[go: up one dir, main page]

JP5257239B2 - High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same - Google Patents

High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same Download PDF

Info

Publication number
JP5257239B2
JP5257239B2 JP2009124661A JP2009124661A JP5257239B2 JP 5257239 B2 JP5257239 B2 JP 5257239B2 JP 2009124661 A JP2009124661 A JP 2009124661A JP 2009124661 A JP2009124661 A JP 2009124661A JP 5257239 B2 JP5257239 B2 JP 5257239B2
Authority
JP
Japan
Prior art keywords
less
toughness
specific gravity
ductility
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009124661A
Other languages
Japanese (ja)
Other versions
JP2010270377A (en
Inventor
正春 岡
展弘 藤田
学 高橋
英明 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009124661A priority Critical patent/JP5257239B2/en
Publication of JP2010270377A publication Critical patent/JP2010270377A/en
Application granted granted Critical
Publication of JP5257239B2 publication Critical patent/JP5257239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車部品などに用いられる延性、加工性及び靭性に優れた高強度低比重鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength low specific gravity steel plate excellent in ductility, workability and toughness used for automobile parts and the like, and a method for producing the same.

近年、環境問題への対応のため炭酸ガス排出低減や燃費低減を目的に自動車の軽量化が望まれている。自動車の軽量化のためには鋼材の高強度化が有効な手段であるが、部材の剛性によって板厚の下限が制限されている場合には、高強度化しても板厚を低減することができず、軽量化が困難であった。   In recent years, in order to cope with environmental problems, it has been desired to reduce the weight of automobiles for the purpose of reducing carbon dioxide emissions and reducing fuel consumption. Increasing the strength of steel is an effective means for reducing the weight of automobiles, but if the lower limit of the plate thickness is limited by the rigidity of the member, the plate thickness can be reduced even if the strength is increased. It was not possible to reduce the weight.

そこで、本発明者らの一部は、鉄にアルミを多量に添加して比重を小さくした高Al含有鋼板を提案した(例えば、特許文献1〜5、参照)。これらは、高Al含有鋼板の、(イ)製造性が劣ること(特に圧延時に割れが発生すること)、(ロ)延性が低いこと、という問題を解決したものである。更に、本発明者らは、高Al含有鋼の延性、熱間加工性及び冷間加工性を高めるため、鋳造後の凝固組織を微細な等軸晶組織とする方法を提案した(例えば、特許文献6、参照)。   Therefore, some of the present inventors have proposed a high Al-containing steel sheet in which the specific gravity is reduced by adding a large amount of aluminum to iron (see, for example, Patent Documents 1 to 5). These solve the problems of the high Al-containing steel sheet that (a) the productivity is inferior (particularly, cracking occurs during rolling) and (b) the ductility is low. Furthermore, the present inventors have proposed a method for forming a solidified structure after casting into a fine equiaxed crystal structure in order to improve the ductility, hot workability and cold workability of the high Al content steel (for example, patents). Reference 6,).

特開2005−15909号公報JP 2005-15909 A 特開2005−29889号公報JP 2005-29889 A 特開2005−273004号公報JP 2005-273004 A 特開2006−176843号公報JP 2006-176843 A 特開2006−176844号公報JP 2006-176844 A 特開2008−261023号公報JP 2008-261023 A

最近では、延性及び加工性に優れた高Al含有鋼板を工業規模で生産することが可能となりつつある。しかし、高Al含有鋼板は、同じ強度の一般的な自動車用鋼板に比べて靭性が低く、用途に制限があった。したがって、靭性の改善は、高Al含有鋼板の自動車部品への適用範囲を拡大するために、重要な課題である。   Recently, it is becoming possible to produce a high Al-containing steel sheet excellent in ductility and workability on an industrial scale. However, the high Al-containing steel sheet has lower toughness than a general automotive steel sheet having the same strength, and has limited applications. Therefore, improvement of toughness is an important issue in order to expand the application range of high Al-containing steel sheets to automobile parts.

特に、シャルピー衝撃試験の延性脆性遷移温度(vTrs)が−60℃以下になると、多くの自動車用構造部材への適用が可能となる。本発明は、このような実情に鑑み、Alを添加した低比重鋼板の靭性を改善し、延性、加工性及び靭性に優れた高強度低比重鋼板、及びその製造方法を提供するものである。   In particular, when the ductile brittle transition temperature (vTrs) of the Charpy impact test is −60 ° C. or lower, application to many structural members for automobiles becomes possible. In view of such circumstances, the present invention improves the toughness of a low specific gravity steel sheet to which Al is added, and provides a high strength low specific gravity steel sheet excellent in ductility, workability and toughness, and a method for producing the same.

本発明者らは、高Al含有鋼の靭性を高めるため、凝固組織の等軸晶化に加え、靭性を低下させる元素について検討を行った。その結果、鋳造組織を微細な等軸晶組織とした高Al含有鋼の靭性はAl含有量とSi含有量の影響を大きく受けること、Si量を低減し、かつAl量とSi量との積を制限することにより、靭性を大幅に改善できることなどを見出した。本発明の要旨は、以下のとおりである。   In order to increase the toughness of the high Al-containing steel, the present inventors have examined elements that lower the toughness in addition to equiaxed crystallization of the solidified structure. As a result, the toughness of high Al content steel with a fine equiaxed crystal structure in the cast structure is greatly affected by Al content and Si content, Si content is reduced, and the product of Al content and Si content is reduced. It has been found that toughness can be significantly improved by limiting the above. The gist of the present invention is as follows.

(1) 質量%で、
C :0.100%超、0.500%以下、
Si:0.20%未満、
Mn:0.20%超、3.00%以下、
Al:3.0〜10.0%、
N :0.0030〜0.0100%、
Ti:0.100%超、1.000%以下
を含有し、
P :0.0200%以下、
S :0.0100%以下
に制限し、C及びTiの含有量(質量%)が、
0.200<C+Ti≦1.500
を満足し、Al及びSiの含有量(質量%)の積が、
Al×Si≦0.8
を満足し、残部がFe及び不可避的不純物からなり、比重が7.5未満であることを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板。
(1) In mass%,
C: more than 0.100%, 0.500% or less,
Si: less than 0.20%,
Mn: more than 0.20%, 3.00% or less,
Al: 3.0 to 10.0%,
N: 0.0030 to 0.0100%,
Ti: more than 0.100%, containing 1.000% or less,
P: 0.0200% or less,
S: limited to 0.0100% or less, the content of C and Ti (% by mass)
0.200 <C + Ti ≦ 1.500
And the product of the content (mass%) of Al and Si is
Al × Si ≦ 0.8
A high-strength, low-specific gravity steel sheet excellent in ductility, workability and toughness, characterized in that the balance consists of Fe and inevitable impurities, and the specific gravity is less than 7.5.

