EP1427866B1 - Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube - Google Patents
Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube Download PDFInfo
- Publication number
- EP1427866B1 EP1427866B1 EP02777430A EP02777430A EP1427866B1 EP 1427866 B1 EP1427866 B1 EP 1427866B1 EP 02777430 A EP02777430 A EP 02777430A EP 02777430 A EP02777430 A EP 02777430A EP 1427866 B1 EP1427866 B1 EP 1427866B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- strip
- temperature
- carbon
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
Definitions
- the invention relates to iron and steel industry. More specifically, it concerns the manufacture of welded tubes, generally of small dimensions, this manufacture ending with a definitive shaping step by stretching or hydroforming.
- a wide variety of steel grades can be used for make welded tubes of small dimensions, that is to say a few centimeters in diameter, typically 2 to 10 cm, and a few millimeters thickness, typically of the order of 5 mm.
- carbon and carbon steels are usually used.
- low-end manganese For more demanding applications for example, for the automotive market, more complex steels are used.
- the exhaust lines for example, are made of steel stainless steel, ferritic or austenitic, whose properties are adjusted in playing on the conditions of annealing, hardening and drawing, or steel aluminized carbon.
- the structural parts of automobiles, trucks and of railway material are conventionally made of carbon-manganese steels high strength ferrito-pearlitic structure with up to 0.2% carbon and 1.5 to 2% of manganese, these steels being stretched then a normalization annealing. It is also possible to use rolled steels hot high strength ferritic-bainitic structure or rolled steels dual-phase hot-rolled ferritic-martensitic structures, or cold dual-phase. All these steels can reach high prices, less because of the cost of their raw material than the cost of multiple operations annealing and shaping they must undergo.
- the object of the invention is to provide manufacturers and users of small welded tubes, particularly in the automobile industry, a process for economic manufacture resulting in the production of products with high mechanical characteristics.
- the carbon content of the alloy is between 0 and and 1.2% and the manganese content of the alloy is between 10 and 35%.
- the carbon content of the alloy is between 0.2 and 1.2%, and the manganese content of the alloy is between 10 and 30%.
- the carbon content of the alloy is included between 0.2 and 0.8%, and the manganese content of the alloy is between 15 and 30%.
- the carbon content of the alloy is between 0.4 and 0.8%, and the manganese content of the alloy is between 20 and 24%.
- Hot rolling may be preceded by reheating a temperature not exceeding 80 ° C below the temperature of solidus of the alloy.
- Hot rolling may be preceded by reheating a temperature at which the precipitation of nitrides is not caused aluminum.
- the end temperature of hot rolling is preferably greater than or equal to 900 ° C.
- the winding temperature after hot rolling is preferably less than or equal to 450 ° C.
- Annealing followed by over-tempering of the strip wound hot-rolled said annealing being effected under conditions allowing the resetting of carbides and avoiding their precipitation at cooling.
- cold rolling of the strip can be carried out with a minimum reduction rate of 25%, preceded by stripping.
- the rate of reduction of the thickness of the strip during the first cold rolling of the web is preferably at least 25%.
- the subject of the invention is also a welded tube produced by the previous process.
- the invention consists first of all in using a iron-carbon-manganese alloy of determined composition, and to subject it to a series of thermomechanical treatments, before its form of tubes, which provide the desired mechanical properties.
- These alloys have, in fact, a strong work hardening capacity which allows them to associate, at the end of these treatments, a very high resistance (up to 1200 MPa) at high ductility (resulting in a high elongation at break up to 90%). They present the desired characteristics for the production of small tubes such as those used by the automobile industry to build, thanks to their resistance high, reinforcing parts of the vehicle structure, such as bars anti-intrusion integrated doors. Their ductility reserve makes them also suitable for use in forming side members, which must be capable of absorbing high deformation energy.
- Carbon and manganese contents are included respectively between 0 and 2% and 10 and 40%, preferably respectively between 0 and 1.2% and 10 and 35%., very preferably respectively between 0.2 and 1.2% and 10 and 30%, very advantageously respectively between 0.2 and 0.8% and 15 and 30%, and optimally respectively between 0.4 and 0.8% and 20 and 24%;
- the silicon content must be less than or equal to 5%, preferably less than or equal to 1%, optimally less than or equal to 0.5%.
- the sulfur content must be less than or equal to 0.3%, preference less than or equal to 0,05%, optimally less than or equal to 0.01%.
- the phosphorus content must be less than or equal to 0,1%, preferably less than or equal to 0.05%.
- the aluminum content must be less than or equal to 5%, preferably less than or equal to 0.1%, optimally less than or equal to 0.03%.
- the nitrogen content is less than or equal to 0.2%, preferably less than or equal to 0.1%, optimally less than or equal to 0.05%.
- the nickel content must be less than or equal to 5%, preferably less than or equal to 2%.
- the molybdenum content must be less than or equal to 5%, preferably less than or equal to 1%.
- the cobalt content must be less than or equal to 3%, preferably less than or equal to 1%.
- the tungsten content must be less than or equal to 2%, preferably less than or equal to 0.5%.
- niobium and vanadium must each be lower or equal to 1%, preferably less than or equal to 0.1%.
- the chromium and copper contents must each be lower or equal to 5%, preferably less than or equal to 1%.
- the tin content must be less than or equal to 0.5%, preferably less than or equal to 0,1%.
- the titanium content must be less than or equal to 1%, preferably less than or equal to 0,1%.
- alloys can also tolerate maximum boron content 0.1%, preferably not more than 0.01%, a maximum calcium content or magnesium of 0.1%, preferably not more than 0.01%, arsenic or antimony maximum of 0,1%, not more than 0,05%.
- the upper bounds that have been laid correspond to which, for certain elements, are beginning to be harmful to properties of the alloy. This is, for example, the case for aluminum and sulfur. For other elements, it is essentially economic criteria that have such upper bounds. Thus, there would be little metallurgical drawbacks to add more than 5% nickel to the alloy, but this would unnecessarily increase its cost price.
- austenitic ferric steels and alloys have many other modes of deformation, in addition to slip. Among them, if their stacking fault energy lends itself to it, there is twinning. This mode of deformation has the advantage of providing greater plastic deformation and, consequently, higher strength than those resulting from the simple sliding of dislocations. It is therefore necessary to seek conditions that are capable of activating twinning at the commissioning temperatures of the materials to be manufactured, in particular at ambient temperature for the case of motor vehicle parts, so as to obtain a great deal of work hardening capacity.
- the possibility of obtaining a mechanical twinning is governed firstly by the chemical composition of the alloy; secondly by the temperature at which the material is located, these two parameters acting on the stacking fault energy, and finally by the grain size of the material which determines the kinetics of the twinning.
- the excessive formation of martensite ⁇ (more than 20% of the structure) and the formation of martensite ⁇ 'at the moment of deformation are also obstacles to obtaining satisfactory mechanical properties, in particular good ductility. It is therefore important to have, before the final step of shaping the tube, by cold drawing or by hydroforming, a material having all the desirable characteristics of these points of view. The process according to the invention gives access to such materials.
- the single figure shows the theoretical evolution of stacking fault energy in the C / Mn plane at room temperature (300 K), in the form of curves along which the stacking fault energy, expressed in mJ / m 2 , is constant.
- Table 1 includes the chemical characteristics and (for the samples tested by the inventors, that is to say the samples E to K) mechanical samples reported in the single figure.
- the stacking fault energy also varies in the same direction, at a rate of ⁇ 5 mJ / m 2 for a temperature variation of ⁇ 50 ° C. This feature is important if the shaping operation is to be performed at a temperature below ambient.
- a steel having a grain size of 50 ⁇ m has a stacking failure energy of 5 mJ / m 2 less than that of a steel of similar composition having a grain size of 2 to 5 ⁇ m.
- an alloy according to the invention is thus obtained if its carbon content is between 0 and 2%, if its manganese content is between 10 and 40%, and if, in addition, these contents obey the relation (1), so as to avoid the formation of martensite ⁇ 'during deformation at ambient temperature.
- the sample F has a product Rm.A of less than 60,000, although its stacking fault energy is also of the order of 15 mJ / m 2 . But its carbon content is not sufficient to make it fully benefit from the phenomenon of dynamic hardening, which will be discussed later.
- Partial replacement of manganese with carbon present therefore both economic and metallurgical benefits.
- an addition of 0.2% carbon makes it possible to dispense with 4 to 5% of manganese with constant stacking fault energy.
- An area still most preferred carbon and manganese content is therefore 0.2% ⁇ C ⁇ 1.2% and 10% ⁇ Mn ⁇ 30%, the relation (1) being otherwise satisfied.
- Increasing the carbon content may, however, have disadvantages beyond a certain limit. Indeed, there is a risk that in alloys whose composition is in the preceding preferred range, a precipitation of carbides of the M 5 C 2 and M 23 C 6 type occurs during a slow cooling. Such slow cooling may be that experienced by a coiled strip after being cast directly as a thin strip or hot rolled. M 3 C carbide can also precipitate during pearlitic transformation.
- the tape is to be wound at a relatively high temperature, so it is best not to impose a carbon content too high for steel, if you want to avoid having to proceed then to a solution annealing of the carbides followed by a annealing. In the majority of cases corresponding to the use of tools conventional industry, it will be preferable not to exceed a certain in carbon of 0.8%. In these circumstances, to compensate for the decrease in maximum carbon content compared to the previously preferred domain defined, it is necessary to raise the minimum manganese content up to 15%. We thus obtains an even more advantageous composition range where 0.2% ⁇ C ⁇ 0.8% and 15% ⁇ Mn ⁇ 30%.
- Sample E has a stacking fault energy of 17 mJ / m 2 , but contains only 0.19% carbon. Its resistance is only 750 Mpa. A carbon content of at least 0.4% is necessary to obtain a resistance greater than 950 MPa, as shown in sample F. This increase in the minimum carbon content requires the reduction of the maximum 24% manganese if it is desired to remain at a stacking fault energy value of about 15 mJ / m 2 , and thus maintain the same degree of twinning by deformation.
- the optimal composition range for the alloys of the invention is therefore 0.4% ⁇ C ⁇ 0.8% and 20% ⁇ Mn ⁇ 24%.
- the carbon and manganese contents are optimal in that they provide at room temperature adequate stack fault energies of the order of 5 to 25 mJ / m 2 .
- the shaping of the tubes is to be carried out at a temperature substantially lower than ambient, higher carbon and manganese maximum levels may be advisable for the stacking fault energy (which, as said it, decreases when the temperature drops) is kept at a level allowing a twinning is significantly observed. Therefore, in the spirit of the invention, the carbon content of the alloy can be up to 2% and the manganese content up to 40%.
- the maximum silicon content of 5% is justified by the need to maintain good weldability to the alloy. In practice, one less than 1%, of the order of 0.5% or less, is advisable. For the high levels of silicon, weldability problems can be reduced if welding is carried out in an inert atmosphere.
- the inclusiveness of the alloy has an influence on its resistance and its elongation at break.
- the manganese sulphides constitute the main source of damage leading to a rupture premature. Improvement of the characteristics at break is therefore a reason additional to limit the sulfur content.
- the need to limit the titanium, niobium and vanadium contents is due to the fact that these elements are likely to form carbonitrides which tend to slow down recrystallization by hindering the migration of joints. This is also the case for aluminum.
- the grain size is an important parameter for setting properties mechanical properties of the material, and can be controlled by means of annealing recrystallization. For this recrystallization annealing to be fully effective, it is necessary to limit the formation of these carbonitrides.
- chromium, nickel, molybdenum, copper, cobalt, tungsten, tin, boron, calcium, magnesium, arsenic and antimony must be maintained within the prescribed limits so that these elements do not have significant influence on the mechanical properties of the material.
- the casting of the steel whose composition has been mentioned above can be in ingots or, preferably, continuously to obtain slabs of classical format, with a thickness of about 200 mm. he is also possible to cast this alloy in the form of thin slabs (a few cm thick) which can then undergo hot rolling in line. This process gives access to hot rolled strips of small thickness, which may possibly not subsequently undergo cold rolling. In this In this case, coarse-grained alloys are obtained (on the order of 20 ⁇ m, this value depending on the end of rolling and winding temperatures), presenting a relatively average resistance but a high ductility. It is also possible to achieve the casting of steel by a method of direct casting of thin strips, possibly being laminated hot online or offline. The application of this casting process to the casting of iron-carbon-manganese alloys (different from those of the invention) already been proposed in EP-A-1 067 203.
- This casting step is widely known and does not show peculiarities compared to usual practices, it will not be more detailed here.
- the hot product is then hot-rolled. casting.
- hot rolling begins by a heating followed by a roughing which brings the ingot to the format of a classic slab.
- reheatings should not bring the slab to a temperature above the solidus temperature of the segregated zones, under pain of causing the appearance of "burns" that prohibit any in hot form.
- the solidus temperature of a Fe-C-Mn alloy at 0.6% of carbon and 22% of manganese is of the order of 1280 ° C.
- Precipitation of aluminum nitrides during reheating is also preferably avoided. This precipitation hampers the migration of the joints during hot processing.
- iron-carbon-manganese alloys concerned by the invention may be comparable in terms of the rate of reduction per pass and the time interval between passes to those usually used for stainless steels austenitic type SUS 304, given the similarities of hardness to between SUS 304 and iron-carbon-manganese alloys the invention.
