JP2016191150A - Stainless steel plate with excellent toughness and method for producing the same - Google Patents
Stainless steel plate with excellent toughness and method for producing the same Download PDFInfo
- Publication number
- JP2016191150A JP2016191150A JP2016065688A JP2016065688A JP2016191150A JP 2016191150 A JP2016191150 A JP 2016191150A JP 2016065688 A JP2016065688 A JP 2016065688A JP 2016065688 A JP2016065688 A JP 2016065688A JP 2016191150 A JP2016191150 A JP 2016191150A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- toughness
- less
- steel plate
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、靭性に優れたステンレス鋼板およびその製造方法に関するものであり、特に優れた靭性が要求される排気管締結部品用ステンレス鋼板として好適に用いられるものである。 The present invention relates to a stainless steel plate having excellent toughness and a method for producing the same, and is suitably used as a stainless steel plate for exhaust pipe fastening parts that require particularly excellent toughness.
フェライト系ステンレス鋼板は、家電製品、厨房機器、電子機器など幅広い分野で使用されている。例えば、近年では防錆の観点から自動車や二輪車のフランジやブラケット(支持部品)用に使用される素材として、普通鋼からステンレス鋼板への転換が検討されている。これらの部品では、排気環境ならびに燃料環境における耐食性、強度に加えて高靱性が要求される。しかしながら、普通鋼板に比べて、強度や耐食性に優れるものの靭性やコストの点で劣るため、使用は限定されていた。特に、低靭性に関しては、室温でコイルを巻き戻すとき、あるいは冷間圧延するときに割れや板破断などを生じ、著しい場合には冷間圧延ができない場合がある。また製品加工の際にも、打ち抜き、プレス成形時に割れが発生する問題が有る。 Ferritic stainless steel sheets are used in a wide range of fields such as home appliances, kitchen equipment, and electronic equipment. For example, in recent years, from the viewpoint of rust prevention, conversion from plain steel to stainless steel plate is being studied as a material used for flanges and brackets (support parts) of automobiles and motorcycles. These parts are required to have high toughness in addition to corrosion resistance and strength in an exhaust environment and a fuel environment. However, although it is excellent in strength and corrosion resistance as compared with ordinary steel sheets, it is inferior in terms of toughness and cost, so its use has been limited. In particular, with regard to low toughness, cracks and plate breakage occur when the coil is rewound at room temperature or when cold rolling is performed, and in some cases, cold rolling may not be possible. In addition, there is a problem that cracks occur during punching and press molding during product processing.
また、フェライト鋼には、低温靭性が低いという問題も有る。自動車は、様々な環境下で使用され、時には−40℃という非常に低温でも運転される。このような低温環境では、体心立方構造を持つフェライト鋼の靭性は著しく劣化する。 Ferrite steel also has a problem of low temperature toughness. Automobiles are used in a variety of environments, sometimes even at very low temperatures of -40 ° C. In such a low temperature environment, the toughness of ferritic steel having a body-centered cubic structure is significantly deteriorated.
上記のようなフェライト系ステンレス鋼板の靭性に関する課題を解決するための工夫はいくつかなされてきた。例えば、特許文献1のようにAlを添加することで、介在物を制御し、靭性を向上させる工夫をしたフェライト系ステンレス鋼が開示されている。しかし、これらは、18%以上のCrを含む高合金鋼であることが前提であり、本発明が対象とする低合金鋼に関する発明ではない。また、フェライト安定化元素であるCrの添加量が多い合金では、オーステナイト相変態が起こりにくくなり、相変態を利用した組織微細化には不適である。 Several ideas have been made to solve the above-mentioned problems related to the toughness of ferritic stainless steel sheets. For example, a ferritic stainless steel that has been devised to control inclusions and improve toughness by adding Al as in Patent Document 1 is disclosed. However, these are based on the premise that they are high alloy steels containing 18% or more of Cr, and are not inventions related to low alloy steels to which the present invention is directed. In addition, an alloy having a large amount of addition of Cr, which is a ferrite stabilizing element, is less likely to undergo austenite phase transformation and is not suitable for refining the structure using phase transformation.
特許文献2のように、Cr:10〜25%の幅広い成分に対応した、高靱性フェライト系ステンレス鋼が開示されている。しかし、これらは、熱延板の室温靭性が25〜35J/cm2程度であり、高靱性が要求されるフランジ用材料としての使用には不適である。また、靭性の向上に相変態を利用する知見はない。 As in Patent Document 2, a high toughness ferritic stainless steel corresponding to a wide range of Cr: 10 to 25% is disclosed. However, these materials have a room temperature toughness of hot-rolled sheet of about 25 to 35 J / cm 2 and are unsuitable for use as a flange material that requires high toughness. In addition, there is no knowledge of using phase transformation to improve toughness.
特許文献3のように、Cr:10〜20%の幅広い成分に対応し、Cuを添加することで、高靱化したフェライト系ステンレス鋼が開示されている。しかし、これらは、靭性の向上に熱延板焼鈍による相変態を利用する知見はなく、靭性も300J/cm2には満たない。 As in Patent Document 3, a ferritic stainless steel corresponding to a wide component of Cr: 10 to 20% and toughened by adding Cu is disclosed. However, these have no knowledge of utilizing phase transformation by hot-rolled sheet annealing to improve toughness, and the toughness is less than 300 J / cm 2 .
特許文献4のように、普通鋼においては、フェライト−オーステナイト変態を利用して靭性を高める試みは既に行われている。しかし、ステンレス鋼に関する知見ではない。 As in Patent Document 4, attempts have been made to increase toughness using the ferrite-austenite transformation in ordinary steel. However, it is not knowledge about stainless steel.
特許文献5のように、ステンレス鋼におけるオーステナイト変態を利用して靭性を高める試みも有る。しかし、これらは、鋳造性を高めるためにCを多く含有する必要があるため、マルテンサイト相が生成すると大きく靭性が低下してしまう。 There is also an attempt to increase toughness using austenite transformation in stainless steel as in Patent Document 5. However, since these need to contain much C in order to improve castability, if a martensite phase produces | generates, toughness will fall large.
ステンレス鋼板を排気管締結部品用として使用するに際し、室温でのシャルピー衝撃値を300J/cm2以上とし、−40℃でのシャルピー衝撃値を50J/cm2以上とすることが要求される。排気管締結部品を製造する際の、打ち抜き、プレス加工等の二次加工の際に縦割れが発生する。特に冬場に割れを生じさせないためには低温での靭性が重要となる。また、自動車が走行する際、跳ねた小石が締結部品に当たることで、割れる危険性が有り、特に寒冷地ではその危険性が高まるため、常温および低温靭性が重要となる。 Upon using the stainless steel as the exhaust pipe fastening parts, a Charpy impact value at room temperature and 300 J / cm 2 or more, it is required to a Charpy impact value at -40 ℃ 50J / cm 2 or more. Longitudinal cracks occur during secondary processing such as punching and pressing when manufacturing exhaust pipe fastening parts. In particular, toughness at low temperatures is important in order to prevent cracking in winter. In addition, when a car travels, there is a risk of cracking when the bounced pebbles hit the fastening parts, and particularly in cold regions, the risk increases, so room temperature and low temperature toughness are important.
本発明の目的は、既知技術の問題点を解決し、常温および低温での靭性に優れたステンレス鋼板であって、特に排気管締結部品用として好適なステンレス鋼板及びその製造方法を提供することにある。 An object of the present invention is to provide a stainless steel plate that solves the problems of known techniques and is excellent in toughness at room temperature and low temperature, and particularly suitable for exhaust pipe fastening parts, and a method for producing the same. is there.