(2) 更に、質量%で、
Nb:0.300%以下、
V :0.50%以下
の一方又は双方を含有することを特徴とする上記(1)に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
(2) Furthermore, in mass%,
Nb: 0.300% or less,
V: A high strength low specific gravity steel plate excellent in ductility, workability and toughness as described in (1) above, containing one or both of 0.50% or less.

(3) 更に、質量%で、
Cr:3.00%以下、
Mo:3.00%以下、
Ni:5.00%以下、
Cu:3.00%以下
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
(3) Furthermore, in mass%,
Cr: 3.00% or less,
Mo: 3.00% or less,
Ni: 5.00% or less,
Cu: A high strength low specific gravity steel sheet excellent in ductility, workability and toughness as described in (1) or (2) above, containing one or more of 3.00% or less.

(4) 更に、質量%で、
B:0.0100%以下
を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
(4) Furthermore, in mass%,
B: The high strength low specific gravity steel sheet excellent in ductility, workability and toughness according to any one of the above (1) to (3), characterized by containing 0.0100% or less.

(5) 更に、質量%で、
Ca:0.0100%以下、
Mg:0.0100%以下、
Zr:0.0500%以下、
REM:0.0500%以下
の1種又は2種以上を含有することを特徴とする上記(1)〜(4)の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
(5) Furthermore, in mass%,
Ca: 0.0100% or less,
Mg: 0.0100% or less,
Zr: 0.0500% or less,
REM: 0.0500% or less of one type or two or more types, (1) to (4) above, high strength and low excellent in ductility, workability and toughness Specific gravity steel plate.

(6) 引張強度が440MPa以上であり、伸びが25%以上であることを特徴とする上記(1)〜(5)の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。 (6) High strength excellent in ductility, workability and toughness according to any one of (1) to (5) above, wherein the tensile strength is 440 MPa or more and the elongation is 25% or more Low specific gravity steel plate.

(7) 上記(1)〜(6)の何れか1項に記載の高強度低比重鋼板を製造する方法であって、上記(1)〜(5)の何れか1項に記載の成分からなる鋼を、溶鋼過熱度を50℃以下として鋳造し、得られた鋼片を熱間圧延することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。 (7) A method for producing the high-strength low specific gravity steel sheet according to any one of (1) to (6) above, wherein the component according to any one of (1) to (5) is used. A method for producing a high strength low specific gravity steel sheet excellent in ductility, workability and toughness, characterized in that the resulting steel is cast at a molten steel superheat degree of 50 ° C. or less and the obtained steel slab is hot rolled.

(8) 上記(7)に記載の方法で製造した鋼片を1100℃以上に加熱し、仕上げ圧延温度を800℃以上として熱間圧延し、600〜750℃で巻き取ることを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。 (8) Ductility characterized by heating the steel slab produced by the method described in (7) above to 1100 ° C or higher, hot rolling at a finish rolling temperature of 800 ° C or higher, and winding at 600 to 750 ° C. The manufacturing method of the high strength low specific gravity steel plate excellent in workability and toughness.

(9) 上記(7)又は(8)に記載の方法で製造した鋼板を後、700〜1100℃で焼鈍することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。 (9) Manufacture of a high strength low specific gravity steel sheet excellent in ductility, workability and toughness, characterized by annealing the steel sheet manufactured by the method described in (7) or (8) above at 700 to 1100 ° C. Method.

(10) 上記(7)〜(9)の何れか1項に記載の方法で製造した鋼板を酸洗し、冷延率を20〜95%とする600〜1100℃で焼鈍した後、20℃/s以上の冷却速度で200℃以下まで冷却することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。 (10) After pickling the steel plate manufactured by the method of any one of said (7)-(9), annealing at 600-1100 degreeC which makes a cold rolling rate 20-95%, 20 degreeC The manufacturing method of the high strength low specific gravity steel plate excellent in ductility, workability, and toughness characterized by cooling to 200 degrees C or less with the cooling rate of / s or more.

本発明によれば、製造性が良好で、延性、加工性及び靭性に優れた高強度低比重鋼板を得ることができ、産業上の貢献が極めて顕著である。   According to the present invention, a high-strength low specific gravity steel plate having good manufacturability and excellent ductility, workability and toughness can be obtained, and the industrial contribution is extremely remarkable.

C+Ti量(質量%)と等軸晶率の関係を示す。The relationship between the amount of C + Ti (mass%) and the equiaxed crystal ratio is shown.

Al含有量(質量%)とSi含有量(質量%)の積と脆性延性破面遷移温度vTrs(℃)の関係を示す。The relationship between the product of Al content (mass%) and Si content (mass%) and the brittle ductile fracture surface transition temperature vTrs (° C.) is shown.

本発明者らは、Fe−0.09%Si−1.30%Mn−0.0091%P−0.0021%S−4%Al−0.006%Nを基本成分とし、CとTiの添加量を種々に変えた鋼を実験室で溶解し、鋳造し、凝固組織を観察して等軸晶率を測定した。鋳造時の溶鋼過熱度は50℃以下とした。ここで、溶鋼過熱度[℃]とは、成分組成から求められる液相線温度[℃]から、鋳造時の溶鋼温度[℃]を減じた値、即ち、
溶鋼過熱度[℃]=溶鋼温度[℃]−液相線温度[℃]
である。
The inventors of the present invention have Fe-0.09% Si-1.30% Mn-0.0091% P-0.0021% S-4% Al-0.006% N as basic components, and C and Ti. Steels with various addition amounts were melted and cast in the laboratory, and the equiaxed crystal ratio was measured by observing the solidified structure. The degree of superheated molten steel during casting was set to 50 ° C. or less. Here, the molten steel superheat degree [° C.] is a value obtained by subtracting the molten steel temperature [° C.] during casting from the liquidus temperature [° C.] determined from the component composition,
Molten steel superheat degree [° C.] = Molten steel temperature [° C.] − Liquidus temperature [° C.]
It is.

Cの含有量[質量%]とTiの含有量[質量%]の合計、C+Ti量[質量%]と等軸晶率の関係を図1に示す。図1より、C+Tiが0.200%超、1.500%以下の範囲のとき等軸晶率が80%以上になり、特に、C+Tiが0.5〜1.0%以下の範囲のとき等軸晶率が100%になることがわかる。ただし、C又はTiのどちらか一方が0.1%以下であると等軸晶率は大幅に低下する。また、C+Tiが1.5%を超えると鋳片に割れが発生しやすくなることを知見した。したがって、C+Tiを0.2超〜1.5%以下の範囲に制限した。   FIG. 1 shows the relationship between the C content [% by mass] and the Ti content [% by mass], and the relationship between the C + Ti content [% by mass] and the equiaxed crystal ratio. From FIG. 1, when C + Ti is in the range of more than 0.200% and 1.500% or less, the equiaxed crystal ratio is 80% or more, especially when C + Ti is in the range of 0.5 to 1.0% or less. It can be seen that the axial ratio is 100%. However, if either one of C and Ti is 0.1% or less, the equiaxed crystal ratio is significantly reduced. Further, it has been found that when C + Ti exceeds 1.5%, cracks are likely to occur in the slab. Therefore, C + Ti is limited to a range of more than 0.2 to 1.5%.