- an exit temperature of the reheating furnace of 1100 ° C, a roughing cage outlet temperature of 980 ° C, a thickness in 38.5 mm roughing cage outlet, a temperature at the entrance of the finishing cage of 912 ° C, a rolling end temperature of 910 ° C, a band thickness at the end of rolling of 3 mm, an exit speed of 259 m / s band and a winding temperature of 480 ° C.
- the cooling itself of the order of 10 ° C / h, starts only one to two hours after winding, you have to wind the band at such a temperature that it can not be so prolonged to temperatures at which this precipitation of carbides from iron is possible.
- the winding temperature can be deduced from TTT diagrams of the alloy concerned.
- TTT diagrams of the alloy concerned By way of example, for an iron-carbon-manganese alloy at 0,6% of carbon and 22% of manganese, a stay of 2 hours at a temperature of 500 ° C or more and 28 hours at 450 ° C or more leads to precipitation of iron carbides.
- the band is worn up a temperature between 1000 and 1050 ° C at a speed such that the band remains one minute above 900 ° C, and 10 to 20 s above 1000 ° C, then it is cooled at a speed of at least 5 ° C / s.
- the quenching is carried out to the maximum of the possibilities of the line.
- the strip can be left as it is without proceed with its cold rolling.
- cold rolling is necessary. This cold rolling allows also to reduce the roughness of the surface of the strip, so to obtain a surface appearance compatible with use for forming parts intended to remain visible. It also increases the band's ability to be coated.
- the band Prior to its eventual cold rolling, the band must classically be stripped.
- this stripping can be performed in a solution of 20% hydrochloric acid at room temperature ambient, in the presence of hexamethylenetetramine as an inhibitor.
- the cold rolling of the strip is then carried out with a rate of total reduction which is a function not only of the desired final thickness, but also of the resistance and the hardness that one wishes to obtain.
- a rate of total reduction which is a function not only of the desired final thickness, but also of the resistance and the hardness that one wishes to obtain.
- the resistance reaches almost 2000 MPa after 60% of reduction, and its hardness Hv 5 under the same conditions practically reaches 700.
- a reduction rate of 30% leads to a resistance of about 1500 MPa.
- a rolling mill can be used conventional cold, or a Sendzimir rolling mill that gives access, in three passes, at reduction rates of the order of 60-70%, including for alloys with very high strength, greater than 1500 MPa. A thickness of 1 mm for the cold-rolled sheet can thus be obtained.
- This recrystallization annealing must be carried out by the method of continuous annealing because a basic annealing would lead to a precipitation of carbides, which we saw was undesirable.
- This annealing can be carried out oxidizing atmosphere, followed by stripping; it can also be of the type "Bright annealing", that is to say carried out in an inert atmosphere, which makes it possible to get rid of pickling and limit surface decarburization.
- this annealing can do follow this annealing by passing through a cold-rolling mill ("skin-pass") or planing.
- this recrystallization annealing is performed at a temperature of 600-1200 ° C, for 1 second to 1 hour, depending the size of the grains that one wishes to obtain.
- an iron-carbon-manganese alloy with 0.6% carbon and 22% of manganese may preferably undergo a bright annealing 800 ° C for 90s to obtain a grain size of the order of 2.5 microns.
- the mechanical characteristics thus obtained are a maximum resistance of 1030 MPa and an elongation at break of 60%.
- usable iron-carbon-manganese alloys in the process according to the invention may have an elongation at break of 90% or more, if a relatively low tensile strength of 600 MPa (figures obtained for a 0.2% carbon alloy, 27% manganese, with a grain size of 30 ⁇ m). But in the range compositions (0.4 to 0.8% of carbon and 20 to 24% of manganese), an elongation at break of about 50 to 60% and a tensile strength of the order of 1000 MPa for a size of grains of 5 ⁇ m, or even a tensile strength of the order of 1200 MPa for a grain size of 1 ⁇ m.
- these alloys are distinguished by excellent weldability in particular, that they contain optimally little or very little silicon, whose oxide is difficult to reduce, and because of their structure austenitic that makes the concepts of martensitic quenchability irrelevant and / or carbon equivalent which should normally be taken into account when the use of conventional ferritic steels to form small tubes welded.
- these alloys can easily receive a deposit uniform and adherent zinc by electrogalvanization, especially in the case where they were cold rolled.
- the tube After slitting the sheet, shearing its shores and progressive forming to bring its edges until docking, the tube is conventionally welded by electrical resistance, laser or high frequencies. The inner and outer scraping of the bead is then carried out welding to eliminate thickness variations. These variations thick would be unfavorable to hydroforming and would damage the tool formatting.
- This shaping of the tube can take place by cold drawing.
- the thickness of the tube is reduced by pulling through a die which calibrates the outside diameter and, most often, on a mandrel which calibrates the internal diameter.
- stretching can be used to shape the tubes and transform a draft of circular section into a product having another geometry.
- the shaping can also take place by hydroforming.
- a hollow body of more or less complex shape is manufactured in deforming a tube under the joint action of internal pressure and forces compression acting at the ends of the tube.
- Iron-carbon-manganese alloys used in the invention have a coefficient of hardening of the order of 0.5, which is very favorable to their good behavior during hydroforming, and makes it possible to obtain pieces of complex shape which would be inaccessible by the use of more conventional steels. Only some austenitic stainless steels would likely have comparable performance.
- iron-carbon-manganese alloys presenting the compositions indicated gives the metal a great variety behaviors, which allow either to obtain welded tubes with better mechanical characteristics than existing products, either to obtain mechanical characteristics equivalent to those of the products existing, but for a lower cost of production and / or for a quantity of subject matter brought into play less, leading to a significant reduction in the room.
- alloy with 0.2% carbon and 27% of manganese mentioned above whose tensile elongation exceeds 90% it is possible to eliminate the anneals intermediaries, and consider increasing stitching heights.
- the alloy at 0.6% carbon and 22% manganese whose resistance to traction is from 1000 to 1200 MPa, it allows to obtain a mass gain important on the final tube and to simplify the control of its stage of implementation. because this high strength widens the loading range by reducing the burst area during hydroforming. Finally, so general, because of their high work hardening capacity, stretching and hydroforming of the iron-carbon-manganese alloys according to the invention have also the advantage of standardizing the mechanical characteristics in every respect of the tube.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
L'invention concerne la sidérurgie. Plus précisément, elle concerne la fabrication de tubes soudés, généralement de petites dimensions, cette fabrication se terminant par une étape de mise en forme définitive par étirage ou hydroformage.The invention relates to iron and steel industry. More specifically, it concerns the manufacture of welded tubes, generally of small dimensions, this manufacture ending with a definitive shaping step by stretching or hydroforming.
On peut utiliser une très grande variété de nuances d'acier pour réaliser des tubes soudés de petites dimensions, c'est-à-dire de quelques centimètres de diamètre, typiquement 2 à 10 cm, et de quelques millimètres d'épaisseur, typiquement de l'ordre de 5 mm. Pour des applications ne nécessitant pas de propriétés particulières pour le produit final, telles que les tubes d'échafaudage, on utilise habituellement des aciers au carbone et au manganèse de bas de gamme. Pour des applications plus exigeantes destinées, par exemple, au marché automobile, des aciers plus complexes sont utilisés. Les lignes d'échappement, par exemple, sont réalisées en acier inoxydable, ferritique ou austénitique, dont les propriétés sont ajustées en jouant sur les conditions de recuit, d'écrouissage et d'étirage, ou en acier au carbone aluminié. Les pièces de structure d'automobiles, de poids lourds et de matériel ferroviaire sont classiquement en aciers au carbone-manganèse de structure ferrito-perlitique à haute résistance, comportant jusqu'à 0,2% de carbone et de 1,5 à 2% de manganèse, ces aciers subissant un étirage puis un recuit de normalisation. On peut également utiliser des aciers laminés à chaud à haute résistance de structure ferrito-bainitique ou des aciers laminés à chaud dual-phase à structure ferrito-martensitique, ou des aciers laminés à froid dual-phase. Tous ces aciers peuvent atteindre des prix élevés, moins en raison du coût de leur matière première que du coût des multiples opérations de recuit et de mise en forme qu'ils doivent subir.A wide variety of steel grades can be used for make welded tubes of small dimensions, that is to say a few centimeters in diameter, typically 2 to 10 cm, and a few millimeters thickness, typically of the order of 5 mm. For applications not requiring no particular properties for the final product, such as scaffold tubes, carbon and carbon steels are usually used. low-end manganese. For more demanding applications for example, for the automotive market, more complex steels are used. The exhaust lines, for example, are made of steel stainless steel, ferritic or austenitic, whose properties are adjusted in playing on the conditions of annealing, hardening and drawing, or steel aluminized carbon. The structural parts of automobiles, trucks and of railway material are conventionally made of carbon-manganese steels high strength ferrito-pearlitic structure with up to 0.2% carbon and 1.5 to 2% of manganese, these steels being stretched then a normalization annealing. It is also possible to use rolled steels hot high strength ferritic-bainitic structure or rolled steels dual-phase hot-rolled ferritic-martensitic structures, or cold dual-phase. All these steels can reach high prices, less because of the cost of their raw material than the cost of multiple operations annealing and shaping they must undergo.
Le but de l'invention est de procurer aux fabricants et utilisateurs de petits tubes soudés, notamment dans l'industrie automobile, un procédé de fabrication économique aboutissant à la réalisation de produits présentant des caractéristiques mécaniques élevées. The object of the invention is to provide manufacturers and users of small welded tubes, particularly in the automobile industry, a process for economic manufacture resulting in the production of products with high mechanical characteristics.
A cet effet , l'invention a pour objet un procédé de fabrication d'un
tube soudé, du type comportant une étape finale d'étirage ou d'hydroformage,
caractérisé en ce que :
- on procède à l'élaboration d'un alliage de composition, exprimée en
pourcentages pondéraux :
- C ≤ 2%;
- Mn compris entre 10 et 40%, avec Mn% > 21,66 - 9,7 C% ;
- Si ≤ 5%, préférentiellement ≤ 1 %, optimalement ≤ 0,5% ;
- S ≤ 0,3%, préférentiellement ≤ 0,05%, optimalement ≤ 0,01 % ;
- P ≤ 0,1%, préférentiellement ≤ 0,05% ;
- Al ≤ 5%, préférentiellement ≤ 0,1 %, optimalement ≤ 0,03% ;
- Ni ≤ 5%, préférentiellement ≤ 2% ;
- Mo ≤ 5%, préférentiellement ≤ 1 % ;
- Co ≤ 3%, préférentiellement ≤ 1 % ;
- W ≤ 2%, préférentiellement ≤ 0,5% ;
- Cr ≤ 5%, préférentiellement ≤ 1 % ;
- Nb ≤ 1%, préférentiellement ≤ 0,1 % ;
- V ≤ 1 %, préférentiellement ≤ 0,1 % ;
- Cu ≤ 5%, préférentiellement ≤ 1 % ;
- N ≤ 0,2%, préférentiellement ≤ 0,1%, optimalement ≤ 0,05% ;
- Sn ≤ 0,5%, préférentiellement ≤ 0,1 % ;
- Ti ≤1 %, préférentiellement ≤ 0,1 % ;
- B ≤ 0,1 %, préférentiellement ≤ 0,01 % ;
- chacune des teneurs en Ca et Mg ≤ 0,1 °/a, préférentiellement ≤ 0,01 % ;
- chacune des teneurs en As et Sb ≤ 0,1 %, préférentiellement ≤ 0,05% ;
- on procède ensuite à la coulée d'un demi-produit à partir de cet
alliage,
- a) soit sous forme d'un lingot qui subit ensuite un dégrossissage par laminage à chaud pour le transformer en brame, soit directement sous forme d'une brame, ladite brame étant ensuite laminée à chaud sous forme d'une bande puis bobinée,
- b) soit sous forme d'une bande mince ;
- on procède ensuite à un décapage de la bande si celle-ci est oxydée en surface ;
- on procède enfin à la fabrication du tube soudé par formage progressif d'une tôle découpée à partir de la bande précédente pour amener ses bords jusqu'à accostage, puis par soudage desdits bords, puis par élimination du bourrelet de soudure, puis par étirage à froid ou hydroformage.
characterized in that
- an alloy of composition is produced, expressed in weight percentages:
- C ≤ 2%;
- Mn between 10 and 40%, with Mn%> 21.66 - 9.7 C%;
- If ≤ 5%, preferably ≤ 1%, optimally ≤ 0.5%;
- S ≤ 0.3%, preferably ≤ 0.05%, optimally ≤ 0.01%;
- P ≤ 0.1%, preferentially ≤ 0.05%;
- Al ≤ 5%, preferably ≤ 0.1%, optimally ≤ 0.03%;
- Ni ≤ 5%, preferably ≤ 2%;
- Mo ≤ 5%, preferably ≤ 1%;
- Co ≤ 3%, preferably ≤ 1%;
- W ≤ 2%, preferably ≤ 0.5%;
- Cr ≤ 5%, preferably ≤ 1%;
- Nb ≤ 1%, preferentially ≤ 0.1%;
- V ≤ 1%, preferentially ≤ 0.1%;
- Cu ≤ 5%, preferably ≤ 1%;
- N ≤ 0.2%, preferentially ≤ 0.1%, optimally ≤ 0.05%;
- Sn ≤ 0.5%, preferentially ≤ 0.1%;
- Ti ≤1%, preferentially ≤ 0.1%;
- B ≤ 0.1%, preferentially ≤ 0.01%;
- each of Ca and Mg contents ≤ 0.1 ° / a, preferably ≤ 0.01%;
- each of the contents of As and Sb ≤ 0.1%, preferably ≤ 0.05%;
- a semi-finished product is then cast from this alloy,
- a) in the form of an ingot which is then subjected to a hot-rolling roughing to transform it into a slab, or directly in the form of a slab, said slab then being hot-rolled in the form of a strip and then wound,
- (b) in the form of a thin strip;
- the strip is then stripped if the strip is oxidized on the surface;
- the welded tube is finally made by progressive forming of a sheet cut from the preceding strip to bring its edges until docking, then by welding said edges, then by removing the weld bead, then by stretching to cold or hydroforming.