上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.02%以下、N:0.02%以下、Si:0.005〜1.0%、Ni:0.1〜1.0%、Mn:0.1〜3.0%、P:0.04%以下、S:0.0100%以下、およびCr:10%以上〜18%未満を含有し、さらにTi:0.05〜0.30%、Nb:0.01〜0.50%の1種または2種を含有し、TiとNbの合計が、8(C+N)〜0.75%であり、残部がFeおよび不可避的不純物からなり、γp(ガンマポテンシャル)が70%以上かつ、フェライト粒径が20μm以下となることを特徴とする靭性に優れたステンレス鋼板。なお、γp(%)は(1)式のCastroの式を用いて評価する。
γp=420(%C)+470(%N)+23(%Ni)+9(%Cu)+7(%Mn)
−11.5(%Cr)−11.5(%Si)−12(%Mo)−23(%V)−47(%Nb)
−49(%Ti)−52(%Al)+189 (1)
なお、(%X)は、各成分Xの質量割合を示す。
(2)さらに質量%にて、B:0.0002〜0.0030%、Al:0.030〜0.300%、Mo:0.1〜2.0%、Cu:0.1〜2.0%、V:0.05〜1.00%、Sn:0.005〜0.500%、W:0.005〜3.00%、Co:0.01〜0.30%、Sb:0.005〜0.500%、REM:0.001〜0.200%の1種または2種以上を含有することを特徴とする(1)に記載の靭性に優れたステンレス鋼板。
(3)室温でのシャルピー衝撃値が300J/cm2以上となることを特徴とする(1)又は(2)に記載の靭性に優れたステンレス鋼板。
(4)−40℃でのシャルピー衝撃値が50J/cm2以上となることを特徴とする(1)〜(3)のいずれかひとつに記載の靭性に優れたステンレス鋼板。
(5)ビッカース硬さが250Hvとなることを特徴とする(1)〜(4)のいずれかひとつに記載の靭性に優れたステンレス鋼板。
(6)(1)または(2)に記載の成分組成であるステンレス鋼のスラブを熱延した後、熱延板焼鈍することを特徴とする靭性に優れたステンレス鋼板の製造方法。
(7)熱延工程において、スラブ加熱温度を1100〜1200℃として粗圧延を行い、仕上げ圧延を開始温度が900℃以上、終了温度が800℃以上、その差が200℃以内となるように行い、600℃以上で巻取ることを特徴とする(6)に記載の靭性に優れたステンレス鋼板の製造方法。
(8)熱延板焼鈍工程において、フェライト単相の上限温度A1点以上かつ、オーステナイト単相の下限温度A3点の±100℃以内の温度条件で焼鈍し、その後水冷することで、微細組織にすることを特徴とする(6)又は(7)に記載の靭性に優れたステンレス鋼板の製造方法。なお、A1点(℃)およびA3点(℃)は、(2)式、および(3)式を用いて評価する。
A1=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−115(%Ni)−66(%Mn)−18(%Cu)+310 (2)
A3=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−80(%Ni)−31(%Mn)−18(%Cu)+360 (3)
なお、(%X)は、各成分Xの質量割合を示す。
(9)前記ステンレス鋼は、排気管締結部品用として使用される(1)〜(5)のいずれかひとつに記載の靭性に優れたステンレス鋼板。
(10)前記ステンレス鋼は、排気管締結部品用として使用される(6)〜(8)のいずれかひとつに記載の靭性に優れたステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.02% or less, N: 0.02% or less, Si: 0.005 to 1.0%, Ni: 0.1 to 1.0%, Mn: 0.00. 1 to 3.0%, P: 0.04% or less, S: 0.0100% or less, and Cr: 10% or more to less than 18%, Ti: 0.05 to 0.30%, Nb : 0.01 to 0.50% of 1 type or 2 types, the total of Ti and Nb is 8 (C + N) to 0.75%, the balance consists of Fe and inevitable impurities, γ p A stainless steel plate excellent in toughness characterized by having a (gamma potential) of 70% or more and a ferrite grain size of 20 μm or less. Note that γ p (%) is evaluated using the Castro equation (1).
γ p = 420 (% C) +470 (% N) +23 (% Ni) +9 (% Cu) +7 (% Mn)
-11.5 (% Cr) -11.5 (% Si) -12 (% Mo) -23 (% V) -47 (% Nb)
-49 (% Ti) -52 (% Al) +189 (1)
In addition, (% X) shows the mass ratio of each component X.
(2) Further, in mass%, B: 0.0002 to 0.0030%, Al: 0.030 to 0.300%, Mo: 0.1 to 2.0%, Cu: 0.1 to 2. 0%, V: 0.05 to 1.00%, Sn: 0.005 to 0.500%, W: 0.005 to 3.00%, Co: 0.01 to 0.30%, Sb: 0 0.001 to 0.500%, REM: 0.001 to 0.200% of one type or two or more types, The stainless steel plate having excellent toughness according to (1).
(3) The stainless steel plate excellent in toughness according to (1) or (2), wherein the Charpy impact value at room temperature is 300 J / cm 2 or more.
(4) The stainless steel plate excellent in toughness according to any one of (1) to (3), wherein the Charpy impact value at −40 ° C. is 50 J / cm 2 or more.
(5) The stainless steel plate excellent in toughness according to any one of (1) to (4), wherein the Vickers hardness is 250 Hv.
(6) A method for producing a stainless steel plate having excellent toughness, characterized by hot rolling a stainless steel slab having the component composition described in (1) or (2), followed by hot rolling.
(7) In the hot rolling step, rough slab heating is performed at a slab heating temperature of 1100 to 1200 ° C, and finish rolling is performed so that the start temperature is 900 ° C or higher, the end temperature is 800 ° C or higher, and the difference is within 200 ° C. The method for producing a stainless steel plate having excellent toughness as described in (6), wherein winding is performed at 600 ° C. or higher.
(8) In the hot-rolled sheet annealing process, annealing is performed at a temperature condition within the upper limit temperature A 1 point of the ferrite single phase and within ± 100 ° C. of the lower limit temperature A 3 point of the austenite single phase, and then water-cooled. The manufacturing method of the stainless steel plate excellent in toughness as described in (6) or (7) characterized by making a structure | tissue. Incidentally, A 1 point (℃) and A 3 point (℃) is evaluated using equation (2), and (3).
A 1 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
−115 (% Ni) −66 (% Mn) −18 (% Cu) +310 (2)
A 3 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
-80 (% Ni) -31 (% Mn) -18 (% Cu) +360 (3)
In addition, (% X) shows the mass ratio of each component X.
(9) The stainless steel plate having excellent toughness according to any one of (1) to (5), which is used for exhaust pipe fastening parts.
(10) The method for producing a stainless steel plate having excellent toughness according to any one of (6) to (8), wherein the stainless steel is used for exhaust pipe fastening parts.
本発明によれば、靭性に優れた排気管締結部品用ステンレス鋼板を、新規設備を導入することなく効率的に提供することができる。−40℃の低温環境下でも優れた靭性を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the stainless steel plate for exhaust pipe fastening components excellent in toughness can be provided efficiently, without introducing new equipment. Excellent toughness can be obtained even in a low temperature environment of −40 ° C.
靭性の指標としてシャルピー衝撃値がある。靭性に影響を及ぼす要素の一つとして、鋼の結晶粒径を挙げられる。組織が微細であるほど鋼のシャルピー衝撃値は向上する。 There is a Charpy impact value as an index of toughness. One factor affecting toughness is the grain size of steel. The finer the structure, the better the steel Charpy impact value.
本発明では、炭素を低減しつつTiを添加した鋼板に、γ単相域、あるいはα+γ二相域で熱延板焼鈍を行うことで、製品板の組織が微細化し、同時に、靭性を低下させる原因となるマルテンサイトを軟質化させることで、靭性を大幅に向上させることが可能であることを知見した。 In the present invention, a steel sheet with Ti added while reducing carbon is subjected to hot-rolled sheet annealing in a γ single-phase region or α + γ two-phase region, thereby miniaturizing the structure of the product plate and simultaneously reducing toughness. It has been found that toughness can be greatly improved by softening the causative martensite.
本発明の鋼板は、フェライト相の結晶粒径を20μm以下に調整する。図1、図2に示すように、結晶粒径が20μmを超えると、靭性の劣化が顕著になるため、上限を20μmとした。さらに望ましくは、15μm以下である。また、図2に示すように、フェライト粒径が20μm以下となっている成分外れ比較例の低温衝撃値は、50J/cm2以下となっている。このことから、高靱性を得るには、粒径だけではなく、成分範囲においても本発明条件を満たす必要があることがわかる。 In the steel sheet of the present invention, the crystal grain size of the ferrite phase is adjusted to 20 μm or less. As shown in FIGS. 1 and 2, when the crystal grain size exceeds 20 μm, the toughness deteriorates significantly, so the upper limit was set to 20 μm. More desirably, it is 15 μm or less. In addition, as shown in FIG. 2, the low temperature impact value of the component removal comparative example in which the ferrite grain size is 20 μm or less is 50 J / cm 2 or less. From this, it can be seen that in order to obtain high toughness, it is necessary to satisfy the present invention conditions not only in the particle diameter but also in the component range.
また、本発明の鋼板は、マルテンサイト生成量を70%以下に調整する。マルテンサイト生成量が70%を超えると、靭性の劣化が顕著になるため、上限を70%とした。さらに望ましくは、50%以下である。 Moreover, the steel plate of this invention adjusts the martensite production amount to 70% or less. When the amount of martensite produced exceeds 70%, deterioration of toughness becomes remarkable, so the upper limit was made 70%. More desirably, it is 50% or less.