次に、本発明者らは、0.11%C−0.12%Si−1.5%Mn−0.0086%P−0.0057%S−0.4%Ti−0.0065%Nを基本成分とし、Al及びSiの添加量を変えた種々の鋼について、実験室で熱延板を製造し、靭性を評価した。熱延板の引張強度は約500MPa、板厚は3.6mmである。なお、靭性はJIS Z 2242に準拠して、脆性延性破面遷移温度vTrs[℃]によって評価した。シャルピー衝撃試験は、厚さ2.5mmのサブサイズVノッチ試験片を用いて行った。   Next, the present inventors have made 0.11% C-0.12% Si-1.5% Mn-0.0086% P-0.0057% S-0.4% Ti-0.0065% N As a basic component, hot rolled sheets were manufactured in a laboratory for various steels with different amounts of Al and Si added, and toughness was evaluated. The hot-rolled sheet has a tensile strength of about 500 MPa and a sheet thickness of 3.6 mm. The toughness was evaluated based on the brittle ductile fracture surface transition temperature vTrs [° C.] in accordance with JIS Z 2242. The Charpy impact test was performed using a sub-size V-notch test piece having a thickness of 2.5 mm.

結果を図2に示す。図2は、脆性延性破面遷移温度vTrs[℃]を、Al含有量とSi含有量の積、Al×Siで整理したものである。図2に示したように、Al含有量[質量%]×Si含有量[質量%]を低くするほど脆性延性破面温度が低下し、靭性が向上することがわかった。特にvTrs[℃]を−60℃以下にするためには、Al含有量[質量%]×Si含有量[質量%]の上限を0.8以下にすることが必要である。   The results are shown in FIG. FIG. 2 shows the brittle ductile fracture surface transition temperature vTrs [° C.] arranged by the product of Al content and Si content, Al × Si. As shown in FIG. 2, it was found that the brittle ductile fracture surface temperature decreased and the toughness improved as the Al content [mass%] × Si content [mass%] was decreased. In particular, in order to set vTrs [° C.] to −60 ° C. or less, it is necessary to set the upper limit of Al content [mass%] × Si content [mass%] to 0.8 or less.

次に、本発明における靭性に優れた高強度低比重鋼板の成分限定理由について説明する。   Next, the reasons for limiting the components of the high-strength low-specific gravity steel sheet having excellent toughness in the present invention will be described.

C:Cは、凝固組織を微細な等軸晶組織とするために必須の元素であり、0.100%超の添加が必要である。一方、0.500%を超えるCの添加によって、靭性や溶接性が劣化する。したがって、C含有量は、0.100%超〜0.500%以下とした。   C: C is an essential element for making the solidified structure a fine equiaxed crystal structure, and needs to be added in an amount exceeding 0.100%. On the other hand, addition of C exceeding 0.500% deteriorates toughness and weldability. Therefore, the C content is set to more than 0.100% to 0.500% or less.

Ti:Tiも、凝固組織を微細な等軸晶組織とするために必須の元素であり、0.100%超の添加が必要である。一方、1.000%を超えるTiの添加は、靭性を劣化させる。したがって、Ti含有量は0.100%超〜1.000%以下とした。より微細な等軸晶組織を得るためには、Ti含有量の下限を0.300%とすることが好ましい。   Ti: Ti is also an essential element for making the solidified structure into a fine equiaxed crystal structure, and needs to be added in an amount exceeding 0.100%. On the other hand, addition of Ti exceeding 1.000% degrades toughness. Therefore, the Ti content is set to more than 0.100% to 1.000% or less. In order to obtain a finer equiaxed crystal structure, the lower limit of the Ti content is preferably set to 0.300%.

なお、上述のように、CとTiの添加量の合計、即ち、C+Tiを、0.200%超、1.500%以下とすることにより、凝固組織を微細な等軸晶組織とすることができる。   As described above, the total amount of addition of C and Ti, that is, C + Ti is made more than 0.200% and not more than 1.500%, so that the solidified structure can be made into a fine equiaxed crystal structure. it can.

Al:Alは、低比重化を達成するための必須の元素である。Alの含有量が3.0%未満では、低比重化の効果が不十分であり、比重を7.5未満とすることができない。一方、Alの含有量が10.0%を超えると金属間化合物の析出が顕著となり延性、熱間加工性及び冷間加工性が劣化する。したがって、Alの含有量を3.0〜10.0%とした。より良好な延性を得るためには、Alの含有量の上限を6.0%とすることが好ましい。   Al: Al is an essential element for achieving low specific gravity. If the Al content is less than 3.0%, the effect of lowering the specific gravity is insufficient, and the specific gravity cannot be less than 7.5. On the other hand, if the Al content exceeds 10.0%, precipitation of intermetallic compounds becomes remarkable, and ductility, hot workability, and cold workability deteriorate. Therefore, the content of Al is set to 3.0 to 10.0%. In order to obtain better ductility, the upper limit of the Al content is preferably 6.0%.

Si:Siは、高Al含有鋼の靭性を劣化させる元素であり、低減させることが望ましい。Siの含有量の上限は、現状の精錬技術と製造コストを考慮し、0.2%未満に制限した。Siの含有量の下限値は、規定しないが、現状の精錬技術と製造コストから、0.01%以上のSiを含有することが好ましい。   Si: Si is an element that degrades the toughness of high Al-containing steel, and it is desirable to reduce it. The upper limit of the Si content is limited to less than 0.2% in consideration of the current refining technology and manufacturing costs. Although the lower limit of the Si content is not specified, it is preferable to contain 0.01% or more of Si from the current refining technology and manufacturing cost.

なお、上述のように、AlとSiの添加量の積、即ち、Al×Siを、0.8以下とすることにより、極めて良好な靭性を得ることができる。Al含有量[質量%]×Si含有量[質量%]は、可能な限り低くすることが望ましく、下限値は規定しないが、Siの下限値と同様、精錬技術と製造コストから、0.03以上にすることが好ましい。   As described above, by setting the product of the addition amounts of Al and Si, that is, Al × Si, to 0.8 or less, extremely good toughness can be obtained. The Al content [mass%] × Si content [mass%] is desirably as low as possible, and the lower limit is not specified. However, like the lower limit of Si, 0.03 It is preferable to make it above.

