[go: up one dir, main page]

EP1399484A2 - Doppelspezifisches ligand und dessen verwendung - Google Patents

Doppelspezifisches ligand und dessen verwendung

Info

Publication number
EP1399484A2
EP1399484A2 EP02748987A EP02748987A EP1399484A2 EP 1399484 A2 EP1399484 A2 EP 1399484A2 EP 02748987 A EP02748987 A EP 02748987A EP 02748987 A EP02748987 A EP 02748987A EP 1399484 A2 EP1399484 A2 EP 1399484A2
Authority
EP
European Patent Office
Prior art keywords
dual
binding
specific ligand
antibody
variable domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02748987A
Other languages
English (en)
French (fr)
Other versions
EP1399484B1 (de
Inventor
Greg MRC Laboratory of Molecular Biology WINTER
Olga Domantis Limited IGNATOVICH
Ian Domantis Limited TOMLINSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domantis Ltd
Original Assignee
Domantis Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42537285&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1399484(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB0115841A external-priority patent/GB0115841D0/en
Application filed by Domantis Ltd filed Critical Domantis Ltd
Priority to EP10172263.5A priority Critical patent/EP2364999B1/de
Publication of EP1399484A2 publication Critical patent/EP1399484A2/de
Application granted granted Critical
Publication of EP1399484B1 publication Critical patent/EP1399484B1/de
Priority to CY20101100909T priority patent/CY1111435T1/el
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a method for the preparation of dual-specific ligands comprising a first single immunoglobulin variable domain region binding to a first antigen or epitope, and a second complementary immunoglobulin single variable domain region binding to a second antigen or epitope. Dual-specific ligands and their uses are also described.
  • the antigen binding domain of an antibody comprises two separate regions: a heavy chain variable domain (NH) and a light chain variable domain (NL: which can be either N K or V ⁇ ).
  • the antigen binding site itself is formed by six polypeptide loops: three from NH domain (HI, H2 and H3) and three from NL domain (Ll, L2 and L3).
  • a diverse primary repertoire of N genes that encode the NH and NL domains is produced by the combinatorial rearrangement of gene segments.
  • the NH gene is produced by the recombination of three gene segments, NH, D and JH- In humans, there are approximately 51 functional NH segments (Cook and Tomlinson (1995) Immunol Today, 16: 237), 25 functional D segments (Corbett et al. (1997) J.
  • the NH segment encodes the region of the polypeptide chain which forms the first and second antigen binding loops of the NH domain (HI and H2), whilst the NH, D and JH segments combine to form the third antigen binding loop of the NH domain (H3).
  • the N gene is produced by the recombination of only two gene segments, NL and JL. In humans, there are approximately 40 functional N ⁇ segments (Schable and Zachau (1993) Biol. Chem. Hoppe-Seyler, 374: 1001), 31 functional V ⁇ segments (Williams et al.
  • the NL segment encodes the region of the polypeptide chain which forms the first and second antigen binding loops of the NL domain (Ll and L2), whilst the NL and JL segments combine to form the third antigen binding loop of the VL domain (L3).
  • Antibodies selected from this primary repertoire are believed to be sufficiently diverse to bind almost all antigens with at least moderate affinity.
  • High affinity antibodies are produced by "affinity maturation" of the rearranged genes, in which point mutations are generated and selected by the immune system on the basis of improved binding.
  • H3 region is much more diverse in terms of sequence, length and structure (due to the use of D segments), it also forms a limited number of main-chain conformations for short loop lengths which depend on the length and the presence of particular residues, or types of residue, at key positions in the loop and the antibody framework (Martin et al. (1996) J. Mol. Biol, 263: 800; Shirai et al. (1996) FEBS Letters, 399: 1.
  • Bispecific antibodies comprising complementary pairs of VH and VL regions are known in the art. These bispecific antibodies must comprise two pairs of VH and VLs, each VH/NL pair binding to a single antigen or epitope. Methods described involve hybrid hybridomas (Milstein & Cuello AC, Nature 305:537-40), minibodies (Hu et al, (1996) Cancer Res 56:3055-3061;), diabodies (Holliger et al, (1993) Proc. Natl. Acad. Sci. USA 90, 6444-6448; WO 94/13804), chelating recombinant antibodies (CRAbs; (Neri et al, (1995) J. Mol. Biol.
  • each antibody species comprises two antigen-binding sites, each fashioned by a complementary pair of VH and VL domains. Each antibody is thereby able to bind to two different antigens or epitopes at the same time, with the binding to EACH antigen or epitope mediated by a VH AND its complementary VL domain.
  • WO 02/02773 (Abbott Laboratories), published after the priority date of the present application, describes antibody molecules with "dual specificity".
  • the antibody molecules referred to are antibodies raised or selected against multiple antigens, such that their specificity spans more than a single antigen.
  • Each complementary VH/V L pair in the antibodies of WO 02/02773 specifies a single binding specificity for two or more structurally related antigens; the VH and V L domains in such complementary pairs do not each possess a separate specificity.
  • the antibodies thus have a broad single specificity which encompasses two antigens, which are structurally related.
  • natural autoantibodies have been described that are polyreactive (Casali & Notkins, Ann. Rev. Immunol.
  • Protein engineering methods have been suggested that may have a bearing on this.
  • a catalytic antibody could be created with a binding activity to a metal ion through one variable domain, and to a hapten (substrate) through contacts with the metal ion and a complementary variable domain (Barbas et al., 1993 Proc. Natl. Acad. Sci USA 90, 6385-6389).
  • the binding and catalysis of the substrate is proposed to require the binding of the metal ion (second antigen).
  • the binding to the VH VL pairing relates to a single but multi- component antigen.
  • Single heavy chain variable domains have also been described, derived from natural antibodies which are normally associated with light chains (from monoclonal antibodies or from repertoires of domains EP-A-0368684). It was suggested to make bispecific antibody fragments by linking heavy chain variable domains of different specificity together (as described above).
  • the disadvantage with this approach is that isolated antibody variable domains may have a hydrophobic interface that normally makes interactions with the light chain and is exposed to solvent and may be "sticky" allowing the single domain to bind to hydrophobic surfaces.
  • the heavy chain variable domains would not be associated with complementary light chain variable domains and thus may be less stable and readily unfold (Worn & Pluckthun, 1998 Biochemistry 37, 13120-7).
  • the inventors have realised that it is desirable to make bispecific antibodies in which the binding of a first antigen or epitope does not necessarily facilitate the binding of a second antigen or epitope. They have also realised that the solution lies in creating binding contacts for the first antigen or epitope in one variable domain, and binding contacts for the second antigen or epitope in another variable domain, the domains being selected so that they are mutually complementary, and that further significant advantages over the bispecific antibodies of the prior art may be derived by bringing together complementary single variable domains of differing specificities; for example, a heavy chain variable domain that binds to a first antigen or epitope with a light chain variable domain that binds to a second antigen or epitope. Thus each VH/NL pair has two binding specificities. These combinations of domains are referred to as 'dual-specific' ligands.
  • the inventors have found that the use of complementary variable domains allows the two domain surfaces to pack together and be sequestered from the solvent. Furthermore the complementary domains are able to stabilise each other. In addition, it allows the creation of dual-specific IgG antibodies without the disadvantages of hybrid hybridomas previously discussed, or the need to engineer heavy or light chains at the sub-unit interfaces.
  • the dual-specific ligands of the present invention have at least one VH/NL pair.
  • a bispecific IgG according to this invention will therefore comprise two such pairs, one pair on each arm of the Y-shaped molecule.
  • bi-specific molecules can be created in two different ways. Firstly, they can be created by association of two existing VH/VL pairings that each bind to a different antigen or epitope (for example, in a bi-specific IgG). In this case the VH/VL pairings must come all together in a 1:1 ratio in order to create a population of molecules all of which are bi-specific. This never occurs (even when complementary CH domain is enhanced by "knobs into holes” engineering) leading to a mixture of bi-specific molecules and molecules that are only able to bind to one antigen or epitope but not the other.
  • the second way of creating a bi-specific antibody is by the simultaneous association of two different VH chain with two different VL chains (for example in a bi-specific diabody).
  • Bi-specific antibodies constructed according to the dual-specific ligand approach according to the present invention overcome all of these problems because the binding to antigen or epitope 1 resides within the VH or VL domain and the binding to antigen or epitope 2 resides with the complementary VL or VH domain, respectively. Since VH and VL domains pair on a 1:1 basis all VH/NL pairings will be bi-specific and thus all formats constructed using these VH/NL pairings (Fv, scFvs, Fabs, minibodies, IgGs etc) will have 100% bi-specific activity.
  • the present invention provides a method for producing a dual- specific ligand comprising a first single immunoglobulin variable domain having a first binding specificity and a complementary immunoglobulin single variable domain having a second binding specificity, the method comprising the steps of: (a) selecting a first variable domain by its ability to bind to a first epitope,
  • first and second “epitopes” are understood to be epitopes which are not the same and are not bound by a single monospecific ligand. They may be on different antigens or on the same antigen, but separated by a sufficient distance that they do not form a single entity that could be bound by a single mono-specific VH/V L binding pair of a conventional antibody.
  • domain antibodies or dAbs are separately competed by a monospecific V H /V L ligand against two epitopes then those two epitopes are not sufficiently far apart to be considered separate epitopes according to the present invention.
  • the dual specific ligands of the invention do not include ligands as described in WO 02/02773.
  • the ligands of the present invention do not comprise complementary VH/V L pairs which bind any one or more antigens or epitopes co-operatively.
  • the ligands according to the invention comprise a VH/V L complementary pair, wherein the V domains have different specificities.
  • the ligands according to the invention comprise V H /V L complementary pairs having different specificities for non-structurally related epitopes or antigens.
  • Structurally related epitopes or antigens are epitopes or antigens which possess sufficient structural similarity to be bound by a conventional V H /VL complementary pair which acts in a co-operative manner to bind an antigen or epitope; in the case of structurally related epitopes, the epitopes are sufficiently similar in structure that they "fit" into the same binding pocket formed at the antigen binding site of the VH/V L dimer.
  • each single variable domain may be selected for binding to its target antigen or epitope in the absence of a complementary variable region.
  • the single variable domains may be selected for binding to its target antigen or epitope in the presence of a complementary variable region.
  • the first single variable domain may be selected in the presence of a third complementary variable domain
  • the second variable domain may be selected in the presence of a fourth complementary variable domain.
  • the binding activity of first (or second) variable domain may not be evident except in the presence of the complementary third (or fourth) variable domain.
  • the complementary third or fourth variable domain may be the natural cognate variable domain having the same specificity as the single domain being tested, or a non-cognate complementary domain - such as a "dummy" variable domain.
  • the single variable domains are derived from antibodies selected for binding activity against different antigens or epitopes.
  • the dual specific ligand of the invention comprises only two complementary variable domains although several such ligands may be incorporated together into the same protein, for example two such ligands can be incorporated into an IgG or a multimeric immunoglobulin, such as IgM.
  • a plurality of dual specific ligands are combined to form a multimer.
  • two different dual specific ligands are combined to create a tetra-specific molecule
  • Dual specific ligands may be combined into non-immunoglobulin multi-ligand structures to form multivalent complexes, which bind target molecules with increased avidity.
  • the V regions bind different epitopes on the same antigen, thereby providing superior avidity.
  • multivalent complexes may be constructed on scaffold proteins, as described in WO0069907 (Medical Research Council), which are based for example on the ring structure of bacterial GroEL or to other chaperone polypeptides.
  • variable regions of a dual-specific ligand produced according to the method of the present invention may be on the same polypeptide chain, or alternatively, on different polypeptide chains.
  • variable regions are on different polypeptide chains, then they may be linked via a linker, generally a flexible linker (such as a polypeptide chain), a chemical linking group, or any other method known in the art.
  • the first and the second antigen binding domains may be associated either covalently or non-covalently. In the case that the domains are covalently associated, then the association may be mediated for example by disulphide bonds.
  • the first and the second antigens or epitopes are different. They may be, or be part of, polypeptides, proteins or nucleic acids, which may be naturally occurring or synthetic. One skilled in the art will appreciate that the choice is large and varied. They may be for instance human or animal proteins, , cytokines, cytokine receptors, enzymes co-factors for enzymes or DNA binding proteins. Suitable cytokines and growth factors include but are not limited to: ApoE, Apo-SAA, BDNF, Cardiotrophin-1, EGF, EGF receptor, ENA- 78, Eotaxin, Eotaxin-2, Exodus-2, FGF-acidic, FGF-basic, fibroblast growth factor- 10 (30).
  • Cytokine receptors include receptors for the foregoing cytokines. It will be appreciated that this list is by no means exhaustive. Where the dual specific ligand binds to two epitopes (on the same or different antigens), the antigen(s) may be selected from this list. The antigens or epitopes may compete for binding to the dual-specific ligand, such that they may not both bind simultaneously. Alternatively, they may both bind simultaneously, such that the dual-specific ligand bridges the antigens or epitopes.
  • variable domains are derived from an antibody directed against the first and/or second antigen or epitope. In a preferred embodiment the variable domains are derived from a repertoire of single variable antibody domains.
  • the present invention provides a dual-specific ligand comprising a first single immunoglobulin variable domain having a first binding specificity and a complementary immunoglobulin single variable domain having a second binding specificity.
  • the dual-specific ligand according to the second aspect of the invention is obtainable by the method of the first aspect of the present invention.
  • the ligand comprises one single heavy chain variable domain of an antibody and one complementary single light chain variable domain of an antibody such that the two regions are capable of associating to form a complementary VH/NL pair.
  • a dual-specific ligand of this nature permits the two complementary variable region surfaces to pack together and be sequestered from the solvent and to help stabilise each other.
  • the dual specific ligand may comprise a first domain capable of binding a target molecule, and a second domain capable of binding a molecule or group which extends the half-life of the ligand.
  • the molecule or group may be a bulky agent, such as HSA or a cell matrix protein.
  • the dual specific ligand may be capable of binding the target molecule only on displacement of the half-life enhancing molecule or group.
  • a dual specific ligand is maintained in circulation in the bloodstream of a subject by a bulky molecule such as HSA.
  • competition between the binding domains of the dual specific ligand results in displacement of the HSA and binding of the target.
  • the present invention provides one or more nucleic acid molecules encoding at least a dual-specific ligand as herein defined.
  • the dual specific ligand may be encoded on a single nucleic acid molecule; alternatively, each complementary domain may be encoded by a separate nucleic acid molecule.
  • the complementary domains may be expressed as a fusion polypeptide, in the manner of a scFv molecule, or may be separately expressed and subsequently linked together, for example using chemical linking agents. Ligands expressed from separate nucleic acids will be linked together by appropriate means.
  • the nucleic acid may further encode a signal sequence for export of the polypeptides from a host cell upon expression and may be fused with a surface component of a filamentous bacteriophage particle (or other component of a selection display system) upon expression.
  • the present invention provides a vector comprising nucleic acid according to the present invention.
  • the present invention provides a host cell transfected with a vector according to the present invention.
  • Expression from such a vector may be configured to produce, for example on the surface of a bacteriophage particle, variable domains for selection. This allows selection of displayed variable regions and thus selection of 'dual-specific ligands' using the method of the present invention.
  • the present invention further provides a kit comprising at least a dual-specific ligand according to the present invention.
  • Dual-Specific ligands preferably comprise combinations of heavy and light chain domains.
  • the dual specific ligand may comprise a V H domain and a V L domain, which may be linked together in the form of an scFv.