また、靭性へのマルテンサイトの影響は生成量だけではなく、組織の硬さも関係し、良好な靭性を得るためには、鋼のビッカース硬さが250Hv以下となることが必要となる。 In addition, the influence of martensite on toughness is related not only to the amount of production but also to the hardness of the structure, and in order to obtain good toughness, the Vickers hardness of steel needs to be 250 Hv or less.
本発明の成分条件およびプロセスで製造した実施例と、比較例として本発明条件から外れた熱延焼鈍板について、室温におけるシャルピー衝撃値をγpで整理した図3に示し,低温(−40℃)におけるシャルピー衝撃値をγpで整理して図4に示す。γpが70%以上となる本発明の鋼板は,室温シャルピー衝撃値が300J/cm2以上、−40℃でのシャルピー衝撃値が50J/cm2以上となり、優れた靭性を持つ。また、図4ではγpが70%以上となっている成分外れ比較例の衝撃値が50J/cm2以下となっており、γpだけではなく、成分範囲も本発明条件を満たす必要があることがわかる。 FIG. 3 shows an example of a hot-rolled annealed sheet deviated from the conditions of the present invention as a comparative example and the examples manufactured by the component conditions and process of the present invention, and shows the Charpy impact values at room temperature in terms of γ p . the Charpy impact value in) to organize in gamma p shown in FIG. steel sheet of the present invention that gamma p is 70% or more, room temperature Charpy impact value 300 J / cm 2 or more, and the Charpy impact value at -40 ℃ is 50 J / cm 2 or more, with excellent toughness. Further, in FIG. 4, the impact value of the comparative component removal example in which γ p is 70% or more is 50 J / cm 2 or less, and not only γ p but also the component range needs to satisfy the present invention conditions. I understand that.
次に、鋼の成分範囲について説明する。 Next, the component range of steel will be described.
Cは、成形性と耐食性を劣化させる。Cが高いとマルテンサイト生成量が本発明の上限を超え、また、Cがマルテンサイトに固溶すると硬化させ、靭性を劣化させるため、その含有量は少ないほど良く、上限を0.02%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと溶接部の粒界腐食性を考慮すると0.002〜0.01%が望ましい。 C deteriorates moldability and corrosion resistance. When C is high, the amount of martensite produced exceeds the upper limit of the present invention, and when C dissolves in martensite, it hardens and deteriorates toughness. Therefore, the lower the content, the better. The upper limit is 0.02%. did. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost and intergranular corrosion properties of the weld, 0.002 to 0.01% is desirable.
Nは、Cと同様に成形性と耐食性を劣化させる他、マルテンサイトに固溶すると硬化させ、靭性を劣化させるため、その含有量は少ないほど良く、上限を0.02%とした。ただし、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に製造コストと加工性および耐食性を考慮すると、0.005〜0.015%が望ましい。 N, like C, deteriorates formability and corrosion resistance, and also hardens when dissolved in martensite and deteriorates toughness. Therefore, the lower the content, the better. The upper limit was made 0.02%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost, workability and corrosion resistance, 0.005 to 0.015% is desirable.
Siは、脱酸元素として添加される場合がある他、耐酸化性の向上をもたらすが、固溶強化元素であり、過度の添加は靭性の劣化をもたらすため、上限を1.0%とした。ただし、過度の低下は精錬コストの増加に繋がるため、下限を0.005%とした。更に、製造コストと耐食性を考慮すると0.2〜0.5%が望ましい。 Si may be added as a deoxidizing element, and also improves oxidation resistance, but is a solid solution strengthening element, and excessive addition causes deterioration of toughness, so the upper limit was made 1.0%. . However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.005%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.2 to 0.5% is desirable.
Niは、オーステナイト安定化元素であり、相変態による結晶粒微細化に有効である。また、隙間腐食の抑制や再不動態化を促進させる。この作用は0.1%以上で発現するため、下限を0.1%とした。但し、過度の添加は硬質化し成形性を劣化させる他、応力腐食割れが生じやすくなるため、上限を1.0%とした。なお、原料コストを考えると0.2%〜0.8%が望ましい。さらに望ましくは0.2〜0.5%である。 Ni is an austenite stabilizing element and is effective for refining crystal grains by phase transformation. It also promotes crevice corrosion suppression and repassivation. Since this effect appears at 0.1% or more, the lower limit was made 0.1%. However, excessive addition hardens and deteriorates moldability, and stress corrosion cracking tends to occur, so the upper limit was made 1.0%. In view of the raw material cost, 0.2% to 0.8% is desirable. More preferably, it is 0.2 to 0.5%.
Mnは、Ni同様、オーステナイト安定化元素であり、相変態による結晶粒微細化に有効である。また、スケール密着性の向上や異常酸化の抑制にも寄与する。この作用は0.1%以上で発現するため、下限を0.1%とした。ただし、過度に添加した場合、MnSを形成して耐食性を低下させるため、上限を3.0%とした。更に、製造コストと耐食性を考慮すると0.1〜2.0%が望ましい。 Mn, like Ni, is an austenite stabilizing element and is effective for refining crystal grains by phase transformation. It also contributes to improved scale adhesion and suppression of abnormal oxidation. Since this effect appears at 0.1% or more, the lower limit was made 0.1%. However, when added excessively, MnS is formed to lower the corrosion resistance, so the upper limit was made 3.0%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.1 to 2.0% is desirable.
Pは、Si同様、固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限は0.04%とした。更に、製造コストと耐食性を考慮すると0.01〜0.02%が望ましい。 Since P is a solid solution strengthening element like Si, the lower the content, the better. Therefore, the upper limit was made 0.04%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.01 to 0.02% is desirable.
Sは、耐食性を劣化させる元素であるため、上限を0.01%とした。更に、製造コストや、部品とした際の隙間腐食抑制を考慮すると0.0005〜0.0050が望ましい。 Since S is an element that degrades corrosion resistance, the upper limit was made 0.01%. Furthermore, 0.0005 to 0.0050 is desirable in consideration of manufacturing cost and suppression of crevice corrosion when used as a part.
Crは、耐食性や耐酸化性を向上させる元素であり、排気部品環境を考慮すると異常酸化抑制の観点から10%以上が必要である。一方、Crの過度の添加は硬質化をもたらし靭性を劣化させる。また、Crはフェライト安定化元素であるため、過度に添加すると、オーステナイト相変態が起こらなくなる。さらに、コストアップの観点から、上限は18%未満とした。なお、製造コストや靭性劣化による鋼板製造時の板破断ならびに加工性を考慮すると、10.5%以上、15%未満が望ましい。 Cr is an element that improves corrosion resistance and oxidation resistance. When considering the exhaust part environment, 10% or more is necessary from the viewpoint of suppressing abnormal oxidation. On the other hand, excessive addition of Cr causes hardening and deteriorates toughness. Further, since Cr is a ferrite stabilizing element, if added excessively, austenite phase transformation does not occur. Furthermore, from the viewpoint of cost increase, the upper limit was made less than 18%. In addition, when considering the sheet breakage and workability at the time of manufacturing the steel sheet due to the manufacturing cost and toughness deterioration, 10.5% or more and less than 15% are desirable.
本発明は、Ti:0.05〜0.30%、Nb:0.01〜0.50%の1種または2種を含有し、TiとNbの合計を8(C+N)〜0.75%の範囲とする。 The present invention contains one or two of Ti: 0.05 to 0.30% and Nb: 0.01 to 0.50%, and the total of Ti and Nb is 8 (C + N) to 0.75%. The range.
Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させるために添加する元素である。また、マルテンサイトが生成した場合に、C,Nを固着することで軟質化する効果も有る。C,Nの固定作用は0.05%から発現するため、下限を0.05%とした。また、0.3%超の添加は固溶Tiにより硬質化し、靭性が劣化するため、上限を0.3%とした。更に製造コスト等を考慮すると、0.06〜0.25%が望ましい。 Ti is an element added to combine with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition, when martensite is generated, there is an effect of softening by fixing C and N. Since the fixing action of C and N is expressed from 0.05%, the lower limit was made 0.05%. Moreover, since addition exceeding 0.3% hardens by solute Ti and toughness deteriorates, the upper limit was made 0.3%. Furthermore, if considering the manufacturing cost, 0.06 to 0.25% is desirable.