Mn:Mnは、MnSを形成して固溶Sによる粒界脆化を抑制するために有効な元素である。しかし、Mn量が0.20%以下ではその効果が発現されず、3.00%を超えて過剰に添加すると靭性が劣化する。したがって、Mn含有量は0.20%超、3.00%以下とした。   Mn: Mn is an element effective for forming MnS and suppressing grain boundary embrittlement due to solute S. However, if the amount of Mn is 0.20% or less, the effect is not exhibited, and if it exceeds 3.00% and added excessively, the toughness deteriorates. Therefore, the Mn content is set to more than 0.20% and not more than 3.00%.

P:Pは、粒界に偏析して粒界強度を低下させ、靱性を劣化させる不純物元素であり、低減させることが望ましい。Pの含有量の上限は、現状の精錬技術と製造コストを考慮し、0.0200%に制限した。   P: P is an impurity element that segregates at the grain boundary to lower the grain boundary strength and degrade the toughness, and is desirably reduced. The upper limit of the P content is limited to 0.0200% in consideration of the current refining technology and manufacturing costs.

S:Sは、熱間加工性及び靭性を劣化させる不純物元素であり、低減させることが望ましい。Sの含有量の上限は、現状の精錬技術と製造コストを考慮し、0.0100%に制限した。   S: S is an impurity element that degrades hot workability and toughness, and is desirably reduced. The upper limit of the S content is limited to 0.0100% in consideration of the current refining technology and manufacturing costs.

N:Nは、Tiの窒化物及び炭窒化物、即ち、TiN及びTi(C、N)を形成し凝固組織を微細な等軸晶組織とするために必須の元素である。この効果は、N量が0.0030%未満では発現されず、0.0100%を超えるNを添加すると、粗大なTiNの生成により靭性が劣化する。したがって、N含有量は0.0030〜0.0100%とした。   N: N is an essential element for forming Ti nitrides and carbonitrides, that is, TiN and Ti (C, N), and making the solidified structure a fine equiaxed crystal structure. This effect is not exhibited when the N content is less than 0.0030%, and when N exceeding 0.0100% is added, the toughness deteriorates due to the formation of coarse TiN. Therefore, the N content is set to 0.0030 to 0.0100%.

以上が本発明の基本成分であり、通常、上記以外はFe及び不可避的不純物からなるが、所望の強度レベルやその他の必要特性に応じて、Nb、V、Cr、Ni、Mo、Cu、B、Ca、Mg、Zr、REMの1種又は2種以上を添加しても良い。   The above are the basic components of the present invention, which are usually composed of Fe and unavoidable impurities other than the above, but depending on the desired strength level and other necessary characteristics, Nb, V, Cr, Ni, Mo, Cu, B , Ca, Mg, Zr, or REM may be added.

Nb:Nbは微細な炭窒化物を形成する元素であり、結晶粒の粗大化の抑制に有効である。靭性を高めるには、0.005%以上のNbを添加することが好ましい。しかし、Nbを過剰に添加すると析出物が粗大になり、靭性が劣化することがある。したがって、Nbの含有量を0.300%以下にすることが好ましい。   Nb: Nb is an element that forms fine carbonitrides and is effective in suppressing the coarsening of crystal grains. In order to increase toughness, it is preferable to add 0.005% or more of Nb. However, when Nb is added excessively, the precipitate becomes coarse and the toughness may be deteriorated. Therefore, the Nb content is preferably 0.300% or less.

V:Vは、Nbと同様、微細な炭窒化物を形成する元素である。結晶粒の粗大化を抑制し、靭性を高めるには、0.01%以上のVを添加することが好ましい。V含有量が0.50%を超えると、靭性が劣化することがあるため、V量の上限は0.50%以下が好ましい。   V: V, like Nb, is an element that forms fine carbonitrides. In order to suppress coarsening of crystal grains and increase toughness, it is preferable to add 0.01% or more of V. If the V content exceeds 0.50%, the toughness may deteriorate, so the upper limit of the V content is preferably 0.50% or less.

Cr、Mo、Ni、Cu:Cr、Mo、Ni、Cuは、延性及び靭性を向上させる有効な元素である。しかし、Cr、Mo、Cuの含有量は、それぞれ、3.00%、Niの含有量は5.00%を超えると、強度の上昇によって、靭性を損なうことがある。したがって、Cr量の上限は3.00%以下、Mo量の上限は3.00%以下、Ni量の上限は5.00%以下、Cu量の上限は3.00%以下が好ましい。また、延性及び靭性を向上させるには、Cr量は0.05以上、Mo量は0.05%以上、Ni量は0.05%以上、Cu量は0.10%以上が好ましい。   Cr, Mo, Ni, Cu: Cr, Mo, Ni, Cu are effective elements that improve ductility and toughness. However, if the Cr, Mo, and Cu contents are each 3.00% and the Ni content exceeds 5.00%, the toughness may be impaired due to the increase in strength. Therefore, the upper limit of the Cr amount is preferably 3.00% or less, the upper limit of the Mo amount is 3.00% or less, the upper limit of the Ni amount is 5.00% or less, and the upper limit of the Cu amount is preferably 3.00% or less. In order to improve ductility and toughness, the Cr content is preferably 0.05 or more, the Mo content is 0.05% or more, the Ni content is 0.05% or more, and the Cu content is preferably 0.10% or more.

B:Bは粒界に偏析し、P及びSの粒界偏析を抑制する元素である。しかし、B量が0.0100%を超えると、析出物を生じて、熱間加工性を損なうことがある。したがって、Bの含有量を0.0100%以下とする。なお、粒界の強化によって、延性、靭性及び熱間加工性を向上させるためには、0.0003%以上のBの添加が好ましい。   B: B is an element that segregates at the grain boundaries and suppresses the grain boundary segregation of P and S. However, when the amount of B exceeds 0.0100%, precipitates are formed, and hot workability may be impaired. Therefore, the B content is set to 0.0100% or less. In order to improve ductility, toughness, and hot workability by strengthening grain boundaries, 0.0003% or more of B is preferably added.

Ca、Mg、Zr、REM:Ca、Mg、Zr、REMは、硫化物の形態を制御し、Sによる熱間加工性や靭性の劣化の抑制に有効な元素である。しかし、過剰に添加しても効果が飽和するため、Caは0.0100%以下、Mgは0.0100%以下、Zrは0.0500%以下、REMは0.0500%以下を添加することが好ましい。靭性を向上させるには、Caは0.0010%以上、Mgは0.0005%以上、Zrは0.0010%以上、REMは0.0010%以上を添加することが好ましい。   Ca, Mg, Zr, REM: Ca, Mg, Zr, and REM are elements that control the form of sulfide and are effective in suppressing hot workability and toughness deterioration due to S. However, since the effect is saturated even if it is added in excess, Ca may be added at 0.0100% or less, Mg at 0.0100% or less, Zr at 0.0500% or less, and REM at 0.0500% or less. preferable. In order to improve toughness, it is preferable to add 0.0010% or more of Ca, 0.0005% or more of Mg, 0.0010% or more of Zr, and 0.0010% or more of REM.