  • the ligands may comprise one or more CH or C L domains.
  • the ligands may comprise a CHI domain, CH2 or CH3 domain, and/or a CL domain, C ⁇ l, C ⁇ 2, C ⁇ 3 or C ⁇ 4 domains, or any combination thereof.
  • a hinge region domain may also be included.
  • Such combinations of domains may, for example, mimic natural antibodies, such as IgG or IgM, or fragments thereof, such as Fv, scFv, Fab or F(ab') 2 molecules.
  • Other structures such as a single arm of an IgG molecule comprising V H , V L , C H I and CL domains, are envisaged.
  • variable regions are selected from single domain V gene repertoires.
  • the repertoire of single antibody domains is displayed on the surface of filamentous bacteriophage.
  • each single antibody domain is selected by binding of a phage repertoire to antigen.
  • the present invention provides a composition comprising a dual- specific ligand, obtainable by a method of the present invention, and a pharmaceutically acceptable carrier, diluent or excipient.
  • the present invention provides a method for the treatment of disease using a 'dual-specific ligand' or a composition according to the present invention.
  • the disease is cancer.
  • a 'bridging' dual specific ligand may be used to recruit cytotoxic T-cells to a cancer marker, or to bind to two different antigens or epitopes on the surface of a cancer cell, thereby increasing the affinity or specificity of binding to the cell surface.
  • the antibody would be capable of binding to four molecules of antigen or four different epitopes. Alternatively if the binding of one antigen or epitope displaces the other, such antibodies might be used to release a drug on binding of a cancer cell surface marker.
  • the dual specific antibody is at least divalent, such as a dual specific IgG
  • multiple effectors may be delivered to the same cell, such as an anti-tumour drug and a cytotoxic T-cell marker.
  • the present invention provides a method for the diagnosis, including diagnosis of disease using a dual-specific ligand, or a composition according to the present invention.
  • the binding of an analyte to a dual specific ligand may be exploited to displace an agent, which leads to the generation of a signal on displacement.
  • binding of analyte (second antigen) could displace an enzyme (first antigen) bound to the antibody providing the basis for an immunoassay, especially if the enzyme were held to the antibody through its active site.
  • Figure 1 shows the diversification of VH HSA at positions H50, H52, H52a, H53,
  • V K H55, H56, H58, H95, H96, H97, H98 (DVT or NNK encoded respectively) which are in the antigen binding site of VH HSA.
  • the sequence of V K is diversified at positions L50, L53.
  • Figure 2 shows Library 1 : Germline V ⁇ /D VT VH,
  • Figure 3 shows an alignment of V H chains and V ⁇ chains.
  • Figure 4 shows the characterisation of the binding properties of the K8 antibody, the binding properties of the K8 antibody characterised by monoclonal faguliser, the dual specific K8 antibody was found to bind HSA and ⁇ -gal and displayed on the surface of the phage with absorbant signals greater than 1.0. No cross reactivity with other proteins was detected.
  • Figure 5 shows soluble scFv ELISA performed using known concentrated and some of the K8 antibody fragment.
  • a 96-well plate was coated with lOO ⁇ g of
  • Figure 6 shows the binding characteristics of the clone K8V ⁇ /dummy VH analysed using soluble scFv ELISA.
  • Production of the soluble scFv fragments was induced by IPTG as described by Harrison et al, Methods Enzymol. 1996;267:83-109 and the supernatant containing scFv assayed directly.
  • Soluble scFv ELISA is performed as described in example 1 and the bound scFvs were detected with Protein L-HRP. The ELISA results revealed that this clone was still able to bind ⁇ -gal, whereas binding BSA was abolished.
  • Figure 7 shows the binding of dual specific scFv antibodies directed against APS and ⁇ -gal and a dual specific scFv antibody directed against BCL10 protein and ⁇ -gal to their respective antigen.
  • Figure 8 shows the binding characteristics of K8VK/VH2/K8VK/V * H4 and
  • Figure 9 shows the binding characteristics of produced clones V ⁇ 2sd and V ⁇ 4sd tested by monoclonal phage ELISA.
  • Phage particles were produced as described by Harrison et al in 1996.
  • 96-well ELISA plates were coated with lOO ⁇ g/ml of APS, BSA, HSA, ⁇ -gal, ubiquitin, ⁇ -amylase and myosin at lO ⁇ g/ml concentration in PBS overnight at 4°C.
  • a standard ELISA protocol was followed using detection of bound phage with anti- M13-HRP conjugate.
  • ELISA results demonstrated that VH single domains specifically recognised APS when displayed on the surface of the filamentous bacteriophage.
  • Figure 10 shows the ELISA of soluble V ⁇ 2sd and V ⁇ 4sd. The same results are obtained as with the phage ELISA shown in figure 9, indicating that these single domains are also able to recognise APS or soluble fragments.
  • Figure 11 shows the selection of single VH domain antibodies directed against APS and single VK domain antibodies directed against ⁇ -gal from a repertoire of single antibody domains.
  • Soluble single domain ELISA was performed as soluble scFv ELISA described in example 1 and bound V K and V H single domains were detected with Protein L-HRP and Protein A-HRP respectively.
  • Five VH single domains V ⁇ AlOsd, V ⁇ Alsd, V ⁇ A5sd, V ⁇ C5sd and VHCI lsd selected from library 5 were found to bind APS and one V K single domain V ⁇ E5SD selected from library 6 was found to bind ⁇ -gal. None of the clones cross-reacted with BSA.
  • Figure 12 shows the characterisation of dual specific scFv antibodies VKE5/VH2 and
  • V K E5/N H 4 directed against APS and ⁇ -gal. Soluble scFv ELISA was performed as described in example 1 and the bound scFvs were detected with Protein L-HRP. Both V K E5/V H 2 and V K E5/N H 4 clones were found to be dual specific. No cross reactivity with BSA was detected.
  • FIG. 13 shows the construction of VK vector and V ⁇ G3 vector.
  • V G was pc amplified from an individual clone, A4 selected from a Fab library using
  • BK BACKNOT as a 5' back primer and CKSACFORFL as a 3' (forward) primer. 30 cycles of PCR amplification was performed except that Pfu polymerase was used in enzyme. PCR product was digested with ⁇ otI/EcoRI and ligated into a ⁇ otlEcoRI digested vector pHEN14V K to create a C vector.
  • Figure 14 shows the CK vector referred to in figure 13.
  • Figure 15 shows a Ck/glll phagemid.
  • Gene III was PCR amplified from a pIT2 vector using G3 BACKS AC as a 5' (back) primer and LMB2 as a 3'
  • PCR product was digested with SACi/EcoRZ and ligated into a Saci EcoR/ digested C K vector.
  • FIG 16 shows a C H vector.
  • C H gene was PCR amplified from an individual clone A4 selected from a Fab library using CHBACKNOT as a 5' (back) primer and CHSACFOR as a 3' (forward) primer. 30 cycles of PCR amplification were performed as described herein. PCR product was digested with a Noti/BglH and ligated into a Not//BglZ7 digested vector PACYC4V H to create a C H vector.
  • Figure 17 shows the C H vector referred to in Figure 16.
  • Figure 18 shows an ELISA of V ⁇ E5/V H 2 Fab.
  • Figure 19 shows competition ELISAs with V K E5/V H 2 scFv and V K E5 ⁇ H 2 Fab.
  • Complementary Two immunoglobulin domains are "complementary" where they belong to families of structures which form cognate pairs or groups or are derived from such families and retain this feature.
  • a VH domain and a VL domain of an antibody are complementary; two V H domains are not complementary, and two VL domains are not complementary.
  • Complementary domains may be found in other members of the immunoglobulin superfamily, such as the V ⁇ and V ⁇ (or ⁇ and ⁇ ) domains of the T-cell receptor.
  • complementary domains do not bind a target molecule co-operatively, but act independently on different target epitopes which may be on the same or different molecules.
  • Immunoglobulin This refers to a family of polypeptides which retain the immunoglobulin fold characteristic of antibody molecules, which contains two ⁇ sheets and, usually, a conserved disulphide bond.
  • Members of the immunoglobulin superfamily are involved in many aspects of cellular and non-cellular interactions in vivo, including widespread roles in the immune system (for example, antibodies, T-cell receptor molecules and the like), involvement in cell adhesion (for example the ICAM molecules) and intracellular signalling (for example, receptor molecules, such as the PDGF receptor).
  • the present invention is applicable to all immunoglobulin superfamily molecules which possess complementary domains.
  • the present invention relates to antibodies.
  • Complementary variable domains are combined to form a group of complementary domains; for example, VL domains are combined with VH domains. Domains may be combined in a number of ways, involving linkage of the domains by covalent or non-covalent means.
  • Domain A domain is a folded protein structure which retains its tertiary structure independently of the rest of the protein. Generally, domains are responsible for discrete functional properties of proteins, and in many cases may be added, removed or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain.
  • single antibody variable domain we mean a folded polypeptide domain comprising sequences characteristic of antibody variable domains. It therefore includes complete antibody variable domains and modified variable domains, for example in which one or more loops have been replaced by sequences which are not characteristic of antibody variable domains, or antibody variable domains which have been truncated or comprise N- or C-terminal extensions, as well as folded fragments of variable domains which retain at least in part the binding activity and specificity of the full-length domain.
  • Repertoire A collection of diverse variants, for example polypeptide variants which differ in their primary sequence.
  • a library used in the present invention will encompass a repertoire of polypeptides comprising at least 1000 members.
  • the term library refers to a mixture of heterogeneous polypeptides or nucleic acids.
  • the library is composed of members, which have a single polypeptide or nucleic acid sequence. To this extent, library is synonymous with repertoire. Sequence differences between library members are responsible for the diversity present in the library.
  • the library may take the form of a simple mixture of polypeptides or nucleic acids, or may be in the form of organisms or cells, for example bacteria, viruses, animal or plant cells and the like, transformed with a library of nucleic acids.
  • each individual organism or cell contains only one or a limited number of library members.
  • the nucleic acids are incorporated into expression vectors, in order to allow expression of the polypeptides encoded by the nucleic acids.
  • a library may take the form of a population of host organisms, each organism containing one or more copies of an expression vector containing a single member of the library in nucleic acid form which can be expressed to produce its corresponding polypeptide member.
  • the population of host organisms has the potential to encode a large repertoire of genetically diverse polypeptide variants.
  • Antibody An antibody (for example IgG, IgM, IgA, IgD or IgE) or fragment (such as a Fab , F(Ab') 2 , Fv, disulphide linked Fv, scFv, disulphide-linked scFv, diabody) whether derived from any species naturally producing an antibody, or created by recombinant DNA technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria).
  • an antibody for example IgG, IgM, IgA, IgD or IgE
  • fragment such as a Fab , F(Ab') 2 , Fv, disulphide linked Fv, scFv, disulphide-linked scFv, diabody
  • Dual-specific ligand A ligand comprising a first immunoglobulin single variable domain and a second immunoglobulin single variable domain as herein defined, wherein the variable regions are capable of binding to two different antigens or two epitopes on the same antigen which are not normally bound by a monospecific immunoglobulin.
  • the two epitopes may be on the same hapten, but are not the same epitope or sufficiently adjacent to be bound by a monospecific ligand.
  • the dual specific ligands according to the invention are composed of mutually complementary variable domain pairs which have different specificities, and do not contain mutually complementary variable domain pairs which have the same specificity.
  • Antigen A ligand that binds to a small fraction of the members of a repertoire according to the present invention. It may be a polypeptide, protein, nucleic acid or other molecule. Generally, the dual specific ligands according to the invention are selected for target specificity against a particular antigen. In the case of conventional antibodies and fragments thereof, the antibody binding site defined by the variable loops (Ll, L2, L3 and HI, H2, H3) is capable of binding to the antigen.
  • Epitope A unit of structure conventionally bound by an immunoglobulin V H /V pair. Epitopes define the minimum binding site for an antibody, and thus represent the target of specificity of an antibody. In the case of a single domain antibody, an epitope represents the unit of structure bound by a variable domain in isolation.
  • a first variable domain may be selected for binding to an antigen or epitope in the presence or in the absence of a complementary variable domain.
  • Universal framework A single antibody framework sequence corresponding to the regions of an antibody conserved in sequence as defined by Kabat ("Sequences of Proteins of Immunological Interest", US Department of Health and Human Services) or corresponding to the human germline immunoglobulin repertoire or structure as defined by Chothia and Lesk, (1987) J. Mol. Biol. 196:910-917, The invention provides for the use of a single framework, or a set of such frameworks, which has been found to permit the derivation of virtually any binding specificity though variation in the hypervariable regions alone.
  • Dual specific ligands according to the invention may be prepared according to previously established techniques, used in the field of antibody engineering, for the preparation of scFv, "phage” antibodies and other engineered antibody molecules. Techniques for the preparation of antibodies, and in particular bispecific antibodies, are for example described in the following reviews and the references cited therein: Winter & Milstein, (1991) Nature 349:293-299; Plueckthun (1992) Immunological Reviews 130:151-188; Wright et al, (1992) Crti. Rev. Immunol.12: 125-168; Holliger, P. & Winter, G. (1993) Curr. Op. Biotechn. 4, 446-449; Carter, et al. (1995) J. Hematother.
  • the invention provides for the selection of complementary variable domains against two different antigens or epitopes, and subsequent combination of the variable domains.
  • V H and/or V libraries may be selected against target antigens or epitopes separately, in which case single domain binding is directly selected for, or together.
  • a preferred method for making a dual specific ligand according to the present invention comprises using a selection system in which a repertoire of variable domains is selected for binding to a first antigen or epitope and a repertoire of variable domains is selected for binding to a second antigen or epitope. The selected variable first and second variable domains are then combined and the dual-specific selected for binding to both first and second antigen or epitope.
  • Bacteriophage lambda expression systems may be screened directly as bacteriophage plaques or as colonies of lysogens, both as previously described (Huse et al. (1989) Science, 246: 1275; Caton and Koprowski (1990) Proc. Natl. Acad. Sci. U.S.A., 87; Mullinax et al. (1990) Proc. Natl. Acad. Sci. U.S.A., 87: 8095; Persson et al. (1991) Proc. Natl. Acad. Sci. U.S.A., 88: 2432) and are of use in the invention. Whilst such expression systems can be used to screening up to 10 different members of a library, they are not really suited to screening of larger numbers (greater than 10 6 members).
  • selection display systems which enable a nucleic acid to be linked to the polypeptide it expresses.
  • a selection display system is a system that permits the selection, by suitable display means, of the individual members of the library by binding the generic and/or target ligands.
  • phagebodies lambda phage capsids
  • An advantage of phage-based display systems is that, because they are biological systems, selected library members can be amplified simply by growing the phage containing the selected library member in bacterial cells. Furthermore, since the nucleotide sequence that encode the polypeptide library member is contained on a phage or phagemid vector, sequencing, expression and subsequent genetic manipulation is relatively straightforward.
  • RNA molecules are selected by alternate rounds of selection against a target ligand and PCR amplification (Tuerk and Gold (1990) Science, 249: 505; Ellington and Szostak (1990) Nature, 346: 818).
  • a similar technique may be used to identify DNA sequences which bind a predetennined human transcription factor (Thiesen and Bach (1990) Nucleic Acids Res., 18: 3203; Beaudry and Joyce (1992) Science, 257: 635; WO92/05258 and WO92/14843).
  • in vitro translation can be used to synthesise polypeptides as a method for generating large libraries.