Nbは、Tiと同様に、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させるために添加する元素である。また、加工性の向上や高温強度の向上に加え、隙間腐食の抑制や再不動態化を促進させるため、必要に応じて添加される。この作用は、0.01%以上で発現するため、下限を0.01%とした。ただし、過度の添加は硬質化をもたらし成形性を劣化させるため、上限を0.5%とした。更に製造コスト等を考慮すると、0.05〜0.3%が望ましい。 Nb, like Ti, is an element added to improve the corrosion resistance, intergranular corrosion resistance, and deep drawability by combining with C, N, and S. In addition to improving workability and high-temperature strength, it is added as necessary to suppress crevice corrosion and promote repassivation. Since this effect appears at 0.01% or more, the lower limit was made 0.01%. However, excessive addition causes hardening and deteriorates moldability, so the upper limit was made 0.5%. Furthermore, if considering the manufacturing cost, 0.05 to 0.3% is desirable.
また、TiとNbの合計が8(C+N)未満であると、過剰なC、Nがマルテンサイトに固溶して硬化させるので、TiとNbの合計を8(C+N)以上とする。さらに、TiとNbの合計が0.75%を超えると固溶Tiや固溶Nb、および、NbとTiの炭窒化物や金属間化合物が硬質化をもたらし、靭性や成形性を劣化させるため、TiとNbの合計を0.75%以下とする。ここで、Ti、Nb、C、Nはいずれも各元素の含有量(質量%)を意味する。 Further, if the sum of Ti and Nb is less than 8 (C + N), excess C and N are dissolved in martensite and hardened, so the sum of Ti and Nb is 8 (C + N) or more. Furthermore, if the total of Ti and Nb exceeds 0.75%, solid solution Ti, solid solution Nb, and Nb and Ti carbonitrides and intermetallic compounds cause hardening and deteriorate toughness and formability. , Ti and Nb total is 0.75% or less. Here, Ti, Nb, C, and N all mean the content (mass%) of each element.
本発明は、必要に応じてさらに以下の元素を含有することができる。 This invention can contain the following elements further as needed.
Bは、粒界に偏析することで製品の二次加工性を向上させる元素である。排気系部品を二次加工する際の縦割れを抑制する他、特に冬場に割れが生じないためには、0.0002%以上添加すると良い。ただし、過度の添加は加工性、耐食性の低下をもたらすため、上限を0.0030%とした。更に、精錬コストや延性低下を考慮すると、0.0003〜0.0015%が望ましい。 B is an element that improves the secondary workability of the product by segregating at the grain boundaries. In addition to suppressing vertical cracks during secondary processing of exhaust system parts, 0.0002% or more is preferably added in order to prevent cracks in winter. However, excessive addition causes a decrease in workability and corrosion resistance, so the upper limit was made 0.0030%. Furthermore, if considering the refining cost and ductility reduction, 0.0003 to 0.0015% is desirable.
Alは、脱酸元素として添加される他、酸化スケールの剥離を抑制する効果がある。この効果は0.03%以上で発現するため、下限を0.03%とした。一方、0.3%以上の添加は、伸びの低下、溶接溶け込み性および表面品質の劣化をもたらすため、上限を0.3%とした。更に、精錬コストと鋼板製造時の酸洗性を考慮すると、0.05〜0.15%が望ましい。 In addition to being added as a deoxidizing element, Al has an effect of suppressing oxide scale peeling. Since this effect is manifested at 0.03% or more, the lower limit was made 0.03%. On the other hand, addition of 0.3% or more causes a decrease in elongation, weld penetration and surface quality deterioration, so the upper limit was made 0.3%. Furthermore, if considering the refining cost and the pickling property at the time of manufacturing the steel sheet, 0.05 to 0.15% is desirable.
Moは、耐食性を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制する元素である。この効果は0.1%以上で発現するため、下限を0.1%とした。また、2.0%を超えると著しく成形性が劣化する他、製造性が悪くなるため、上限を2.0%とした。合金コストと生産性を考慮すると、0.1〜0.5%が望ましい。 Mo is an element that improves the corrosion resistance, and is an element that suppresses crevice corrosion, particularly when it has a crevice structure. Since this effect appears at 0.1% or more, the lower limit was made 0.1%. On the other hand, if it exceeds 2.0%, the moldability is remarkably deteriorated and the manufacturability is deteriorated. Considering the alloy cost and productivity, 0.1 to 0.5% is desirable.
Cuは、NiやMn同様、オーステナイト安定化元素であり、相変態による結晶粒微細化に有効である。また、隙間腐食の抑制や再不動態化を促進させるため、必要に応じて添加される。この作用は0.1%以上で発現するため、下限を0.1%とした。但し、過度の添加は硬質化する他、靭性および成形性を劣化させるため、上限を2.0%とした。合金コストと生産性を考慮すると、0.15〜1.0%が好ましい。 Cu, like Ni and Mn, is an austenite stabilizing element and is effective for refining crystal grains by phase transformation. Moreover, in order to promote suppression of crevice corrosion and repassivation, it adds as needed. Since this effect appears at 0.1% or more, the lower limit was made 0.1%. However, excessive addition hardens and deteriorates toughness and moldability, so the upper limit was made 2.0%. Considering alloy cost and productivity, 0.15 to 1.0% is preferable.
Vは、隙間腐食を抑制させるため、必要に応じて添加される。この作用は、0.05%以上から発現するため、下限を0.05%とした。但し、過度の添加は、硬質化し成形性を劣化させるため、上限を1.0%とした。なお、原料コストを考慮すると、0.1〜0.5%が望ましい。 V is added as necessary to suppress crevice corrosion. Since this effect appears from 0.05% or more, the lower limit was made 0.05%. However, since excessive addition hardens and deteriorates moldability, the upper limit was made 1.0%. In consideration of the raw material cost, 0.1 to 0.5% is desirable.
Snは、耐食性と高温強度の向上に寄与するため、必要に応じて0.005%以上添加する。ただし、0.50%以上の添加により鋼板製造時のスラブ割れが生じる場合が有るため、上限を0.50%とする。更に、精錬コストや製造性を考慮すると、0.003〜0.30%が望ましい。 Sn contributes to the improvement of corrosion resistance and high-temperature strength, so 0.005% or more is added as necessary. However, since addition of 0.50% or more may cause slab cracking during steel sheet production, the upper limit is made 0.50%. Furthermore, if considering refining costs and manufacturability, 0.003 to 0.30% is desirable.
Wは、耐食性と高温強度の向上に寄与するため、必要に応じて0.005%以上添加する。ただし、3.0%超の添加により硬質化し、鋼板製造時の靭性劣化やコスト増に繋がるため、上限を3.0%とする。更に、精錬コストや製造法を考慮すると、0.01〜0.10%が望ましい。 W contributes to improvement of corrosion resistance and high-temperature strength, so 0.005% or more is added as necessary. However, the addition of more than 3.0% hardens and leads to toughness deterioration and cost increase during the production of the steel sheet, so the upper limit is made 3.0%. Furthermore, if refining costs and manufacturing methods are taken into consideration, 0.01 to 0.10% is desirable.
Coは、高温強度の向上に寄与するため、必要に応じて0.01%以上添加する。0.30%超の添加により鋼板製造時の靭性劣化やコスト増に繋がるため、上限を0.30%とする。更に、精錬コストや製造性を考慮すると、0.01〜0.10%が望ましい。 Co contributes to improving the high-temperature strength, so 0.01% or more is added as necessary. Since addition of more than 0.30% leads to toughness deterioration and cost increase at the time of manufacturing the steel sheet, the upper limit is made 0.30%. Furthermore, if refining costs and manufacturability are taken into consideration, 0.01 to 0.10% is desirable.
Sbは、粒界に偏析して高温強度を上げる作用をなす元素である。これは、0.005%以上から発現するため、下限を0.005%とした。但し、0.50%を超えると、Sb偏析が生じて、溶接時に割れが生じるので、上限は0.50%とする。高温特性と製造コストおよび靭性を考慮すると、0.03〜0.30%が望ましい。さらに望ましくは、0.05〜0.20%である。 Sb is an element that segregates at the grain boundary to increase the high temperature strength. Since this is expressed from 0.005% or more, the lower limit was made 0.005%. However, if it exceeds 0.50%, Sb segregation occurs and cracks occur during welding, so the upper limit is made 0.50%. Considering high temperature characteristics, production cost and toughness, 0.03 to 0.30% is desirable. More desirably, it is 0.05 to 0.20%.
REM(希土類元素)は、耐酸化性の向上に有効であり、必要に応じて0.001%以上添加する。また、0.20%を超えて添加してもその効果は飽和し、REMの硫化物による耐食性低下を生じるため、0.001〜0.20%で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.10%とすることが望ましい。REMは、一般的な定義に従う。スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。 REM (rare earth element) is effective in improving oxidation resistance, and is added in an amount of 0.001% or more as necessary. Moreover, even if added over 0.20%, the effect is saturated and the corrosion resistance is lowered by sulfide of REM, so 0.001 to 0.20% is added. Considering the workability and manufacturing cost of the product, it is desirable that the lower limit is 0.002% and the upper limit is 0.10%. REM follows the general definition. It is a generic term for two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu). It may be added alone or as a mixture.