次に、本発明の高強度低比重鋼板の特性について説明する。   Next, the characteristics of the high strength and low specific gravity steel sheet of the present invention will be described.

比重は、7.5以上では自動車用鋼板として通常使用されている鋼板の比重(鉄の比重7.86と同程度)と比較して軽量化効果が小さいので7.5未満とする。鋼板の比重は、成分組成によって決まるものであり、軽量化に寄与するAlの含有量を増加させることが好ましい。   The specific gravity is less than 7.5 when the specific gravity is 7.5 or more, because the effect of weight reduction is small compared to the specific gravity of steel plates normally used as automotive steel plates (same as iron specific gravity of 7.86). The specific gravity of the steel sheet is determined by the component composition, and it is preferable to increase the content of Al that contributes to weight reduction.

強度及び延性は自動車用鋼板として必要な特性を考慮すると、引張強度440MPa以上、伸び25%以上であることが好ましい。   The strength and ductility are preferably a tensile strength of 440 MPa or more and an elongation of 25% or more in consideration of characteristics necessary for an automobile steel plate.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

本発明においては、上記の成分からなる鋼を、溶鋼過熱度を50℃以下として鋳造し、得られた鋼片を熱間圧延する。更に、酸洗、冷間圧延及び焼鈍を施しても良い。   In the present invention, steel composed of the above components is cast at a molten steel superheat degree of 50 ° C. or less, and the obtained steel slab is hot-rolled. Further, pickling, cold rolling and annealing may be performed.

溶鋼過熱温度が50℃を超えると、液相中で晶出したTiN又はTi(C、N)が凝集・粗大化してしまうため、フェライトの凝固核として有効に機能せず、本発明の成分範囲内であっても、凝固組織は粗大な柱状晶組織となってしまう。したがって、溶鋼過熱度は50℃以下とする。溶鋼過熱度の下限は規定しないが、通常は、10℃以上である。   If the molten steel overheating temperature exceeds 50 ° C, TiN or Ti (C, N) crystallized in the liquid phase aggregates and coarsens, so it does not function effectively as a solidification nucleus of ferrite, and the component range of the present invention Even within, the solidified structure becomes a coarse columnar crystal structure. Therefore, the superheat degree of the molten steel is set to 50 ° C. or less. Although the lower limit of the molten steel superheat degree is not specified, it is usually 10 ° C. or higher.

熱間圧延の加熱温度は、1100℃未満であると炭窒化物が十分に固溶せずに必要な強度や延性が得られないことがある。したがって、加熱温度の下限は1100℃とすることが好ましい。加熱温度の上限は特に規定しないが、1250℃を超えると粒径が大きくなり、熱間加工性が低下することがあるため、1250℃以下とすることが好ましい。   When the heating temperature of the hot rolling is less than 1100 ° C., the carbonitride is not sufficiently dissolved, and the required strength and ductility may not be obtained. Therefore, the lower limit of the heating temperature is preferably 1100 ° C. The upper limit of the heating temperature is not particularly defined, but if it exceeds 1250 ° C., the particle size becomes large and the hot workability may be lowered, so that it is preferably 1250 ° C. or less.

仕上げ圧延温度は、800℃未満であると、熱間加工性が劣化し、熱延中に割れが生じることがある。したがって、仕上げ圧延温度の下限は800℃とすることが好ましい。仕上げ温度の上限は特に規定しないが、1000℃を超えると粒径が大きくなり、冷間圧延時に割れを生じることがあるため、1000℃以下とすることが好ましい。   When the finish rolling temperature is less than 800 ° C., the hot workability deteriorates and cracks may occur during hot rolling. Therefore, the lower limit of the finish rolling temperature is preferably 800 ° C. The upper limit of the finishing temperature is not particularly specified, but if it exceeds 1000 ° C, the particle size becomes large, and cracking may occur during cold rolling.

巻き取り温度は、600℃未満であるとフェライトの回復及び再結晶が不十分になり、加工性を損なうことがある。したがって、巻き取り温度の下限は600℃とすることが好ましい。一方、巻き取り温度が750℃を超えると再結晶したフェライトの結晶粒が粗大化し、延性、熱間加工性及び冷間加工性が低下することがある。したがって、巻き取り温度の上限は750℃とすることが好ましい。   When the coiling temperature is less than 600 ° C., the recovery and recrystallization of ferrite become insufficient, and the workability may be impaired. Therefore, the lower limit of the winding temperature is preferably 600 ° C. On the other hand, when the coiling temperature exceeds 750 ° C., the recrystallized ferrite crystal grains become coarse, and ductility, hot workability, and cold workability may deteriorate. Therefore, the upper limit of the winding temperature is preferably 750 ° C.

熱延板の延性を向上させるために、熱間圧延後、焼鈍することが好ましい。熱延板の焼鈍温度は、析出物の形態を制御し、延性を向上させるために、700℃以上とすることが好ましい。また、熱延板の焼鈍温度が1100℃を超えると結晶粒が粗大化し、粒界脆化が助長されることがある。したがって、熱延板の焼鈍温度の上限は1100℃以下とすることが好ましい。   In order to improve the ductility of the hot-rolled sheet, it is preferable to anneal after hot rolling. The annealing temperature of the hot-rolled sheet is preferably 700 ° C. or higher in order to control the form of the precipitate and improve the ductility. Moreover, when the annealing temperature of a hot-rolled sheet exceeds 1100 degreeC, a crystal grain may coarsen and grain boundary embrittlement may be promoted. Therefore, the upper limit of the annealing temperature of the hot-rolled sheet is preferably 1100 ° C. or less.

熱延鋼板に冷間圧延及び焼鈍を施し、冷延鋼板を製造しても良い。以下に、冷延鋼板の好ましい製造条件について述べる。   Cold rolling and annealing may be performed on the hot-rolled steel sheet to produce a cold-rolled steel sheet. Below, the preferable manufacturing conditions of a cold-rolled steel plate are described.

冷間圧延の冷延率は、生産性の観点から20%以上が好ましい。また、焼鈍時の再結晶を促進するには、冷延率を50%以上とすることが好ましい。また、冷延率が95%を超えると冷間圧延時に割れが生じる場合がある。したがって、冷延率の上限は95%以下とすることが好ましい。   The cold rolling rate of cold rolling is preferably 20% or more from the viewpoint of productivity. In order to promote recrystallization during annealing, the cold rolling rate is preferably 50% or more. If the cold rolling rate exceeds 95%, cracks may occur during cold rolling. Therefore, the upper limit of the cold rolling rate is preferably 95% or less.