De préférence, la teneur en carbone de l'alliage est comprise entre 0 et 1,2% et la teneur en manganèse de l'alliage est comprise entre 10 et 35%.Preferably, the carbon content of the alloy is between 0 and and 1.2% and the manganese content of the alloy is between 10 and 35%.
Encore plus préférentiellement, la teneur en carbone de l'alliage est comprise entre 0,2 et 1,2%, et la teneur en manganèse de l'alliage est comprise entre 10 et 30%.Even more preferentially, the carbon content of the alloy is between 0.2 and 1.2%, and the manganese content of the alloy is between 10 and 30%.
Très avantageusement, la teneur en carbone de l'alliage est comprise entre 0,2 et 0,8%, et la teneur en manganèse de l'alliage est comprise entre 15 et 30%.Very advantageously, the carbon content of the alloy is included between 0.2 and 0.8%, and the manganese content of the alloy is between 15 and 30%.
Optimalement, la teneur en carbone de l'alliage est comprise entre 0,4 et 0,8%, et la teneur en manganèse de l'alliage est comprise entre 20 et 24%.Optimally, the carbon content of the alloy is between 0.4 and 0.8%, and the manganese content of the alloy is between 20 and 24%.
Le laminage à chaud peut être précédé par un réchauffage effectué à une température ne dépassant pas 80°C en dessous de la température de solidus de l'alliage.Hot rolling may be preceded by reheating a temperature not exceeding 80 ° C below the temperature of solidus of the alloy.
Le laminage à chaud peut être précédé par un réchauffage effectué à une température à laquelle on ne provoque pas la précipitation de nitrures d'aluminium.Hot rolling may be preceded by reheating a temperature at which the precipitation of nitrides is not caused aluminum.
La température de fin de laminage à chaud est de préférence supérieure ou égale à 900°C.The end temperature of hot rolling is preferably greater than or equal to 900 ° C.
La température de bobinage après laminage à chaud est de préférence inférieure ou égale à 450°C.The winding temperature after hot rolling is preferably less than or equal to 450 ° C.
On peut exécuter un recuit suivi d'une hypertrempe de la bande laminée à chaud bobinée, ledit recuit étant effectué dans des conditions permettant la remise en solution des carbures et évitant leur précipitation au refroidissement. Annealing followed by over-tempering of the strip wound hot-rolled, said annealing being effected under conditions allowing the resetting of carbides and avoiding their precipitation at cooling.
Après le laminage à chaud et l'éventuel recuit suivi d'une hypertrempe, on peut procéder à un laminage à froid de la bande, avec un taux de réduction minimal de 25%, précédé par un décapage.After hot rolling and any annealing followed by tempering, cold rolling of the strip can be carried out with a minimum reduction rate of 25%, preceded by stripping.
Le taux de réduction de l'épaisseur de la bande lors de la première passe du laminage à froid de la bande est de préférence d'au moins 25%.The rate of reduction of the thickness of the strip during the first cold rolling of the web is preferably at least 25%.
On peut procéder à un recuit de recristallisation de la bande à une température de 600 à 1200°C pendant 1 seconde à 1 heure.We can proceed to a recrystallization annealing of the band at a temperature of 600 to 1200 ° C for 1 second to 1 hour.
L'invention a également pour objet un tube soudé produit par le procédé précédent.The subject of the invention is also a welded tube produced by the previous process.
Comme on l'aura compris, l'invention consiste d'abord à utiliser un alliage fer-carbone-manganèse de composition déterminée, et à lui faire subir une série de traitements thermomécaniques, avant son étape de mise sous forme de tubes, qui lui procurent les propriétés mécaniques souhaitées.As will be understood, the invention consists first of all in using a iron-carbon-manganese alloy of determined composition, and to subject it to a series of thermomechanical treatments, before its form of tubes, which provide the desired mechanical properties.
Ces alliages présentent, en effet, une forte capacité d'écrouissage qui leur permet d'associer, à l'issue de ces traitements, une très haute résistance (jusqu'à 1200 MPa) à une ductilité élevée (se traduisant par un taux d'allongement à la rupture allant jusqu'à 90%). Ils présentent donc les caractéristiques souhaitées pour la réalisation de tubes de petite taille tels que ceux utilisés par l'industrie automobile pour constituer, grâce à leur résistance élevée, des pièces de renfort de la structure du véhicule, telles que des barres anti-intrusion intégrées aux portières. Leur réserve de ductilité les rend également aptes à être utilisés pour former des longerons, qui doivent être capables d'absorber une énergie de déformation élevée.These alloys have, in fact, a strong work hardening capacity which allows them to associate, at the end of these treatments, a very high resistance (up to 1200 MPa) at high ductility (resulting in a high elongation at break up to 90%). They present the desired characteristics for the production of small tubes such as those used by the automobile industry to build, thanks to their resistance high, reinforcing parts of the vehicle structure, such as bars anti-intrusion integrated doors. Their ductility reserve makes them also suitable for use in forming side members, which must be capable of absorbing high deformation energy.
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence à la figure unique annexée qui présente l'énergie de défaut d'empilement d'un alliage fer-carbone-manganèse en fonction de sa composition, à la température de 300 K.The invention will be better understood on reading the description which follows, given with reference to the attached single figure showing the energy of lack of stacking of an iron-carbon-manganese alloy according to its composition, at a temperature of 300 K.
En premier lieu, on procède à l'élaboration d'un alliage ferreux austénitique fer-carbone-manganèse, dont les teneurs en carbone et manganèse se situent dans les gammes suivantes (toutes les teneurs sont données en pourcentages pondéraux).First, we proceed to the development of a ferrous alloy austenitic iron-carbon-manganese, whose carbon and manganese are in the following ranges (all grades are data in percentages by weight).
Les teneurs en carbone et manganèse sont comprises respectivement entre 0 et 2% et 10 et 40%, de préférence respectivement entre 0 et 1,2% et 10 et 35%., très préférentiellement respectivement entre 0,2 et 1,2% et 10 et 30%, très avantageusement respectivement entre 0,2 et 0,8% et 15 et 30%, et optimalement respectivement entre 0,4 et 0,8% et 20 et 24% ;Carbon and manganese contents are included respectively between 0 and 2% and 10 and 40%, preferably respectively between 0 and 1.2% and 10 and 35%., very preferably respectively between 0.2 and 1.2% and 10 and 30%, very advantageously respectively between 0.2 and 0.8% and 15 and 30%, and optimally respectively between 0.4 and 0.8% and 20 and 24%;
Les teneurs admissibles pour les autres éléments de l'alliage sont les suivantes, sachant que tous ces éléments peuvent n'être présents qu'à l'état de traces (on ne donnera donc pas, pour cette raison, de teneurs minimales précises en ces éléments).The permissible contents for the other elements of the alloy are the following, knowing that all these elements may be present only in the state trace amounts (for this reason, we will not give minimum precise in these elements).
La teneur en silicium doit être inférieure ou égale à 5%, de préférence inférieure ou égale à 1 %, optimalement inférieure ou égale à 0,5%.The silicon content must be less than or equal to 5%, preferably less than or equal to 1%, optimally less than or equal to 0.5%.
La teneur en soufre doit être inférieure ou égale à 0,3%, de préférence inférieure ou égale à 0,05%, optimalement inférieure ou égale à 0,01 %.The sulfur content must be less than or equal to 0.3%, preference less than or equal to 0,05%, optimally less than or equal to 0.01%.
La teneur en phosphore doit être inférieure ou égale à 0,1%, de préférence inférieure ou égale à 0,05%.The phosphorus content must be less than or equal to 0,1%, preferably less than or equal to 0.05%.
La teneur en aluminium doit être inférieure ou égale à 5%, de préférence inférieure ou égale à 0,1%, optimalement inférieure ou égale à 0,03%.The aluminum content must be less than or equal to 5%, preferably less than or equal to 0.1%, optimally less than or equal to 0.03%.
La teneur en azote est inférieure ou égale à 0,2%, de préférence inférieure ou égale à 0,1%, optimalement inférieure ou égale à 0,05%.The nitrogen content is less than or equal to 0.2%, preferably less than or equal to 0.1%, optimally less than or equal to 0.05%.
La teneur en nickel doit être inférieure ou égale à 5%, de préférence inférieure ou égale à 2%.The nickel content must be less than or equal to 5%, preferably less than or equal to 2%.
La teneur en molybdène doit être inférieure ou égale à 5%, de préférence inférieure ou égale à 1 %.The molybdenum content must be less than or equal to 5%, preferably less than or equal to 1%.
La teneur en cobalt doit être inférieure ou égale à 3%, de préférence inférieure ou égale à 1%.The cobalt content must be less than or equal to 3%, preferably less than or equal to 1%.
La teneur en tungstène doit être inférieure ou égale à 2%, de préférence inférieure ou égale à 0,5%.The tungsten content must be less than or equal to 2%, preferably less than or equal to 0.5%.
Les teneurs en niobium et vanadium doivent chacune être inférieures ou égales à 1 %, de préférence inférieures ou égales à 0,1%.The levels of niobium and vanadium must each be lower or equal to 1%, preferably less than or equal to 0.1%.
Les teneurs en chrome et cuivre doivent chacune être inférieures ou égales à 5%, de préférence inférieures ou égales à 1 %.The chromium and copper contents must each be lower or equal to 5%, preferably less than or equal to 1%.
La teneur en étain doit être inférieure ou égale à 0,5%, de préférence inférieure ou égale à 0,1 %.The tin content must be less than or equal to 0.5%, preferably less than or equal to 0,1%.
La teneur en titane doit être inférieure ou égale à 1 %, de préférence inférieure ou égale à 0,1 %. The titanium content must be less than or equal to 1%, preferably less than or equal to 0,1%.
Ces alliages peuvent également tolérer une teneur en bore maximale de 0,1%, de préférence au plus de 0,01%, une teneur maximale en calcium ou en magnésium de 0,1 %, de préférence au plus de 0,01 %, une teneur maximale en arsenic ou en antimoine de 0,1%, au plus de 0,05%.These alloys can also tolerate maximum boron content 0.1%, preferably not more than 0.01%, a maximum calcium content or magnesium of 0.1%, preferably not more than 0.01%, arsenic or antimony maximum of 0,1%, not more than 0,05%.
Les bornes supérieures qui ont été posées correspondent à des teneurs qui, pour certains éléments, commencent à être nocives pour les propriétés de l'alliage. C'est, par exemple, le cas pour l'aluminium et le soufre. Pour d'autres éléments, ce sont essentiellement des critères économiques qui font poser de telles bornes supérieures. Ainsi, il n'y aurait que peu d'inconvénients métallurgiques à ajouter plus de 5% de nickel à l'alliage, mais on augmenterait ainsi inutilement son prix de revient.The upper bounds that have been laid correspond to which, for certain elements, are beginning to be harmful to properties of the alloy. This is, for example, the case for aluminum and sulfur. For other elements, it is essentially economic criteria that have such upper bounds. Thus, there would be little metallurgical drawbacks to add more than 5% nickel to the alloy, but this would unnecessarily increase its cost price.
Pour l'application visée par l'invention, on recherche des nuances du système ternaire Fe-C-Mn qui procurent une résistance élevée (de préférence au moins 1000 MPa) et un allongement également élevé (de préférence au moins 50%). De plus, pour des questions de coût, il n'est pas souhaitable d'avoir une teneur trop élevée en manganèse.For the application targeted by the invention, we seek shades of Fe-C-Mn ternary system that provides high resistance (preferably at least 1000 MPa) and an equally high elongation (preferably at minus 50%). Moreover, for cost issues, it is not desirable to have a too high content of manganese.
On sait que le mode de déformation des aciers austénitiques et des alliages apparentés dépend de leur composition chimique et de la température de déformation.It is known that the mode of deformation of austenitic steels and alloys depends on their chemical composition and the deformation temperature.
Comparativement aux aciers ferritiques qui se déforment
principalement par glissement de dislocations, les aciers et alliages ferreux
austénitiques possèdent de nombreux autres modes de déformation, en plus
du glissement. Parmi eux, si leur énergie de défaut d'empilement s'y prête, il y
a le maclage. Ce mode de déformation a l'avantage de procurer une plus
grande aptitude à la déformation plastique et, par conséquent, une résistance
plus élevée que celles résultant du simple glissement des dislocations. Il faut
donc rechercher des conditions qui soient capables d'activer le maclage aux
températures de mise en service des matériaux que l'on veut fabriquer, en
particulier à la température ambiante pour le cas des pièces de véhicules
automobiles, de manière à obtenir une grande capacité d'écrouissage. La
possibilité d'obtenir un maclage mécanique est régie d'une part par la
composition chimique de l'alliage; d'autre part par la température à laquelle se
trouve le matériau, ces deux paramètres agissant sur l'énergie de défaut
d'empilement, et enfin par la taille des grains du matériau qui détermine la
cinétique du maclage. La formation trop importante de martensite ε (plus de
20% de la structure) et la formation de martensite α' au moment de la
déformation sont également des freins à l'obtention de propriétés mécaniques
satisfaisantes, notamment d'une bonne ductilité. Il est donc important de
disposer, avant l'ultime étape de mise en forme du tube, par étirage à froid ou
par hydroformage, d'un matériau présentant toutes les caractéristiques
souhaitables de ces points de vue. Le procédé selon l'invention donne accès
à de tels matériaux.