その他の成分について本発明では特に規定するものではないが、Ta、Hfは高温強度向上のために0.001%〜1.0%添加しても良い。また、Biを必要に応じて0.001〜0.02%含有しても構わない。なお、As、Pb等の一般的な有害な不純物元素はできるだけ低減することが望ましい。 Other components are not particularly defined in the present invention, but Ta and Hf may be added in an amount of 0.001% to 1.0% in order to improve the high temperature strength. Moreover, you may contain Bi 0.001 to 0.02% as needed. Note that it is desirable to reduce general harmful impurity elements such as As and Pb as much as possible.
本発明の鋼板は、上記の成分範囲内でγpを70%以上になるように調整する。γpが低すぎると、フェライト−オーステナイト変態に高温での加熱が必要となり、結晶粒を微細化することが難しくなるので、下限を70%とした。γp(%)は(1)式のCastroの式を用いて評価する。
γp=420(%C)+470(%N)+23(%Ni)+9(%Cu)+7(%Mn)
−11.5(%Cr)−11.5(%Si)−12(%Mo)−23(%V)−47(%Nb)
−49(%Ti)−52(%Al)+189 (1)
なお、(%X)は、各成分Xの質量割合を示す。
The steel plate of the present invention is adjusted so that γ p becomes 70% or more within the above-mentioned component range. When gamma p is too low, ferrite - heating at high temperature austenite transformation is required, so that fine crystal grains becomes difficult, and the lower limit is 70%. γ p (%) is evaluated using the Castro equation (1).
γ p = 420 (% C) +470 (% N) +23 (% Ni) +9 (% Cu) +7 (% Mn)
-11.5 (% Cr) -11.5 (% Si) -12 (% Mo) -23 (% V) -47 (% Nb)
-49 (% Ti) -52 (% Al) +189 (1)
In addition, (% X) shows the mass ratio of each component X.
本発明のステンレス鋼板は、上記規定する成分を含有するとともに、フェライト粒径を20μm以下、マルテンサイト生成量を70%以下とすることにより、室温でのシャルピー衝撃値を300J/cm2以上とし、−40℃でのシャルピー衝撃値を50J/cm2以上として、常温および低温での靭性に優れたステンレス鋼板を提供することができる。常温および低温ともに靱性に優れるため、特に排気管締結部品用として好適に用いることができる。 The stainless steel plate of the present invention contains the above-specified components, the ferrite grain size is 20 μm or less, and the martensite generation amount is 70% or less, so that the Charpy impact value at room temperature is 300 J / cm 2 or more, By setting the Charpy impact value at −40 ° C. to 50 J / cm 2 or more, it is possible to provide a stainless steel plate having excellent toughness at normal and low temperatures. Since it is excellent in toughness at both normal temperature and low temperature, it can be suitably used particularly for exhaust pipe fastening parts.
また、本発明で規定する成分を含有するとともに、マルテンサイト生成量を70%以下とすることにより、ビッカース硬さを250Hv以下とすることができる。 Moreover, while containing the component prescribed | regulated by this invention and making a martensite production amount 70% or less, a Vickers hardness can be 250 Hv or less.
次に製造方法について説明する。本発明の鋼板の製造方法は製鋼−熱間圧延した後、焼鈍を行う工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。 Next, a manufacturing method will be described. The method for producing a steel sheet of the present invention comprises a step of annealing after steelmaking-hot rolling. In steelmaking, a method in which the steel containing the above essential components and components added as necessary is subjected to furnace melting followed by secondary refining. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and is hot-rolled by continuous rolling to a predetermined plate thickness.
鋳造されたスラブは、1100〜1200℃で加熱される。炉の性能、経済性の観点から、上限温度を1200℃とした。加熱温度が低すぎるとスケール生成が少なくなり圧延ロールと鋼材の焼き付きにより表面品質が低下する。よって、スラブ加熱温度は1100〜1200℃とした。更に、生産性や表面疵を考慮すると、1120〜1160℃が望ましい。 The cast slab is heated at 1100 to 1200 ° C. From the viewpoint of furnace performance and economy, the upper limit temperature was set to 1200 ° C. When the heating temperature is too low, scale generation is reduced, and surface quality is deteriorated due to seizure of the rolling roll and steel material. Therefore, the slab heating temperature was set to 1100 to 1200 ° C. Furthermore, considering productivity and surface flaws, 1120 to 1160 ° C. is desirable.
スラブ加熱後、熱間圧延工程では、複数パスの粗圧延が施され、複数スタンドからなる仕上圧延が一方向に施される。粗圧延後、高速で仕上圧延が施され、コイル状に巻き取られる。本発明では、巻取り時に微細組織を得るために、仕上圧延温度と、巻取温度を規定する。製造時の割れや破断を防ぐためには、微細組織にすることが重要である。そのため、巻取温度が低すぎると巻取時に再結晶と相変態が生じないため、仕上圧延は高温かつ高速で行う必要が有る。そこで、仕上圧延を開始温度が900℃以上、終了温度が800℃以上、その差が200℃以内となるように行う。また、巻取温度も600℃以上で行うものとする。熱延板厚さは、締結部品の設計に応じて、適宜選択すれば良いが、巻取形状、板厚精度、表面性状を考慮すると、2〜15mm程度が望ましい。以上の熱延条件を用いることにより、焼鈍前の熱延板常温衝撃値を50J/cm2以上とすることができ、製造時の割れや破断を防ぐことができる。 After the slab heating, in the hot rolling process, multiple passes of rough rolling are performed, and finish rolling consisting of a plurality of stands is performed in one direction. After rough rolling, finish rolling is performed at a high speed and the coil is wound up. In the present invention, in order to obtain a fine structure at the time of winding, the finish rolling temperature and the winding temperature are defined. In order to prevent cracks and breaks during production, it is important to have a fine structure. For this reason, if the coiling temperature is too low, recrystallization and phase transformation do not occur at the time of coiling. Therefore, it is necessary to perform finish rolling at a high temperature and at a high speed. Therefore, finish rolling is performed so that the start temperature is 900 ° C. or higher, the end temperature is 800 ° C. or higher, and the difference is within 200 ° C. In addition, the coiling temperature is 600 ° C. or higher. The hot-rolled plate thickness may be appropriately selected according to the design of the fastening part, but is preferably about 2 to 15 mm in consideration of the winding shape, plate thickness accuracy, and surface properties. By using the above hot rolling conditions, the hot-rolled sheet normal-temperature impact value before annealing can be 50 J / cm 2 or more, and cracks and breaks during production can be prevented.
本発明では、熱延板焼鈍時に、γ単相、あるいはα+γ二相域に昇温してフェライトからなる組織の一部、または全てを一旦オーステナイトに変態させることが重要である。そこで、焼鈍時にA1点以上の温度かつ、A3点の±100℃以内の温度条件で焼鈍を行う。焼鈍時に、相変態させるには最低でもA1点以上で焼鈍する必要がある。また、この時低温すぎるとγ変態量が少なくなり、焼鈍も長時間行う必要が有るため、熱延板焼鈍温度下限をA1点、あるいはA3点−100℃のうちの高い方の温度とした。これにより、十分にフェライト相をオーステナイト相へと変態させることができる。また、低温での焼鈍により十分に再結晶が生じず、熱延組織がそのまま残存した場合にも、靭性が劣化する可能性が有る。 In the present invention, at the time of hot-rolled sheet annealing, it is important to raise the temperature to the γ single-phase or α + γ two-phase region and to partially transform all or part of the structure made of ferrite to austenite. Therefore, annealing is performed at a temperature of A 1 point or higher during annealing and a temperature condition within ± 100 ° C. of A 3 point. At the time of annealing, it is necessary to anneal at least A 1 point or more in order to cause phase transformation. In addition, if the temperature is too low at this time, the amount of γ transformation decreases, and it is necessary to perform annealing for a long time, so the lower limit of the hot-rolled sheet annealing temperature is the higher of A 1 point or A 3 point-100 ° C. did. Thereby, the ferrite phase can be sufficiently transformed into the austenite phase. Moreover, there is a possibility that the toughness deteriorates even when recrystallization does not occur sufficiently by annealing at a low temperature and the hot rolled structure remains as it is.