  • These methods which generally comprise stabilised polysome complexes, are described further in WO88/08453, WO90/05785, WO90/07003, WO91/02076, WO91/05058, and WO92/02536.
  • Alternative display systems which are not phage-based, such as those disclosed in WO95/22625 and WO95/11922 (Affymax) use the polysomes to display polypeptides for selection.
  • a still further category of techniques involves the selection of repertoires in artificial compartments, which allow the linkage of a gene with its gene product.
  • a selection system in which nucleic acids encoding desirable gene products may be selected in microcapsules formed by water-in-oil emulsions is described in WO99/02671, WO00/40712 and Tawfik & Griffiths (1998) N ⁇ twre Biotechnol 16(7), 652-6.
  • Genetic elements encoding a gene product having a desired activity are compartmentalised into microcapsules and then transcribed and/or translated to produce their respective gene products (R ⁇ A or protein) within the microcapsules.
  • Genetic elements which produce gene product having desired activity are subsequently sorted. This approach selects gene products of interest by detecting the desired activity by a variety of means.
  • Libraries intended for selection may be constructed using techniques known in the art, for example as set forth above, or may be purchased from commercial sources. Libraries which are useful in the present invention are described, for example, in WO99/20749.
  • PCR polymerase chain reaction
  • PCR is performed using template D ⁇ A (at least lfg; more usefully, 1-1000 ng) and at least 25 pmol of oligonucleotide primers; it may be advantageous to use a larger amount of primer when the primer pool is heavily heterogeneous, as each sequence is represented by only a small fraction of the molecules of the pool, and amounts become limiting in the later amplification cycles.
  • a typical reaction mixture includes: 2 ⁇ l of D ⁇ A, 25 pmol of oligonucleotide primer, 2.5 ⁇ l of 10X PCR buffer 1 (Perkin-Elmer, Foster City, CA), 0.4 ⁇ l of 1.25 ⁇ M dNTP, 0.15 ⁇ l (or 2.5 units) of Taq DNA polymerase (Perkin Elmer, Foster City, CA) and deionized water to a total volume of 25 ⁇ l.
  • Mineral oil is overlaid and the PCR is performed using a programmable thermal cycler. The length and temperature of each step of a PCR cycle, as well as the number of cycles, is adjusted in accordance to the stringency requirements in effect.
  • Annealing temperature and timing are determined both by the efficiency with which a primer is expected to anneal to a template and the degree of mismatch that is to be tolerated; obviously, when nucleic acid molecules are simultaneously amplified and mutagenized, mismatch is required, at least in the first round of synthesis.
  • the ability to optimise the stringency of primer annealing conditions is well within the knowledge of one of moderate skill in the art.
  • An annealing temperature of between 30 C and 72 °C is used.
  • Initial denaturation of the template molecules normally occurs at between 92°C and 99°C for 4 minutes, followed by 20-40 cycles consisting of denaturation (94-99°C for 15 seconds to 1 minute), annealing (temperature determined as discussed above; 1-2 minutes), and extension (72°C for 1-5 minutes, depending on the length of the amplified product).
  • Final extension is generally for 4 minutes at 72°C, and may be followed by an indefinite (0-24 hour) step at 4°C.
  • Domains according to the invention may be combined by a variety of methods known in the art, including covalent and non-covalent methods.
  • Preferred methods include the use of polypeptide linkers, as described, for example, in connection with scFv molecules (Bird et al, (1988) Science 242:423-426).
  • Linkers are preferably flexible, allowing the two single domains to interact.
  • the linkers used in diabodies, which are less flexible, may also be employed (Holliger et al, (1993) PNAS (USA) 90:6444-6448).
  • Complementary variable domains may be combined using methods other than linkers.
  • disulphide bridges provided through naturally-occurring or engineered cysteine residues, may be exploited to stabilise N H -NL dimers (Reiter et al,
  • variable domains of immunoglobulins and in particular antibody VH and V domains, may be employed as appropriate.
  • dual specific ligands may exist in "open” or “closed” conformations in solution.
  • An "open” conformation is a conformation in which each of the immunoglobulin domains is present in a form unassociated with other domains; in other words, each domain is present as a single domain in solution (albeit combined, e.g. via a linker, with the other domain).
  • the "closed" configuration is that in which the two domains (for example V H and VL) are present in associated form, such as that of an associated VH-V L pair which forms an antibody binding site.
  • scFv may be in a closed or open conformation, depending on the arrangement of the linker used to link the V H and V domains.
  • a short or rigid linker may however be used to keep V H and V L domains apart, and prevent a closed conformation from forming.
  • Fab fragments and whole antibodies will exist primarily in the closed conformation, although it will be appreciated that open and closed dual specific ligands are likely to exist in a variety of equilibria under different circumstances. Binding of the ligand to a target is likely to shift the balance of the equilibrium towards the open, configuration.
  • the ligands according to the invention can exist in two conformations in solution, one of which (the open form) can bind two antigens or epitopes independently, whilst the alternative conformation (the closed form) can only bind one antigen or epitope; antigens or epitopes thus compete for binding to the ligand in this conformation.
  • the open form of the dual specific ligand may thus exist in equilibrium with the closed form solution, it is envisaged that the equilibrium will favour the closed form; moreover, the open form can be sequestered by target binding into a closed conformation.
  • the dual specific ligand of the invention is present in an equilibrium between two (open and closed) conformations.
  • Dual specific ligands according to the invention may be modified in order to favour an open or closed conformation.
  • stabilisation of V H -V L interactions with disulphide bonds stabilises the closed conformation.
  • linkers used to join the domains may be constructed such that the open from is favoured; for example, the linkers may sterically hinder the association of the domains, such as by incorporation of large amino acid residues in opportune locations, or the designing of a suitable rigid structure which will keep the domains physically spaced apart.
  • binding of the dual-specific ligand to its specific antigens or epitopes can be tested by methods which will be familiar to those skilled in the art and include ELISA. In a preferred embodiment of the invention binding is tested using monoclonal phage ELISA.
  • Phage ELISA may be performed according to any suitable procedure: an exemplary protocol is set forth below.
  • Phage from single infected bacterial colonies from these populations can then be screened . by ELISA to identify "monoclonal" phage antibodies. It is also desirable to screen soluble antibody fragments for binding to antigen or epitope, and this can also be undertaken by
  • the diversity of the selected phage monoclonal antibodies may also be assessed by gel electrophoresis of PCR products (Marks et al. 1991, supra; Nissim et al. 1994 supra), probing (Tomlinson et al, 1992) J. Mol. Biol. 227, 776) or by sequencing of the vector DNA.
  • an antibody is herein defined as an antibody (for example IgG, IgM, IgA, IgA, IgE) or fragment (Fab, Fv, disulphide linked Fv, scFv, diabody) which comprises at least one heavy and a light chain variable domain which are complementary to one another and thus can associate with one another to form a VH/NL pair. It may be derived from any species naturally producing an antibody, or created by recombinant D ⁇ A technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria).
  • the dual-specific ligand comprises at least one single heavy chain variable domain of an antibody and one single light chain variable domain of an antibody such that the two regions are capable of associating to form a complementary NH/NL pair.
  • the first and the second variable domains of such a ligand may be on the same polypeptide chain. Alternatively they may be on separate polypeptide chains. In the case that they are on the same polypeptide chain they may be linked by a flexible linker, which is preferentially a peptide sequence, as described above.
  • the first and second variable domains may be covalently or non-covalently associated.
  • the covalent bonds may be disulphide bonds.
  • variable domains are selected from N-gene repertoires selected for instance using phage display technology as herein described, then these variable domains comprise a universal framework region, such that is they may be recognised by a specific generic ligand as herein defined.
  • the use of universal frameworks, generic ligands and the like is described in WO99/20749.
  • variable domain sequence is preferably located within the structural loops of the variable domains.
  • the polypeptide sequences of either variable domain may be altered by D ⁇ A shuffling or by mutation in order to enhance the interaction of each variable domain with its complementary pair.
  • the 'dual-specific ligand' is a single chain Fv fragment.
  • the 'dual-specific ligand' consists of a Fab region of an antibody.
  • the present invention provides nucleic acid encoding at least a 'dual- specific ligand' as herein defined.
  • both antigens or epitopes may bind simultaneously to the same antibody molecule. Alternatively, they may compete for binding to the same antibody molecule. For example, where both epitopes are bound simultaneously, both VH and V L domains of a dual specific ligand are able to independently bind their target epitopes. Where the domains compete, the V H is capable of binding its target, but not at the same time as the V L binds its cognate target; or the V L is capable of binding its target, but not at the same time as the V H binds its cognate target.
  • variable regions may be derived from antibodies directed against target antigens or epitopes. Alternatively they may be derived from a repertoire of single antibody domains such as those expressed on the surface of filamentous bacteriophage. Selection may be performed as described below.
  • nucleic acid molecules and vector constructs required for the performance of the present invention may be constructed and manipulated as set forth in standard laboratory manuals, such as Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, USA.
  • nucleic acids in the present invention is typically carried out in recombinant vectors.
  • the present invention provides a vector comprising nucleic acid encoding at least a 'dual-specific ligand' as herein defined.
  • vector refers to a discrete element that is used to introduce heterologous DNA into cells for the expression and/or replication thereof. Methods by which to select or construct and, subsequently, use such vectors are well known to one of moderate skill in the art. Numerous vectors are publicly available, including bacterial plasmids, bacteriophage, artificial chromosomes and episomal vectors. Such vectors may be used for simple cloning and mutagenesis; alternatively gene expression vector is employed.
  • a vector of use according to the invention may be selected to accommodate a polypeptide coding sequence of a desired size, typically from 0.25 kilobase (kb) to 40 kb or more in length
  • a suitable host cell is transformed with the vector after in vitro cloning manipulations.
  • Each vector contains various functional components, which generally include a cloning (or "polylinker") site, an origin of replication and at least one selectable marker gene. If given vector is an expression vector, it additionally possesses one or more of the following: enhancer element, promoter, transcription termination and signal sequences, each positioned in the vicinity of the cloning site, such that they are operatively linked to the gene encoding a polypeptide repertoire member according to the invention.
  • Both cloning and expression vectors generally contain nucleic acid sequences that enable the vector to replicate in one or more selected host cells.
  • this sequence is one that enables the vector to replicate independently of the host chromosomal DNA and includes origins of replication or autonomously replicating sequences.
  • origins of replication or autonomously replicating sequences are well known for a variety of bacteria, yeast and viruses.
  • the origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 micron plasmid origin is suitable for yeast, and various viral origins (e.g. SV 40, adenovirus) are useful for cloning vectors in mammalian cells.
  • the origin of replication is not needed for mammalian expression vectors unless these are used in mammalian cells able to replicate high levels of DNA, such as COS cells.
  • a cloning or expression vector may contain a selection gene also referred to as selectable marker.
  • This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will therefore not survive in the culture medium.
  • Typical selection genes encode proteins that confer resistance to antibiotics and other toxins, e.g. ampicillin, neomycin, methotrexate or tetracycline, complement auxotrophic deficiencies, or supply critical nutrients not available in the growth media.
  • an E. c ⁇ //-selectable marker for example, the ⁇ -lactamase gene that confers resistance to the antibiotic ampicillin.
  • E. coli plasmids such as pBR322 or a pUC plasmid such as pUC18 or pUC19.
  • Expression vectors usually contain a promoter that is recognised by the host organism and is operably linked to the coding sequence of interest. Such a promoter may be inducible or constitutive.
  • operably linked refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.
  • a control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences.
  • Promoters suitable for use with prokaryotic hosts include, for example, the ⁇ -lactamase and lactose promoter systems, alkaline phosphatase, the tryptophan (trp) promoter system and hybrid promoters such as the tac promoter. Promoters for use in bacterial systems will also generally contain a Shine-Delgarno sequence operably linked to the coding sequence.
  • the preferred vectors are expression vectors that enables the expression of a nucleotide sequence corresponding to a polypeptide library member.
  • selection with the first and/or second antigen or epitope can be performed by separate propagation and expression of a single clone expressing the polypeptide library member or by use of any selection display system.
  • the preferred selection display system is bacteriophage display.
  • phage or phagemid vectors may be used.
  • the preferred vectors are phagemid vectors which have an E. coli. origin of replication (for double stranded replication) and also a phage origin of replication (for production of single- stranded DNA).
  • the vector contains a ⁇ -lactamase gene to confer selectivity on the phagemid and a lac promoter upstream of a expression cassette that consists (N to C terminal) of a pelB leader sequence (which directs the expressed polypeptide to the periplasmic space), a multiple cloning site (for cloning the nucleotide version of the library member), optionally, one or more peptide tag (for detection), optionally, one or more TAG stop codon and the phage protein pill.
  • a pelB leader sequence which directs the expressed polypeptide to the periplasmic space
  • a multiple cloning site for cloning the nucleotide version of the library member
  • optionally, one or more peptide tag for detection
  • TAG stop codon optionally, one or more TAG stop codon and the phage protein pill.
  • the vector is able to replicate as a plasmid with no expression, produce large quantities of the polypeptide library member only or produce phage, some of which contain at least one copy of the polypeptide-pIII fusion on their surface.
  • vectors employs conventional ligation techniques. Isolated vectors or DNA fragments are cleaved, tailored, and religated in the form desired to generate the required vector. If desired, analysis to confirm that the correct sequences are present in the constructed vector can be performed in a known fashion. Suitable methods for constructing expression vectors, preparing in vitro transcripts, introducing DNA into host cells, and performing analyses for assessing expression and function are known to those skilled in the art. The presence of a gene sequence in a sample is detected, or its amplification and/or expression quantified by conventional methods, such as Southern or Northern analysis, Western blotting, dot blotting of DNA, RNA or protein, in situ hybridisation, immunocytochemistry or sequence analysis of nucleic acid or protein molecules. Those skilled in the art will readily envisage how these methods may be modified, if desired.
  • the members of the immunoglobulin superfamily all share a similar fold for their polypeptide chain.
  • antibodies are highly diverse in terms of their primary sequence
  • comparison of sequences and crystallographic structures has revealed that, contrary to expectation, five of the six antigen binding loops of antibodies (HI, H2, Ll, L2, L3) adopt a limited number of main-chain conformations, or canonical structures (Chothia and Lesk (1987) J. Mol. Biol, 196: 901; Chothia et al (1989) Nature, 342: 877).
  • Analysis of loop lengths and key residues has therefore enabled prediction of the main- chain conformations of HI, H2, Ll, L2 and L3 found in the majority of human antibodies (Chothia et al.
  • H3 region is much more diverse in terms of sequence, length and structure (due to the use of D segments), it also forms a limited number of main-chain conformations for short loop lengths which depend on the length and the presence of particular residues, or types of residue, at key positions in the loop and the antibody framework (Martin et al. (1996) J Mol. Biol, 263: 800; Shirai et al. (1996) FEBS Letters, 399: 1).
  • the dual specific ligands of the present invention are advantageously assembled from libraries of domains, such as libraries of VH domains and libraries of VL domains. Moreover, the dual specific ligands of the invention may themselves be provided in the form of libraries.
  • libraries of dual specific ligands and/or domains are designed in which certain loop lengths and key residues have been chosen to ensure that the main-chain conformation of the members is known.
  • these are real conformations of immunoglobulin superfamily molecules found in nature, to minimise the chances that they are non-functional, as discussed above.