冷間圧延後の焼鈍温度は、再結晶及び回復を十分に進行させるため、600℃以上とすることが好ましい。一方、冷間圧延後の焼鈍温度が1100℃を超えると、結晶粒が粗大化し粒界脆化が助長されることがある。したがって、冷延板の焼鈍温度の上限は1100℃以下とすることが好ましい。   The annealing temperature after cold rolling is preferably set to 600 ° C. or higher in order to sufficiently advance recrystallization and recovery. On the other hand, when the annealing temperature after cold rolling exceeds 1100 ° C., the crystal grains are coarsened and grain boundary embrittlement may be promoted. Therefore, the upper limit of the annealing temperature of the cold-rolled sheet is preferably 1100 ° C. or less.

冷延鋼板の焼鈍後の冷却速度は、20℃/s以上、冷却停止温度は200℃以下が好ましい。これは、冷却中の粒成長による結晶粒の粗大化や、粒界へPなどの不純物元素の偏析に起因する粒界脆化を防止し、延性を向上させるためである。冷却速度の上限は規定しないが、500℃/sを超えることは技術的に困難である。また、冷却停止温度の下限は冷媒の温度に依存し、室温未満とすることは困難である。   The cooling rate after annealing of the cold-rolled steel sheet is preferably 20 ° C./s or more, and the cooling stop temperature is preferably 200 ° C. or less. This is to prevent grain coarsening due to grain growth during cooling and grain boundary embrittlement due to segregation of impurity elements such as P to the grain boundaries, thereby improving ductility. Although the upper limit of the cooling rate is not specified, it is technically difficult to exceed 500 ° C./s. Further, the lower limit of the cooling stop temperature depends on the temperature of the refrigerant, and it is difficult to make it lower than room temperature.

以下、実施例により本発明の効果を更に具体的に説明する。
[実施例1]
表1に示す組成を有する鋼を、表1に示す溶鋼過熱度で鋳造した。得られた鋼片の凝固組織を観察し、等軸晶率を測定した。鋼片を表2に示す条件で熱間圧延し、熱間圧延後に熱延板の割れ発生状況を観察した。熱延板の割れ発生状況は、割れが発生していないものを「○」、微小な耳割れが発生したものを「△」、一部に大きな割れが観察されたものを「×」と評価した。更に、熱延後の板の比重、機械的特性、靭性を評価した。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
[Example 1]
Steel having the composition shown in Table 1 was cast at the molten steel superheat degree shown in Table 1. The solidified structure of the obtained steel piece was observed and the equiaxed crystal ratio was measured. The steel slab was hot-rolled under the conditions shown in Table 2, and the crack occurrence state of the hot-rolled sheet was observed after hot rolling. The crack occurrence of hot-rolled sheets is evaluated as “◯” when no cracks occur, “△” when micro-ear cracks occur, and “X” when large cracks are observed. did. Furthermore, the specific gravity, mechanical properties, and toughness of the plate after hot rolling were evaluated.

比重の測定はピクノメータを用いて行った。引張試験は、JIS Z 2241に準拠して行った。靭性の評価はJIS Z 2242に準拠してシャルピー衝撃試験を行い、脆性延性破面遷移温度(vTrs[℃])によって評価した。試験片はJIS Z 2202に適合した2.5mm厚さのサブサイズVノッチ試験片(鋼板の板厚が2.5mmより大きい場合には鋼板の上下面を研削して作製)を用いた。表2に、比重、降伏応力、引張強度、伸び、脆性延性破面遷移温度、割れ発生状況を示す。   The specific gravity was measured using a pycnometer. The tensile test was conducted in accordance with JIS Z 2241. The toughness was evaluated by a Charpy impact test in accordance with JIS Z 2242 and by the brittle ductile fracture surface transition temperature (vTrs [° C.]). The test piece used was a sub-size V-notch test piece having a thickness of 2.5 mm conforming to JIS Z 2202 (produced by grinding the upper and lower surfaces of the steel sheet when the steel sheet thickness is greater than 2.5 mm). Table 2 shows specific gravity, yield stress, tensile strength, elongation, brittle ductile fracture surface transition temperature, and crack occurrence.

熱延No.1〜11は本発明例であり、比重<7.5を満たしており、引張強度は440MPa以上であり、延性に関しては25%以上の高い伸びが得られており、脆性延性破面遷移温度は−60℃以下であり、熱延板の割れも発生していない。また、製造条件のみが異なる、熱延No.1と熱延No.9〜11を比較すると、好ましい製造条件により、より良好な延性及び靭性が得られることがわかる。   Hot rolling No. 1 to 11 are examples of the present invention, satisfying specific gravity <7.5, tensile strength is 440 MPa or more, high elongation of 25% or more is obtained with respect to ductility, and brittle ductile fracture surface transition temperature is It is -60 degrees C or less, and the crack of a hot-rolled sheet does not generate | occur | produce. Moreover, hot rolling No. 1 differs only in manufacturing conditions. No. 1 and hot rolled No. 1 When 9 to 11 are compared, it can be seen that better ductility and toughness can be obtained under preferable production conditions.

一方、成分が本発明の範囲外である鋼I〜Mを用いた熱延No.12〜16では何れも伸びが20%以下であり、脆性延性破面遷移温度は20℃以上であり、延性及び靭性に劣ることがわかる。また、これらの比較例では熱延板の割れも発生しており、熱間加工性にも劣る。
[実施例2]
On the other hand, hot rolling No. using steel IM whose components are outside the scope of the present invention. In any of 12 to 16, the elongation is 20% or less, the brittle ductile fracture surface transition temperature is 20 ° C. or more, and it is understood that the ductility and toughness are inferior. Moreover, in these comparative examples, the hot-rolled sheet is also cracked and inferior in hot workability.
[Example 2]

表2に示した条件で製造した熱延板に、更に、表3に示す条件で焼鈍を施した。これらの熱延焼鈍板についても実施例1と同様に、比重、機械的特性、靭性を評価した。熱延焼鈍板の比重、降伏応力、引張強度、伸び、脆性延性破面遷移温度、割れ発生状況を表3に示す。   The hot-rolled sheet manufactured under the conditions shown in Table 2 was further annealed under the conditions shown in Table 3. These hot-rolled annealed plates were also evaluated for specific gravity, mechanical properties, and toughness in the same manner as in Example 1. Table 3 shows the specific gravity, yield stress, tensile strength, elongation, brittle ductile fracture surface transition temperature, and crack generation status of the hot-rolled annealed sheet.

焼鈍No.1〜11は本発明例であり、比重<7.5を満たしており、引張強度は440MPa以上であり、延性に関しては25%以上の高い伸びが得られており、脆性延性破面遷移温度は−60℃以下である。また、同じ組成を有し、製造条件のみ異なる焼鈍No.1と焼鈍No.9〜11を比較すると、好ましい製造条件によって、延性及び靭性が更に向上することがわかる。   Annealing No. 1 to 11 are examples of the present invention, satisfying specific gravity <7.5, tensile strength is 440 MPa or more, high elongation of 25% or more is obtained with respect to ductility, and brittle ductile fracture surface transition temperature is It is -60 degrees C or less. Moreover, annealing No. which has the same composition and differs only in manufacturing conditions. 1 and annealing no. Comparing 9 to 11, it can be seen that the ductility and toughness are further improved by the preferable production conditions.

一方、成分が本発明の範囲外である鋼I〜Mを用いた焼鈍No.12〜16では何れも伸びが20%以下であり、脆性延性破面遷移温度は20℃以上であり、延性及び靭性に劣ることがわかる。
[実施例3]
On the other hand, annealing No. 1 using steels I to M whose components are outside the scope of the present invention. In any of 12 to 16, the elongation is 20% or less, the brittle ductile fracture surface transition temperature is 20 ° C. or more, and it is understood that the ductility and toughness are inferior.
[Example 3]

表1に示す組成を有する鋼を、表2に示す条件で熱間圧延した熱延板について、表4に示す条件で冷間圧延を行い、冷延板の割れ発生状況を観察した。冷延板の割れ発生状況は、割れが発生していないものを「○」、微小な耳割れが発生したものを「△」、一部に大きな割れが観察されたものを「×」と評価した。更に、冷延板に焼鈍を行い、冷延焼鈍板についても実施例1と同様に、比重、機械的特性、靭性を評価した。冷延焼鈍板の比重、降伏応力、引張強度、伸び、脆性延性破面遷移温度、割れ発生状況を表4に示す。   About the hot-rolled sheet which hot-rolled the steel which has the composition shown in Table 1 on the conditions shown in Table 2, it cold-rolled on the conditions shown in Table 4, and observed the crack generation condition of the cold-rolled sheet. As for the occurrence of cracks in cold-rolled sheets, “○” indicates that no crack has occurred, “△” indicates that a minute ear crack has occurred, and “×” indicates that some large cracks have been observed. did. Further, the cold-rolled sheet was annealed, and the specific gravity, mechanical properties, and toughness of the cold-rolled sheet were also evaluated in the same manner as in Example 1. Table 4 shows the specific gravity, yield stress, tensile strength, elongation, brittle ductile fracture surface transition temperature, and crack generation status of the cold-rolled annealed sheet.

冷延No.1〜11では比重<7.5を満たしており、引張強度は440MPa以上であり、延性に関しては25%以上の高い伸びが得られており、脆性延性破面遷移温度は−60℃以下であり、冷延板の割れも発生していない。また、同じ組成を有し、製造条件のみ異なる冷延No.1と冷延No.9〜11を比較すると、好ましい製造条件を満足することによって、より良好な延性及び靭性を得られることがわかる。   Cold rolled No. 1 to 11 satisfy specific gravity <7.5, tensile strength is 440 MPa or more, high elongation of 25% or more is obtained with respect to ductility, and brittle ductile fracture surface transition temperature is −60 ° C. or less. The cold-rolled plate is not cracked. Moreover, it has cold rolling No. which has the same composition and differs only in manufacturing conditions. 1 and cold rolled No. 1 When comparing 9 to 11, it can be seen that better ductility and toughness can be obtained by satisfying preferable production conditions.

一方、成分が本発明の範囲外である鋼F〜Jを用いた冷延No.12〜16では何れも伸びが20%以下であり、脆性延性破面遷移温度は20℃以上であり、延性及び靭性に劣ることがわかる。また、これらは冷延板の割れも発生しており、冷間加工性にも劣ることがわかる。

Figure 0005257239
Figure 0005257239
Figure 0005257239
Figure 0005257239
On the other hand, cold rolling No. using steel FJ whose component is outside the scope of the present invention. In any of 12 to 16, the elongation is 20% or less, the brittle ductile fracture surface transition temperature is 20 ° C. or more, and it is understood that the ductility and toughness are inferior. Moreover, the crack of the cold-rolled board has also generate | occur | produced and it turns out that it is inferior to cold workability.
Figure 0005257239
Figure 0005257239
Figure 0005257239
Figure 0005257239

本発明は、製造性が良好で、延性、加工性及び靭性に優れた高強度低比重鋼板を提供することができ、自動車の軽量化の資する鋼板を提供でき、産業上の利用可能性が極めて高い。   INDUSTRIAL APPLICABILITY The present invention can provide a high-strength, low-specific gravity steel plate that has good manufacturability and is excellent in ductility, workability, and toughness, can provide a steel plate that contributes to weight reduction of an automobile, and has extremely high industrial applicability. high.

Claims (10)

質量%で、
C :0.100%超、0.500%以下、
Si:0.20%未満、
Mn:0.20%超、3.00%以下、
Al:3.0〜10.0%、
N :0.0030〜0.0100%、
Ti:0.100%超、1.000%以下
を含有し、
P :0.0200%以下、
S :0.0100%以下
に制限し、C及びTiの含有量(質量%)が、
0.200<C+Ti≦1.500
を満足し、Al及びSiの含有量(質量%)の積が、
Al×Si≦0.8
を満足し、残部がFe及び不可避的不純物からなり、比重が7.5未満であることを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板。
% By mass
C: more than 0.100%, 0.500% or less,
Si: less than 0.20%,
Mn: more than 0.20%, 3.00% or less,
Al: 3.0 to 10.0%,
N: 0.0030 to 0.0100%,
Ti: more than 0.100%, containing 1.000% or less,
P: 0.0200% or less,
S: limited to 0.0100% or less, the content of C and Ti (% by mass)
0.200 <C + Ti ≦ 1.500
And the product of the content (mass%) of Al and Si is
Al × Si ≦ 0.8
A high-strength, low-specific gravity steel sheet excellent in ductility, workability and toughness, characterized in that the balance consists of Fe and inevitable impurities, and the specific gravity is less than 7.5.
更に、質量%で、
Nb:0.300%以下、
V :0.50%以下
の一方又は双方を含有することを特徴とする請求項1に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
Furthermore, in mass%,
Nb: 0.300% or less,
The high strength low specific gravity steel sheet excellent in ductility, workability, and toughness according to claim 1, wherein one or both of V: 0.50% or less are contained.
更に、質量%で、
Cr:3.00%以下、
Mo:3.00%以下、
Ni:5.00%以下、
Cu:3.00%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
Furthermore, in mass%,
Cr: 3.00% or less,
Mo: 3.00% or less,
Ni: 5.00% or less,
Cu: 3.00% or less of 1 type, or 2 or more types, The high strength low specific gravity steel plate excellent in ductility, workability, and toughness of Claim 1 or 2 characterized by the above-mentioned.
更に、質量%で、
B:0.0100%以下
を含有することを特徴とする請求項1〜3の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
Furthermore, in mass%,
B: 0.0100% or less is contained, The high strength low specific gravity steel plate excellent in ductility, workability, and toughness of any one of Claims 1-3 characterized by the above-mentioned.
更に、質量%で、
Ca:0.0100%以下、
Mg:0.0100%以下、
Zr:0.0500%以下、
REM:0.0500%以下
の1種又は2種以上を含有することを特徴とする請求項1〜4の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。
Furthermore, in mass%,
Ca: 0.0100% or less,
Mg: 0.0100% or less,
Zr: 0.0500% or less,
REM: 0.0500% or less of 1 type or 2 types or more, The high strength low specific gravity steel plate excellent in ductility, workability, and toughness of any one of Claims 1-4 characterized by the above-mentioned.
引張強度が440MPa以上であり、伸びが25%以上であることを特徴とする請求項1〜5の何れか1項に記載の延性、加工性及び靭性に優れた高強度低比重鋼板。   The high strength and low specific gravity steel sheet having excellent ductility, workability and toughness according to any one of claims 1 to 5, wherein the tensile strength is 440 MPa or more and the elongation is 25% or more. 請求項1〜6の何れか1項に記載の高強度低比重鋼板を製造する方法であって、請求項1〜5の何れか1項に記載の成分からなる鋼を、溶鋼過熱度を50℃以下として鋳造し、得られた鋼片を熱間圧延することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。   A method for producing the high strength and low specific gravity steel sheet according to any one of claims 1 to 6, wherein the steel comprising the component according to any one of claims 1 to 5 has a molten steel superheat degree of 50. A method for producing a high-strength, low-specific gravity steel sheet excellent in ductility, workability and toughness, characterized by casting at a temperature of ℃ or less and hot rolling the obtained steel slab. 請求項7に記載の方法で製造した鋼片を1100℃以上に加熱し、仕上げ圧延温度を800℃以上として熱間圧延し、600〜750℃で巻き取ることを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。   The steel slab produced by the method according to claim 7 is heated to 1100 ° C. or higher, hot rolled at a finish rolling temperature of 800 ° C. or higher, and wound at 600 to 750 ° C. A method for producing a high-strength, low-specific gravity steel sheet with excellent toughness. 請求項7又は8に記載の方法で製造した鋼板を後、700〜1100℃で焼鈍することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。   A method for producing a high strength and low specific gravity steel sheet excellent in ductility, workability and toughness, characterized by annealing the steel sheet produced by the method according to claim 7 or 8 at 700 to 1100 ° C. 請求項7〜9の何れか1項に記載の方法で製造した鋼板を酸洗し、冷延率を20〜95%とする冷間圧延を行い、600〜1100℃で焼鈍した後、20℃/s以上の冷却速度で200℃以下まで冷却することを特徴とする延性、加工性及び靭性に優れた高強度低比重鋼板の製造方法。   After pickling the steel plate manufactured by the method of any one of Claims 7-9, performing cold rolling which makes a cold rolling rate 20-95%, annealing at 600-1100 degreeC, then 20 degreeC The manufacturing method of the high strength low specific gravity steel plate excellent in ductility, workability, and toughness characterized by cooling to 200 degrees C or less with the cooling rate of / s or more.
JP2009124661A 2009-05-22 2009-05-22 High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same Active JP5257239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124661A JP5257239B2 (en) 2009-05-22 2009-05-22 High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124661A JP5257239B2 (en) 2009-05-22 2009-05-22 High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010270377A JP2010270377A (en) 2010-12-02
JP5257239B2 true JP5257239B2 (en) 2013-08-07

Family

ID=43418634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124661A Active JP5257239B2 (en) 2009-05-22 2009-05-22 High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5257239B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2895636B1 (en) * 2012-09-14 2016-07-06 Tata Steel Nederland Technology B.V. High strength and low density particle-reinforced steel with improved e-modulus and method for producing said steel
ES2705349T3 (en) * 2013-05-01 2019-03-22 Nippon Steel & Sumitomo Metal Corp Galvanized steel sheet and method to produce it
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
KR101560896B1 (en) 2013-12-05 2015-10-15 주식회사 포스코 Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same
JP6481270B2 (en) * 2014-07-03 2019-03-13 新日鐵住金株式会社 Resistance spot welding method and welded joint of high strength low specific gravity steel plate
CN108950392B (en) * 2018-07-19 2020-10-30 首钢集团有限公司 Ultrahigh-ductility low-density steel and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235077B2 (en) * 2003-06-05 2009-03-04 新日本製鐵株式会社 High strength low specific gravity steel plate for automobile and its manufacturing method
JP4797807B2 (en) * 2006-05-30 2011-10-19 Jfeスチール株式会社 High-rigidity low-density steel plate and manufacturing method thereof
JP5042694B2 (en) * 2007-04-13 2012-10-03 新日本製鐵株式会社 High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same
EP1995336A1 (en) * 2007-05-16 2008-11-26 ArcelorMittal France Low-density steel with good suitability for stamping
KR100985298B1 (en) * 2008-05-27 2010-10-04 주식회사 포스코 Low specific gravity high strength hot rolled sheet, cold rolled sheet, galvanized sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2010270377A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP5699226B2 (en) Austenitic lightweight high-strength steel sheet excellent in yield ratio and ductility and manufacturing method thereof
US9394579B2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP6285462B2 (en) 780 MPa class cold rolled duplex steel and method for producing the same
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
JP5042694B2 (en) High strength low specific gravity steel plate excellent in ductility and workability and method for producing the same
JP2017507242A (en) High strength low specific gravity steel plate and method for producing the same
WO2011122031A1 (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
WO2013099136A1 (en) High-strength hot-rolled steel sheet and manufacturing method therefor
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP2019522723A (en) Cold-rolled and annealed steel sheet, process for its production, and use of such steel for producing automotive parts
KR20160078840A (en) High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
JP5257239B2 (en) High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same
JP5094888B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4248430B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
TWI502077B (en) High-strength low-specific gravity steel plate with excellent spot weldability
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
CN116648523A (en) High-strength steel sheet excellent in workability and method for producing same
JP7291222B2 (en) High-strength steel sheet with excellent ductility and workability, and method for producing the same
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP4452191B2 (en) Manufacturing method of high-stretch flange-formable hot-rolled steel sheet with excellent material uniformity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350