熱延板焼鈍の際、高すぎる温度で焼鈍すると、結晶粒が粗大化する他、マルテンサイトが過剰に生成し、靭性が劣化する。そこで、上限をA3点+100℃とした。即ち、本発明で規定する成分を含有し、熱延板焼鈍温度をA3点+100℃以下の温度とすることにより、マルテンサイト生成量を70%以下とすることができる。 When hot-rolled sheet annealing is performed at an excessively high temperature, the crystal grains are coarsened, martensite is excessively generated, and the toughness is deteriorated. Therefore, the upper limit was set to A 3 point + 100 ° C. That is, it contains components specified in the present invention, the hot-rolled sheet annealing temperature by an A 3 point + 100 ° C. a temperature below the martensite amount may be 70% or less.
また、本発明で規定する成分を含有し、特に(1)式のγpを70%以上とし、熱延板焼鈍温度を本発明範囲の温度とすることにより、フェライト結晶粒径を20μm以下とすることができる。
なお、A1点(℃)およびA3点(℃)は、(2)式のCastroの式、および(3)式を用いて評価する。
A1=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−115(%Ni)−66(%Mn)−18(%Cu)+310 (2)
A3=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−80(%Ni)−31(%Mn)−18(%Cu)+360 (3)
なお、(%X)は、各成分Xの質量割合を示す。
The ferrite grain size is 20 μm or less by containing the components specified in the present invention, particularly by setting γ p in the formula (1) to 70% or more and the hot-rolled sheet annealing temperature to a temperature within the range of the present invention. can do.
The A 1 point (° C.) and the A 3 point (° C.) are evaluated using the Castro equation (2) and the equation (3).
A 1 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
−115 (% Ni) −66 (% Mn) −18 (% Cu) +310 (2)
A 3 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
-80 (% Ni) -31 (% Mn) -18 (% Cu) +360 (3)
In addition, (% X) shows the mass ratio of each component X.
焼鈍後は水冷することによって、オーステナイトからフェライトへと相変態させる際の結晶粒の成長を防ぐ効果が発揮されるので、微細組織にすることができ高靱性が得られる。 By cooling with water after annealing, the effect of preventing the growth of crystal grains during phase transformation from austenite to ferrite is exhibited, so that the microstructure can be obtained and high toughness can be obtained.
表1の鋼No.1〜31に示す成分組成の鋼を溶製しスラブに鋳造し、10mmtまで熱延後、熱延板焼鈍を施した。各鋼に対して、表2−1、表2−2に示す製造条件で製造した。熱延板焼鈍後は、表2−2のB23を除き水冷を行った。B23については、空冷を行った。 Steel No. 1 in Table 1 Steels having the composition shown in 1-31 were melted and cast into slabs, hot-rolled to 10 mm, and then subjected to hot-rolled sheet annealing. Each steel was manufactured under the manufacturing conditions shown in Tables 2-1 and 2-2. After hot-rolled sheet annealing, water cooling was performed except for B23 in Table 2-2. B23 was air-cooled.
フェライト相の結晶粒径は、EBSD(Electron Back Scattering Diffraction)法により測定した。マルテンサイト生成量の測定は、EBSDおよび画像解析より測定した。粒径の測定条件は、測定倍率1000倍で0.3〜0.6μmステップの条件とし、得られたデータをTSL社OIM(Orientation Imaging Microscopy)解析ソフトにより方位差15°以上を粒界として一つの粒界を設定し円相当径を算出した。得られた円相当径を算術平均によって求めた値を結晶粒径とした。マルテンサイト生成量も同様に、OIMを用いてフェライト相とマルテンサイトの分率を定量的に測定した。 The crystal grain size of the ferrite phase was measured by an EBSD (Electron Back Scattering Diffraction) method. The amount of martensite produced was measured by EBSD and image analysis. The measurement conditions of the particle size are the conditions of 0.3 to 0.6 μm step at a measurement magnification of 1000 times, and the obtained data is set to a grain boundary with an orientation difference of 15 ° or more by TIM OIM (Orientation Imaging Microscopy) analysis software. Two grain boundaries were set and the equivalent circle diameter was calculated. The value obtained by arithmetic average of the obtained equivalent circle diameter was defined as the crystal grain size. Similarly, for the amount of martensite produced, the fraction of ferrite phase and martensite was quantitatively measured using OIM.
熱延焼鈍板の靭性は、JIS Z 2242に準拠して25℃および−40℃で行い、シャルピー衝撃値で評価し、表2−1、表2−2の「製品板特性/衝撃値」の欄に示した。試験片は、Vノッチシャルピー試験片を圧延方向と平行に採取し、試験に供した。 The toughness of the hot-rolled annealed sheet is measured at 25 ° C. and −40 ° C. in accordance with JIS Z 2242, evaluated by Charpy impact value, and the “product plate characteristics / impact value” in Table 2-1 and Table 2-2. Shown in the column. As a test piece, a V-notch Charpy test piece was taken in parallel with the rolling direction and used for the test.
表2−1のA1〜A16が本発明例である。本発明例の鋼は、常温低温共に熱延焼鈍板のシャルピー衝撃値が高いことが明らかであり、靭性に優れる。また、熱延板の常温シャルピー衝撃値も示す。本発明例の鋼は、熱延板においても常温衝撃値が50J/cm2以上であって靭性に優れ、通板時の割れを防げるなど、製造性が高いことが確認される。 A1 to A16 in Table 2-1 are examples of the present invention. It is clear that the steel of the example of the present invention has a high Charpy impact value of the hot-rolled annealed sheet at both room temperature and low temperature, and is excellent in toughness. Moreover, the normal temperature Charpy impact value of a hot-rolled sheet is also shown. It is confirmed that the steel of the present invention has high manufacturability such as hot rolled sheet having a normal temperature impact value of 50 J / cm 2 or more, excellent toughness, and prevention of cracking during sheet passing.
表2−2のB1〜B23が比較例である。まず製品板(熱延焼鈍板)の成績について説明する。 B1 to B23 in Table 2-2 are comparative examples. First, the results of the product plate (hot rolled annealed plate) will be described.
B1〜B5、B12はγpが本発明範囲を外れ、B15、B21、B22はそれぞれNb、Co、V含有量が上限を外れ、いずれもフェライト粒径が上限を外れ、靱性が低下した。B1とB2、B3とB4のように、単純に熱延板焼鈍を低くし、結晶粒成長を抑えることで細粒化させても、靭性は不十分であった。 In B1 to B5 and B12, γ p is out of the range of the present invention, and in B15, B21, and B22, the Nb, Co, and V contents are out of the upper limits, respectively, and the ferrite grain size is out of the upper limit and the toughness is lowered. As in B1 and B2 and B3 and B4, the toughness was insufficient even if the hot-rolled sheet annealing was simply reduced and the grain growth was reduced by suppressing the crystal grain growth.
B6、B7はともに鋼No.19であってC含有量が上限を外れ、焼鈍条件範囲内で焼鈍したフェライト単相組織を持つB6は低温靱性が低下、焼鈍条件の上限以上で焼鈍し、硬質なマルテンサイトが多量に生成したB7は、常温・低温のいずれも靱性が低下した。このことから、フェライト、マルテンサイト等の組織によらず、C量を適正範囲にすることが重要であることがわかる。 Both B6 and B7 are steel Nos. B6 having a ferrite single-phase structure annealed within the annealing condition range with the C content exceeding 19, the low temperature toughness was lowered, annealing was performed above the upper limit of the annealing condition, and a large amount of hard martensite was generated. As for B7, toughness fell in both normal temperature and low temperature. From this, it can be seen that it is important to set the C amount within an appropriate range regardless of the structure of ferrite, martensite, or the like.
B8は熱延板焼鈍を実施しておらず、熱延加工ままの組織であるため、フェライト粒径マルテンサイト生成量ともに測定不能であり、靱性が低い。 Since B8 is not subjected to hot-rolled sheet annealing and is a structure as it is hot-rolled, both the ferrite grain size martensite generation amount cannot be measured and the toughness is low.
B9、B10はいずれも熱延板焼鈍温度が上限を外れ、B9、B10共にマルテンサイト生成量が外れ、靱性が低下した。また、B9はより高温焼鈍であるため、マルテンサイトがより多量に生成し、結晶粒径も大きい。 For both B9 and B10, the hot-rolled sheet annealing temperature deviated from the upper limit, and for both B9 and B10, the martensite generation amount deviated and the toughness decreased. In addition, since B9 is annealed at a higher temperature, a larger amount of martensite is generated and the crystal grain size is large.