  • Germline N gene segments serve as one suitable basic framework for constructing antibody or T-cell receptor libraries; other sequences are also of use. Nariations may occur at a low frequency, such that a small number of functional members may possess an altered main-chain conformation, which does not affect its function.
  • Canonical structure theory is also of use to assess the number of different main-chain conformations encoded by ligands, to predict the main-chain conformation based on ligand sequences and to chose residues for diversification which do not affect the canonical structure. It is known that, in the human N ⁇ domain, the Ll loop can adopt one of four canonical structures, the L2 loop has a single canonical structure and that 90% of human N ⁇ domains adopt one of four or five canonical structures for the L3 loop (Tomlinson et al. (1995) supra); thus, in the N ⁇ domain alone, different canonical structures can combine to create a range of different main-chain conformations.
  • V ⁇ domain encodes a different range of canonical structures for the Ll, L2 and L3 loops and that V ⁇ and Y ⁇ domains can pair with any VH domain which can encode several canonical structures for the HI and H2 loops
  • the number of canonical structure combinations observed for these five loops is very large. This implies that the generation of diversity in the main-chain conformation may be essential for the production of a wide range of binding specificities.
  • by constructing an antibody library based on a single known main-chain conformation it has been found, contrary to expectation, that diversity in the main-chain conformation is not required to generate sufficient diversity to target substantially all antigens.
  • the single main-chain conformation need not be a consensus structure - a single naturally occurring conformation can be used as the basis for an entire library.
  • the dual-specific ligands of the invention possess a single known main-chain conformation.
  • the single main-chain conformation that is chosen is preferably commonplace among molecules of the immunoglobulin superfamily type in question.
  • a conformation is commonplace when a significant number of naturally occurring molecules are observed to adopt it.
  • the natural occurrence of the different main-chain conformations for each binding loop of an immunoglobulin domain are considered separately and then a naturally occurring variable domain is chosen which possesses the desired combination of main-chain conformations for the different loops. If none is available, the nearest equivalent may be chosen.
  • the desired combination of main-chain conformations for the different loops is created by selecting germline gene segments which encode the desired main-chain conformations. It is more preferable, that the selected germline gene segments are frequently expressed in nature, and most preferable that they are the most frequently expressed of all natural germline gene segments.
  • the incidence of the different main- chain conformations for each of the six antigen binding loops may be considered separately.
  • HI, H2, Ll, L2 and L3 a given conformation that is adopted by between 20% and 100% of the antigen binding loops of naturally occurring molecules is chosen.
  • its observed incidence is above 35% (i.e. between 35% and 100%) and, ideally, above 50% or even above 65%.
  • the natural occurrence of combinations of main-chain conformations is used as the basis for choosing the single main-chain conformation.
  • the natural occurrence of canonical structure combinations for any two, three, four, five or for all six of the antigen binding loops can be determined.
  • the chosen conformation is commonplace in naturally occurring antibodies and most preferable that it observed most frequently in the natural repertoire.
  • dual specific ligands according to the invention or libraries for use in the invention can be constructed by varying the binding site of the molecule in order to generate a repertoire with structural and/or functional diversity. This means that variants are generated such that they possess sufficient diversity in their structure and/or in their function so that they are capable of providing a range of activities.
  • the desired diversity is typically generated by varying the selected molecule at one or more positions.
  • the positions to be changed can be chosen at random or are preferably selected.
  • the variation can then be achieved either by randomisation, during which the resident amino acid is replaced by any amino acid or analogue thereof, natural or synthetic, producing a very large number of variants or by replacing the resident amino acid with one or more of a defined subset of amino acids, producing a more limited number of variants.
  • H3 region of a human tetanus toxoid-binding Fab has been randomised to create a range of new binding specificities (Barbas et al. (1992) Proc. Natl. Acad. Sci. USA, 89: 4457). Random or semi-random H3 and L3 regions have been appended to germline V gene segments to produce large libraries with unmutated framework regions (Hoogenboom & Winter (1992) J Mol. Biol, 227: 381; Barbas et al. (1992) Proc. Natl. Acad. Sci.
  • loop randomisation has the potential to create approximately more than 10 15 structures for H3 alone and a similarly large number of variants for the other five loops, it is not feasible using current transformation technology or even by using cell free systems to produce a library representing all possible combinations.
  • 6 x 10 10 different antibodies which is only a fraction of the potential diversity for a library of this design, were generated (Griffiths et al (1994) supra).
  • the binding site for the target is most often the antigen binding site.
  • the invention provides libraries of or for the assembly of antibody dual-specific ligands in which only those residues in the antigen binding site are varied. These residues are extremely diverse in the human antibody repertoire and are known to make contacts in high-resolution antibody/antigen complexes. For example, in L2 it is known that positions 50 and 53 are diverse in naturally occurring antibodies and are observed to make contact with the antigen. In contrast, the conventional approach would have been to diversify all the residues in the corresponding Complementarity Determining Region (CDR1) as defined by Kabat et al.
  • CDR1 Complementarity Determining Region
  • antibody diversity is the result of two processes: somatic recombination of germline V, D and J gene segments to create a naive primary repertoire (so called germline and junctional diversity) and somatic hypermutation of the resulting rearranged V genes.
  • somatic recombination of germline V, D and J gene segments to create a naive primary repertoire (so called germline and junctional diversity)
  • somatic hypermutation of the resulting rearranged V genes The analysis of human antibody sequences has shown that diversity in the primary repertoire is focused at the centre of the antigen binding site whereas somatic hypermutation spreads diversity to regions at the periphery of the antigen binding site that are highly conserved in the primary repertoire (see Tomlinson et al. (1996) J. Mol.
  • an initial 'naive' repertoire is created where some, but not all, of the residues in the antigen binding site are diversified.
  • the term "naive” refers to antibody molecules that have no pre-determined target. These molecules resemble those which are encoded by the immunoglobulin genes of an individual who has not undergone immune diversification, as is the case with fetal and newborn individuals, whose immune systems have not yet been challenged by a wide variety of antigenic stimuli.
  • This repertoire is then selected against a range of antigens or epitopes. If required, further diversity can then be introduced outside the region diversified in the initial repertoire. This matured repertoire can be selected for modified function, specificity or affinity.
  • the invention provides two different naive repertoires of binding domains for the construction of dual specific ligands, or a naive library of dual specific ligands, in which some or all of the residues in the antigen binding site are varied.
  • the "primary" library mimics the natural primary repertoire, with diversity restricted to residues at the centre of the antigen binding site that are diverse in the germline V gene segments (germline diversity) or diversified during the recombination process (junctional diversity).
  • residues which are diversified include, but are not limited to, H50, H52, H52a, H53, H55, H56, H58, H95, H96, H97, H98, L50, L53, L91, L92, L93, L94 and L96.
  • residues that are diversified during the recombination process include, but are not limited to: H31, H33, H35, H95, H96, H97, H98, L30, L31, L32, L34 and L96. All the residues listed above as suitable for diversification in these libraries are known to make contacts in one or more antibody-antigen complexes. Since in both libraries, not all of the residues in the antigen binding site are varied, additional diversity is incorporated during selection by varying the remaining residues, if it is desired to do so. It shall be apparent to one skilled in the art that any subset of any of these residues (or additional residues which comprise the antigen binding site) can be used for the initial and/or subsequent diversification of the antigen binding site.
  • diversification of chosen positions is typically achieved at the nucleic acid level, by altering the coding sequence which specifies the sequence of the polypeptide such that a number of possible amino acids (all 20 or a subset thereof) can be incorporated at that position.
  • the most versatile codon is NNK, which encodes all amino acids as well as the TAG stop codon.
  • the NNK codon is preferably used in order to introduce the required diversity.
  • Other codons which achieve the same ends are also of use, including the NNN codon, which leads to the production of the additional stop codons TGA and TAA.
  • a feature of side-chain diversity in the antigen binding site of human antibodies is a pronounced bias which favours certain amino acid residues. If the amino acid composition of the ten most diverse positions in each of the V H , V K and Y ⁇ regions are summed, more than 76% of the side-chain diversity comes from only seven different residues, these being, serine (24%), tyrosine (14%), asparagine (11%), glycine (9%), alanine (7%), aspartate (6%) and threonine (6%).
  • the codons (AGT)(AGC)T, (AGT)(AGC)C and (AGT)(AGC)(CT) - that is, DVT, DVC and DVY, respectively using IUPAC nomenclature - are those closest to the desired amino acid profile: they encode 22% serine and 11% tyro sine, asparagine, gly cine, alanine, aspartate, threonine and cysteine.
  • libraries are constructed using either the DVT, DVC or DVY codon at each of the diversified positions.
  • Dual-specific ligands selected according to the method of the present invention may be employed in in vivo therapeutic and prophylactic applications, in vitro and in vivo diagnostic applications, in vitro assay and reagent applications, and the like.
  • antibody molecules may be used in antibody based assay techniques, such as ELISA techniques, according to methods known to those skilled in the art.
  • the molecules selected according to the invention are of use in diagnostic, prophylactic and therapeutic procedures.
  • Dual specific antibodies selected according to the invention are of use diagnostically in Western analysis and in situ protein detection by standard immunohistochemical procedures; for use in these applications, the antibodies of a selected repertoire may be labelled in accordance with techniques known to the art.
  • antibody polypeptides may be used preparatively in affinity chromatography procedures, when complexed to a chromatographic support, such as a resin. All such techniques are well known to one of skill in the art.
  • Diagnostic uses of the dual specific ligands according to the invention include homogenous assays for analytes which exploit the ability of dual specific ligands to bind two targets in competition, such that two targets cannot bind simultaneously (a closed conformation), or alternatively their ability to bind two targets simultaneously (an open conformation).
  • a true homogenous immunoassay format has been avidly sought by manufacturers of diagnostics and research assay systems used in drug discovery and development.
  • the main diagnostics markets include human testing in hospitals, doctor's offices and clinics, commercial reference laboratories, blood banks, and the home, non-human diagnostics (for example food testing, water testing, environmental testing, bio-defence, and veterinary testing), and finally research (including drug development; basic research and academic research).
  • an assay possesses fully quantitative read-outs with high sensitivity and a large dynamic range. Sensitivity is an important requirement, as is reducing the amount of sample required. Both of these features are features that a homogenous system offers. This is very important in point of care testing, and in drug development where samples are precious. Heterogenous systems, as currently available in the art, require large quantities of sample and expensive reagents
  • Tests for homogenous assays include cancer testing, where the biggest assay is that for Prostate Specific Antigen, used in screening men for prostate cancer.
  • Other applications include fertility testing, which provides a series of tests for women attempting to conceive including beta-hcg for pregnancy.
  • Tests for infectious diseases including hepatitis, HIV, rubella, and other viruses and microorganisms and sexually transmitted diseases. Tests are used by blood banks, especially tests for HIV, hepatitis A, B, C, non A non B.
  • Therapeutic drug monitoring tests include monitoring levels of prescribed drugs in patients for efficacy and to avoid toxicity, for example digoxin for arrhythmia, and phenobarbital levels in psychotic cases; theophylline for asthma. Diagnostic tests are moreover useful in abused drug testing, such as testing for cocaine, marijuana and the like. Metabolic tests are used for measuring thyroid function, anaemia and other physiological disorders and functions.
  • the homogenous immunoassay format is moreover useful in the manufacture of standard clinical chemistry assays.
  • the inclusion of immunoassays and chemistry assays on the same instrument is highly advantageous in diagnostic testing.
  • Suitable chemical assays include tests for glucose, cholesterol, potassium, and the like.
  • a further major application for homogenous immunoassays is drug discovery and development: High throughput screening includes testing combinatorial chemistry libraries versus targets in ultra high volume. Signal is detected, and positive groups then split into smaller groups, and eventually tested in cells and then animals. Homogenous assays may be used in all these types of test. In drug development, especially animal studies and clinical trials heavy use of immunoassays is made. Homogenous assays greatly accelerate and simplify these procedures.
  • Other Applications include food and beverage testing: testing meat and other foods for E. coli, salmonella, etc; water testing, including testing at water plants for all types of contaminants including E. coli; and veterinary testing.
  • the invention provides a binding assay comprising a detectable agent which is bound to a dual specific ligand according to the invention, and whose detectable properties are altered by the binding of an analyte to said dual specific ligand.
  • Such an assay may be configured in several different ways, each exploiting the above properties of dual specific ligands.
  • the assay relies on the direct or indirect displacement of an agent by the analyte, resulting in a change in the detectable properties of the agent.
  • the agent is an enzyme which is capable of catalysing a reaction which has a detectable end-point
  • said enzyme can be bound by the ligand such as to obstruct its active site, thereby inactivating the enzyme.
  • the analyte which is also bound by the dual specific ligand, displaces the enzyme, rendering it active through freeing of the active site. The enzyme is then able to react with a substrate, to give rise to a detectable event.
  • the ligand may bind the enzyme outside of the active site, influencing the conformation of the enzyme and thus altering its activity.
  • the structure of the active site may be constrained by the binding of the ligand, or the binding of cofactors necessary for activity may be prevented.
  • the dual specific ligand/enzyme complex may be provided on a test strip; the substrate may be provided in a different region of the test strip, and a solvent containing the analyte allowed to migrate through the ligand/enzyme complex, displacing the enzyme, and carrying it to the substrate region to produce a signal.
  • the ligand/enzyme complex may be provided on a test stick or other solid phase, and dipped into an analyte/substrate solution, releasing enzyme into the solution in response to the presence of analyte.
  • the assay is quantitative, with the strength of the signal generated in a given time being dependent on the concentration of analyte in the solution.
  • the dual specific ligand may be configured to bind an enzyme in an allosteric site, thereby activating the enzyme.
  • the enzyme is active in the absence of analyte. Addition of the analyte displaces the enzyme and removes allosteric activation, thus inactivating the enzyme.
  • activation or inactivation of the enzyme refers to an increase or decrease in the activity of the enzyme, measured as the ability of the enzyme to catalyse a signal-generating reaction.
  • the enzyme may catalyse the conversion of an undetectable substrate to a detectable form thereof.
  • horseradish peroxidase is widely used in the art together with chromogenic or chemiluminescent substrates, which are available commercially.
  • the level of increase or decrease of the activity of the enzyme may between 10% and 100%, such as 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%; in the case of an increase in activity, the increase may be more than 100%, i.e. 200%, 300%, 500% or more, or may not be measurable as a percentage if the baseline activity of the inhibited enzyme is undetectable.
  • the dual specific ligand may bind the substrate of an enzyme/substrate pair, rather than the enzyme.
  • the substrate is therefore unavailable to the enzyme until released from the dual specific ligand through binding of the analyte.
  • the implementations for this configuration are as for the configurations which bind enzyme.
  • the assay may be configured to bind a fluorescent molecule, such as a fluorescein or another fluorophore, in a conformation such that the fluorescence is quenched on binding to the ligand. In this case, binding of the analyte to the ligand will displace the fluorescent molecule, thus producing a signal.
  • fluorescent molecules which are useful in the present invention include luminescent agents, such as luciferin/luciferase, and chromogenic agents, including agents commonly used in immunoassays such as HRP.
  • the assay may moreover be configured using a dual specific ligand in the "open" conformation. In this conformation, the dual specific ligand is capable of binding two targets simultaneously.
  • the assay may be configured such that the dual specific ligand binds an enzyme and a substrate, where the enzyme has a low affinity for the substrate; and either the enzyme or the substrate is the analyte.
  • the dual specific ligand binds an enzyme and a substrate, where the enzyme has a low affinity for the substrate; and either the enzyme or the substrate is the analyte.