La figure unique montre l'évolution théorique de l'énergie de défaut
d'empilement dans le plan C/Mn à la température ambiante (300 K), sous la
forme de courbes le long desquelles l'énergie de défaut d'empilement,
exprimée en mJ/m2, est constante. On a également reporté sur la figure une
série de points du plan C/Mn (marqués par le signe ▪) pour lesquels un
maclage a effectivement été constaté soit par divers auteurs ayant publié
leurs résultats, soit par les inventeurs, ainsi qu'une portion, qui doit être
évitée, du domaine de la transformation martensitique γ→α' induite par
déformation. Le tableau 1 regroupe les caractéristiques chimiques et (pour les
échantillons testés par les inventeurs, c'est-à-dire les échantillons E à K)
mécaniques des échantillons reportés sur la figure unique. Les propriétés
mécaniques mentionnées sont la résistance à la traction Rm, l'allongement à
la rupture A et leur produit. Les échantillons E à K ont subi un recuit à 800°C.
pendant 90 s, qui leur a procuré une taille de grain de 2 à 5 µm. On a
également fait figurer dans ce tableau les énergies de défaut d'empilement
(EDE) calculées à 300 K des échantillons.
Compared to ferritic steels that deform predominantly by dislocation slip, austenitic ferric steels and alloys have many other modes of deformation, in addition to slip. Among them, if their stacking fault energy lends itself to it, there is twinning. This mode of deformation has the advantage of providing greater plastic deformation and, consequently, higher strength than those resulting from the simple sliding of dislocations. It is therefore necessary to seek conditions that are capable of activating twinning at the commissioning temperatures of the materials to be manufactured, in particular at ambient temperature for the case of motor vehicle parts, so as to obtain a great deal of work hardening capacity. The possibility of obtaining a mechanical twinning is governed firstly by the chemical composition of the alloy; secondly by the temperature at which the material is located, these two parameters acting on the stacking fault energy, and finally by the grain size of the material which determines the kinetics of the twinning. The excessive formation of martensite ε (more than 20% of the structure) and the formation of martensite α 'at the moment of deformation are also obstacles to obtaining satisfactory mechanical properties, in particular good ductility. It is therefore important to have, before the final step of shaping the tube, by cold drawing or by hydroforming, a material having all the desirable characteristics of these points of view. The process according to the invention gives access to such materials.
The single figure shows the theoretical evolution of stacking fault energy in the C / Mn plane at room temperature (300 K), in the form of curves along which the stacking fault energy, expressed in mJ / m 2 , is constant. We have also shown in the figure a series of points of the plane C / Mn (marked by the sign ▪) for which a twinning was actually found either by various authors who published their results, or by the inventors, as well as a portion , which must be avoided, in the field of martensitic transformation γ → α 'induced by deformation. Table 1 includes the chemical characteristics and (for the samples tested by the inventors, that is to say the samples E to K) mechanical samples reported in the single figure. The mechanical properties mentioned are the tensile strength Rm, elongation at break A and their product. Samples E to K were annealed at 800 ° C. for 90 s, which gave them a grain size of 2 to 5 μm. This table also includes stacking defect energies (EDE) calculated at 300 K of the samples.
On constate que le maclage s'observe à température ambiante quand
l'énergie de défaut d'empilement varie approximativement entre 15 et 30
mJ/m2, ce domaine correspondant à une teneur en carbone de 0 à 1,6% et à
une teneur en manganèse de 10 à 35%. En deçà de 10% de manganèse, la
transformation en martensite α' est spontanée. Au delà de 10% de
manganèse, cette transformation ne se produit pas si, par ailleurs, les teneurs
en carbone et manganèse sont liées par la relation :
Lorsque la température varie, l'énergie de défaut d'empilement varie également dans le même sens, à raison de ± 5 mJ/m2 pour une variation de température de ± 50°C. Cette caractéristique est importante si l'opération de mise en forme doit être effectuée à une température inférieure à l'ambiante.When the temperature varies, the stacking fault energy also varies in the same direction, at a rate of ± 5 mJ / m 2 for a temperature variation of ± 50 ° C. This feature is important if the shaping operation is to be performed at a temperature below ambient.
L'influence de la taille de grains sur l'énergie de défaut d'empilement peut également être appréciée. Une modification du procédé de fabrication de l'acier, par exemple un changement des conditions de recuit après bobinage ou après laminage à froid, peut conduire à une variation importante de la taille des grains. Ainsi, un acier dont la taille de grains est de 50 µm a une énergie de défaut d'empilement inférieure de 5 mJ/m2 à celle d'un acier de composition similaire dont la taille de grains est de 2 à 5 µm.The influence of the grain size on the stacking fault energy can also be appreciated. A modification of the steel manufacturing process, for example a change in the annealing conditions after winding or after cold rolling, can lead to a significant variation in the grain size. Thus, a steel having a grain size of 50 μm has a stacking failure energy of 5 mJ / m 2 less than that of a steel of similar composition having a grain size of 2 to 5 μm.
Si on veut conserver l'assurance d'obtenir un mode de déformation par maclage, il est possible de jouer sur la composition chimique de l'acier pour compenser les effets des variations de température de mise en forme et de taille des grains. Lorsqu'un grossissement des grains de 50 µm est combiné à une diminution de la température de mise en forme de 50°C, l'énergie de défaut d'empilement diminue de 10 mJ/m2. D'après la figure unique, une compensation de cette diminution est réalisée par une augmentation de la teneur en carbone de 0,4%, ou par une augmentation de la teneur en manganèse de 5%. Dans la pratique, on obtient donc un alliage conforme à l'invention si sa teneur en carbone est comprise entre 0 et 2%, si sa teneur en manganèse est comprise entre 10 et 40%, et si, de plus, ces teneurs obéissent à la relation (1), de manière à éviter la formation de martensite α' lors d'une déformation à température ambiante. If we want to maintain the assurance of obtaining a mode of deformation by twinning, it is possible to play on the chemical composition of the steel to compensate for the effects of the variations of temperature of formatting and grain size. When a grain size of 50 μm is combined with a 50 ° C reduction in the shaping temperature, the stacking fault energy decreases by 10 mJ / m 2 . According to the single figure, compensation for this reduction is achieved by increasing the carbon content by 0.4%, or by increasing the manganese content by 5%. In practice, an alloy according to the invention is thus obtained if its carbon content is between 0 and 2%, if its manganese content is between 10 and 40%, and if, in addition, these contents obey the relation (1), so as to avoid the formation of martensite α 'during deformation at ambient temperature.
De plus, on a remarqué que le compromis résistance/ductilité optimal d'un alliage fer-carbone-manganèse est obtenu lorsque le mode de déformation activé est le maclage à la limite d'apparition de la martensite ε. Or, la confrontation des calculs d'énergie de défaut d'empilement avec les observations microstructurales révèle que la transition entre la transformation martensitique ε et le maclage s'effectue lorsque l'énergie de défaut d'empilement est de l'ordre de 15 mJ/m2. On constate en effet sur les échantillons du tableau 1 que les échantillons G, H et I, qui ont une énergie de défaut d'empilement voisine de 15 mJ/m2, ont les produits Rm.A les plus élevés (supérieurs à 60000), donc les meilleurs compromis résistance/ductilité. On remarque, par ailleurs, que l'échantillon F a un produit Rm.A inférieur à 60 000 bien que son énergie de défaut d'empilement soit aussi de l'ordre de 15 mJ/m2. Mais sa teneur en carbone n'est pas suffisante pour le faire bénéficier pleinement du phénomène de durcissement dynamique, dont il sera question plus loin.In addition, it has been noted that the optimal resistance / ductility compromise of an iron-carbon-manganese alloy is obtained when the mode of activated deformation is twinning at the limit of appearance of the martensite ε. However, the comparison of stack fault energy calculations with microstructural observations reveals that the transition between martensitic transformation ε and twinning takes place when the stacking fault energy is of the order of 15 mJ. / m 2 . It can be seen from the samples in Table 1 that samples G, H and I, which have a stacking failure energy of about 15 mJ / m 2 , have the highest Rm.A products (greater than 60,000). , therefore the best resistance / ductility trade-offs. It should be noted, moreover, that the sample F has a product Rm.A of less than 60,000, although its stacking fault energy is also of the order of 15 mJ / m 2 . But its carbon content is not sufficient to make it fully benefit from the phenomenon of dynamic hardening, which will be discussed later.
Compte tenu des effets combinés sur l'énergie de défaut d'empilement qu'il est possible d'obtenir en jouant sur la température et la taille des grains, il faut donc considérer, d'après la figure unique, que le domaine de composition préféré, de ce point de vue, est délimité par les courbes correspondant à des énergies de défaut d'empilement de 5 à 25 mJ/m2, soit (pour la température considérée sur la figure de 300 K) par une teneur en carbone de 0 à 1,2% et une teneur en manganèse de 10 à 35%, la relation (1) précédente devant également être satisfaite.Taking into account the combined effects on the stacking fault energy that can be obtained by adjusting the temperature and the grain size, it is therefore necessary to consider, from the single figure, that the composition domain preferred, from this point of view, is delimited by the curves corresponding to stacking fault energies of 5 to 25 mJ / m 2 , ie (for the temperature considered in the figure of 300 K) by a carbon content of 0 to 1.2% and a manganese content of 10 to 35%, the previous relationship (1) must also be satisfied.
D'autre part, la figure unique montre que le carbone et le manganèse contribuent tous deux à une augmentation de l'énergie de défaut d'empilement. Cependant, une augmentation de cette grandeur est moins coûteuse à obtenir par une addition de carbone que par une addition de manganèse, compte tenu des prix de revient des matériaux permettant de réaliser ces additions. En outre, la substitution du carbone au manganèse, à énergie de défaut d'empilement constante dans le domaine de déformation par maclage, à la limite de l'apparition de la martensite s, se traduit par une augmentation des caractéristiques mécaniques, et ce pour deux raisons :
- l'interaction entre le carbone et les dislocations ; le carbone favorise l'écrouissage en stimulant l'émission de nouvelles dislocations mobiles servant à relayer celles qu'il a immobilisées ; ce phénomène est appelé « vieillissement dynamique » ;
- le « pseudo-maciage » ; le maclage d'une solution solide interstitielle cubique à faces centrées altère le motif cristallin ; en effet, le cisaillement de maclage convertit les sites octaédriques en sites tétraédriques ; le carbone qui occupait, avant maclage, les sites octaédriques, plus spacieux que les sites tétraédriques, se retrouve dans les sites tétraédriques ; une distorsion du réseau se produit, analogue à celle qui accompagne la transformation martensitique.
- the interaction between carbon and dislocations; carbon promotes hardening by stimulating the emission of new mobile dislocations used to relay those immobilized; this phenomenon is called "dynamic aging";
- "pseudo-maciage"; the twinning of a cubic interstitial solid solution with centered faces alters the crystalline pattern; in fact, twinning shear converts octahedral sites into tetrahedral sites; the carbon which occupied, before twinning, the octahedral sites, more spacious than the tetrahedral sites, is found in the tetrahedral sites; a distortion of the network occurs, similar to that which accompanies the martensitic transformation.
L'effet adoucissant du pseudo-maclage et du vieillissement dynamique croít avec la teneur en carbone. La résistance mécanique de l'acier s'en trouve donc augmentée, à condition que la teneur en carbone soit d'au moins 0,2%. Enfin, on constate sur la figure unique que l'écartement des lignes d'énergie de défaut d'empilement constante augmente avec la teneur en carbone. Cela signifie que les alliages à forte teneur en carbone sont moins sensibles à des écarts donnés sur la teneur en carbone que les alliages à faible teneur en carbone.The softening effect of pseudo-twinning and aging dynamic increases with the carbon content. The mechanical strength of steel is therefore increased, provided that the carbon content is at least 0.2%. Finally, we see in the single figure that the spacing of constant stacking fault energy lines increases with the content in carbon. This means that alloys with a high carbon content are less sensitive to differences in carbon content than alloys low carbon.
Le remplacement partiel du manganèse par du carbone présente donc des avantages aussi bien économiques que métallurgiques. D'après la figure unique, un ajout de 0,2% de carbone permet de se passer de 4 à 5% de manganèse à énergie de défaut d'empilement constante. Un domaine encore plus préféré de teneurs en carbone et manganèse est donc 0,2% ≤ C ≤ 1,2% et 10% ≤ Mn ≤ 30%, la relation (1) étant, par ailleurs satisfaite.Partial replacement of manganese with carbon present therefore both economic and metallurgical benefits. According to single figure, an addition of 0.2% carbon makes it possible to dispense with 4 to 5% of manganese with constant stacking fault energy. An area still most preferred carbon and manganese content is therefore 0.2% ≤ C ≤ 1.2% and 10% ≤ Mn ≤ 30%, the relation (1) being otherwise satisfied.
L'augmentation de la teneur en carbone peut, cependant, présenter des inconvénients au-delà d'une certaine limite. En effet, il y a un risque que dans des alliages dont la composition se situerait dans le domaine préféré précédent, une précipitation de carbures du type M5C2 et M23C6 se produise lors d'un refroidissement lent. Un tel refroidissement lent peut être celui subi par une bande bobinée après avoir été coulée directement sous forme de bande mince ou laminée à chaud. Le carbure M3C peut également précipiter pendant la transformation perlitique. Increasing the carbon content may, however, have disadvantages beyond a certain limit. Indeed, there is a risk that in alloys whose composition is in the preceding preferred range, a precipitation of carbides of the M 5 C 2 and M 23 C 6 type occurs during a slow cooling. Such slow cooling may be that experienced by a coiled strip after being cast directly as a thin strip or hot rolled. M 3 C carbide can also precipitate during pearlitic transformation.
Ces précipitations de carbures sont préférentiellement à éviter, car elles appauvrissent la matrice en carbone et diminuent ainsi l'énergie de défaut d'empilement, donc tendent à défavoriser le maclage au profit des transformations martensitiques γ → ε et/ou γ→ α'. Comme on l'a dit, la formation de martensite α' doit être évitée, et il est préférable que la proportion de martensite ε ne dépasse pas 20% pour éviter une fragilisation du matériau. D'autre part, ces carbures, dont certains sont aciculaires, sont eux-mêmes fragilisants et risquent de provoquer l'apparition de fissures lors du déroulage de la bande bobinée. Si la bande doit être bobinée à une température relativement élevée, il est donc préférable de ne pas imposer une teneur en carbone trop forte à l'acier, si on désire éviter de devoir procéder ensuite à un recuit de remise en solution des carbures suivi d'une hypertrempe. Dans la majorité des cas correspondant à l'utilisation d'outils industriels conventionnels, il sera préférable de ne pas dépasser une teneur en carbone de 0,8%. Dans ces conditions, pour compenser la diminution de la teneur maximale en carbone par rapport au domaine préféré précédemment défini, il faut remonter la teneur minimale en manganèse jusqu'à 15%. On obtient ainsi un domaine de composition encore plus avantageux où 0,2% ≤ C ≤ 0,8% et 15% ≤ Mn ≤ 30%.These carbide precipitations are preferentially to be avoided because they deplete the carbon matrix and thus decrease the energy of lack of stacking, so tend to disadvantage twinning in favor of martensitic transformations γ → ε and / or γ → α '. As we said, the formation of martensite α 'should be avoided, and it is preferable that the proportion of martensite ε does not exceed 20% to avoid embrittlement of the material. On the other hand, these carbides, some of which are acicular, are themselves fragile and may cause cracks when unwinding of the wound tape. If the tape is to be wound at a relatively high temperature, so it is best not to impose a carbon content too high for steel, if you want to avoid having to proceed then to a solution annealing of the carbides followed by a annealing. In the majority of cases corresponding to the use of tools conventional industry, it will be preferable not to exceed a certain in carbon of 0.8%. In these circumstances, to compensate for the decrease in maximum carbon content compared to the previously preferred domain defined, it is necessary to raise the minimum manganese content up to 15%. We thus obtains an even more advantageous composition range where 0.2% ≤ C ≤ 0.8% and 15% ≤ Mn ≤ 30%.
C'est l'association du maclage de déformation au durcissement par le carbone qui permet de combiner résistance et ductilité, et ainsi d'obtenir de hautes caractéristiques mécaniques. L'échantillon E a une énergie de défaut d'empilement de 17 mJ/m2, mais ne contient que 0,19% de carbone. Sa résistance n'est donc que de 750 Mpa. Une teneur en carbone d'au moins 0,4% est nécessaire à l'obtention d'une résistance supérieure à 950 MPa, comme le montre l'échantillon F. Cette augmentation de la teneur minimale en carbone impose de ramener la teneur maximale en manganèse à 24% si on désire rester à une valeur de l'énergie de défaut d'empilement de 15 mJ/m2 environ, et conserver ainsi le même degré de maclage par déformation.It is the combination of deformation twinning with carbon hardening which makes it possible to combine strength and ductility, and thus to obtain high mechanical characteristics. Sample E has a stacking fault energy of 17 mJ / m 2 , but contains only 0.19% carbon. Its resistance is only 750 Mpa. A carbon content of at least 0.4% is necessary to obtain a resistance greater than 950 MPa, as shown in sample F. This increase in the minimum carbon content requires the reduction of the maximum 24% manganese if it is desired to remain at a stacking fault energy value of about 15 mJ / m 2 , and thus maintain the same degree of twinning by deformation.
Le domaine de composition optimal pour les alliages de l'invention est donc 0,4 % ≤ C ≤ 0,8% et 20% ≤ Mn ≤ 24%. On peut, par exemple, proposer une teneur en carbone de 0,6% et une teneur en manganèse de 22%, comme dans les échantillons G, H et l qui présentent les produits Rm.A les plus élevés du tableau 1.The optimal composition range for the alloys of the invention is therefore 0.4% ≤ C ≤ 0.8% and 20% ≤ Mn ≤ 24%. We can, for example, propose a carbon content of 0.6% and a manganese content of 22%, as in samples G, H and I which show the most Rm.A products Table 1.
Ces valeurs des teneurs en carbone et manganèse sont optimales en ce qu'elles procurent à température ambiante des énergies de défaut d'empilement adéquates de l'ordre de 5 à 25 mJ/m2. Cependant, si la mise en forme des tubes doit être effectuée à une température sensiblement inférieure à l'ambiante, des teneurs maximales en carbone et en manganèse plus élevées peuvent être recommandables pour que l'énergie de défaut d'empilement (qui, comme on l'a dit, diminue lorsque la température baisse) soit conservée à un niveau permettant qu'un maclage soit significativement observé. C'est pourquoi, dans l'esprit de l'invention, la teneur en carbone de l'alliage peut aller jusqu'à 2% et la teneur en manganèse jusqu'à 40%.These values of the carbon and manganese contents are optimal in that they provide at room temperature adequate stack fault energies of the order of 5 to 25 mJ / m 2 . However, if the shaping of the tubes is to be carried out at a temperature substantially lower than ambient, higher carbon and manganese maximum levels may be advisable for the stacking fault energy (which, as said it, decreases when the temperature drops) is kept at a level allowing a twinning is significantly observed. Therefore, in the spirit of the invention, the carbon content of the alloy can be up to 2% and the manganese content up to 40%.
Concernant les autres éléments d'alliage entrant dans la composition de l'acier selon l'invention ou susceptibles d'y entrer, les commentaires suivants peuvent être formulés.Regarding other alloying elements used in the composition of the steel according to the invention or likely to enter, the comments can be formulated.
La teneur maximale en silicium de 5% est justifiée par la nécessité de conserver une bonne soudabilité à l'alliage. Dans la pratique, une teneur inférieure à 1 %, de l'ordre de 0,5% ou moins, est recommandable. Pour les teneurs élevées en silicium, les problèmes de soudabilité peuvent être réduits si on procède au soudage en atmosphère inerte.The maximum silicon content of 5% is justified by the need to maintain good weldability to the alloy. In practice, one less than 1%, of the order of 0.5% or less, is advisable. For the high levels of silicon, weldability problems can be reduced if welding is carried out in an inert atmosphere.
Les exigences sur les teneurs maximales en soufre, phosphore, aluminium et azote sont dues à la volonté d'obtenir une bonne forgeabilité à chaud pour le matériau. Le soufre et le phosphore fragilisent les joints de grains, et des teneurs trop élevées en aluminium et azote sont susceptibles de conduire à la précipitation de nitrures d'aluminium qui vont gêner la migration des joints de grains lors de la transformation à chaud. Maintenir ces éléments dans les gammes de teneurs précisées permet de conserver une bonne ductilité du matériau à des températures de laminage à chaud suffisamment basses pour ne pas engendrer de défauts de surface du type incrustations de calamine.Requirements on maximum levels of sulfur, phosphorus, aluminum and nitrogen are due to the desire to obtain good forgeability hot for the material. Sulfur and phosphorus weaken the joints of grains, and too high levels of aluminum and nitrogen are likely to lead to the precipitation of aluminum nitrides that will hinder the migration of grain boundaries during hot processing. Maintain these elements in the specified ranges of contents makes it possible to maintain a good ductility of the material at hot rolling temperatures low enough not to cause surface defects of the type scale encrustations.
En outre, la propreté inclusionnaire de l'alliage a une influence sur sa résistance et son allongement à la rupture. Les sulfures de manganèse constituent la principale source d'endommagements conduisant à une rupture prématurée. L'amélioration des caractéristiques à rupture est donc une raison supplémentaire pour limiter la teneur en soufre.In addition, the inclusiveness of the alloy has an influence on its resistance and its elongation at break. The manganese sulphides constitute the main source of damage leading to a rupture premature. Improvement of the characteristics at break is therefore a reason additional to limit the sulfur content.
La nécessité de limiter les teneurs en titane, niobium et vanadium est due au fait que ces éléments sont susceptibles de former des carbonitrures qui tendent à freiner la recristallisation en entravant la migration des joints. C'est, d'ailleurs, également le cas de l'aluminium. Comme on l'a déjà dit, la taille des grains est un paramètre important pour le réglage des propriétés mécaniques du matériau, et peut être maítrisée au moyen d'un recuit de recristallisation. Pour que ce recuit de recristallisation soit pleinement efficace, il faut donc limiter la formation de ces carbonitrures.The need to limit the titanium, niobium and vanadium contents is due to the fact that these elements are likely to form carbonitrides which tend to slow down recrystallization by hindering the migration of joints. This is also the case for aluminum. As already mentioned, the grain size is an important parameter for setting properties mechanical properties of the material, and can be controlled by means of annealing recrystallization. For this recrystallization annealing to be fully effective, it is necessary to limit the formation of these carbonitrides.
Les teneurs en chrome, nickel, molybdène, cuivre, cobalt, tungstène, étain, bore, calcium, magnésium, arsenic et antimoine doivent être maintenues dans les limites prescrites pour que ces éléments n'aient pas d'influence notable sur les propriétés mécaniques du matériau.The contents of chromium, nickel, molybdenum, copper, cobalt, tungsten, tin, boron, calcium, magnesium, arsenic and antimony must be maintained within the prescribed limits so that these elements do not have significant influence on the mechanical properties of the material.
La coulée de l'acier dont la composition a été citée plus haut peut être effectuée en lingots ou, de préférence, en continu pour obtenir des brames de format classique, d'épaisseur de l'ordre de 200 mm. Il est également envisageable de couler cet alliage sous forme de brames minces (quelques cm d'épaisseur) susceptibles de subir ensuite un laminage à chaud en ligne. Ce procédé donne accès à des bandes laminées à chaud de faible épaisseur, qui peuvent éventuellement ne pas subir ensuite de laminage à froid. Dans ce cas, on obtient des alliages à gros grains (de l'ordre de 20 µm, cette valeur dépendant des températures de fin de laminage et de bobinage), présentant une résistance relativement moyenne mais une ductilité élevée. Il est également envisageable de réaliser la coulée de l'acier par un procédé de coulée directe de bandes minces, pouvant éventuellement subir un laminage à chaud en ligne ou hors ligne. L'application de ce procédé de coulée à la coulée d'alliages fer-carbone-manganèse (différents de ceux de l'invention) a déjà été proposée dans le document EP-A-1 067 203.The casting of the steel whose composition has been mentioned above can be in ingots or, preferably, continuously to obtain slabs of classical format, with a thickness of about 200 mm. he is also possible to cast this alloy in the form of thin slabs (a few cm thick) which can then undergo hot rolling in line. This process gives access to hot rolled strips of small thickness, which may possibly not subsequently undergo cold rolling. In this In this case, coarse-grained alloys are obtained (on the order of 20 μm, this value depending on the end of rolling and winding temperatures), presenting a relatively average resistance but a high ductility. It is also possible to achieve the casting of steel by a method of direct casting of thin strips, possibly being laminated hot online or offline. The application of this casting process to the casting of iron-carbon-manganese alloys (different from those of the invention) already been proposed in EP-A-1 067 203.
Cette étape de coulée étant largement connue et ne présentant pas de particularités par rapport aux pratiques habituelles, elle ne sera pas davantage détaillée ici.This casting step is widely known and does not show peculiarities compared to usual practices, it will not be more detailed here.