B11は熱延板焼鈍温度が下限を外れ、フェライトからオーステナイトへの相変態が起こらず、細粒化効果が起こらなかった。また、低温焼鈍であったため、再結晶も生じず熱延板の加工組織が殆ど残存したためフェライト粒径が測定不能であり、常温・低温のいずれも靱性が低下した。 In B11, the hot-rolled sheet annealing temperature deviated from the lower limit, the phase transformation from ferrite to austenite did not occur, and the refinement effect did not occur. Moreover, since it was low-temperature annealing, recrystallization did not occur and almost all the processed structure of the hot-rolled sheet remained, so the ferrite grain size was not measurable, and the toughness decreased at both room temperature and low temperature.
B13、B20はそれぞれN、W含有量が上限を外れ、B14はTiとNbの合計が8(C+N)に足りず、いずれも硬さが250Hvを超え、常温と定温の一方又は両方の靱性が低下した。B16〜B19はそれぞれCu、Ni、Si、Mo含有量が上限を外れ、常温と低温の一方又は両方の靱性が低下した。 B13 and B20 have N and W contents outside the upper limits, respectively, and B14 has a total of Ti and Nb of 8 (C + N), both of which have a hardness exceeding 250 Hv, and have one or both toughness at normal temperature and constant temperature. Declined. In B16 to B19, the Cu, Ni, Si, and Mo contents deviated from the upper limit, respectively, and the toughness of one or both of room temperature and low temperature was lowered.
比較例の焼鈍前の熱延板の成績について説明する。B15は仕上圧延が高速ではなく、仕上圧延開始温度と終了温度との差が200℃を超えたため、熱延板衝撃値が低い値であった。 The results of the hot rolled sheet before annealing in the comparative example will be described. In B15, the finish rolling was not performed at a high speed, and the difference between the finish rolling start temperature and the finish temperature exceeded 200 ° C., so the hot rolled sheet impact value was low.
B23は、熱延板焼鈍後空冷しているため、結晶粒が過度に成長し、20μmを超えたため、靭性が低下した。 Since B23 was air-cooled after hot-rolled sheet annealing, the crystal grains grew excessively and exceeded 20 μm, so the toughness was reduced.
本発明によれば、優れた靭性をもったフェライト系ステンレス鋼板を製造することが可能であり、熱延材の靭性も良好であるため、通板時の割れや破断を抑制し、製造性が向上する。また、本発明を適用した材料を、排気管締結部品用として使用する場合に、成形の自由度が向上するとともに、プレス加工時の割れや、実車搭載時の低温環境下で衝撃を受けた際の割れを抑制することが可能となる。即ち、本発明は工業上極めて有益である。
According to the present invention, it is possible to produce a ferritic stainless steel plate having excellent toughness, and the toughness of the hot-rolled material is also good. improves. In addition, when the material to which the present invention is applied is used for exhaust pipe fastening parts, the degree of freedom in molding is improved, and when it is subjected to cracks during press processing or impacts in a low temperature environment when mounted on an actual vehicle. It becomes possible to suppress cracking. That is, the present invention is extremely useful industrially.
Claims (10)
γp=420(%C)+470(%N)+23(%Ni)+9(%Cu)+7(%Mn)
−11.5(%Cr)−11.5(%Si)−12(%Mo)−23(%V)−47(%Nb)
−49(%Ti)−52(%Al)+189 (1)
なお、(%X)は、各成分Xの質量割合を示す。 In mass%, C: 0.02% or less, N: 0.02% or less, Si: 0.005-1.0%, Ni: 0.1-1.0%, Mn: 0.1-3 0.0%, P: 0.04% or less, S: 0.0100% or less, Cr: 10% to less than 18%, Ti: 0.05-0.30%, Nb: 0.01 -0.50% 1 or 2 types, the total of Ti and Nb is 8 (C + N)-0.75%, the balance consists of Fe and inevitable impurities, γ p is 70% or more And the stainless steel plate excellent in the toughness characterized by a ferrite particle size being 20 micrometers or less and a martensite production amount becoming 70% or less. Note that γ p (%) is evaluated using the equation (1).
γ p = 420 (% C) +470 (% N) +23 (% Ni) +9 (% Cu) +7 (% Mn)
-11.5 (% Cr) -11.5 (% Si) -12 (% Mo) -23 (% V) -47 (% Nb)
-49 (% Ti) -52 (% Al) +189 (1)
In addition, (% X) shows the mass ratio of each component X.
A1=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−115(%Ni)−66(%Mn)−18(%Cu)+310 (2)
A3=35(%Cr)+60(%Mo)+73(%Si)+170(%Nb)+290(%V)
+620(%Ti)+750(%Al)+1400(%B)−250(%C)−280(%N)
−80(%Ni)−31(%Mn)−18(%Cu)+360 (3)
なお、(%X)は、各成分Xの質量割合を示す。 In the hot-rolled sheet annealing process, the microstructure is obtained by annealing at a temperature not lower than the upper limit temperature A 1 point of the ferrite single phase and within ± 100 ° C. of the lower limit temperature A 3 point of the austenite single phase, and then water cooling. The manufacturing method of the stainless steel plate excellent in toughness of Claim 6 or Claim 7 characterized by the above-mentioned. Incidentally, A 1 point (℃) and A 3 point (℃) is evaluated using equation (2), and (3).
A 1 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
−115 (% Ni) −66 (% Mn) −18 (% Cu) +310 (2)
A 3 = 35 (% Cr) +60 (% Mo) +73 (% Si) +170 (% Nb) +290 (% V)
+620 (% Ti) +750 (% Al) +1400 (% B) -250 (% C) -280 (% N)
-80 (% Ni) -31 (% Mn) -18 (% Cu) +360 (3)
In addition, (% X) shows the mass ratio of each component X.
The said stainless steel is a manufacturing method of the stainless steel plate excellent in toughness of any one of Claims 6-8 used for exhaust pipe fastening components use.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015069273 | 2015-03-30 | ||
JP2015069273 | 2015-03-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016191150A true JP2016191150A (en) | 2016-11-10 |
JP6791646B2 JP6791646B2 (en) | 2020-11-25 |
Family
ID=57246637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016065688A Active JP6791646B2 (en) | 2015-03-30 | 2016-03-29 | Stainless steel sheet with excellent toughness and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6791646B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107686929A (en) * | 2017-08-25 | 2018-02-13 | 苏州双金实业有限公司 | A kind of new ferritic stainless steel |
CN108149142A (en) * | 2018-02-01 | 2018-06-12 | 广西超盛网络科技有限责任公司 | A kind of corrosion-resistant steel and preparation method thereof |
WO2019087761A1 (en) | 2017-10-30 | 2019-05-09 | Jfeスチール株式会社 | Ferritic stainless-steel sheet and method for manufacturing same |
WO2020060051A1 (en) * | 2018-09-19 | 2020-03-26 | 주식회사 포스코 | Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor |
WO2020084987A1 (en) * | 2018-10-25 | 2020-04-30 | Jfeスチール株式会社 | Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same |
KR20200052053A (en) * | 2018-11-06 | 2020-05-14 | 주식회사 포스코 | Hot-rolled steel sheet with excellent low temperature impact toughness and manufacturing method thereof |
WO2020121817A1 (en) | 2018-12-11 | 2020-06-18 | Jfeスチール株式会社 | Ferritic stainless steel sheet and method for producing same |
JP2020111800A (en) * | 2019-01-15 | 2020-07-27 | 日鉄ステンレス株式会社 | Stainless steel, stainless hot rolled steel sheet, and method for manufacturing stainless hot rolled steel sheet |
JP2021123751A (en) * | 2020-02-05 | 2021-08-30 | 日鉄ステンレス株式会社 | Ferritic stainless steel for roll forming |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001032050A (en) * | 1999-07-21 | 2001-02-06 | Nippon Steel Corp | Ferritic stainless steel with excellent shape freezing during bending and its manufacturing method |
JP2002327251A (en) * | 2001-04-26 | 2002-11-15 | Nippon Steel Corp | Chromium-containing steel with excellent intergranular corrosion resistance and low-temperature toughness of welds |
JP2005187857A (en) * | 2003-12-25 | 2005-07-14 | Jfe Steel Kk | Cr-containing ferritic steel sheet with excellent crack resistance after hydroforming |
JP2010070799A (en) * | 2008-09-18 | 2010-04-02 | Jfe Steel Corp | Ti-ADDED FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SPINNABILITY AND PRODUCTION METHOD THEREOF |
JP2011174122A (en) * | 2010-02-24 | 2011-09-08 | Nippon Steel & Sumikin Stainless Steel Corp | Low-chromium-containing stainless steel superior in corrosion resistance at welded part |
JP2012188748A (en) * | 2011-02-08 | 2012-10-04 | Nippon Steel & Sumikin Stainless Steel Corp | Hot rolled ferritic stainless steel sheet, method for producing the same, and method for producing ferritic stainless steel sheet |
WO2015064077A1 (en) * | 2013-10-31 | 2015-05-07 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
JP2016180143A (en) * | 2015-03-24 | 2016-10-13 | Jfeスチール株式会社 | Ferritic-martensitic duplex stainless steel and method for producing the same |
-
2016