  • the dual specific ligand may bind a fluorescent molecule, as above, which is quenched by the binding of the analyte. In this embodiment, therefore, fluorescence is detectable in the absence of analyte, but is quenched in the presence thereof.
  • Dual-specificity can allow antibodies to bind to multimeric antigen with great avidity. Dual-specific antibodies can allow the cross- linking of two antigens, for example in recruiting cytotoxic T-cells to mediate the killing of tumour cell lines.
  • Substantially pure antibodies or binding proteins thereof of at least 90 to 95% homogeneity are preferred for administration to a mammal, and 98 to 99% or more homogeneity is most preferred for pharmaceutical uses, especially when the mammal is a human.
  • the selected polypeptides may be used diagnostically or therapeutically (including extracorporeally) or in developing and performing assay procedures, immunofluorescent stainings and the like (Lefkovite and Pernis, (1979 and 1981) Immunological Methods, Volumes I and II, Academic Press, NY).
  • the selected antibodies or binding proteins thereof of the present invention will typically find use in preventing, suppressing or treating inflammatory states, allergic hypersensitivity, cancer, bacterial or viral infection, and autoimmune disorders (which include, but are not limited to, Type I diabetes, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease and myasthema gravis).
  • inflammatory states allergic hypersensitivity, cancer, bacterial or viral infection
  • autoimmune disorders which include, but are not limited to, Type I diabetes, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Crohn's disease and myasthema gravis.
  • prevention involves administration of the protective composition prior to the induction of the disease.
  • suppression refers to administration of the composition after an inductive event, but prior to the clinical appearance of the disease.
  • Treatment involves administration of the protective composition after disease symptoms become manifest.
  • ⁇ A ⁇ in mouse and rat serves as a model for MS in human.
  • the demyelinating disease is induced by administration of myelin basic protein (see Paterson (1986) Textbook of Immunopathology, Mischer et al, eds., Grune and Stratton, New York, pp. 179-213; McFarlin et al. (1973) Science, 179: 478: and Satoh et al. (1987) J Immunol, 138: 179).
  • the present selected antibodies will be utilised in purified form together with pharmacologically appropriate carriers.
  • these carriers include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, any including saline and/or buffered media.
  • Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride and lactated Ringer's.
  • Suitable physiologically-acceptable adjuvants, if necessary to keep a polypeptide complex in suspension may be chosen from thickeners such as carboxymethylcellulose, polyvinylpyrrolidone, gelatin and alginates.
  • Intravenous vehicles include fluid and nutrient replenishers and electrolyte replenishers, such as those based on Ringer's dextrose. Preservatives and other additives, such as antimicrobials, antioxidants, chelating agents and inert gases, may also be present (Mack (1982) Remington's Pharmaceutical Sciences, 16th Edition).
  • the selected polypeptides of the present invention may be used as separately administered compositions or in conjunction with other agents. These can include various immunotherapeutic drugs, such as cylcosporine, methotrexate, adriamycin or cisplatinum, and immunotoxins. Pharmaceutical compositions can include "cocktails" of various cytotoxic or other agents in conjunction with the selected antibodies, receptors or binding proteins thereof of the present invention, or even combinations of selected polypeptides according to the present invention having different specificities, such as polypeptides selected using different target ligands, whether or not they are pooled prior to administration.
  • immunotherapeutic drugs such as cylcosporine, methotrexate, adriamycin or cisplatinum
  • Pharmaceutical compositions can include "cocktails" of various cytotoxic or other agents in conjunction with the selected antibodies, receptors or binding proteins thereof of the present invention, or even combinations of selected polypeptides according to the present invention having different specificities, such as polypeptides selected using different target
  • the route of administration of pharmaceutical compositions according to the invention may be any of those commonly known to those of ordinary skill in the art.
  • the selected antibodies, receptors or binding proteins thereof of the invention can be administered to any patient in accordance with standard techniques.
  • the administration can be by any appropriate mode, including parenterally, intravenously, intramuscularly, intraperitoneally, transdermally, via the pulmonary route, or also, appropriately, by direct infusion with a catheter.
  • the dosage and frequency of administration will depend on the age, sex and condition of the patient, concurrent administration of other drugs, counterindications and other parameters to be taken into account by the clinician.
  • the selected polypeptides of this invention can be lyophilised for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional immunoglobulins and art-known lyophilisation and reconstitution techniques can be employed. It will be appreciated by those skilled in the art that lyophilisation and reconstitution can lead to varying degrees of antibody activity loss (e.g. with conventional immunoglobulins, IgM antibodies tend to have greater activity loss than IgG antibodies) and that use levels may have to be adjusted upward to compensate.
  • compositions containing the present selected polypeptides or a cocktail thereof can be administered for prophylactic and/or therapeutic treatments.
  • an adequate amount to accomplish at least partial inhibition, suppression, modulation, killing, or some other measurable parameter, of a population of selected cells is defined as a "therapeutically-effective dose”. Amounts needed to achieve this dosage will depend upon the severity of the disease and the general state of the patient's own immune system, but generally range from 0.005 to 5.0 mg of selected antibody, receptor (e.g. a T-cell receptor) or binding protein thereof er kilogram of body weight, with doses of 0.05 to 2.0 mg/kg/dose being more commonly used.
  • compositions containing the present selected polypeptides or cocktails thereof may also be administered in similar or slightly lower dosages.
  • a composition containing a selected polypeptide according to the present invention may be utilised in prophylactic and therapeutic settings to aid in the alteration, inactivation, killing or removal of a select target cell population in a mammal.
  • the selected repertoires of polypeptides described herein may be used extracorporeally or in vitro selectively to kill, deplete or otherwise effectively remove a target cell population from a heterogeneous collection of cells.
  • Blood from a mammal may be combined extracorporeally with the selected antibodies, cell-surface receptors or binding proteins thereof whereby the undesired cells are killed or otherwise removed from the blood for return to the mammal in accordance with standard techniques.
  • Example 1 Selection of a dual specific scFv antibody (K8) directed against human serum albumin (HSA) and ⁇ -galactosidase ( ⁇ -gal)
  • This example explains a method for making a dual specific antibody directed against ⁇ - gal and HSA in which a repertoire of N ⁇ variable domains linked to a germline (dummy)
  • NH domain is selected for binding to ⁇ -gal and a repertoire of NH variable domains linked to a germline (dummy) N ⁇ domain is selected for binding to HSA.
  • the selected variable NH HSA and V ⁇ ⁇ -gal domains are then combined and the antibodies selected for binding to ⁇ -gal and HSA.
  • V ⁇ (O12/O2/DPK9 and J ⁇ l) with side chain diversity incorporated in complementarity determining regions (CDR2 and CDR3).
  • Library 1 and Library 2 contain a dummy V ⁇ sequence, whereas the sequence of VH is diversified at positions H50, H52, H52a, H53, H55, H56, H58, H95, H96, H97 and H98 (DVT or NNK encoded, respectively) ( Figure 1).
  • Library 3 and Library 4 contain a dummy VH sequence, whereas the sequence of V ⁇ is diversified at positions L50, L53, L91, L92, L93, L94 and L96 (DVT or NNK encoded, respectively) ( Figure 1).
  • the libraries are in phagemid pIT2/ScFv format ( Figure 2) and have been preselected for binding to generic ligands, Protein A and Protein L, so that the majority of clones in the unselected libraries are functional.
  • the sizes of the libraries shown above correspond to the sizes after preselection.
  • Library 1 and Library 2 were mixed prior to selections on antigen to yield a single V ⁇ /dummy V ⁇ library and Library 3 and Library 4 were mixed to form a single V ⁇ /dummy VH library.
  • trypsin cleaves the pill proteins derived from the helper phage (but not those from the phagemid) and elutes bound scFv-phage fusions by cleavage in the c-myc tag ( Figure 2), thereby providing a further enrichment for phages expressing functional scFvs and a corresponding reduction in background (Kristensen & Winter, 1998). Selections were performed using immunotubes coated with either HSA or ⁇ -gal at lOO ⁇ g/ml concentration.
  • DNA preps were made from VH/ ummy V ⁇ library selected on HSA and from
  • V ⁇ /dummy VH library selected on ⁇ -gal using the QIAprep Spin Miniprep kit (Qiagen).
  • DNA preps were made from each of the three rounds of selections and then pulled together for each of the antigens. DNA preps were then digested with SaJL/TNotJ overnight at 37°C. Following gel purification of the fragments,
  • V ⁇ chains from the V ⁇ /dummy VH library selected on ⁇ -gal were ligated in place of a dummy V ⁇ chain of the V ⁇ / ummy V ⁇ library selected on HSA creating a library of 3.3 x l ⁇ 9 clones.
  • This library was then either selected on HSA (first round) and ⁇ -gal (second round), HSA/ ⁇ -gal selection, or on ⁇ -gal (first round) and HSA (second round), ⁇ -gal/HSA selection. Selections were performed as described above. In each case after the second round 48 clones were tested for binding to HSA and ⁇ -gal by the monoclonal phage ELISA (as described above) and by ELISA of the soluble scFv fragments.
  • Soluble antibody fragments were produced as described by Harrison et al., (1996), and standard ELISA protocol was followed (Hoogenboom et al, 1991), except that 2% Tween/PBS was used as a blocking buffer and bound scFvs were detected with Protein L-HRP.
  • Three clones (E4, E5 and E8) from the HSA/ ⁇ -gal selection and two clones (K8 and K10) from the ⁇ -gal/HSA selection were able to bind both antigens (data not shown).
  • scFvs from these clones were PCR amplified and sequenced as described by Ignatovich et al, (1999) using the primers LMB3 and pHENseq (Table 1). Sequence analysis revealed that all clones were identical. Therefore, only one clone encoding a dual specific antibody (K8) was chosen for further work (Figure 3).
  • the binding properties of the K8 antibody were characterised by the monoclonal phage ELISA.
  • a 96-well plate was coated with lOO ⁇ l of HSA and ⁇ -gal alongside with alkaline phosphatase (APS), bovine serum albumin (BSA), peanut agglutinin, lysozyme and cytochrome c (to check for cross-reactivity) at lO ⁇ g/ml concentration in PBS overnight at 4°C.
  • the phagemid from K8 clone was rescued with KM 13 as described by Harrison et al., (1996) and the supernatant (50 ⁇ l) containing phage assayed directly.
  • the binding properties of the K8 antibody were tested in a soluble scFv ELISA.
  • Production of the soluble scFv fragment was induced by IPTG as described by Harrison et al, (1996).
  • the soluble antibody fragments were purified from the supernatant of 50ml inductions using Protein A- Sepharose columns as described by Harlow & Lane (1988). OD28O was then measured and the protein concentration calculated as described by Sambrook et al., (1989). K8 scFv was produced in supernatant at 19mg/l.
  • a soluble scFv ELISA was then performed using known concentrations of the K8 antibody fragment.
  • a 96-well plate was coated with lOO ⁇ l of HSA, BSA and ⁇ -gal at lO ⁇ g/ml and lOO ⁇ l of Protein A at 1 ⁇ g/ml concentration.
  • 50 ⁇ l of the serial dilutions of the K8 scFv was applied and the bound antibody fragments were detected with Protein L- HRP.
  • ELISA results confirmed the dual specific nature of the K8 antibody ( Figure 5).
  • VH domain of the K8 scFv antibody the V ⁇ domain was cut out from K8 scFv DNA by Sal//Noti digestion and ligated into a Salt/Not/ ' digested pIT2 vector containing dummy VH chain ( Figures 1 and 2). Binding characteristics of the resulting clone K8V K /dummy VH were analysed by soluble scFv ELISA. Production of the soluble scFv fragments was induced by IPTG as described by Harrison et ah, (1996) and the supernatant (50 ⁇ ) containing scFvs assayed directly.
  • Soluble scFv ELISA was performed as described in Example 1 and the bound scFvs were detected with Protein L-HRP. The ELISA results revealed that this clone was still able to bind ⁇ -gal, whereas binding to BSA was abolished ( Figure 6).
  • Example 3 Creation and characterisation of dual specific scFv antibodies (K8V K /Nj j 2 and K8V K /Nfj4) directed against APS and ⁇ -gal and of a dual specific scFv antibody (K8V ⁇ /Vj ⁇ Cll) directed against BCL10 protein and ⁇ -gal.
  • This example describes a method for making dual specific scFv antibodies (K8V K /VH2 and K8V K /VH4) directed against APS and ⁇ -gal and a dual specific scFv antibody (K8V K /VHC1 1) directed against BCL10 protein and ⁇ -gal, whereby a repertoire of VH variable domains linked to a germline (dummy) V ⁇ domain is first selected for binding to APS and BCL10 protein. The selected individual VH domains (VH2, VH4 and VHCI I) are then combined with an individual ⁇ -gal binding V ⁇ domain (from K8 scFv, Examples 1 and 2) and antibodies are tested for dual specificity.
  • a V ⁇ ummy V ⁇ scFv library described in Example 1 was used to perform three rounds of selections on APS and two rounds of selections BCL10 protein.
  • BCL10 protein is involved in the regulation of apoptosis and mutant forms of this protein are found in multiple tumour types, indicating that BCL10 may be commonly involved in the pathogenesis of human cancer (Willis et al., 1999).
  • the phage titres went up from 2.8 x 10 ⁇ in the first round to 8.0 x 10 8 in the third round.
  • the phage titres went up from 1.8 x 10 ⁇ in the first round to 9.2 x 10 7 in the second round.
  • the selections were performed as described in Example 1 using immunotubes coated with either APS or BCL10 at lOO ⁇ g/ml concentration.
  • This example describes a method for making single NH domain antibodies directed against APS and single V ⁇ domain antibodies directed against ⁇ -gal by selecting repertoires of virgin single antibody variable domains for binding to these antigens in the absence of the complementary variable domains.
  • VH sequence in Library 5 is based on a single human framework for VH (V3-23/DP47 and J ⁇ 4b) and V ⁇ (O12/O2/DPK9 and J ⁇ l) with side chain diversity incorporated in complementarity determining regions (CDR2 and CDR3).
  • VH sequence in Library 5 is based on a single human framework for VH (V3-23/DP47 and J ⁇ 4b) and V ⁇ (O12/O2/DPK9 and J ⁇ l) with side chain diversity incorporated in complementarity determining regions (CDR2 and CDR3).
  • V ⁇ variable domain (complementary V ⁇ variable domain being absent) is diversified at positions H50, H52, H52a, H53, H55, H56, H58, H95, H96, H97 and H98 ( ⁇ K encoded).
  • V K E5/V H 2 and V K E5/VH4 directed against APS and ⁇ -gal.
  • V K E5/VH4 directed against APS and ⁇ -gal could be created by combining V K E5sd variable domain that was selected for binding to ⁇ -gal in the absence of a complementary variable domain (as described in Example 5) with VH2 and VH4 variable domains that were selected for binding to APS in the presence of the complementary variable domains (as described in Example 3).
  • pITl phagemid containing V K E5sd (Example 5) was digested with Nco//Xho/ ( Figure 2).
  • NcoJ/XhoJ fragments containing VH variable domains from clones VH2 and VH4 (Example 3) were then ligated into the phagemid to create scFv clones V K E5/VH2 and V K E5/VH4, respectively.
  • the binding characteristics of the produced clones were tested in a soluble scFv ELISA.