On procède ensuite à un laminage à chaud du produit issu de la coulée. Dans le cas d'une coulée en lingots, le laminage à chaud commence par un réchauffage suivi d'un dégrossissage qui amène le lingot au format d'une brame classique. Dans le cas d'une coulée en continu classique, on procède directement au laminage à chaud, après une étape de réchauffage de la brame. Ces réchauffages ne doivent pas porter la brame à une température supérieure à la température de solidus des zones ségrégées, sous peine de provoquer l'apparition de « brûlures » qui interdisent toute mise en forme à chaud. A titre d'exemple, la température de solidus d'un alliage Fe-C-Mn à 0,6% de carbone et 22% de manganèse est de l'ordre de 1280°C. Compte tenu de la ségrégation des éléments tels que le manganèse, le phosphore et le carbone qui ont tous les trois un coefficient de partage inférieur à 1, lors du traitement de cet alliage, on recommande de ne pas dépasser une température de réchauffage de 1200°C, pour le lingot avant dégrossissage comme pour la brame avant le laminage à chaud. D'une manière générale, on peut s'assurer de l'innocuité de ce réchauffage en l'exécutant à une température ne dépassant pas la température de solidus de l'alliage moins 80°C.The hot product is then hot-rolled. casting. In the case of ingot casting, hot rolling begins by a heating followed by a roughing which brings the ingot to the format of a classic slab. In the case of a conventional continuous casting, one proceeds directly to hot rolling, after a heating step of the slab. These reheatings should not bring the slab to a temperature above the solidus temperature of the segregated zones, under pain of causing the appearance of "burns" that prohibit any in hot form. For example, the solidus temperature of a Fe-C-Mn alloy at 0.6% of carbon and 22% of manganese is of the order of 1280 ° C. Given the segregation of elements such as manganese, the phosphorus and carbon all of which have a partition coefficient less than 1, when treating this alloy, it is recommended not to exceed a reheat temperature of 1200 ° C for the front ingot roughing as for the slab before hot rolling. On the one In general, we can ensure the safety of this reheating by the performer at a temperature not exceeding the solidus temperature of the alloy minus 80 ° C.
La précipitation de nitrures d'aluminium lors du réchauffage est
également, de préférence, à éviter. Cette précipitation entrave la migration
des joints lors de la transformation à chaud. Le produit de solubilité Ks du
nitrure d'aluminium en fonction de la température T s'exprime par :
Après ce réchauffage, il est conseillé de procéder à un décalaminage, si l'atmosphère du four de réchauffage a été suffisamment oxydante pour provoquer une apparition de calamine significative, sans que ce décalaminage ne conduise à une perte de température trop importante avant le laminage à chaud qui suit. La présence de calamine primaire à la surface de la brame avant son laminage à chaud peut conduire à des incrustations de calamine dans la brame dégradant la qualité de surface du produit. La calamine incrustée provoque également une détérioration des cylindres du laminoir.After reheating, it is advisable to carry out a descaling, if the atmosphere of the reheating furnace has been sufficiently oxidizing for cause a significant occurrence of calamine, without this descaling lead to excessive temperature loss before rolling at hot that follows. The presence of primary scale on the surface of the slab before its hot rolling can lead to encrustations of scale in the slab degrading the surface quality of the product. The calamine inlaid also causes deterioration of the mill rolls.
On procède ensuite au laminage à chaud de la brame, pour obtenir une bande d'épaisseur de l'ordre, par exemple, de 2,5 à 3 mm. Comme les alliages de la composition considérée ne présentent pas de transformation allotropique dans le domaine de température considéré, le chemin de laminage en termes de nombre de passes, de taux de réduction par passe et d'intervalle de temps séparant les passes, est indifférent. La seule contrainte est, le plus souvent, de respecter une température de fin de laminage d'au moins 900°C. En effet, si les alliages fer-carbone-manganèse préparés en laboratoire ont une ductilité suffisante pour pouvoir être laminés jusqu'à 800°C sans risquer l'apparition de criques en rives, la forgeabilité d'un alliage fer-carbone-manganèse préparé dans des conditions industrielles est influencée également par ses teneurs en aluminium, azote et soufre. Dans la pratique typique d'une aciérie, on conseille donc :
- de ne pas dépasser une teneur en soufre de 0,01 % dans l'alliage coulé ;
- et de ne pas laminer en dessous de 900°C, à moins d'avoir une teneur en soufre particulièrement faible (de l'ordre de 0,002% ou moins) et des teneurs en aluminium et azote qui garantissent absolument l'absence de précipités de nitrure d'aluminium après le réchauffage.
- not to exceed a sulfur content of 0.01% in the cast alloy;
- and not to roll below 900 ° C, unless it has a particularly low sulfur content (of the order of 0.002% or less) and aluminum and nitrogen contents which absolutely guarantee the absence of precipitates of aluminum nitride after reheating.
Concernant les conditions de laminage des alliages fer-carbone-manganèse concernés par l'invention, elles peuvent être comparables en termes de taux de réduction par passe et d'intervalle de temps séparant les passes à celles habituellement pratiquées pour les aciers inoxydables austénitiques de type SUS 304, compte tenu des similitudes de dureté à chaud entre les SUS 304 et les alliages fer-carbone-manganèse de l'invention. A titre indicatif, pour une brame de 160 mm d'épaisseur, on peut fixer une température de sortie du four de réchauffage de 1100°C, une température de sortie de cage dégrossisseuse de 980°C, une épaisseur en sortie de cage dégrossisseuse de 38,5 mm, une température à l'entrée de la cage finisseuse de 912°C, une température de fin de laminage de 910°C, une épaisseur de bande en fin de laminage de 3 mm, une vitesse de sortie de la bande de 259 m/s et une température de bobinage de 480°C.Regarding the rolling conditions of iron-carbon-manganese alloys concerned by the invention, they may be comparable in terms of the rate of reduction per pass and the time interval between passes to those usually used for stainless steels austenitic type SUS 304, given the similarities of hardness to between SUS 304 and iron-carbon-manganese alloys the invention. As an indication, for a slab 160 mm thick, it is possible to set an exit temperature of the reheating furnace of 1100 ° C, a roughing cage outlet temperature of 980 ° C, a thickness in 38.5 mm roughing cage outlet, a temperature at the entrance of the finishing cage of 912 ° C, a rolling end temperature of 910 ° C, a band thickness at the end of rolling of 3 mm, an exit speed of 259 m / s band and a winding temperature of 480 ° C.
On procède ensuite, classiquement, au bobinage de la bande obtenue après le laminage à chaud. Il est nécessaire d'éviter la précipitation de carbures de fer au cours du refroidissement des bobines, car :
- l'appauvrissement en carbone de l'austénite provoqué par cette précipitation modifie l'énergie de défaut d'empilement qui a été réglée au moyen de la composition chimique pour que la cinétique de maclage soit optimale à la température ambiante, lors de la mise en forme du tube ; en cas de précipitation significative de carbures de fer, les propriétés mécaniques escomptées grâce à cette composition ne seront donc pas obtenues ;
- la précipitation des carbures de fer rend l'alliage cassant, donc difficilement laminable à froid.
- the carbon depletion of the austenite caused by this precipitation modifies the stacking fault energy which has been adjusted by means of the chemical composition so that the kinetics of twinning is optimal at room temperature, when setting tube shape; in the event of significant precipitation of iron carbides, the mechanical properties expected from this composition will therefore not be obtained;
- the precipitation of the iron carbides makes the alloy brittle, so hard to cold roll.
Sachant que le refroidissement proprement dit, de l'ordre de 10°C/h, commence seulement une à deux heures après le bobinage, il faut bobiner la bande à une température telle que celle-ci ne puisse séjourner de façon prolongée à des températures auxquelles cette précipitation de carbures de fer soit possible. La température de bobinage peut se déduire des diagrammes TTT de l'alliage concerné. A titre d'exemple, pour un alliage fer-carbone-manganèse à 0,6% de carbone et 22% de manganèse, un séjour de 2 heures à une température de 500°C ou davantage et de 28 heures à 450°C ou davantage conduit à une précipitation de carbures de fer. En conséquence, dans des conditions industrielles où la bobine doit avoir complètement refroidi avant toute opération ultérieure (décapage, laminage à froid...), il est préférable de ne pas bobiner la bande à une température de plus de 450°C. A cet effet, on peut procéder à un refroidissement de la bande après son laminage à chaud, de manière à l'amener à la température de bobinage désirée. On veillera à amener la bande le plus tard possible à la température de bobinage, par exemple en différant le refroidissement, de façon à permettre une recristallisation complète de l'acier avant bobinage. Sitôt amené à 450°C, l'acier ne pourra plus recristalliser. Un refroidissement forcé par immersion de la bobine en piscine est aussi envisageable, toujours dans le but d'éviter le domaine de précipitation des carbures.Knowing that the cooling itself, of the order of 10 ° C / h, starts only one to two hours after winding, you have to wind the band at such a temperature that it can not be so prolonged to temperatures at which this precipitation of carbides from iron is possible. The winding temperature can be deduced from TTT diagrams of the alloy concerned. By way of example, for an iron-carbon-manganese alloy at 0,6% of carbon and 22% of manganese, a stay of 2 hours at a temperature of 500 ° C or more and 28 hours at 450 ° C or more leads to precipitation of iron carbides. Consequently, in industrial conditions where the coil must have completely cooled before any subsequent operation (stripping, cold rolling ...), it is it is preferable not to wind the strip at a temperature of more than 450 ° C. AT this effect, we can proceed to a cooling of the band after its hot rolling, so as to bring it to the winding temperature desired. We will take care to bring the band as late as possible to the temperature winding, for example by delaying the cooling, so as to allow a complete recrystallization of the steel before winding. So early brought to 450 ° C, the steel will no longer be able to recrystallize. Forced cooling immersion of the coil in the pool is also possible, always in the aim of avoiding the carbide precipitation domain.
Toutefois, dans le cas où il n'aurait pas été possible d'éviter une telle précipitation de carbures au bobinage, on peut procéder ensuite à un recuit pour dissoudre ces précipités et remettre ainsi le carbone en solution solide, puis à une hypertrempe pour éviter la reprécipitation des carbures au refroidissement suivant le recuit. Typiquement, la bande est portée jusqu'à une température comprise entre 1000 et 1050°C à une vitesse telle que la bande reste une minute au dessus de 900°C, et 10 à 20 s au dessus de 1000°C, puis elle est refroidie à une vitesse d'au moins 5°C/s. En général, la trempe est effectuée au maximum des possibilités de la ligne.However, where it would not have been possible to avoid such precipitation of carbides to the winding, it can then proceed to an annealing to dissolve these precipitates and thus return the carbon in solid solution, then to a hypertrempe to avoid the reprecipitation of the carbides with cooling after annealing. Typically, the band is worn up a temperature between 1000 and 1050 ° C at a speed such that the band remains one minute above 900 ° C, and 10 to 20 s above 1000 ° C, then it is cooled at a speed of at least 5 ° C / s. In general, the quenching is carried out to the maximum of the possibilities of the line.
Dans le cas où la coulée de l'acier est effectuée par coulée de brames minces ou de bandes minces avec un éventuel laminage à chaud en ligne (ne nécessitant, donc, pas forcément de réchauffage préalable), l'homme du métier saura adapter le procédé précédemment décrit en conséquence, sachant que les impératifs métallurgiques dont on a parlé à propos de la température de bobinage et de l'éventuelle nécessité de pratiquer un recuit suivi d'une hypertrempe doivent ici aussi être pris en compte.In the case where the casting of the steel is carried out by casting of thin slabs or thin strips with possible hot rolling in line (not requiring, therefore, not necessarily reheat), those skilled in the art will be able to adapt the process previously described in consequence, knowing that the metallurgical imperatives discussed in the winding temperature and the possible need for annealing and hyper-tempering must also be taken into account here. account.
Dans les cas où, comme on l'a dit, on désire obtenir un produit relativement épais et ne présentant pas une résistance très élevée, mais possédant une grande ductilité, on peut laisser la bande en l'état sans procéder à son laminage à froid. On peut même chercher à faire grossir le grain en pratiquant un recuit suivi d'une hypertrempe après laminage à chaud, même si les conditions de bobinage avaient permis d'empêcher la précipitation des carbures. A ce stade, on a une taille de grains qui n'est, en général, pas inférieure à 15-20 µm. En revanche, si on veut obtenir une bande fine pour fabriquer des tubes légers, et/ou une bande ayant une forte résistance ne pouvant être obtenue qu'avec une taille de grains de 5 µm ou moins, un laminage à froid est nécessaire. Ce laminage à froid permet également de diminuer la rugosité de la surface de la bande, donc d'obtenir un aspect de surface compatible avec une utilisation pour former des pièces destinées à rester visibles. II augmente aussi la capacité de la bande à être revêtue.In cases where, as has been said, one wishes to obtain a product relatively thick and not very resistant, but with high ductility, the strip can be left as it is without proceed with its cold rolling. We can even try to make the grain by annealing followed by quenching after hot rolling, even if the winding conditions had prevented the precipitation of carbides. At this point, we have a grain size that is, in general, not less than 15-20 μm. On the other hand, if you want to get a band fine to make light tubes, and / or a band having a strong resistance can only be obtained with a particle size of 5 μm or less, cold rolling is necessary. This cold rolling allows also to reduce the roughness of the surface of the strip, so to obtain a surface appearance compatible with use for forming parts intended to remain visible. It also increases the band's ability to be coated.
Préalablement à son laminage à froid éventuel, la bande doit classiquement être décapée. A titre d'exemple non limitatif, ce décapage peut être effectué dans une solution d'acide chlorhydrique à 20% à température ambiante, en présence d'hexaméthylène tétramine servant d'inhibiteur.Prior to its eventual cold rolling, the band must classically be stripped. By way of non-limiting example, this stripping can be performed in a solution of 20% hydrochloric acid at room temperature ambient, in the presence of hexamethylenetetramine as an inhibitor.
On procède ensuite au laminage à froid de la bande avec un taux de réduction total qui est fonction non seulement de l'épaisseur finale désirée, mais aussi de la résistance et de la dureté que l'on désire obtenir. A titre indicatif, pour un alliage fer-carbone-manganèse à 0,6% de carbone et 22% de manganèse, la résistance atteint pratiquement 2000 MPa après 60% de réduction, et sa dureté Hv 5 dans les mêmes conditions atteint pratiquement 700. Sur ce même alliage, un taux de réduction de 30% conduit à une résistance de 1500 MPa environ. De manière générale, pour les alliages concernés par l'invention, on peut proposer de réaliser le laminage à froid avec un taux de réduction total minimal de 25%. On peut utiliser un laminoir à froid conventionnel, ou un laminoir Sendzimir qui donne accès, en trois passes, à des taux de réduction de l'ordre de 60-70% y compris pour des alliages présentant une résistance très élevée, supérieure à 1500 MPa. Une épaisseur de 1 mm pour la tôle laminée à froid peut ainsi être obtenue.The cold rolling of the strip is then carried out with a rate of total reduction which is a function not only of the desired final thickness, but also of the resistance and the hardness that one wishes to obtain. As indicative, for an iron-carbon-manganese alloy at 0.6% carbon and 22% manganese, the resistance reaches almost 2000 MPa after 60% of reduction, and its hardness Hv 5 under the same conditions practically reaches 700. On the same alloy, a reduction rate of 30% leads to a resistance of about 1500 MPa. Generally, for alloys concerned by the invention, it is possible to propose carrying out cold rolling with a minimum total reduction rate of 25%. A rolling mill can be used conventional cold, or a Sendzimir rolling mill that gives access, in three passes, at reduction rates of the order of 60-70%, including for alloys with very high strength, greater than 1500 MPa. A thickness of 1 mm for the cold-rolled sheet can thus be obtained.
En général, il est conseillé de procéder, lors de la première passe du laminage à froid, à une réduction d'épaisseur élevée, de l'ordre de 25% au moins. En effet, l'échauffement produit par une telle forte réduction dès le début du laminage ralentit, voire inhibe, le maclage de déformation, ce qui facilite le laminage. Cette passe peut même être suffisante pour obtenir d'emblée l'épaisseur finale visée.In general, it is advisable to proceed, during the first pass of the cold rolling at a high thickness reduction, of the order of 25% less. Indeed, the heating produced by such a large reduction as soon as The beginning of rolling slows or even inhibits the twisting of the deformation, which facilitates rolling. This pass may even be sufficient to obtain from the outset the intended final thickness.
On procède ensuite à un recuit de recristallisation, de manière à obtenir une taille des grains adéquate pour le contrôle du compromis résistance/ductilité et du rapport Re/Rm (limite d'élasticité/résistance à la traction). Ce recuit de recristallisation doit être effectué par le procédé de recuit continu car un recuit base conduirait à une précipitation de carbures, dont on a vu qu'elle était indésirable. Ce recuit peut être effectué en atmosphère oxydante, en étant suivi d'un décapage ; il peut aussi être du type « recuit brillant », c'est-à-dire effectué en atmosphère inerte, ce qui permet de s'affranchir du décapage et limite la décarburation superficielle. On peut faire suivre ce recuit par un passage dans un laminoir écrouisseur (« skin-pass ») ou un planage. De manière typique, ce recuit de recristallisation est exécuté à une température de 600-1200°C, pendant 1 seconde à 1 heure, en fonction de la taille des grains que l'on désire obtenir.This is followed by a recrystallization annealing, so as to to obtain an adequate grain size for the control of the compromise resistance / ductility and the ratio Re / Rm (yield strength / resistance to traction). This recrystallization annealing must be carried out by the method of continuous annealing because a basic annealing would lead to a precipitation of carbides, which we saw was undesirable. This annealing can be carried out oxidizing atmosphere, followed by stripping; it can also be of the type "Bright annealing", that is to say carried out in an inert atmosphere, which makes it possible to get rid of pickling and limit surface decarburization. We can do follow this annealing by passing through a cold-rolling mill ("skin-pass") or planing. Typically, this recrystallization annealing is performed at a temperature of 600-1200 ° C, for 1 second to 1 hour, depending the size of the grains that one wishes to obtain.
A titre d'exemple, un alliage fer-carbone-manganèse à 0,6% de carbone et 22% de manganèse peut, de préférence, subir un recuit brillant à 800°C pendant 90s pour obtenir une taille de grain de l'ordre de 2,5 µm. Les caractéristiques mécaniques obtenues ainsi sont une résistance maximum de 1030 MPa et un allongement à la rupture de 60%.For example, an iron-carbon-manganese alloy with 0.6% carbon and 22% of manganese may preferably undergo a bright annealing 800 ° C for 90s to obtain a grain size of the order of 2.5 microns. The mechanical characteristics thus obtained are a maximum resistance of 1030 MPa and an elongation at break of 60%.
De manière générale, les alliages fer-carbone-manganèse utilisables dans le procédé selon l'invention peuvent avoir un allongement à la rupture de 90% ou plus, si on tolère une résistance à la traction relativement faible de 600 MPa (chiffres obtenus pour un alliage à 0,2% de carbone, 27% de manganèse, avec une taille de grains de 30 µm). Mais dans la gamme optimale de compositions (0,4 à 0,8% de carbone et 20 à 24% de manganèse), on peut obtenir un allongement à la rupture de l'ordre de 50 à 60% et une résistance à la traction de l'ordre de 1000 MPa pour une taille de grains de 5 µm, voire une résistance à la traction de l'ordre de 1200 MPa pour une taille de grains de 1 µm.In general, usable iron-carbon-manganese alloys in the process according to the invention may have an elongation at break of 90% or more, if a relatively low tensile strength of 600 MPa (figures obtained for a 0.2% carbon alloy, 27% manganese, with a grain size of 30 μm). But in the range compositions (0.4 to 0.8% of carbon and 20 to 24% of manganese), an elongation at break of about 50 to 60% and a tensile strength of the order of 1000 MPa for a size of grains of 5 μm, or even a tensile strength of the order of 1200 MPa for a grain size of 1 μm.
Outre leurs caractéristiques mécaniques favorables aux utilisations envisagées dans l'invention, ces alliages se distinguent par une excellente soudabilité du fait, notamment, qu'ils contiennent optimalement peu ou très peu de silicium, dont l'oxyde est difficile à réduire, et du fait de leur structure austénitique qui rend sans objet les concepts de trempabilité martensitique et/ou de carbone équivalent qui doivent normalement être pris en compte lors de l'utilisation des aciers ferritiques classiques pour former des petits tubes soudés. De plus, ces alliages peuvent sans difficulté recevoir un dépôt uniforme et adhérent de zinc par étectrozingage, en particulier dans le cas où ils ont été laminés à froid.In addition to their mechanical characteristics favorable to the uses considered in the invention, these alloys are distinguished by excellent weldability in particular, that they contain optimally little or very little silicon, whose oxide is difficult to reduce, and because of their structure austenitic that makes the concepts of martensitic quenchability irrelevant and / or carbon equivalent which should normally be taken into account when the use of conventional ferritic steels to form small tubes welded. In addition, these alloys can easily receive a deposit uniform and adherent zinc by electrogalvanization, especially in the case where they were cold rolled.
On procède ensuite à la fabrication du petit tube soudé, en utilisant pour cela les procédés classiques. La réussite de cette fabrication est en grande partie conditionnée par la propreté de la soudure. En conséquence, un excellent décapage préalable (en particulier si on n'a pas procédé à un recuit brillant de la bande laminée à froid) est nécessaire pour ne pas occlure des oxydes de surface dans le cordon de soudure.We then proceed to manufacture the small welded tube, using for this, the conventional methods. The success of this manufacturing is in largely conditioned by the cleanliness of the weld. As a result, a excellent preliminary stripping (especially if no annealing has been carried out gloss of the cold-rolled strip) is necessary not to occlude surface oxides in the weld seam.
Après un refendage de la tôle, un cisaillage de ses rives et un formage progressif pour amener ses bords jusqu'à accostage, le tube est soudé de manière classique par résistance électrique, laser ou hautes fréquences. On procède ensuite à un raclage interne et externe du bourrelet de soudure pour éliminer les variations d'épaisseur. Ces variations d'épaisseur seraient défavorables à l'hydroformage et endommageraient l'outil de mise en forme.After slitting the sheet, shearing its shores and progressive forming to bring its edges until docking, the tube is conventionally welded by electrical resistance, laser or high frequencies. The inner and outer scraping of the bead is then carried out welding to eliminate thickness variations. These variations thick would be unfavorable to hydroforming and would damage the tool formatting.
Cette mise en forme du tube peut avoir lieu par étirage à froid. A cet effet, l'épaisseur du tube est réduite par traction à travers une filière qui calibre le diamètre extérieur et, le plus souvent, sur un mandrin qui calibre le diamètre intérieur. En utilisant des filières et des mandrins adaptés, l'étirage peut être utilisé pour mettre en forme les tubes et transformer une ébauche de section circulaire en un produit présentant une autre géométrie.This shaping of the tube can take place by cold drawing. In this Indeed, the thickness of the tube is reduced by pulling through a die which calibrates the outside diameter and, most often, on a mandrel which calibrates the internal diameter. Using suitable dies and chucks, stretching can be used to shape the tubes and transform a draft of circular section into a product having another geometry.
La mise en forme peut également avoir lieu par hydroformage. Selon ce procédé, on fabrique un corps creux de forme plus ou moins complexe en déformant un tube sous l'action conjointe d'une pression interne et de forces de compression agissant aux extrémités du tube. Les alliages fer-carbone-manganèse utilisés dans l'invention ont un coefficient d'écrouissage de l'ordre de 0,5, ce qui est très favorable à leur bon comportement lors de l'hydroformage, et permet d'obtenir des pièces de forme complexe qui seraient inaccessibles par l'emploi d'aciers plus classiques. Seuls certains aciers inoxydables austénitiques seraient susceptibles d'avoir des performances comparables.The shaping can also take place by hydroforming. according to this process, a hollow body of more or less complex shape is manufactured in deforming a tube under the joint action of internal pressure and forces compression acting at the ends of the tube. Iron-carbon-manganese alloys used in the invention have a coefficient of hardening of the order of 0.5, which is very favorable to their good behavior during hydroforming, and makes it possible to obtain pieces of complex shape which would be inaccessible by the use of more conventional steels. Only some austenitic stainless steels would likely have comparable performance.
De manière générale, l'utilisation d'alliages fer-carbone-manganèse présentant les compositions indiquées procure au métal une grande variété de comportements, qui permettent soit d'obtenir des tubes soudés présentant de meilleures caractéristiques mécaniques que les produits existants, soit d'obtenir des caractéristiques mécaniques équivalentes à celles des produits existants, mais pour un coût de production moindre et/ou pour une quantité de matière mise en jeu moindre, conduisant à un allègement appréciable de la pièce. Ainsi, avec l'alliage à 0,2% de carbone et 27% de manganèse précité dont l'allongement en traction dépasse 90%, on peut supprimer les recuits intermédiaires, et envisager d'augmenter les hauteurs de piquage. Quant à l'alliage à 0,6% de carbone et 22% de manganèse dont la résistance à la traction est de 1000 à 1200 MPa, il permet d'obtenir un gain de masse important sur le tube final et de simplifier le pilotage de son étape de mise en forme, car cette haute résistance élargit le domaine de chargement en réduisant la zone d'éclatement lors de l'hydroformage. Enfin, de façon générale, en raison de leur forte capacité d'écrouissage, l'étirage et l'hydroformage des alliages fer-carbone-manganèse selon l'invention ont aussi l'avantage d'uniformiser les caractéristiques mécaniques en tout point du tube.In general, the use of iron-carbon-manganese alloys presenting the compositions indicated gives the metal a great variety behaviors, which allow either to obtain welded tubes with better mechanical characteristics than existing products, either to obtain mechanical characteristics equivalent to those of the products existing, but for a lower cost of production and / or for a quantity of subject matter brought into play less, leading to a significant reduction in the room. Thus, with the alloy with 0.2% carbon and 27% of manganese mentioned above whose tensile elongation exceeds 90%, it is possible to eliminate the anneals intermediaries, and consider increasing stitching heights. As for the alloy at 0.6% carbon and 22% manganese whose resistance to traction is from 1000 to 1200 MPa, it allows to obtain a mass gain important on the final tube and to simplify the control of its stage of implementation. because this high strength widens the loading range by reducing the burst area during hydroforming. Finally, so general, because of their high work hardening capacity, stretching and hydroforming of the iron-carbon-manganese alloys according to the invention have also the advantage of standardizing the mechanical characteristics in every respect of the tube.
Claims (14)
- Method for making a welded tube, of the type comprising a final drawing or hydroforming step,
characterised in that:an alloy is produced, having a composition, expressed in per cent by weight, of:C ≤2%;Mn of between 10 and 40%, with Mn% > 21.66 - 9.7 C%;Si ≤ S 5%, preferably ≤ 1%, optimally ≤ 0.5%;S ≤ 0.3%, preferably ≤ 0.05%, optimally ≤ 0.01%;p ≤ 0.1%, preferably ≤ 0.05%;Al ≤ 5%, preferably ≤ 0.1%, optimally ≤ 0.03%;Ni ≤ 5%, preferably ≤ 2%;Mo ≤ 5%, preferably ≤ 1%;Co ≤ 3%, preferably ≤ 1%;W ≤ 2%, preferably ≤ 0.5%;Cr ≤ 5%, preferably ≤ 1%;Nb ≤ 1%, preferably ≤ 0.1%;V ≤ 1%, preferably ≤ 0. ≤1%;Cu ≤ 5%, preferably ≤ 1%;N ≤ 0.2%, preferably ≤ 0.1%, optimally ≤ 0.05%;Sn ≤ 0.5%, preferably ≤ 0.1%;Ti ≤ 1%, preferably ≤ 0.1%;B ≤ 0.1%, preferably ≤ 0.01%;each of the Ca and Mg contents ≤ 0.1%, preferably ≤ 0.01%;each of the As and Sb contents ≤ 0.1%, preferably ≤ 0.05%;then a semi-finished product is cast from this alloy,a) either in the form of an ingot which is then roughed down by hot rolling to transform it into a slab, or directly in the form of a slab, the said slab then being hot-rolled in the form of a strip and then coiled,b) or in the form of a thin strip;then the strip is pickled if it is surface oxidised;finally the welded tube is made by progressive forming of a metal sheet cut from the preceding strip so as to bring its edges together, then by welding the said edges, then by eliminating the welding bead, then by cold drawing or hydroforming. - Method according to Claim 1, characterised in that the carbon content of the alloy is between 0 and 1.2% and in that the manganese content of the alloy is between 10 and 35%.
- Method according to Claim 2, characterised in that the carbon content of the alloy is between 0.2 and 1.2% and in that the manganese content of the alloy is between 10 and 30%.
- Method according to Claim 3, characterised in that the carbon content of the alloy is between 0.2 and 0.8% and in that the manganese content of the alloy is between 15 and 30%.
- Method according to Claim 4, characterised in that the carbon content of the alloy is between 0.4 and 0.8% and in that the manganese content of the alloy is between 20 and 24%.
- Method according to one of Claims 1 to 5, characterised in that the hot rolling is preceded by reheating performed at a temperature not exceeding 80°C below the solidus temperature of the alloy.
- Method according to one of Claims 1 to 6, characterised in that the hot rolling is preceded by reheating performed at a temperature at which the precipitation of aluminium nitrides is not brought about.
- Method according to one of Claims 1 to 7, characterised in that the temperature at the end of hot rolling is greater than or equal to 900°C.
- Method according to one of Claims 1 to 8, characterised in that the coiling temperature after hot rolling is less than or equal to 450°C.
- Method according to one of Claims 1 to 9, characterised in that annealing followed by hyperquenching of the coiled hot-rolled strip are carried out, the said annealing being performed in conditions permitting the redissolving of the carbides and avoiding their precipitation on cooling.
- Method according to one of Claims 1 to 10, characterised in that, after the hot rolling and the possible annealing followed by a possible hyperquenching, cold rolling of the strip is carried out, with a minimum reduction ratio of 25%, preceded by pickling.
- Method according to Claim 11, characterised in that the reduction ratio of the thickness of the strip during the first cold-rolling pass of the strip is at least 25%.
- Method according to one of Claims 11 and 12, characterised in that recrystallisation annealing of the strip is carried out at a temperature of 600 to 1200°C for 1 second to 1 hour.
- Welded tube, characterised in that it has been made by the method according to one of Claims 1 to 13.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0112160A FR2829775B1 (en) | 2001-09-20 | 2001-09-20 | PROCESS FOR THE MANUFACTURE OF ROLLED AND WELDED TUBES COMPRISING A FINAL STRETCHING OR HYDROFORMING STAGE AND WELDED TUBE THUS OBTAINED |
FR0112160 | 2001-09-20 | ||
PCT/FR2002/003116 WO2003025240A1 (en) | 2001-09-20 | 2002-09-12 | Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1427866A1 EP1427866A1 (en) | 2004-06-16 |
EP1427866B1 true EP1427866B1 (en) | 2005-11-23 |
Family
ID=8867468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02777430A Expired - Lifetime EP1427866B1 (en) | 2001-09-20 | 2002-09-12 | Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1427866B1 (en) |
AT (1) | ATE310835T1 (en) |
DE (1) | DE60207591T2 (en) |
ES (1) | ES2254752T3 (en) |
FR (1) | FR2829775B1 (en) |
WO (1) | WO2003025240A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101107377B (en) * | 2005-01-21 | 2011-03-23 | 阿塞洛法国公司 | Method for manufacturing austenitic iron-carbon-manganese steel sheet and sheet manufactured thereby |
CN102059253A (en) * | 2011-01-17 | 2011-05-18 | 江苏共昌轧辊有限公司 | Integrated cast steel supporting roller |
CN101653792B (en) * | 2009-09-22 | 2011-08-31 | 西北有色金属研究院 | Processing method of molybdenum and molybdenum alloy narrowband |
CN107557683A (en) * | 2017-08-16 | 2018-01-09 | 南京钢铁股份有限公司 | A kind of method of the high phosphorus hot metal production antiacid anti-corrosion pipe line steel of heavy wall heavy caliber |
WO2019233015A1 (en) * | 2018-06-04 | 2019-12-12 | 南京钢铁股份有限公司 | Acid and corrosion-resistant thick-walled large pipeline steel and production method therefor |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2857980B1 (en) * | 2003-07-22 | 2006-01-13 | Usinor | PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED |
FR2876708B1 (en) * | 2004-10-20 | 2006-12-08 | Usinor Sa | PROCESS FOR MANUFACTURING COLD-ROLLED CARBON-MANGANESE AUSTENITIC STEEL TILES WITH HIGH CORROSION RESISTANT MECHANICAL CHARACTERISTICS AND SHEETS THUS PRODUCED |
FR2878257B1 (en) * | 2004-11-24 | 2007-01-12 | Usinor Sa | PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY |
US20090165897A1 (en) | 2005-02-02 | 2009-07-02 | Corus Staal Bv | Austenitic steel having high strength and formability, method of producing said steel and use thereof |
KR100742823B1 (en) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | High manganese steel plate with excellent surface quality and plating property, plated steel sheet using the same and manufacturing method thereof |
DE102006020746A1 (en) * | 2006-05-04 | 2007-11-15 | Dünne, Heinz | Wear-resistant tube with longitudinal seam |
EP1878811A1 (en) | 2006-07-11 | 2008-01-16 | ARCELOR France | Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced |
WO2010126268A2 (en) * | 2009-04-28 | 2010-11-04 | 연세대학교 산학협력단 | High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same |
ES2455222T5 (en) † | 2010-07-02 | 2018-03-05 | Thyssenkrupp Steel Europe Ag | Superior strength steel, cold formable and flat steel product composed of such a steel |
WO2012052626A1 (en) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Hot-rolled or cold-rolled steel plate, method for manufacturing same, and use thereof in the automotive industry |
CN102286704B (en) * | 2011-08-26 | 2013-03-06 | 三一重型装备有限公司 | Wear-resistant corrosion-resistant high-manganese steel and preparation method thereof |
CN104884661B (en) | 2012-12-26 | 2017-05-31 | Posco公司 | Excellent high intensity austenitic type steel of welding heat influence area toughness and preparation method thereof |
DE102015115726B4 (en) | 2015-09-17 | 2018-08-02 | Thyssenkrupp Ag | Method for producing a component from a flat steel product |
DE102015117956A1 (en) * | 2015-10-21 | 2017-04-27 | Salzgitter Flachstahl Gmbh | Composite tube consisting of a support tube and at least one protective tube and method for producing this |
CA3009463C (en) * | 2015-12-22 | 2020-09-22 | Posco | Austenitic steel material having excellent hydrogen-embrittlement resistance |
WO2019222943A1 (en) * | 2018-05-23 | 2019-11-28 | He Manchao | Npr nonmagnetic anchor rod steel material and production method therefor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741855A (en) * | 1993-07-26 | 1995-02-10 | Nippon Steel Corp | Manufacturing Method of Low Yield Ratio and High Toughness Seamless Steel Pipe with Microstructure of Fine Grain Ferrite |
JPH09249940A (en) * | 1996-03-13 | 1997-09-22 | Sumitomo Metal Ind Ltd | High-strength steel material excellent in sulfide stress cracking resistance and method for producing the same |
JPH1030153A (en) * | 1996-07-17 | 1998-02-03 | Sumitomo Metal Ind Ltd | Steel with excellent solubility in water and inhibitor concentration control method using this steel |
JP2001131705A (en) * | 1999-11-09 | 2001-05-15 | Kawasaki Steel Corp | HIGH Mn NONMAGNETIC STEEL WELDED STEEL PIPE FOR VERY LOW TEMPERATURE USE |
-
2001
- 2001-09-20 FR FR0112160A patent/FR2829775B1/en not_active Expired - Fee Related
-
2002
- 2002-09-12 ES ES02777430T patent/ES2254752T3/en not_active Expired - Lifetime
- 2002-09-12 DE DE60207591T patent/DE60207591T2/en not_active Expired - Lifetime
- 2002-09-12 EP EP02777430A patent/EP1427866B1/en not_active Expired - Lifetime
- 2002-09-12 AT AT02777430T patent/ATE310835T1/en active
- 2002-09-12 WO PCT/FR2002/003116 patent/WO2003025240A1/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101107377B (en) * | 2005-01-21 | 2011-03-23 | 阿塞洛法国公司 | Method for manufacturing austenitic iron-carbon-manganese steel sheet and sheet manufactured thereby |
CN101653792B (en) * | 2009-09-22 | 2011-08-31 | 西北有色金属研究院 | Processing method of molybdenum and molybdenum alloy narrowband |
CN102059253A (en) * | 2011-01-17 | 2011-05-18 | 江苏共昌轧辊有限公司 | Integrated cast steel supporting roller |
CN107557683A (en) * | 2017-08-16 | 2018-01-09 | 南京钢铁股份有限公司 | A kind of method of the high phosphorus hot metal production antiacid anti-corrosion pipe line steel of heavy wall heavy caliber |
CN107557683B (en) * | 2017-08-16 | 2018-11-09 | 南京钢铁股份有限公司 | A kind of method of the high phosphorus hot metal production antiacid anti-corrosion pipe line steel of heavy wall heavy caliber |
WO2019233015A1 (en) * | 2018-06-04 | 2019-12-12 | 南京钢铁股份有限公司 | Acid and corrosion-resistant thick-walled large pipeline steel and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
WO2003025240A1 (en) | 2003-03-27 |
FR2829775B1 (en) | 2003-12-26 |
EP1427866A1 (en) | 2004-06-16 |
DE60207591T2 (en) | 2006-07-06 |
ATE310835T1 (en) | 2005-12-15 |
ES2254752T3 (en) | 2006-06-16 |
DE60207591D1 (en) | 2005-12-29 |
FR2829775A1 (en) | 2003-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1427866B1 (en) | Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube | |
EP1067203B1 (en) | Process of manufacturing iron-carbon-manganese alloy strips and strips obtained thereby | |
EP1913169B1 (en) | Manufacture of steel sheets having high resistance and excellent ductility, products thereof | |
EP2855725B1 (en) | Low-density hot- or cold-rolled steel, method for implementing same and use thereof | |
EP3307921B1 (en) | High-strength steel and production method | |
EP1819461B1 (en) | Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
EP1844173B1 (en) | Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby | |
EP2155915B1 (en) | Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced | |
EP2245203B1 (en) | Austenitic stainless steel sheet and method for obtaining this sheet | |
EP2155916B2 (en) | Low density steel with good stamping capability | |
WO2009034250A1 (en) | Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained | |
FR2833617A1 (en) | PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS | |
EP1099769B1 (en) | Process for manufacturing high tensile strength hot rolled steel sheet for forming and especially for deep drawing | |
EP2257652B1 (en) | Method of manufacturing sheets of austenitic stainless steel with high mechanical properties | |
EP1061139B1 (en) | Method of manufacturing deep drawing steel sheets by direct casting of thin strips | |
EP0922777A1 (en) | Flat product, such as sheet, made from ductile high-yield steel and process for manufacturing the same | |
FR2495189A1 (en) | High strength three-phase steel sheet - contg. polygonal ferrite, bainite and martensite, formed by hot rolling and controlled cooling | |
BE1011557A4 (en) | Steel with a high elasticity limit showing good ductility and a method of manufacturing this steel | |
WO2000003041A1 (en) | Flat product, such as sheet metal, made of steel with high yield strength having good ductility and method for making same | |
FR2544333A1 (en) | Process for obtaining cold-rolled and annealed sheet metal | |
WO2011036351A1 (en) | Ferritic stainless steel having high drawability properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GUELTON, NICOLAS Inventor name: SCHMITT, JEAN-HUBERT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHMITT, JEAN-HUBERT Inventor name: GUELTON, NICOLAS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051123 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051123 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60207591 Country of ref document: DE Date of ref document: 20051229 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20051212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060223 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060223 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060424 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2254752 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ARCELOR FRANCE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ARCELOR FRANCE Effective date: 20060823 |
|
26N | No opposition filed |
Effective date: 20060824 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190826 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190826 Year of fee payment: 18 Ref country code: FR Payment date: 20190820 Year of fee payment: 18 Ref country code: SK Payment date: 20190827 Year of fee payment: 18 Ref country code: DE Payment date: 20190820 Year of fee payment: 18 Ref country code: CZ Payment date: 20190826 Year of fee payment: 18 Ref country code: IT Payment date: 20190829 Year of fee payment: 18 Ref country code: TR Payment date: 20190902 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190823 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190820 Year of fee payment: 18 Ref country code: AT Payment date: 20190822 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20191001 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60207591 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 310835 Country of ref document: AT Kind code of ref document: T Effective date: 20200912 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200912 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 338 Country of ref document: SK Effective date: 20200912 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200930 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200913 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200912 |