- 2016-03-29 JP JP2016065688A patent/JP6791646B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001032050A (en) * | 1999-07-21 | 2001-02-06 | Nippon Steel Corp | Ferritic stainless steel with excellent shape freezing during bending and its manufacturing method |
JP2002327251A (en) * | 2001-04-26 | 2002-11-15 | Nippon Steel Corp | Chromium-containing steel with excellent intergranular corrosion resistance and low-temperature toughness of welds |
JP2005187857A (en) * | 2003-12-25 | 2005-07-14 | Jfe Steel Kk | Cr-containing ferritic steel sheet with excellent crack resistance after hydroforming |
JP2010070799A (en) * | 2008-09-18 | 2010-04-02 | Jfe Steel Corp | Ti-ADDED FERRITIC STAINLESS STEEL SHEET EXCELLENT IN SPINNABILITY AND PRODUCTION METHOD THEREOF |
JP2011174122A (en) * | 2010-02-24 | 2011-09-08 | Nippon Steel & Sumikin Stainless Steel Corp | Low-chromium-containing stainless steel superior in corrosion resistance at welded part |
JP2012188748A (en) * | 2011-02-08 | 2012-10-04 | Nippon Steel & Sumikin Stainless Steel Corp | Hot rolled ferritic stainless steel sheet, method for producing the same, and method for producing ferritic stainless steel sheet |
WO2015064077A1 (en) * | 2013-10-31 | 2015-05-07 | Jfeスチール株式会社 | Ferrite-martensite two-phase stainless steel, and method for producing same |
JP2016180143A (en) * | 2015-03-24 | 2016-10-13 | Jfeスチール株式会社 | Ferritic-martensitic duplex stainless steel and method for producing the same |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107686929A (en) * | 2017-08-25 | 2018-02-13 | 苏州双金实业有限公司 | A kind of new ferritic stainless steel |
KR20220065904A (en) | 2017-10-30 | 2022-05-20 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless-steel sheet and method for manufacturing same |
WO2019087761A1 (en) | 2017-10-30 | 2019-05-09 | Jfeスチール株式会社 | Ferritic stainless-steel sheet and method for manufacturing same |
JP6536763B1 (en) * | 2017-10-30 | 2019-07-03 | Jfeスチール株式会社 | Ferritic stainless steel sheet and method for manufacturing the same |
EP3666917A4 (en) * | 2017-10-30 | 2020-08-05 | JFE Steel Corporation | FERRITIC STAINLESS STEEL SHEET AND METHOD OF MANUFACTURING THEREOF |
US20200347475A1 (en) * | 2017-10-30 | 2020-11-05 | Jfe Steel Corporation | Ferritic stainless steel sheet and method for manufacturing the same |
KR20200057760A (en) | 2017-10-30 | 2020-05-26 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel sheet and manufacturing method thereof |
KR102603113B1 (en) * | 2017-10-30 | 2023-11-16 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless-steel sheet and method for manufacturing same |
CN108149142A (en) * | 2018-02-01 | 2018-06-12 | 广西超盛网络科技有限责任公司 | A kind of corrosion-resistant steel and preparation method thereof |
WO2020060051A1 (en) * | 2018-09-19 | 2020-03-26 | 주식회사 포스코 | Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor |
KR20200033056A (en) * | 2018-09-19 | 2020-03-27 | 주식회사 포스코 | Non-annealed hot-rolled ferritic stainless steel sheet with excellent impact toughness and manufacturing method thereof |
US12286696B2 (en) * | 2018-09-19 | 2025-04-29 | Posco Co., Ltd | Hot rolled and unannealed ferritic stainless steel sheet having excellent impact toughness, and manufacturing method therefor |
KR102120696B1 (en) | 2018-09-19 | 2020-06-09 | 주식회사 포스코 | Non-annealed hot-rolled ferritic stainless steel sheet with excellent impact toughness and manufacturing method thereof |
KR102775263B1 (en) * | 2018-10-25 | 2025-03-04 | 제이에프이 스틸 가부시키가이샤 | Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same |
KR20230142630A (en) * | 2018-10-25 | 2023-10-11 | 제이에프이 스틸 가부시키가이샤 | Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same |
JP7038799B2 (en) | 2018-10-25 | 2022-03-18 | Jfeスチール株式会社 | Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method |
JPWO2020084987A1 (en) * | 2018-10-25 | 2021-02-15 | Jfeスチール株式会社 | Ferritic stainless steel hot-spread annealed steel sheet and its manufacturing method |
WO2020084987A1 (en) * | 2018-10-25 | 2020-04-30 | Jfeスチール株式会社 | Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same |
KR102173277B1 (en) | 2018-11-06 | 2020-11-03 | 주식회사 포스코 | Hot-rolled steel sheet with excellent low temperature impact toughness and manufacturing method thereof |
WO2020096268A1 (en) * | 2018-11-06 | 2020-05-14 | 주식회사 포스코 | Hot-rolled steel sheet with excellent low-temperature impact toughness and manufacturing method therefor |
KR20200052053A (en) * | 2018-11-06 | 2020-05-14 | 주식회사 포스코 | Hot-rolled steel sheet with excellent low temperature impact toughness and manufacturing method thereof |
US12312648B2 (en) | 2018-11-06 | 2025-05-27 | Posco Co., Ltd | Hot-rolled steel sheet with excellent low-temperature impact toughness and manufacturing method therefor |
KR20210098525A (en) | 2018-12-11 | 2021-08-10 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel sheet and manufacturing method thereof |
WO2020121817A1 (en) | 2018-12-11 | 2020-06-18 | Jfeスチール株式会社 | Ferritic stainless steel sheet and method for producing same |
US12123070B2 (en) | 2018-12-11 | 2024-10-22 | Jfe Steel Corporation | Ferritic stainless steel sheet and method for producing same |
JP7278079B2 (en) | 2019-01-15 | 2023-05-19 | 日鉄ステンレス株式会社 | Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet |
JP2020111800A (en) * | 2019-01-15 | 2020-07-27 | 日鉄ステンレス株式会社 | Stainless steel, stainless hot rolled steel sheet, and method for manufacturing stainless hot rolled steel sheet |
JP2021123751A (en) * | 2020-02-05 | 2021-08-30 | 日鉄ステンレス株式会社 | Ferritic stainless steel for roll forming |
Also Published As
Publication number | Publication date |
---|---|
JP6791646B2 (en) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5843982B2 (en) | Ferritic stainless steel sheet with excellent workability and method for producing the same | |
JP6542249B2 (en) | Ferritic stainless steel sheet, steel pipe and method for manufacturing the same | |
JP6791646B2 (en) | Stainless steel sheet with excellent toughness and its manufacturing method | |
JP6285462B2 (en) | 780 MPa class cold rolled duplex steel and method for producing the same | |
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP6729823B2 (en) | Method of manufacturing wear-resistant steel | |
JP5316634B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
WO2016148037A1 (en) | Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment | |
JP5370620B1 (en) | Thin steel plate and manufacturing method thereof | |
WO2013146815A1 (en) | Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same | |
KR20120099505A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and impact resistance and process for producing same | |
JP5846950B2 (en) | Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet | |
WO2015060311A1 (en) | Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent drawability | |
WO2017168957A1 (en) | Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet | |
JP5195413B2 (en) | High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same | |
JP2017201049A (en) | High-strength stainless steel sheet excellent in workability and method for manufacturing the same | |
JPWO2019044928A1 (en) | High Mn steel and method for producing the same | |
JP2010043321A (en) | Ferritic stainless steel sheet having reduced surface roughness due to working and method for producing the same | |
JP2017002332A (en) | High strength steel sheet excellent in processability and manufacturing method therefor | |
WO2011152328A1 (en) | Hot-rolled high-strength steel sheet and process for production thereof | |
KR20220073804A (en) | Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member | |
JP5257239B2 (en) | High strength low specific gravity steel plate excellent in ductility, workability and toughness, and method for producing the same | |
JP5845837B2 (en) | High-strength thin steel sheet with excellent rigidity and manufacturing method thereof | |
JP2019011510A (en) | Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment | |
CN106661695A (en) | Ferritic stainless steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6791646 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |