être appliquée de la même façon à la fabrication de produits longs en acier Fe-C-Mn.The implementation of the manufacturing process according to the invention is as follows: A steel is produced, the composition of which has been set out above. This production can be followed by casting in ingots, or continuously in the form of slabs with a thickness of the order of 200 mm. The casting can also be carried out in the form of thin slabs a few tens of millimeters thick, or of thin strips, between counter-rotating steel cylinders. Of course, if the present description illustrates the application of the invention to flat products, it can be applied in the same way to the manufacture of long products made of Fe-C-Mn steel.
Ces demi-produits coulés sont tout d'abord portés à une température comprise entre 1100 et 1300°C. Ceci a pour but d'atteindre en tout point les domaines de température favorables aux déformations élevées que va subir l'acier lors du laminage. Cependant, la température ne doit pas être supérieure à 1300°C, sous peine d'être trop proche de la température de solidus qui pourrait être atteinte dans d'éventuelles zones ségrégées en manganèse et/ou en carbone, et de provoquer un début de passage local par un état liquide qui serait néfaste pour la mise en forme à chaud. Dans le cas d'une coulée directe de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant entre 1300 et 1100°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.These cast semi-finished products are first brought to a temperature of between 1100 and 1300 ° C. This is intended to reach at all points the temperature ranges favorable to the high deformations that the steel will undergo during rolling. However, the temperature should not be higher than 1300 ° C, on pain of being too close to the solidus temperature which could be reached in possible areas segregated into manganese and / or carbon, and of causing a start of local passage by a liquid state which would be harmful for hot forming. In the case of a direct casting of thin strips between counter-rotating cylinders, the stage of hot rolling of these semi-finished products starting between 1300 and 1100 ° C. can be done directly after casting so that a stage of reheating intermediary is not necessary in this case.
Les conditions d'élaboration des demi-produits (coulée, réchauffage) ont une influence directe sur la ségrégation éventuelle du carbone et du manganèse, ce point sera détaillé ultérieurement.The conditions for the preparation of semi-finished products (casting, reheating) have a direct influence on the possible segregation of carbon and manganese, this point will be detailed later.
On lamine à chaud le demi-produit, par exemple pour arriver à une épaisseur de bande laminée à chaud de quelques millimètres. La faible teneur en aluminium de l'acier selon l'invention permet d'éviter une précipitation excessive d'AIN qui nuirait à la déformabilité à chaud lors du laminage. Afin d'éviter tout problème de fissuration par manque de ductilité, la température de fin de laminage doit être supérieure ou égale à 900°C.The semi-finished product is hot rolled, for example to obtain a thickness of hot rolled strip of a few millimeters. The low aluminum content of the steel according to the invention makes it possible to avoid excessive precipitation of AIN which would harm hot deformability during rolling. In order to avoid any cracking problem due to lack of ductility, the end of rolling temperature must be greater than or equal to 900 ° C.
Les inventeurs ont mis en évidence que les propriétés de ductilité des tôles obtenues étaient réduites lorsque la fraction surfacique recristallisée de l'acier était inférieure à 100%. En conséquence, si les conditions de laminage à chaud n'ont pas conduit à une recristallisation totale de l'austénite, les inventeurs ont mis en évidence qu'il convient d'observer, après la phase de laminage à chaud, un temps d'attente de telle sorte que la fraction surfacique recristallisée soit égale à 100%. Cette phase de maintien isotherme à haute température après laminage provoque ainsi une recristallisation totale.The inventors have demonstrated that the ductility properties of the sheets obtained are reduced when the recrystallized surface fraction of the steel is less than 100%. Consequently, if the hot rolling conditions have not led to a total recrystallization of the austenite, the inventors have demonstrated that it is necessary to observe, after the hot rolling phase, a time of waiting so that the recrystallized surface fraction is equal to 100%. This isothermal high-temperature maintenance phase after rolling thus causes total recrystallization.
Pour les tôles laminées à chaud, on a également mis en évidence qu'il est nécessaire d'éviter qu'une précipitation de carbures (essentiellement de la cémentite (Fe,Mn)3C, et de la perlite) n'intervienne, ce qui se traduit par une détérioration des propriétés mécaniques en particulier par une diminution de la ductilité et une augmentation de la limite d'élasticité. Dans ce but, les inventeurs ont découvert qu'une vitesse de refroidissement après la phase de laminage (ou après l'éventuel temps d'attente nécessaire à la recristallisation) supérieure ou égale à 20°C/s permet d'éviter complètement cette précipitation. Cette phase de refroidissement est suivie d'un bobinage. On a également mis en évidence que la température de bobinage devait être inférieure à 400°C, également pour éviter la précipitation.For hot-rolled sheets, it has also been shown that it is necessary to prevent precipitation of carbides (essentially cementite (Fe, Mn) 3 C, and perlite) from occurring. which results in a deterioration of the mechanical properties in particular by a decrease in ductility and an increase in the elastic limit. For this purpose, the inventors have discovered that a cooling rate after the rolling phase (or after the possible waiting time necessary for recrystallization) greater than or equal to 20 ° C./s makes it possible to completely avoid this precipitation. . This cooling phase is followed by a winding. It has also been demonstrated that the winding temperature should be less than 400 ° C, also to avoid precipitation.
Pour des compositions d'aciers selon l'invention, les inventeurs ont mis en évidence que des propriétés particulièrement élevées de résistance et d'allongement à rupture sont obtenues lorsque la taille moyenne de grain austénitique était inférieure ou égale à 10 microns. Dans ces conditions, la résistance à la rupture des tôles à chaud ainsi obtenues est supérieure à 1200 MPa et le produit P (résistance x allongement à rupture) est supérieur à 65000 MPa%.For steel compositions according to the invention, the inventors have used evidence that particularly high strength and elongation at break properties are obtained when the average austenitic grain size was less than or equal to 10 microns. Under these conditions, the breaking strength of the hot sheets thus obtained is greater than 1200 MPa and the product P (resistance x elongation at break) is greater than 65000 MPa%.
Il existe des applications où l'on souhaite obtenir des caractéristiques de résistance encore plus élevées sur tôles laminées à chaud, à un niveau supérieur ou égal à 1400 MPa. Les inventeurs ont mis en évidence que l'on obtenait de telles caractéristiques en conférant aux tôles d'aciers laminées à chaud décrites ci-dessus, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 13%, et inférieur ou égal à 17%. Cette déformation à froid est donc conférée à une tôle refroidie après bobinage, déroulée, et usuellement décapée. Cette déformation d'un taux relativement faible conduit à la fabrication d'un produit avec une anisotropie réduite sans incidence sur la mise en œuvre ultérieure. Ainsi, bien que le procédé comporte une étape de déformation à froid, la tôle fabriquée peut être qualifiée de «tôle laminée à chaud » dans la mesure où le taux de déformation à froid est très minime en comparaison des taux usuels de réalisés lors du laminage à froid avant recuit en vue de la fabrication de tôles minces, et dans la mesure où l'épaisseur de la tôle ainsi fabriquée se trouve située dans la gamme usuelle des épaisseurs de tôles laminées à chaud. Mais, lorsque le taux de déformation à froid équivalente est supérieur à 17%, la réduction d'allongement devient telle que le paramètre P (résistance R x allongement à rupture A) ne peut atteindre 50000MPa%. Dans les conditions de l'invention, en dépit de sa très haute résistance, la tôle conserve une bonne capacité d'allongement puisque le produit P de la tôle ainsi obtenue est supérieur ou égal à 50000 MPa%.There are applications where it is desired to obtain even higher resistance characteristics on hot-rolled sheets, at a level greater than or equal to 1400 MPa. The inventors have demonstrated that such characteristics are obtained by giving the hot-rolled steel sheets described above, a cold deformation with an equivalent deformation rate greater than or equal to 13%, and less than or equal at 17%. This cold deformation is therefore imparted to a sheet which is cooled after winding, unwound, and usually pickled. This deformation of a relatively low rate leads to the manufacture of a product with reduced anisotropy without affecting the subsequent processing. Thus, although the process includes a cold deformation step, the sheet produced can be qualified as “hot rolled sheet” insofar as the rate of cold deformation is very minimal in comparison with the usual rates achieved during rolling. cold before annealing for the production of thin sheets, and insofar as the thickness of the sheet thus produced is within the usual range of thicknesses of hot-rolled sheets. However, when the equivalent cold deformation rate is greater than 17%, the reduction in elongation becomes such that the parameter P (resistance R x elongation at break A) cannot reach 50,000 MPa%. Under the conditions of the invention, despite its very high resistance, the sheet retains a good elongation capacity since the product P of the sheet thus obtained is greater than or equal to 50,000 MPa%.
Pour des tôles laminées à froid et recuites, les inventeurs ont également mis en évidence que la structure devait être totalement recristallisée après recuit en vue d'atteindre les propriétés recherchées. Simultanément, lorsque la taillemoyenne de grain est inférieure à 5 microns, la résistance excède 1200 MPa, et le produit P est supérieur à 65000 MPa%. Lorsque la taille moyenne de grain obtenue après recuit est inférieure à 3 microns, la résistance excède 1250 MPa, le produit P étant toujours supérieur à 65000MPa%.For cold-rolled and annealed sheets, the inventors have also demonstrated that the structure must be completely recrystallized after annealing in order to achieve the desired properties. Simultaneously, when the average grain size is less than 5 microns, the resistance exceeds 1200 MPa, and the product P is greater than 65000 MPa%. When the average grain size obtained after annealing is less than 3 microns, the resistance exceeds 1250 MPa, the product P always being greater than 65000MPa%.
Les inventeurs ont également découvert un procédé de fabrication de tôles d'acier laminées à froid et recuites de résistance supérieure à 1250MPa et de produit P supérieur à 60000 MPa%, ceci étant réalisé en approvisionnant des tôles laminées à chaud selon le procédé décrit ci-dessus, puis en effectuant au moins un cycle, chaque cycle étant constitué des étapes suivantes :
- Un laminage à froid en une ou plusieurs passes sucessives
- Un recuit de recristallisation,
- Cold rolling in one or more successive passes
- A recrystallization annealing,
On peut souhaiter obtenir une tôle laminée à froid à résistance encore plus élevée, supérieure à 1400MPa. Les inventeurs ont mis en évidence que de telles propriétés pouvaient être obtenus en approvisionnant une tôle laminée à froid possédant les caractéristiques selon l'invention décrites ci-dessus, ou en approvisionnant une tôle laminée à froid obtenue selon le procédé selon l'invention décrit ci-dessus. Les inventeurs ont découvert que l'application d'une déformation à froid à une telle tôle avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égal à 17%, permet d'atteindre une résistance supérieure à 1400 MPa et un produit P supérieur à 50000 MPa%. Lorsque le taux de déformation à froid équivalente est supérieur à 17%, la réduction d'allongement devient telle que le paramètre P ne peut atteindre 50000MPa%.We may wish to obtain a cold rolled sheet with an even higher resistance, greater than 1400 MPa. The inventors have demonstrated that such properties could be obtained by supplying a cold-rolled sheet having the characteristics according to the invention described above, or by supplying a cold-rolled sheet obtained by the process according to the invention described below. -above. The inventors have discovered that the application of cold deformation to such a sheet with an equivalent deformation rate greater than or equal to 6%, and less than or equal to 17%, makes it possible to achieve a resistance greater than 1400 MPa and a product P greater than 50,000 MPa%. When the equivalent cold deformation rate is greater than 17%, the reduction in elongation becomes such that the parameter P cannot reach 50,000 MPa%.
On va maintenant détailler le rôle particulièrement important joué par le carbone et le manganèse dans le cadre de la présente invention. On se référera pour cela à la
Les inventeurs ont mis en évidence qu'il convient, pour apprécier le comportement mécanique, de considérer non seulement la composition chimique nominale de l'alliage, par exemple sa teneur nominale ou moyenne en carbone et en manganèse, mais également sa teneur locale.The inventors have shown that, in order to assess the mechanical behavior, it is necessary to consider not only the nominal chemical composition of the alloy, for example its nominal or average content. carbon and manganese, but also its local content.
On sait en effet que, lors de l'élaboration de l'acier, la solidification provoque une ségrégation plus ou moins marquée de certains éléments. Ceci provient du fait que la solubilité d'un élément au sein de la phase solide est différente de celle dans la phase liquide. On assistera ainsi fréquemment à la formation de germes solides dont la teneur en soluté est inférieure à la composition nominale, la dernière phase de la solidification faisant intervenir une phase liquide résiduelle enrichie en soluté. Cette structure de solidification primaire peut revêtir différentes morphologies (par exemple dendritique ou équiaxe) et être plus ou moins marquée. Même si ces caractéristiques sont modifiées par le laminage et les traitements thermiques ultérieurs, une analyse de la teneur élémentaire locale indique une fluctuation autour d'une valeur correspondant à la teneur moyenne ou nominale de cet élément.We know that, during the production of steel, solidification causes more or less marked segregation of certain elements. This is because the solubility of an element in the solid phase is different from that in the liquid phase. We will thus frequently witness the formation of solid seeds whose solute content is lower than the nominal composition, the last phase of solidification involving a residual liquid phase enriched in solute. This primary solidification structure can take on different morphologies (for example dendritic or equiaxed) and be more or less marked. Even if these characteristics are modified by rolling and subsequent heat treatments, an analysis of the local elementary content indicates a fluctuation around a value corresponding to the average or nominal content of this element.
Par teneur locale, on entend ici la teneur mesurée au moyen d'un dispositif telle qu'une sonde électronique. Un balayage linéaire ou surfacique au moyen d'un tel dispositif permet d'apprécier la variation de la teneur locale.By local content is meant here the content measured by means of a device such as an electronic probe. A linear or surface scan using such a device makes it possible to appreciate the variation in the local content.
On a ainsi mesuré la variation de la teneur locale d'un alliage Fe-C-Mn dont la composition nominale est: C=0,23%, Mn=24%, Si=0,203%, N=0,001%. Les inventeurs ont mis en évidence une co-ségrégation du carbone et du manganèse, les zones localement enrichies (ou appauvries) en carbone correspondent également aux zones enrichies (respectivement appauvries) en manganèse. Chaque point mesuré ayant une concentration locale en carbone (CL) et en manganèse (MnL) a été reporté au sein de la
Les inventeurs ont recherché les conditions particulières pour obtenir des caractéristiques mécaniques très élevées simultanément avec une grande homogénéité de ces caractéristiques au sein d'une tôle d'acier. Comme on l'a exposé ci-dessus, la combinaison de carbone (0,85%-1,05%) et de manganèse (16-19%) associée aux autres caractéristiques de l'invention conduit à des valeurs de résistance supérieure à 1200MPa et à un produit (résistance x allongement à rupture) supérieur à 60000, voire 65000 MPa%. On observera à la
De plus, les inventeurs ont mis en évidence qu'il convenait d'éviter absolument la formation de martensite lors des opérations de déformation ou d'utilisation des tôles sous peine d'hétérogénéité de caractéristiques mécaniques sur les pièces. Les inventeurs ont déterminé que cette condition est satisfaite lorsque, en tout point des tôles, les teneurs locales en carbone et en manganèse de la tôle sont telles que : %MnL + 9,7 %CL≥21,66. Ainsi, grâce aux caractéristiques de la composition chimique nominale définies par l'invention et à celles définies par les teneurs locales en carbone et en manganèse, on réalise des tôles d'acier austénitique présentant non seulement des caractéristiques mécaniques très élevées mais aussi une très faible dispersion de ces caractéristiques.In addition, the inventors have shown that it was absolutely necessary to avoid the formation of martensite during deformation operations or the use of sheets under penalty of heterogeneity of mechanical characteristics on the parts. The inventors have determined that this condition is satisfied when, at any point on the sheets, the local carbon and manganese contents of the sheet are such that:% Mn L + 9.7% C L ≥21.66. Thus, thanks to the characteristics of the nominal chemical composition defined by the invention and those defined by the local carbon and manganese contents, austenitic steel sheets are produced which not only have very high mechanical characteristics but also a very low dispersion of these characteristics.
Au moyen de ses connaissances, l'homme du métier adaptera les conditions de fabrication de façon à satisfaire cette relation concernant les teneurs locales, en particulier par le biais des conditions de coulée (température de coulée, brassage du métal liquide par forces électromagnétiques) ou des conditions de réchauffage conduisant à une homogénéisation du carbone et du manganèse par diffusion.By means of his knowledge, the person skilled in the art will adapt the manufacturing conditions so as to satisfy this relationship concerning the local contents, in particular by means of the casting conditions (casting temperature, stirring of the liquid metal by electromagnetic forces) or heating conditions leading to homogenization of carbon and manganese by diffusion.
En particulier, on mettra en œuvre avantageusement des procédés de coulée de demi-produit sous forme de brames minces (quelques centimètres d'épaisseur) ou de bandes minces, puisque ces procédés sont généralement associés à une réduction des hétérogénéités de compositions locales.In particular, it will be advantageous to use semi-finished product casting methods in the form of thin slabs (a few centimeters thick) or of thin strips, since these methods are generally associated with a reduction in the heterogeneities of local compositions.
A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.By way of nonlimiting example, the following results will show the advantageous characteristics conferred by the invention.
On a élaboré les aciers de composition nominale suivante (teneurs exprimées en pourcentage pondéral) :
Après coulée, un demi-produit de l'acier I selon l'invention a été réchauffé à une température de 1180°C et laminé à chaud jusqu'à une température supérieure à 900°C pour atteindre une épaisseur de 3 mm. On a observé un temps d'attente de 2 s après laminage en vue de la recristallisation complète, puis on a effectué un refroidissement à une vitesse supérieure à 20°C/s, suivi par un bobinage à température ambiante.After casting, a semi-finished product of steel I according to the invention was reheated to a temperature of 1180 ° C and hot rolled to a temperature above 900 ° C to reach a thickness of 3 mm. A waiting time of 2 s was observed after rolling for complete recrystallization, then cooling was carried out at a speed greater than 20 ° C / s, followed by winding at room temperature.
Les aciers de référence ont été réchauffés à une température supérieure à 1150°C, laminés jusqu'à une température de fin de laminage supérieure à 940°C puis bobinés à une température inférieure à 450°C.The reference steels were reheated to a temperature above 1150 ° C, rolled to a rolling end temperature above 940 ° C and then coiled at a temperature below 450 ° C.
La fraction surfacique recristallisée est de 100% pour tous les aciers, la fraction de carbures précipités est égale à 0%, la taille de grain moyenne comprise entre 9 et 10 microns.The recrystallized surface fraction is 100% for all steels, the fraction of precipitated carbides is equal to 0%, the average grain size between 9 and 10 microns.
Les caractéristiques de traction des tôles laminées à chaud sont les suivantes :
Par rapport à un acier de référence R1, dont les caractéristiques mécaniques sont déjà élevées, l'acier selon l'invention permet d'obtenir une résistance accrue d'environ 200 MPa avec un allongement très comparable.Compared to a reference steel R1, the mechanical properties of which are already high, the steel according to the invention makes it possible to obtain an increased resistance of approximately 200 MPa with very comparable elongation.
Afin d'évaluer l'homogénéité structurale et mécanique lors d'une déformation, on a réalisé des godets emboutis sur lesquels on a examiné la microstructure par diffraction de rayons X. Dans le cas de l'acier de référence R2, on note l'apparition de martensite dès que le taux de déformation dépasse 17%, l'opération d'emboutissage totale conduisant à la rupture. Une analyse indique que la caractéristique : %MnL + 9,7 %CL≥21,66 n'est pas remplie en tout point (
Dans le cas de l'acier de l'invention, on ne met en évidence aucune trace de martensite, une analyse similaire indique que la caractéristique : %MnL + 9,7 %GL≥21,66 est satisfaite-en tout point ce qui permet d'éviter toute apparition de martensite.In the case of the steel of the invention, no trace of martensite is revealed, a similar analysis indicates that the characteristic:% Mn L + 9.7% G L ≥21.66 is satisfied at all points which avoids any appearance of martensite.
La tôle d'acier selon l'invention a été ensuite soumise à une légère déformation à froid par laminage avec une déformation équivalente de 14%. La résistance du produit est alors de 1420 MPa, son allongement à rupture de 42%, soit un produit P= 59640 MPa%. Ce produit à caractéristiques mécaniques exceptionnellement élevées offre de grandes possibilités de déformation ultérieure en raison de sa réserve de plasticité et de sa faible anisotropie.The steel sheet according to the invention was then subjected to a slight cold deformation by rolling with an equivalent deformation of 14%. The resistance of the product is then 1420 MPa, its elongation at break 42%, or a product P = 59640 MPa%. This product with exceptionally high mechanical characteristics offers great possibilities of subsequent deformation due to its reserve of plasticity and its low anisotropy.
Par ailleurs, après l'étape de bobinage, déroulage et décapage, des tôles laminées à chaud d'acier selon l'invention et de l'acier R1 ont été ensuite laminées à froid puis recuites de façon à obtenir une structure totalement recristallisée. La taille moyenne de grain austénitique, la résistance, l'allongement à rupture ont été indiqués dans le tableau ci-dessous.
La tôle d'acier réalisée selon l'invention, dont la taille moyenne de grain est de 4 microns, offre donc une combinaison résistance-allongement particulièrement avantageuse et un accroissement significatif de la résistance par rapport à l'acier de référence. Comme pour les tôles laminées à chaud, ces caractéristiques sont obtenues avec une très grande homogénéité sur le produit, aucune trace de martensite n'est présente après déformation.The steel sheet produced according to the invention, whose average grain size is 4 microns, therefore offers a particularly advantageous resistance-elongation combination and a significant increase in resistance compared to the reference steel. As with hot rolled sheets, these characteristics are obtained with very high homogeneity on the product, no trace of martensite is present after deformation.
Des essais d'expansion équibiaxiale sur poinçon hémisphérique de 75mm de diamètre réalisés sur une tôle laminée à froid et recuite de 1,6mm d'épaisseur selon l'invention, révèlent une hauteur limite d'emboutissage de 33mm, ce qui met en évidence une excellente aptitude à la déformation. Des essais de pliage réalisés sur cette même tôle montrent également que la déformation critique avant apparition de fissures est supérieure à 50%.Equibiaxial expansion tests on a hemispherical punch 75 mm in diameter carried out on a cold-rolled and annealed sheet 1.6 mm thick according to the invention, reveal a limit stamping height of 33 mm, which highlights a excellent deformability. Bending tests carried out on this same sheet also show that the critical deformation before the appearance of cracks is greater than 50%.
La tôle d'acier réalisée selon l'invention a été soumise à une déformation à froid par laminage avec un taux de déformation équivalente de 8% : La résistance du produit est alors de 1420 MPa, son allongement à rupture de 48%, soit un produit P= 68160 MPa%.The steel sheet produced according to the invention was subjected to cold deformation by rolling with an equivalent deformation rate of 8%: The resistance of the product is then 1420 MPa, its elongation at break of 48%, ie a product P = 68 160 MPa%.
Ainsi, en raison de leurs caractéristiques mécaniques particulièrement élevées, de leur comportement mécanique très homogène et de leur stabilité microstructurale, les aciers laminés à chaud ou laminés à froid selon l'invention seront utilisés avec profit pour des applications où l'on recherche une capacité de déformation importante et une très haute résistance. Dans le cas de leur utilisation dans l'industrie automobile, on tirera parti de leurs avantages pour la fabrication de pièces de structure, d'éléments de renfort ou encore de pièces extérieures.Thus, because of their particularly high mechanical characteristics, their very homogeneous mechanical behavior and their microstructural stability, hot-rolled or cold-rolled steels according to the invention will be used with advantage for applications where capacity is sought. significant deformation and very high strength. In the case of their use in the automotive industry, advantage will be taken of their advantages for the manufacture of structural parts, reinforcing elements or even external parts.
Claims (14)
- Hot-rolled sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,200 MPa, the product P of which (strength (MPa) x breaking elongation (%)) is greater than 65,000 MPa%, the nominal chemical composition of which comprises, the contents being expressed by weight:0.85% ≤ C ≤ 1.05%16% ≤ Mn ≤ 19%Si ≤ 2%Al ≤ 0.050%S ≤ 0.030%P ≤ 0.050%N ≤ 0.1%and optionally, one or more elements chosen fromCr ≤ 1%Mo ≤ 1.50%Ni ≤ 1%Cu ≤ 5%Ti ≤ 0.50%Nb ≤ 0.50%V ≤ 0.50%,the remainder of the composition being constituted by iron and unavoidable impurities resulting from the smelting, the recrystallised surface fraction of said steel being equal to 100%, the surface fraction of precipitated carbides of said steel being equal to 0%, the average grain size of said steel being less than or equal to 10 microns, and at any point of said sheet, the local content, of said steel, of carbon CL and the local content of manganese MnL, expressed by weight, being such that %MnL + 9.7%CL ≥ 21.66.
- Cold-rolled and annealed sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,250 MPa, the product P (strength (MPa) x breaking elongation (%)) is greater than 65,000 MPa%, of nominal chemical composition according to claim 1, the recrystallised surface fraction of the steel being equal to 100%, the average grain size of said steel being less than 3 microns and, at any point of said sheet, the local content of said steel of carbon CL and the local content of manganese MnL, expressed by weight, being such that %MnL + 9.7%CL ≥ 21.66.
- Steel sheet according to any of the claims 1 to 2, characterised in that the nominal content of silicon of said steel is less than or equal to 0.6%.
- Steel sheet according to any of the claims 1 to 3, characterised in that the nominal content of nitrogen of said steel is less than or equal to 0.050%.
- Steel sheet according to any of the claims 1 to 4, characterised in that the nominal content of aluminium of said steel is less than or equal to 0.030%.
- Steel sheet according to any of the claims 1 to 5, characterised in that the nominal content of phosphorus of said steel is less than or equal to 0.040%.
- Production method of a hot-rolled sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,400 MPa, the product P of which (strength (MPa) x breaking elongation (%)) is greater than 50,000 MPa%, according to which a steel is smelted, the nominal composition of which comprises, the contents being expressed by weight:0.85% ≤ C ≤ 1.05%16% ≤ Mn ≤ 19%Si ≤ 2%Al ≤ 0.050%S ≤ 0.030%P ≤ 0.050%N ≤ 0.1%and optionally, one or more elements chosen fromCr ≤ 1%Mo ≤ 1.50%Ni ≤ 1%Cu ≤ 5%Ti ≤ 0.50%Nb ≤ 0.50%V ≤ 0.50%,the remainder of the composition being constituted by iron and unavoidable impurities resulting from the smelting,- casting of a semi-finished product from this steel is implemented,- said semi-finished product of said steel composition is brought to a temperature between 1,100 and 1,300°C,- said semi-finished product is rolled until at a temperature at the end of rolling greater than or equal to 900°C,- if necessary a waiting time is observed such that the recrystallised surface fraction of the steel is equal to 100%,- said sheet is cooled at a speed greater than or equal to 20°C/s,- said sheet is coiled at a temperature less than or equal to 400°C,- there is applied, on said hot-rolled sheet, cooled after coiling and unrolled, a cold-deformation with a deformation rate equivalent to, greater than or equal to 13% and less than or equal to 17%.
- Production method of a cold-rolled and annealed sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,250 MPa, the product P of which (strength (MPa) x breaking elongation (%)) is greater than 60,000 MPa%, characterised in that:there is supplied a cooled and coiled hot-rolled sheet obtained by the method according to claim 7,at least one cycle is effected, each cycle consisting of:- cold-rolling said sheet in one or more successive passes,- effecting a recrystallisation annealing,the average austenitic grain size before the last cycle of cold-rolling followed by recrystallisation annealing being less than 15 microns.
- Production method of a cold-rolled sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,400 MPa, the product P of which (strength (MPa) x breaking elongation (%)) is greater than 50,000 MPa%, characterised in that:- there is provided a cooled and coiled hot-rolled sheet obtained by the method according to claim 7,- at least one cycle is effected, each cycle consisting of:- cold-rolling said sheet in one or more successive passes,- effecting a recrystallisation annealing, the average austenitic grain size before the last cold-rolling cycle followed by a recrystallisation annealing being less than 15 microns,- there is effected, after the final recrystallisation annealing, a cold-deformation with a deformation rate equivalent to, greater than or equal to 6%, and less than or equal to 17%.
- Production method of a cold-rolled sheet made of iron-carbon-manganese austenitic steel, the strength of which is greater than 1,400 MPa, the product P of which (strength (MPa) x breaking elongation (%)) is greater than 50,000 MPa%, characterised in that a cold-rolled and annealed sheet according to any of the claims 2 to 6 is supplied and in that a cold-deformation of said sheet is effected with a deformation rate equivalent to, greater than or equal to 6%, and less than or equal to 17%.
- Production method of an austenitic steel sheet according to any of the claims 7 to 10, characterised in that the casting or reheating conditions of said semi-finished product, such as the casting temperature of said semi-finished product, the agitation of the liquid metal by electromagnetic forces, the reheating conditions leading to homogenisation of the carbon and of the manganese by diffusion, are chosen so that, at any point of said sheet, the local content of carbon CL and the local content of manganese MnL, expressed by weight, are such that: %MnL + 9.7%CL ≥ 21.66.
- Production method according to any of the claims 7 to 11, characterised in that the casting of said semi-finished product is effected in the form of casting of slabs or of thin strips between counter-rotating steel cylinders.
- Use of an austenitic steel sheet according to any of the claims 1 to 6, for production of structural parts, reinforcing elements or even exterior parts, in the automobile field.
- Use of an austenitic steel sheet produced by means of a method according to any of the claims 7 to 12 for production of structural pieces, reinforcing elements or even exterior parts, in the automobile field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05814950T PL1819461T3 (en) | 2004-11-24 | 2005-11-04 | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0412477A FR2878257B1 (en) | 2004-11-24 | 2004-11-24 | PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY |
PCT/FR2005/002740 WO2006056670A2 (en) | 2004-11-24 | 2005-11-04 | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1819461A2 EP1819461A2 (en) | 2007-08-22 |
EP1819461B1 true EP1819461B1 (en) | 2020-04-15 |
Family
ID=34978651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05814950.1A Active EP1819461B1 (en) | 2004-11-24 | 2005-11-04 | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity |
Country Status (16)
Country | Link |
---|---|
US (1) | US7794552B2 (en) |
EP (1) | EP1819461B1 (en) |
JP (2) | JP5142101B2 (en) |
KR (3) | KR20070091300A (en) |
CN (1) | CN101090982B (en) |
BR (1) | BRPI0517890B1 (en) |
CA (1) | CA2587858C (en) |
ES (1) | ES2791675T3 (en) |
FR (1) | FR2878257B1 (en) |
HU (1) | HUE050022T2 (en) |
MX (1) | MX2007006240A (en) |
PL (1) | PL1819461T3 (en) |
RU (1) | RU2366727C2 (en) |
UA (1) | UA90873C2 (en) |
WO (1) | WO2006056670A2 (en) |
ZA (1) | ZA200703890B (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100742823B1 (en) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | High manganese steel plate with excellent surface quality and plating property, plated steel sheet using the same and manufacturing method thereof |
EP1878811A1 (en) * | 2006-07-11 | 2008-01-16 | ARCELOR France | Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced |
US20100253006A1 (en) * | 2007-11-30 | 2010-10-07 | Nippon Piston Ring Co., Ltd | Steel products for piston rings and piston rings |
DE102008005605A1 (en) * | 2008-01-22 | 2009-07-23 | Thyssenkrupp Steel Ag | Process for coating a 6-30% by weight Mn-containing hot or cold rolled flat steel product with a metallic protective layer |
JP5338257B2 (en) * | 2008-10-30 | 2013-11-13 | Jfeスチール株式会社 | High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same |
DE102008056844A1 (en) * | 2008-11-12 | 2010-06-02 | Voestalpine Stahl Gmbh | Manganese steel strip and method of making the same |
KR101090822B1 (en) * | 2009-04-14 | 2011-12-08 | 기아자동차주식회사 | High strength twip steel sheets and the manufacturing method thereof |
CN102439188A (en) * | 2009-04-28 | 2012-05-02 | 现代制铁株式会社 | High manganese nitrogen-containing steel sheet having high strength and high ductility and method for manufacturing same |
US8182963B2 (en) * | 2009-07-10 | 2012-05-22 | GM Global Technology Operations LLC | Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates |
DE102009053260B4 (en) * | 2009-11-05 | 2011-09-01 | Salzgitter Flachstahl Gmbh | Process for coating steel strips and coated steel strip |
WO2012052626A1 (en) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Hot-rolled or cold-rolled steel plate, method for manufacturing same, and use thereof in the automotive industry |
IT1403129B1 (en) * | 2010-12-07 | 2013-10-04 | Ct Sviluppo Materiali Spa | PROCEDURE FOR THE PRODUCTION OF HIGH MANGANESE STEEL WITH MECHANICAL RESISTANCE AND HIGH FORMABILITY, AND STEEL SO OBTAINABLE. |
DE102011000089A1 (en) * | 2011-01-11 | 2012-07-12 | Thyssenkrupp Steel Europe Ag | Method for producing a hot rolled flat steel product |
JP6078554B2 (en) | 2011-12-27 | 2017-02-08 | ポスコPosco | Austenitic steel material excellent in cryogenic toughness in machinability and weld heat affected zone and method for producing the same |
WO2013100613A1 (en) * | 2011-12-28 | 2013-07-04 | 주식회사 포스코 | Wear resistant austenitic steel having superior machinability and ductility method for producing same |
CN108950424A (en) * | 2011-12-28 | 2018-12-07 | Posco公司 | There is the abrasive austenic steel and its production method of excellent mechanical processability and toughness in welding heat affected zone |
KR101449111B1 (en) * | 2012-08-09 | 2014-10-08 | 주식회사 포스코 | Steel wire rod having excellent strength and ductility and method for manufacturing the same |
WO2014104706A1 (en) * | 2012-12-26 | 2014-07-03 | 주식회사 포스코 | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
JP6055343B2 (en) * | 2013-03-13 | 2016-12-27 | 株式会社神戸製鋼所 | Nonmagnetic steel excellent in low-temperature bending workability and method for producing the same |
US20140261918A1 (en) | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
JP6154768B2 (en) * | 2013-03-21 | 2017-06-28 | 株式会社神戸製鋼所 | Nonmagnetic steel with excellent low-temperature bending workability |
JP6185865B2 (en) * | 2013-03-21 | 2017-08-23 | 株式会社神戸製鋼所 | Nonmagnetic steel excellent in low-temperature bending workability and method for producing the same |
CN103484777B (en) * | 2013-08-29 | 2015-06-03 | 日月重工股份有限公司 | Austenitic manganese steel and preparation method of same |
KR101543916B1 (en) * | 2013-12-25 | 2015-08-11 | 주식회사 포스코 | Steels for low temperature services having superior deformed surface quality and method for production thereof |
KR101714922B1 (en) * | 2015-12-18 | 2017-03-10 | 주식회사 포스코 | Wear resistnat steel plate having excellent toughness and internal properties and method for manufacturing thereof |
KR101889187B1 (en) * | 2015-12-23 | 2018-08-16 | 주식회사 포스코 | Nonmagnetic steel having superior hot workability and method for manufacturing the same |
KR101747034B1 (en) | 2016-04-28 | 2017-06-14 | 주식회사 포스코 | Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same |
WO2017203315A1 (en) | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
WO2017203311A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
WO2017203312A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts |
CN109154050B (en) | 2016-05-24 | 2021-04-06 | 安赛乐米塔尔公司 | Method for manufacturing TWIP steel sheet with austenitic matrix |
WO2017203313A1 (en) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Method for the manufacture of a recovered steel sheet having an austenitic matrix |
KR101940874B1 (en) * | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same |
KR101917473B1 (en) * | 2016-12-23 | 2018-11-09 | 주식회사 포스코 | Austenitic steel having excellent wear resistance and toughness and method for manufacturing thereof |
KR101920973B1 (en) * | 2016-12-23 | 2018-11-21 | 주식회사 포스코 | Austenitic steel having excellent surface properties and method for manufacturing thereof |
WO2018220412A1 (en) * | 2017-06-01 | 2018-12-06 | Arcelormittal | Method for producing high-strength steel parts with improved ductility, and parts obtained by said method |
KR102020381B1 (en) * | 2017-12-22 | 2019-09-10 | 주식회사 포스코 | Steel having excellent wear resistnat properties and method for manufacturing the same |
KR102020386B1 (en) * | 2017-12-24 | 2019-09-10 | 주식회사 포스코 | High manganese austenitic steel having high strength and method for manufacturing the same |
CN109487047B (en) * | 2018-12-21 | 2020-08-11 | 昆明理工大学 | A method for improving the properties of alloyed high manganese steel castings |
CN112342352B (en) * | 2020-10-22 | 2022-07-01 | 西安工程大学 | A kind of corrosion-resistant high manganese austenitic steel plate and preparation method thereof |
KR20250004907A (en) * | 2022-06-02 | 2025-01-08 | 아르셀러미탈 | High manganese hot rolled steel and its manufacturing method |
CN117551937B (en) * | 2023-11-17 | 2024-07-19 | 齐鲁工业大学(山东省科学院) | A high-strength and high-plasticity Fe-Mn-Al-Nb medium-manganese steel and its preparation method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2378994A (en) * | 1942-07-22 | 1945-06-26 | Electro Metallurg Co | Cold rolled manganese steels |
FR2068283A6 (en) * | 1970-09-30 | 1971-08-20 | Abex Corp | Austenitic manganese steel for welding steel joints |
JPS58126956A (en) * | 1982-01-22 | 1983-07-28 | Nippon Steel Corp | High-strength thin steel plate with excellent press workability |
JPS6058781B2 (en) * | 1982-02-12 | 1985-12-21 | 株式会社クボタ | Non-magnetic alloy for continuous casting electromagnetic stirring roll |
JP2533935B2 (en) * | 1989-06-10 | 1996-09-11 | 株式会社神戸製鋼所 | Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness |
JPH0717949B2 (en) * | 1990-10-05 | 1995-03-01 | 株式会社神戸製鋼所 | Method for producing high Mn non-magnetic steel excellent in local deformability |
JPH04247851A (en) * | 1991-01-22 | 1992-09-03 | Kobe Steel Ltd | High mn austenitic steel |
JPH04259325A (en) * | 1991-02-13 | 1992-09-14 | Sumitomo Metal Ind Ltd | Production of hot rolled high strength steel sheet excellent in workability |
BR9205689A (en) * | 1991-12-30 | 1994-05-24 | Po Hang Iron & Steel | High manganese austenitic steel with better conformability, resistance and weldability, and the corresponding manufacturing process |
JP4247851B2 (en) | 1999-01-12 | 2009-04-02 | 石川島運搬機械株式会社 | How to use a climbing crane |
JP4143218B2 (en) | 1999-04-23 | 2008-09-03 | 株式会社日本触媒 | Method for preventing polymerization in thin film evaporator and thin film evaporator |
FR2796083B1 (en) * | 1999-07-07 | 2001-08-31 | Usinor | PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED |
DE10060948C2 (en) * | 2000-12-06 | 2003-07-31 | Thyssenkrupp Stahl Ag | Process for producing a hot strip from a steel with a high manganese content |
FR2829775B1 (en) * | 2001-09-20 | 2003-12-26 | Usinor | PROCESS FOR THE MANUFACTURE OF ROLLED AND WELDED TUBES COMPRISING A FINAL STRETCHING OR HYDROFORMING STAGE AND WELDED TUBE THUS OBTAINED |
KR100742823B1 (en) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | High manganese steel plate with excellent surface quality and plating property, plated steel sheet using the same and manufacturing method thereof |
KR100851158B1 (en) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It |
-
2004
- 2004-11-24 FR FR0412477A patent/FR2878257B1/en not_active Expired - Lifetime
-
2005
- 2005-11-04 CN CN2005800426319A patent/CN101090982B/en active Active
- 2005-11-04 US US11/720,018 patent/US7794552B2/en active Active
- 2005-11-04 UA UAA200707030A patent/UA90873C2/en unknown
- 2005-11-04 ES ES05814950T patent/ES2791675T3/en active Active
- 2005-11-04 RU RU2007123594/02A patent/RU2366727C2/en active
- 2005-11-04 BR BRPI0517890-8A patent/BRPI0517890B1/en active IP Right Grant
- 2005-11-04 KR KR1020077014265A patent/KR20070091300A/en active Search and Examination
- 2005-11-04 HU HUE05814950A patent/HUE050022T2/en unknown
- 2005-11-04 KR KR1020117031699A patent/KR101275895B1/en active IP Right Grant
- 2005-11-04 WO PCT/FR2005/002740 patent/WO2006056670A2/en active Application Filing
- 2005-11-04 KR KR1020107012508A patent/KR20100084570A/en active Search and Examination
- 2005-11-04 JP JP2007542029A patent/JP5142101B2/en active Active
- 2005-11-04 PL PL05814950T patent/PL1819461T3/en unknown
- 2005-11-04 MX MX2007006240A patent/MX2007006240A/en active IP Right Grant
- 2005-11-04 EP EP05814950.1A patent/EP1819461B1/en active Active
- 2005-11-04 CA CA2587858A patent/CA2587858C/en active Active
-
2007
- 2007-05-14 ZA ZA200700380A patent/ZA200703890B/en unknown
-
2011
- 2011-10-28 JP JP2011251070A patent/JP2012072499A/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
HUE050022T2 (en) | 2020-11-30 |
ZA200703890B (en) | 2008-05-28 |
KR20120014070A (en) | 2012-02-15 |
PL1819461T3 (en) | 2020-10-05 |
MX2007006240A (en) | 2007-10-08 |
KR20100084570A (en) | 2010-07-26 |
US20080035248A1 (en) | 2008-02-14 |
RU2007123594A (en) | 2008-12-27 |
BRPI0517890A (en) | 2008-10-21 |
FR2878257A1 (en) | 2006-05-26 |
JP2012072499A (en) | 2012-04-12 |
WO2006056670A3 (en) | 2007-07-05 |
KR20070091300A (en) | 2007-09-10 |
RU2366727C2 (en) | 2009-09-10 |
FR2878257B1 (en) | 2007-01-12 |
US7794552B2 (en) | 2010-09-14 |
CN101090982B (en) | 2010-09-08 |
WO2006056670A2 (en) | 2006-06-01 |
ES2791675T3 (en) | 2020-11-05 |
JP5142101B2 (en) | 2013-02-13 |
CA2587858C (en) | 2011-10-25 |
BRPI0517890B1 (en) | 2014-12-23 |
EP1819461A2 (en) | 2007-08-22 |
CN101090982A (en) | 2007-12-19 |
JP2008520830A (en) | 2008-06-19 |
CA2587858A1 (en) | 2006-06-01 |
UA90873C2 (en) | 2010-06-10 |
KR101275895B1 (en) | 2013-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP1649069B1 (en) | Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced | |
EP1913169B1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
EP2630269B1 (en) | Hot or cold rolled steel sheet, its manufacturing method and its use in the automotive industry | |
CA2686940C (en) | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced | |
EP2155916B2 (en) | Low density steel with good stamping capability | |
EP2245203B1 (en) | Austenitic stainless steel sheet and method for obtaining this sheet | |
WO2013179115A1 (en) | Low-density hot- or cold-rolled steel, method for implementing same and use thereof | |
WO2003025240A1 (en) | Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube | |
WO2004104254A1 (en) | High-resistant sheet metal which is cold rolled and aluminized in dual phase steel for an anti-implosion belt for a television and method for the manufacture thereof | |
EP1587963B1 (en) | Ultrahigh strength hot-rolled steel and method of producing bands | |
FR2833617A1 (en) | PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS | |
EP1099769B1 (en) | Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing | |
EP1558769B1 (en) | Method for making hardenable steel plates by firing, resulting steel plates | |
EP2257652B1 (en) | Method of manufacturing sheets of austenitic stainless steel with high mechanical properties | |
FR2864108A1 (en) | Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080107 |
|
RAX | Requested extension states of the european patent have changed |
Extension state: YU Payment date: 20080107 Extension state: MK Payment date: 20080107 Extension state: HR Payment date: 20080107 Extension state: BA Payment date: 20080107 Extension state: AL Payment date: 20080107 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081119 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL FRANCE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARCELORMITTAL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602005056768 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: B22D0011060000 Ipc: C22C0038040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/04 20060101AFI20191021BHEP Ipc: B22D 11/06 20060101ALI20191021BHEP Ipc: C21D 9/46 20060101ALI20191021BHEP Ipc: C21D 8/02 20060101ALI20191021BHEP Ipc: C22C 38/02 20060101ALI20191021BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191120 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602005056768 Country of ref document: DE Owner name: ARCELORMITTAL, LU Free format text: FORMER OWNER: ARCELOR FRANCE, LA-PLAINE-SAINT-DENIS, FR |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005056768 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1257364 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 34588 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200716 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200815 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2791675 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E050022 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005056768 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210118 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1257364 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200415 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230427 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20241022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20241114 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241022 Year of fee payment: 20 Ref country code: FI Payment date: 20241022 Year of fee payment: 20 Ref country code: PL Payment date: 20241025 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241023 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241023 Year of fee payment: 20 Ref country code: FR Payment date: 20241022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20241023 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20241104 Year of fee payment: 20 Ref country code: SK Payment date: 20241025 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 20 Ref country code: ES Payment date: 20241202 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241022 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20241028 Year of fee payment: 20 |