  • a 96-well plate was coated with lOO ⁇ l of APS, ⁇ -gal and BSA (negative control) at lO ⁇ g/ml concentration in PBS overnight at 4°C. Production of the soluble scFv fragments was induced by IPTG as described by Harrison et al, (1996) and the supernatant (50 ⁇ ) containing scFvs assayed directly. Soluble scFv ELISA was performed as described in Example 1 and the bound scFvs were detected with Protein L-HRP. Both V K E5/VH2 and
  • V 1C E5/VH clones were found to be dual specific. No cross-reactivity with BSA was detected ( Figure 12).
  • Example 7 Construction of vectors for converting the existing scFv dual specific antibodies into a Fab format.
  • C ⁇ gene was PCR amplified from an individual clone A4 selected from a Fab library
  • Gene III was then PCR amplified from pIT2 vector ( Figure 2) using G3 BACKS AC as a 5' (back) primer and LMB2 as a 3' (forward) primer (Table 1). 30 cycles of PCR amplification were performed as above. PCR product was digested with Sac/ EcoRi and ligated into a Saci/EcoRJ digested C ⁇ vector ( Figure 14) to create a Ck/glll phagemid
  • CH gene was PCR amplified from an individual clone A4 selected from a Fab library
  • Example 8 Construction of V K E5/VJJ2 Fab clone and comparison of its binding properties with the V K E5/VJJ2 scFv version (Example 6).
  • V K E5/VH2 SCFV antibody This example demonstrates that the dual specificity of the V K E5/VH2 SCFV antibody is retained when the N ⁇ and NH variable domains are located on different polypeptide chains. Furthermore, the binding of the V K E5/VH2 Fab clone to ⁇ -gal and APS becomes competitive. In contrast, V K E5/VH scFv antibody can bind to both antigens simultaneously.
  • D ⁇ A from V K E5/VH2 scFv clone was also digested with SfUTXho/ and the purified D ⁇ A fragment containing VH variable domain was ligated into a SfiJ/Xho/ digested CH vector ( Figure 17).
  • Ligation products were used to transform competent E. coli TG-1 cells as above and the transformants (VH2/CH) were grown on TYE plates containing 1% glucose and 10 ⁇ g/ml chloramphenicol.
  • DNA prep was then made form V K E5/C K clone and used to transform VH2/CH clone as described by Chung et al, (1989). Transformants were grown on TYE plates containing 1% glucose, lOO ⁇ g/ml ampicillin and lO ⁇ g/ml chloramphenicol.
  • the clone containing both V K E5/C K and VH2/CH plasmids was then induced by IPTG to produce soluble V K E5/VH2 Fab fragments. Inductions were performed as described by Harrison et al, (1996), except that the clone was maintained in the media containing two antibiotics (100 ⁇ g/ml ampicillin and lO ⁇ g/ml chloramphenicol) and after the addition of IPTG the temperature was kept at 25 °C overnight.
  • V K E5/VH2 Fab was also purified from 50 ml supernatant using Protein A-
  • a competition ELISA was then performed to compare V K E5/VH2 Fab and V K E5/VH2 scFv binding properties.
  • a 96-well plate was coated with lOO ⁇ l of ⁇ -gal at lO ⁇ g/ml concentration in PBS overnight at 4°C.
  • V K E5/VH 2 Fab and V K E5/VH2 scFv supernatants were incubated for one hour at room temperature with 36, 72 and 180 ⁇ moles of either native APS or APS that was denatured by heating to 70°C for 10 minutes and then chilled immediately on ice.
  • 50 ⁇ l of the diluted V K E5/VH2 Fab and V K E5/VH2 scFv supernatants were incubated for one hour at room temperature with 36, 72 and 180 ⁇ moles of either native APS or APS that was denatured by heating to 70°C for 10 minutes and then chilled immediately on ice.
  • V K E5/VH2 scFv supernatants were subjected to the same incubation with either native or denatured BSA. Following these incubations the mixtures were then put onto a ⁇ -gal coated ELISA plate and incubated for another hour. Bound V K E5/N ⁇ 2 Fab and V K E5/N ⁇ 2 scFv fragments were detected with Protein A-HRP.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
EP02748987A 2001-06-28 2002-06-28 Doppelspezifischer ligand und dessen verwendung Revoked EP1399484B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10172263.5A EP2364999B1 (de) 2001-06-28 2002-06-28 Doppelspezifischer Ligand und dessen Verwendung
CY20101100909T CY1111435T1 (el) 2001-06-28 2010-10-12 Διπλα-ειδικος συνδετηρας και χρηση αυτου

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0115841 2001-06-28
GB0115841A GB0115841D0 (en) 2001-06-28 2001-06-28 Ligand
PCT/GB2002/003014 WO2003002609A2 (en) 2001-06-28 2002-06-28 Dual-specific ligand and its use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10172263.5A Division EP2364999B1 (de) 2001-06-28 2002-06-28 Doppelspezifischer Ligand und dessen Verwendung

Publications (2)

Publication Number Publication Date
EP1399484A2 true EP1399484A2 (de) 2004-03-24
EP1399484B1 EP1399484B1 (de) 2010-08-11

Family

ID=42537285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02748987A Revoked EP1399484B1 (de) 2001-06-28 2002-06-28 Doppelspezifischer ligand und dessen verwendung

Country Status (9)

Country Link
US (1) US20040219643A1 (de)
EP (1) EP1399484B1 (de)
JP (1) JP4303105B2 (de)
AT (1) ATE477280T1 (de)
AU (1) AU2002319402B2 (de)
CA (1) CA2447851C (de)
DE (1) DE60237282D1 (de)
DK (1) DK1399484T3 (de)
WO (1) WO2003002609A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097251B2 (en) * 2001-10-24 2012-01-17 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof
US8188223B2 (en) 2005-05-18 2012-05-29 Ablynx N.V. Serum albumin binding proteins
US8703131B2 (en) 2005-05-21 2014-04-22 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha

Families Citing this family (389)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765087B1 (en) 1992-08-21 2004-07-20 Vrije Universiteit Brussel Immunoglobulins devoid of light chains
MXPA02012867A (es) 2000-06-29 2003-09-05 Abbott Lab Anticuerpos de especificidad doble y metodos para la elaboracion y el uso de los mismos.
GB0115256D0 (en) 2001-06-21 2001-08-15 Babraham Inst Mouse light chain locus
US8030461B2 (en) * 2002-04-15 2011-10-04 Chugai Seiyaku Kabushiki Kaisha Methods for constructing scDb libraries
US9321832B2 (en) 2002-06-28 2016-04-26 Domantis Limited Ligand
US20080241166A1 (en) * 2002-06-28 2008-10-02 Domantis Limited Ligands that bind a receptor
US20060002935A1 (en) 2002-06-28 2006-01-05 Domantis Limited Tumor Necrosis Factor Receptor 1 antagonists and methods of use therefor
ES2263984T3 (es) * 2002-06-28 2006-12-16 Domantis Limited Ligandos doble-especificos con una vida media serica aumentada.
US9028822B2 (en) 2002-06-28 2015-05-12 Domantis Limited Antagonists against TNFR1 and methods of use therefor
EP1539235A2 (de) 2002-07-01 2005-06-15 Human Genome Sciences, Inc. Spezifisch an reg iv bindende antikörper
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
ES2368733T3 (es) 2002-07-18 2011-11-21 Merus B.V. Producción recombinante de mezclas de anticuerpos.
US20060034833A1 (en) * 2002-11-08 2006-02-16 Els Beirnaert Single domain antibodies directed against interferron-gamma and uses therefor
US20060034845A1 (en) * 2002-11-08 2006-02-16 Karen Silence Single domain antibodies directed against tumor necrosis factor alpha and uses therefor
JP2006524036A (ja) * 2002-11-08 2006-10-26 アブリンクス エン.ヴェー. 腫瘍壊死因子αを標的とする単一ドメイン抗体およびその使用
US9320792B2 (en) 2002-11-08 2016-04-26 Ablynx N.V. Pulmonary administration of immunoglobulin single variable domains and constructs thereof
ES2466716T3 (es) * 2002-11-08 2014-06-11 Ablynx N.V. Anticuerpos de un solo dominio estabilizados
US20100003253A1 (en) * 2002-11-08 2010-01-07 Ablynx N.V. Single domain antibodies directed against epidermal growth factor receptor and uses therefor
EP1558650A2 (de) * 2002-11-08 2005-08-03 Ablynx N.V. Antikörper aus camelidae gegen immunoglobulin e und ihre verwendung zur behandlung allergischer erkrankungen
GB0230201D0 (en) * 2002-12-27 2003-02-05 Domantis Ltd Retargeting
EP1605058B1 (de) * 2003-01-21 2009-05-13 Chugai Seiyaku Kabushiki Kaisha Verfahren zum screening der leichten kette eines antikörpers
EP2357237A1 (de) * 2003-05-14 2011-08-17 Domantis Limited Verfahren zur gewinnung aus einem polypeptid - repertoire von polypeptiden, die sich reversibel entfalten
EP2395016A3 (de) 2003-05-30 2012-12-19 Merus B.V. Entwurf und Verwendung von gepaarten unterschiedlichen Regionen von spezifisch bindenden Molekülen
US20100069614A1 (en) 2008-06-27 2010-03-18 Merus B.V. Antibody producing non-human mammals
JP4794301B2 (ja) * 2003-06-11 2011-10-19 中外製薬株式会社 抗体の製造方法
EP2221317A3 (de) * 2003-06-30 2011-07-27 Domantis Limited Pegylierte Single-domain-Antikörper (dAb)
CN1913923B (zh) 2003-12-09 2010-12-08 基因分子传递股份有限公司 通过源自细菌的完整小细胞将靶基因递送至非吞噬哺乳动物细胞
US20080206229A1 (en) * 2003-12-12 2008-08-28 Koichiro Ono Modified Antibodies Recognizing Receptor Trimers or Higher Multimers
US20070281327A1 (en) * 2003-12-12 2007-12-06 Kiyotaka Nakano Methods of Screening for Modified Antibodies With Agonistic Activities
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
US7235641B2 (en) * 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
AU2005205412B2 (en) 2004-01-20 2011-08-11 Merus N.V. Mixtures of binding proteins
AU2005250216B2 (en) 2004-06-01 2009-12-10 Domantis Limited Bispecific fusion antibodies with enhanced serum half-life
EP2311874B1 (de) 2004-07-22 2017-05-31 Erasmus University Medical Center Rotterdam Bindungsmoleküle
US7563443B2 (en) * 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
KR20070084069A (ko) 2004-10-08 2007-08-24 도만티스 리미티드 Tnfr1에 대한 단일 도메인 항체 및 이의 사용 방법
MX2007006593A (es) * 2004-12-02 2008-03-04 Domantis Ltd Anticuerpos de dominio simple anti-il 1r1 y sus usos terapeuticos.
CN101128487B (zh) 2004-12-02 2012-10-10 杜门蒂斯有限公司 靶向血清白蛋白和glp-1或pyy的双特异性结构域抗体
WO2006059110A2 (en) * 2004-12-02 2006-06-08 Domantis Limited Plad domain peptides with increased serum half life due to conjugation to domain antibodies
EP2292248A3 (de) 2005-03-03 2011-06-29 CovX Technologies Ireland Limited Antiangiogene Verbindungen
US9493569B2 (en) * 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
ES2592271T3 (es) 2005-03-31 2016-11-29 Chugai Seiyaku Kabushiki Kaisha Métodos de producción de polipéptidos mediante la regulación de la asociación de los polipéptidos
JP2007008925A (ja) * 2005-05-31 2007-01-18 Canon Inc 標的物質捕捉分子
JP5068167B2 (ja) * 2005-06-10 2012-11-07 中外製薬株式会社 メグルミンを含有するタンパク質製剤の安定化剤、およびその利用
EP3348639A3 (de) * 2005-06-10 2018-10-31 Chugai Seiyaku Kabushiki Kaisha Stellengerichtete sc(fv)2-mutante
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
PE20070684A1 (es) 2005-11-14 2007-08-06 Amgen Inc MOLECULAS QUIMERICAS DE ANTICUERPO RANKL-PTH/PTHrP
KR20080077238A (ko) * 2005-12-01 2008-08-21 도만티스 리미티드 인터루킨 1 수용체 타입 1에 결합하는 비경쟁적 도메인항체 포맷
EP1806365A1 (de) 2006-01-05 2007-07-11 Boehringer Ingelheim International GmbH Antikörper spezifisch für Fibroblasten-Aktivierungsprotein und Immunokonjugaten, die diese Antikörper enthalten
WO2007110219A1 (en) * 2006-03-27 2007-10-04 Ablynx N.V. Medical delivery device for therapeutic proteins based on single domain antibodies
WO2007114325A1 (ja) * 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 二重特異性抗体を精製するための抗体改変方法
GB0611116D0 (en) 2006-06-06 2006-07-19 Oxford Genome Sciences Uk Ltd Proteins
JP2010502220A (ja) 2006-09-05 2010-01-28 メダレックス インコーポレーティッド 骨形態形成タンパク質およびその受容体に対する抗体ならびにその使用方法
US7833527B2 (en) 2006-10-02 2010-11-16 Amgen Inc. Methods of treating psoriasis using IL-17 Receptor A antibodies
LT2486941T (lt) 2006-10-02 2017-06-12 E. R. Squibb & Sons, L.L.C. Žmogaus antikūnai, kurie jungiasi prie cxcr4, ir jų panaudojimas
GB0621513D0 (en) 2006-10-30 2006-12-06 Domantis Ltd Novel polypeptides and uses thereof
PT2089425E (pt) 2006-11-10 2011-10-17 Covx Technologies Ireland Ltd Compostos anti-angiogénicos
JP5398538B2 (ja) 2006-12-01 2014-01-29 メダレックス・リミテッド・ライアビリティ・カンパニー Cd22に結合するヒト抗体およびその使用
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
NZ578354A (en) 2006-12-14 2012-01-12 Medarex Inc Antibody-partner molecule conjugates that bind cd70 and uses thereof
EP2557090A3 (de) 2006-12-19 2013-05-29 Ablynx N.V. Gegen GPCRs gerichtete Aminosäuresequenzen und Polypeptide damit zur Behandlung von Krankheiten und Störungen im Zusammenhang mit GPCR
WO2008074840A2 (en) 2006-12-19 2008-06-26 Ablynx N.V. Amino acid sequences directed against a metalloproteinase from the adam family and polypeptides comprising the same for the treatment of adam-related diseases and disorders
WO2008082651A2 (en) * 2006-12-29 2008-07-10 Abbott Laboratories Dual-specific il-1a/ il-1b antibodies
DK2447719T3 (en) 2007-02-26 2016-10-10 Oxford Biotherapeutics Ltd proteins
WO2008104803A2 (en) 2007-02-26 2008-09-04 Oxford Genome Sciences (Uk) Limited Proteins
EP2155238B1 (de) 2007-06-05 2016-04-06 Yale University Antikörper gegen die d4 domäne des kit rezeptors und anwendungsverfahren
CA2683791A1 (en) 2007-06-06 2008-12-11 Domantis Limited Polypeptides, antibody variable domains & antagonists
PE20090368A1 (es) 2007-06-19 2009-04-28 Boehringer Ingelheim Int Anticuerpos anti-igf
CA2700714C (en) 2007-09-26 2018-09-11 Ucb Pharma S.A. Dual specificity antibody fusions
CN107880122A (zh) 2007-11-27 2018-04-06 不列颠哥伦比亚大学 14‑3‑3 η 抗体及其用于诊断和治疗关节炎的用途
DK2242771T3 (da) 2007-12-14 2013-08-26 Pfizer Bindingsmolekyler til den humane ox40-receptor
CN101977932B (zh) 2008-01-31 2014-09-03 美国政府健康及人类服务部 工程化抗体恒定结构域分子
CA2720763A1 (en) 2008-04-07 2009-10-15 Ablynx Nv Amino acid sequences directed against the notch pathways and uses thereof
JP4954326B2 (ja) 2008-04-11 2012-06-13 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
JP5647113B2 (ja) * 2008-06-18 2014-12-24 カリフォルニア インスティチュート オブ テクノロジー 多リガンド捕捉剤ならびに関連組成物、方法およびシステム
EA024585B1 (ru) 2008-07-18 2016-10-31 Бристол-Маерс Сквибб Компани Композиции, одновалентные в отношении связывания cd28, и способы их применения
JP5924937B2 (ja) 2008-07-25 2016-05-25 エックス−ボディ インコーポレイテッド タンパク質スクリーニング法
SI2334705T1 (sl) * 2008-09-26 2017-05-31 Ucb Biopharma Sprl Biološki produkti
BRPI0919879A2 (pt) 2008-10-29 2016-02-16 Wyeth Llc métodos para purificação de moléculas de ligação a antígeno de domínio único
US9393304B2 (en) 2008-10-29 2016-07-19 Ablynx N.V. Formulations of single domain antigen binding molecules
NZ597692A (en) 2008-12-12 2013-08-30 Boehringer Ingelheim Int Anti-IGF antibodies
AU2010207552A1 (en) 2009-01-21 2011-09-01 Oxford Biotherapeutics Ltd. PTA089 protein
WO2010085590A1 (en) 2009-01-23 2010-07-29 Biosynexus Incorporated Opsonic and protective antibodies specific for lipoteichoic acid gram positive bacteria
EP2398827A2 (de) 2009-02-19 2011-12-28 Glaxo Group Limited Verbesserte anti-tnfr1-polypeptide, variable antikörperdomänen und antagonisten
JP5816558B2 (ja) 2009-03-05 2015-11-18 メダレックス・リミテッド・ライアビリティ・カンパニーMedarex, L.L.C. Cadm1に特異的な完全ヒト抗体
RU2539798C2 (ru) 2009-04-10 2015-01-27 Аблинкс Нв Улучшенные аминокислотные последовательности против il-6r и содержащие их полипептиды для лечения связанных с il-6r заболеваний и нарушений
AP2011005984A0 (en) 2009-04-20 2011-12-31 Oxford Biotherapeutics Ltd Antibodies specific to cadherin-17.
CA2758842A1 (en) 2009-04-24 2010-10-28 Glaxo Group Limited Fgfr1c antibody combinations
DK2438087T3 (en) 2009-06-05 2017-08-28 Ablynx Nv TRIVALENT NANOBODY CONSTRUCTIONS AGAINST HUMAN RESPIRATORY SYNCYTIAL VIRUS (HRSV) FOR PREVENTION AND / OR TREATMENT OF AIR INFECTIONS
US20120107330A1 (en) 2009-07-16 2012-05-03 Adriaan Allart Stoop Antagonists, uses & methods for partially inhibiting tnfr1
WO2011012609A2 (en) 2009-07-29 2011-02-03 Glaxo Group Limited Ligands that bind tgf-beta receptor rii
US20110172398A1 (en) 2009-10-02 2011-07-14 Boehringer Ingelheim International Gmbh Bispecific binding molecules for anti-angiogenesis therapy
US20110195494A1 (en) 2009-10-02 2011-08-11 Boehringer Ingelheim International Gmbh Dll4-binging molecules
TW201117824A (en) 2009-10-12 2011-06-01 Amgen Inc Use of IL-17 receptor a antigen binding proteins
US20120231004A1 (en) 2009-10-13 2012-09-13 Oxford Biotherapeutic Ltd. Antibodies
PH12012500826A1 (en) 2009-10-27 2013-01-07 Glaxo Group Ltd Stable anti-tnfr1 polypeptides, antibody variable domains & antagonists
US20120282177A1 (en) 2009-11-02 2012-11-08 Christian Rohlff ROR1 as Therapeutic and Diagnostic Target
EP2496944A2 (de) 2009-11-05 2012-09-12 Novartis AG Prädiktive biomarker für die progression von fibrose
EP2507262A1 (de) 2009-11-30 2012-10-10 Ablynx N.V. Verbesserte gegen hrsv gerichtete aminosäuresequenzen und polypeptide damit zur prävention und/oder behandlung von atemwegsinfektionen
EP2509409B1 (de) 2009-12-10 2016-07-27 Regeneron Pharmaceuticals, Inc. Mäuse die schwere-kette antikörper produzieren
EP3309176A1 (de) 2009-12-14 2018-04-18 Ablynx N.V. Immunoglobulin variable einzeldomänen-antikörper gegen ox40l, konstrukte und therapeutische verwendung
WO2011083141A2 (en) 2010-01-08 2011-07-14 Ablynx Nv Method for generation of immunoglobulin sequences by using lipoprotein particles
US20130045492A1 (en) 2010-02-08 2013-02-21 Regeneron Pharmaceuticals, Inc. Methods For Making Fully Human Bispecific Antibodies Using A Common Light Chain
US9796788B2 (en) 2010-02-08 2017-10-24 Regeneron Pharmaceuticals, Inc. Mice expressing a limited immunoglobulin light chain repertoire
RU2724663C2 (ru) 2010-02-08 2020-06-25 Ридженерон Фармасьютикалз, Инк. Мышь с общей легкой цепью
IN2012DN06588A (de) 2010-02-10 2015-10-23 Novartis Ag
US9120855B2 (en) 2010-02-10 2015-09-01 Novartis Ag Biologic compounds directed against death receptor 5
WO2011098518A2 (en) 2010-02-11 2011-08-18 Ablynx Nv Delivery of immunoglobulin variable domains and constructs thereof
EP2542579A1 (de) 2010-03-03 2013-01-09 Boehringer Ingelheim International GmbH Biparatopische abeta-bindende polypeptide
TWI667346B (zh) 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
EP4501956A2 (de) 2010-03-30 2025-02-05 Chugai Seiyaku Kabushiki Kaisha Antigenbindende moleküle zur förderung der antigenclearance
JP2013528362A (ja) 2010-04-21 2013-07-11 グラクソ グループ リミテッド 結合ドメイン
EP2566892B1 (de) 2010-05-06 2017-12-20 Novartis AG Zusammensetzungen und verfahren zur verwendung von therapeutischen antikörpern gegen ldl-assoziiertes protein 6 (lrp6)
JP2013527761A (ja) 2010-05-06 2013-07-04 ノバルティス アーゲー 治療的低密度リポタンパク質関連タンパク質6(lrp6)多価抗体の組成物および使用方法
NZ603570A (en) 2010-05-20 2014-12-24 Ablynx Nv Biological materials related to her3
WO2011161263A1 (en) 2010-06-25 2011-12-29 Ablynx Nv Pharmaceutical compositions for cutaneous administration
RU2612903C2 (ru) 2010-08-02 2017-03-13 Ридженерон Фармасьютикалз, Инк. Мыши, у которых вырабатываются связывающие белки, содержащие vl-домены
WO2012020096A1 (en) 2010-08-13 2012-02-16 Medimmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
WO2012022814A1 (en) 2010-08-20 2012-02-23 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
US20120225081A1 (en) 2010-09-03 2012-09-06 Boehringer Ingelheim International Gmbh Vegf-binding molecules
KR101527297B1 (ko) 2010-09-09 2015-06-26 화이자 인코포레이티드 4-1bb 결합 분자
GB201016494D0 (en) 2010-09-30 2010-11-17 Queen Mary Innovation Ltd Polypeptide
US8591896B2 (en) 2010-11-08 2013-11-26 Novartis Ag Chemokine receptor binding polypeptides
EP3974453A3 (de) 2010-11-16 2022-08-03 Amgen Inc. Mittel und verfahren zur behandlung von mit bcma-expression korrelierenden erkrankungen
SG190727A1 (en) 2010-11-30 2013-07-31 Chugai Pharmaceutical Co Ltd Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
JP6046049B2 (ja) 2010-12-23 2016-12-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 二価結合剤による翻訳後修飾されたポリペプチドの検出
WO2012085111A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
WO2012093125A1 (en) 2011-01-06 2012-07-12 Glaxo Group Limited Ligands that bind tgf-beta receptor ii
US20140080153A1 (en) 2011-01-07 2014-03-20 Chugai Seiyaku Kabushiki Kaisha Method for improving physical properties of antibody
WO2012104227A1 (en) 2011-02-02 2012-08-09 Glaxo Group Limited Novel antigen binding proteins
CA2827923C (en) 2011-02-25 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Fc.gamma.riib-specific fc antibody
AU2012223358A1 (en) 2011-03-01 2013-09-05 Amgen Inc. Sclerostin and DKK-1 bispecific binding agents
US20130078247A1 (en) 2011-04-01 2013-03-28 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to dii4 and ang2
US9527925B2 (en) 2011-04-01 2016-12-27 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to VEGF and ANG2
AU2012245073B2 (en) 2011-04-21 2016-02-11 Garvan Institute Of Medical Research Modified variable domain molecules and methods for producing and using them b
UA117218C2 (uk) 2011-05-05 2018-07-10 Мерк Патент Гмбх Поліпептид, спрямований проти il-17a, il-17f та/або il17-a/f
US20140255405A1 (en) 2011-05-27 2014-09-11 Dutalys Removal of Monomeric Targets
BR112013030298A2 (pt) 2011-05-27 2017-12-12 Ablynx Nv inibição da reabsorção óssea com peptídeos que se ligam ao rankl
AU2012265156B2 (en) * 2011-05-27 2017-01-19 F. Hoffmann-La Roche Ag Dual targeting
WO2012166906A1 (en) 2011-05-31 2012-12-06 Massachusetts Institute Of Technology Cell-directed synthesis of multifunctional nanopatterns and nanomaterials
JP2014525736A (ja) 2011-06-23 2014-10-02 アブリンクス エン.ヴェー. IgEに対する免疫グロブリン単一可変ドメイン
MY160826A (en) 2011-06-28 2017-03-31 Berlin-Chemie Ag Antibodies to bone marrow stromal antigen 1
ME02632B (de) 2011-06-28 2017-06-20 Oxford Biotherapeutics Ltd Therapeutisches und diagnostisches ziel
MX382929B (es) 2011-06-30 2025-03-13 Chugai Pharmaceutical Co Ltd Polipéptido heterodimerizado.
BR112013033661A2 (pt) 2011-06-30 2017-01-24 Genzyme Corp inibidores de ativação de células t
WO2013016220A1 (en) 2011-07-22 2013-01-31 Amgen Inc. Il-17 receptor a is required for il-17c biology
US10130081B2 (en) 2011-08-05 2018-11-20 Regeneron Pharmaceuticals, Inc. Humanized universal light chain mice
GB201116092D0 (en) 2011-09-16 2011-11-02 Bioceros B V Antibodies and uses thereof
EA027900B1 (ru) 2011-09-22 2017-09-29 Эмджен Инк. Связывающие антиген cd27l белки
EP2760892A1 (de) 2011-09-29 2014-08-06 Apo-T B.V. Multispezifische bindungsmoleküle zur anzielung aberranter zellen
EP3939996A1 (de) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigenbindende moleküle zur förderung der zersetzung von antigenen mit mehreren biologischen aktivitäten
TW201817745A (zh) 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
WO2013051294A1 (ja) 2011-10-05 2013-04-11 中外製薬株式会社 糖鎖受容体結合ドメインを含む抗原の血漿中からの消失を促進する抗原結合分子
WO2013060872A1 (en) 2011-10-27 2013-05-02 Boehringer Ingelheim International Gmbh Anticancer combination therapy
EP2773669B1 (de) 2011-11-04 2018-03-28 Novartis AG Halbwertszeitverlängerer für ldl-verwandtes protein (6) lrp6
AU2012349736A1 (en) 2011-12-05 2014-06-26 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3) directed to domain II of HER3
ES2758433T3 (es) 2011-12-05 2020-05-05 Novartis Ag Anticuerpos contra el receptor 3 del factor de crecimiento epidérmico (HER3)
LT2793567T (lt) 2011-12-20 2019-04-10 Regeneron Pharmaceuticals, Inc. Humanizuotos lengvosios grandinės pelės
EP2802356A1 (de) 2012-01-13 2014-11-19 Apo-T B.V. Aberrante zelleingeschränkte immunglobuline mit einem toxischen teil
CN113527469A (zh) 2012-02-09 2021-10-22 中外制药株式会社 抗体的Fc区变异体
CN115925938A (zh) 2012-02-27 2023-04-07 阿布林克斯有限公司 Cx3cr1结合多肽
JP5970734B2 (ja) 2012-03-30 2016-08-17 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Ang2結合分子
PL2838917T3 (pl) 2012-04-20 2019-12-31 Merus N.V. Sposoby i środki do wytwarzania heterodimerycznych cząsteczek podobnych do Ig
US9328174B2 (en) 2012-05-09 2016-05-03 Novartis Ag Chemokine receptor binding polypeptides
AR091069A1 (es) 2012-05-18 2014-12-30 Amgen Inc Proteinas de union a antigeno dirigidas contra el receptor st2
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
EP2889376A4 (de) 2012-08-24 2016-11-02 Chugai Pharmaceutical Co Ltd Maus-fc-rii-spezifischer fc-antikörper
SG11201500873XA (en) 2012-08-24 2015-04-29 Chugai Pharmaceutical Co Ltd Fcgriib-specific fc region variant
TW201425336A (zh) 2012-12-07 2014-07-01 Amgen Inc Bcma抗原結合蛋白質
CA2894225A1 (fr) 2012-12-17 2014-06-26 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Utilisation d'anticorps monoclonaux pour le traitement de l'inflammation et d'infections bacteriennes
ES2876009T3 (es) 2012-12-27 2021-11-11 Chugai Pharmaceutical Co Ltd Polipéptido heterodimerizado
ES2728936T3 (es) 2013-01-25 2019-10-29 Amgen Inc Anticuerpos dirigidos contra CDH19 para melanoma
WO2014120916A1 (en) 2013-02-01 2014-08-07 Bristol-Myers Squibb Company Pegylated domain antibodies monovalent for cd28 binding and methods of use
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
US20160002330A1 (en) 2013-02-13 2016-01-07 Laboratoire Francais Du Fractionnement Et Des Biotechnologies Cetuximab with modified glycosylation and uses thereof
MX2015010428A (es) 2013-02-13 2016-04-13 Lab Francais Du Fractionnement Anticuerpos anti-her2 altamente galactosilados y sus usos.
BR112015019341A2 (pt) 2013-02-13 2017-08-22 Lab Francais Du Fractionnement Anticorpo anti-tnf-alfa, composição que compreende o anticorpo, método para produzir uma população de anticorpos, células epiteliais da glândula mamária, mamífero não humano transgênico, e, composição de anticorpo anti-tnf monoclonal
JP6416793B2 (ja) 2013-02-28 2018-10-31 カプリオン プロテオミクス インコーポレーテッド 結核のバイオマーカー及びその使用
US20140255413A1 (en) 2013-03-07 2014-09-11 Boehringer Ingelheim International Gmbh Combination therapy for neoplasia treatment
EP4509616A3 (de) 2013-03-14 2025-05-07 Children's Medical Center Corporation Verwendung von cd36 zur identifizierung von krebspatienten zur behandlung
EP2970479B1 (de) 2013-03-14 2019-04-24 Novartis AG Antikörper gegen notch 3
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
SMT201800503T1 (it) 2013-03-18 2018-11-09 Janssen Pharmaceuticals Inc Anticorpi anti-cd (ox40) umanizzati e loro usi
CN113621057A (zh) 2013-04-02 2021-11-09 中外制药株式会社 Fc区变体
BR112015024553A2 (pt) * 2013-04-05 2017-10-24 Genentech Inc anticorpo multiespecífico, anticorpo isolado, ácido nucleico isolado, célula hospedeira, método de produção de anticorpo, imunoconjugado, formulação farmacêutica, uso de anticorpo e método de tratamento de indivíduos com distúrbio
CN105143262A (zh) 2013-04-29 2015-12-09 豪夫迈·罗氏有限公司 结合人fcrn的修饰的抗体和使用方法
CA2904805A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
EP3004167B1 (de) 2013-05-30 2018-07-25 Kiniksa Pharmaceuticals, Ltd. Oncostatin-m-rezeptor-antigenbindende proteine
CN106211774B (zh) 2013-08-02 2020-11-06 辉瑞公司 抗cxcr4抗体及抗体-药物缀合物
CA2925256C (en) 2013-09-27 2023-08-15 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
ES2837392T3 (es) 2013-10-02 2021-06-30 Medimmune Llc Anticuerpos anti-influenza A neutralizantes y usos de los mismos
JP6502931B2 (ja) 2013-10-11 2019-04-17 アメリカ合衆国 Tem8抗体およびその使用
CA2927695C (en) 2013-10-21 2022-03-01 Dyax Corp. Diagnosis and treatment of autoimmune diseases
RU2732032C2 (ru) 2013-12-20 2020-09-10 Дженентек, Инк. Антитела с двойной специфичностью
WO2015103549A1 (en) 2014-01-03 2015-07-09 The United States Of America, As Represented By The Secretary Department Of Health And Human Services Neutralizing antibodies to hiv-1 env and their use
RU2727639C2 (ru) 2014-01-15 2020-07-22 Ф.Хоффманн-Ля Рош Аг Варианты fc-области с модифицированной способностью связываться с fcrn и с сохраненной способностью связываться с белком а
JOP20200094A1 (ar) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc جزيئات جسم مضاد لـ pd-1 واستخداماتها
JOP20200096A1 (ar) 2014-01-31 2017-06-16 Children’S Medical Center Corp جزيئات جسم مضاد لـ tim-3 واستخداماتها
RU2019119857A (ru) 2014-02-20 2019-07-12 Аллерган, Инк. Антитела к компоненту комплемента c5
RU2673036C2 (ru) 2014-02-27 2018-11-21 Аллерган, Инк. АНТИТЕЛА К ФАКТОРУ КОМПЛЕМЕНТА Bb
AU2015229103C9 (en) 2014-03-14 2020-11-26 Immutep S.A.S Antibody molecules to LAG-3 and uses thereof
ES2939760T3 (es) 2014-03-15 2023-04-26 Novartis Ag Tratamiento de cáncer utilizando un receptor quimérico para antígenos
US20150266976A1 (en) 2014-03-21 2015-09-24 Regeneron Pharmaceuticals, Inc. Vl antigen binding proteins exhibiting distinct binding characteristics
KR102276752B1 (ko) 2014-03-21 2021-07-13 리제너론 파마슈티칼스 인코포레이티드 단일 도메인 결합 단백질을 생산하는 비-인간 동물
WO2015164721A1 (en) 2014-04-24 2015-10-29 Immusant, Inc. Methods of diagnosing celiac disease using ip-10
EP3143164B1 (de) 2014-05-16 2021-08-11 Children's Hospital Medical Center Verfahren zur beurteilung der empfänglichkeit für eine asthmabehandlung auf der basis von vnn-1-expression und promotermethylierung
NL2013661B1 (en) 2014-10-21 2016-10-05 Ablynx Nv KV1.3 Binding immunoglobulins.
EP3164417A1 (de) 2014-07-01 2017-05-10 Pfizer Inc. Bispezifische heterodimere diabodies und verwendungen davon
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
EP3193915A1 (de) 2014-07-21 2017-07-26 Novartis AG Kombinationen aus niedrigen, immunfördernden dosen von mtor-inhibitoren und cars
CA2955154C (en) 2014-07-21 2023-10-31 Novartis Ag Treatment of cancer using a cd33 chimeric antigen receptor
EP3172237A2 (de) 2014-07-21 2017-05-31 Novartis AG Behandlung von krebs mithilfe von humanisiertem chimärem anti-bcma-antigenrezeptor
EP3660042B1 (de) 2014-07-31 2023-01-11 Novartis AG T-zellen mit teilmengenoptimierten chimären antigenrezeptoren
CA2958200A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using a gfr alpha-4 chimeric antigen receptor
EP3712171A1 (de) 2014-08-19 2020-09-23 Novartis AG Behandlung von krebs mit einem chimären cd123-antigenrezeptor
KR102804360B1 (ko) 2014-09-17 2025-05-12 노파르티스 아게 입양 면역요법을 위한 키메라 수용체에 의한 세포독성 세포의 표적화
US9988452B2 (en) 2014-10-14 2018-06-05 Novartis Ag Antibody molecules to PD-L1 and uses thereof
WO2016061509A1 (en) 2014-10-17 2016-04-21 The Broad Institute, Inc. Compositions and methods of treatng muscular dystrophy
MX378451B (es) 2014-11-06 2025-03-11 Hoffmann La Roche Variantes de regiòn fc con uniòn del receptor fc neonatal (fcrn) modificado y mètodos de uso.
WO2016077789A1 (en) 2014-11-14 2016-05-19 The Usa, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
CA2969463A1 (en) 2014-12-09 2016-06-16 New York University Clostridial neurotoxin fusion proteins, propeptide fusions, their expression, and use
AR103161A1 (es) 2014-12-19 2017-04-19 Chugai Pharmaceutical Co Ltd Anticuerpos antimiostatina y regiones fc variantes así como métodos de uso
US10301377B2 (en) 2015-02-24 2019-05-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Middle east respiratory syndrome coronavirus immunogens, antibodies, and their use
CA2979702A1 (en) 2015-03-19 2016-09-22 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
US10562960B2 (en) 2015-03-20 2020-02-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to gp120 and their use
HUE059218T2 (hu) 2015-04-08 2022-11-28 Novartis Ag CD20-terápiák, CD22-terápiák és kombinációs terápiák CD19 kiméra antigénreceptort (CAR-t) expresszáló sejttel
WO2016172583A1 (en) 2015-04-23 2016-10-27 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
WO2016196975A1 (en) 2015-06-03 2016-12-08 The United States Of America, As Represented By The Secretary Department Of Health & Human Services Neutralizing antibodies to hiv-1 env and their use
EP3313519B1 (de) 2015-06-29 2023-05-31 Children's Medical Center Corporation Jak-stat hemmer zur behandlung von kongenitalen myopathien
EP3316902A1 (de) 2015-07-29 2018-05-09 Novartis AG Kombinationstherapien mit antikörpermolekülen gegen tim-3
WO2017019896A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to pd-1
LT3317301T (lt) 2015-07-29 2021-07-26 Novartis Ag Kombinuotos terapijos, apimančios antikūno molekules prieš lag-3
US10746739B2 (en) 2015-09-14 2020-08-18 Leukemia Therapeutics, LLC Identification of novel diagnostics and therapeutics by modulating RhoH
EP3371214A1 (de) 2015-11-03 2018-09-12 THE UNITED STATES OF AMERICA, represented by the S Neutralisierende antikörper gegen hiv-1 gp41 und deren verwendung
EP3380517B1 (de) 2015-11-27 2021-08-04 Ablynx NV Polypeptide zur hemmung von cd40l
PH12018501155B1 (en) 2015-12-04 2024-06-28 Boehringer Ingelheim Int Biparatopic polypeptides antagonizing wnt signaling in tumor cells
AU2016369537B2 (en) 2015-12-17 2024-03-14 Novartis Ag Antibody molecules to PD-1 and uses thereof
CN108697794A (zh) 2015-12-17 2018-10-23 诺华股份有限公司 C-met抑制剂和抗pd-1抗体分子的组合及其用途
MX2018007145A (es) 2015-12-18 2018-08-15 Chugai Pharmaceutical Co Ltd Anticuerpos antimiostatina, polipeptidos que contienen regiones de fragmento cristalizable (fc) variantes y metodos de uso.
JP6954842B2 (ja) 2015-12-25 2021-10-27 中外製薬株式会社 増強された活性を有する抗体及びその改変方法
CN108368166B (zh) 2015-12-28 2023-03-28 中外制药株式会社 提高含fc区多肽纯化效率的方法
US20210198368A1 (en) 2016-01-21 2021-07-01 Novartis Ag Multispecific molecules targeting cll-1
BR112018067679A2 (pt) 2016-03-04 2019-01-15 Novartis Ag células que expressam múltiplas moléculas do receptor de antígeno quimérico (car) e seu uso
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
RU2018138122A (ru) 2016-04-05 2020-05-12 Глэксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед Новая терапия
EP3443096B1 (de) 2016-04-15 2023-03-01 Novartis AG Zusammensetzungen und verfahren zur selektiven expression von chimären antigenrezeptoren
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
US20210177896A1 (en) 2016-06-02 2021-06-17 Novartis Ag Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
KR102376582B1 (ko) 2016-06-17 2022-03-18 추가이 세이야쿠 가부시키가이샤 항-마이오스타틴 항체 및 사용 방법
CN120285179A (zh) 2016-07-15 2025-07-11 诺华股份有限公司 使用与激酶抑制剂组合的嵌合抗原受体治疗和预防细胞因子释放综合征
KR20230100748A (ko) 2016-07-28 2023-07-05 노파르티스 아게 키메라 항원 수용체 및 pd-1 억제제의 조합 요법
CN109661406A (zh) 2016-07-29 2019-04-19 国家医疗保健研究所 靶向肿瘤相关巨噬细胞的抗体及其用途
MX2019001469A (es) 2016-08-01 2019-10-02 Novartis Ag Tratamiento del cáncer usando un receptor de antígeno quimérico en combinación con un inhibidor de una molécula de macrófago pro- m2.
US11098113B2 (en) 2016-09-15 2021-08-24 Vib Vzw Immunoglobulin single variable domains directed against macrophage migration inhibitory factor
EP3515494A4 (de) 2016-09-26 2020-10-07 The Brigham and Women's Hospital, Inc. Regulatoren der b-zellvermittelten immunsuppression
KR102717188B1 (ko) 2016-10-07 2024-10-16 노파르티스 아게 암의 치료를 위한 키메라 항원 수용체
IL317416A (en) 2016-11-16 2025-02-01 Ablynx Nv T cell-recruiting polypeptides capable of binding CD123 and TCR alpha/beta
EP3574005B1 (de) 2017-01-26 2021-12-15 Novartis AG Cd28-zusammensetzungen und verfahren für chimäre antigenrezeptortherapie
WO2018160731A1 (en) 2017-02-28 2018-09-07 Novartis Ag Shp inhibitor compositions and uses for chimeric antigen receptor therapy
KR102616335B1 (ko) 2017-02-28 2023-12-21 브이아이비 브이지더블유 경구 단백질 전달을 위한 수단 및 방법
CN110392697A (zh) 2017-03-02 2019-10-29 国家医疗保健研究所 对nectin-4具有特异性的抗体及其用途
KR102687774B1 (ko) 2017-03-31 2024-07-24 고리츠다이가쿠호징 나라켕리츠 이카다이가쿠 혈액 응고 제viii 인자의 기능을 대체하는 다중 특이성 항원 결합 분자를 함유하는, 혈액 응고 제ix 인자 이상증의 예방 및/또는 치료에 이용되는 의약 조성물
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
US20200055948A1 (en) 2017-04-28 2020-02-20 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
JP7678244B2 (ja) 2017-05-11 2025-05-16 ブイアイビー ブイゼットダブリュ 可変免疫グロブリンドメインのグリコシル化
UA125761C2 (uk) 2017-05-31 2022-06-01 Бьорінгер Інгельхайм Інтернаціональ Гмбх Поліпептид, який перешкоджає передачі wnt-сигналів у пухлинних клітинах
TW202428621A (zh) 2017-06-02 2024-07-16 德商麥克專利有限公司 與adamts5、mmp13及聚集蛋白聚醣結合的多肽
WO2018220235A1 (en) 2017-06-02 2018-12-06 Merck Patent Gmbh Mmp13 binding immunoglobulins
AR112069A1 (es) 2017-06-02 2019-09-18 Ablynx Nv Inmunoglobulinas que fijan aggrecan
US11261260B2 (en) 2017-06-02 2022-03-01 Merck Patent Gmbh ADAMTS binding immunoglobulins
KR20200021087A (ko) 2017-06-22 2020-02-27 노파르티스 아게 Cd73에 대한 항체 분자 및 이의 용도
JP2020525483A (ja) 2017-06-27 2020-08-27 ノバルティス アーゲー 抗tim−3抗体のための投与レジメンおよびその使用
SG11201913137VA (en) 2017-07-11 2020-01-30 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
GB201711208D0 (en) 2017-07-12 2017-08-23 Iontas Ltd Ion channel inhibitors
EP3655436A1 (de) 2017-07-19 2020-05-27 VIB vzw Serumalbuminbindende mittel
KR20200031659A (ko) 2017-07-20 2020-03-24 노파르티스 아게 항-lag-3 항체의 투여 요법 및 그의 용도
WO2019020480A1 (en) 2017-07-24 2019-01-31 INSERM (Institut National de la Santé et de la Recherche Médicale) ANTIBODIES AND PEPTIDES FOR TREATING HCMV RELATED DISEASES
CN111511762B (zh) 2017-08-21 2025-05-06 天演药业公司 抗cd137分子及其用途
US20210179709A1 (en) 2017-10-31 2021-06-17 Novartis Ag Anti-car compositions and methods
KR20250070615A (ko) 2017-10-31 2025-05-20 브이아이비 브이지더블유 신규한 항원-결합 키메라 단백질 및 이의 방법 및 용도
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
TW201922291A (zh) 2017-11-16 2019-06-16 瑞士商諾華公司 組合療法
EP3713961A2 (de) 2017-11-20 2020-09-30 Compass Therapeutics LLC Cd137-antikörper und tumorantigenbindende antikörper sowie deren verwendung
US11976109B2 (en) 2018-01-02 2024-05-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to ebola virus glycoprotein and their use
EP3737692A4 (de) 2018-01-09 2021-09-29 Elstar Therapeutics, Inc. Calreticulin-bindende konstrukte und gentechnisch veränderte t-zellen zur behandlung von krankheiten
EP3746116A1 (de) 2018-01-31 2020-12-09 Novartis AG Kombinationstherapie unter verwendung eines chimären antigenrezeptors
WO2019148445A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Precision/context-dependent activatable antibodies, and methods of making and using the same
WO2019148444A1 (en) 2018-02-02 2019-08-08 Adagene Inc. Anti-ctla4 antibodies and methods of making and using the same
EP3758742A1 (de) 2018-03-01 2021-01-06 Vrije Universiteit Brussel Menschliche pd-l1-bindende immunglobuline
WO2019178362A1 (en) 2018-03-14 2019-09-19 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
TW202003580A (zh) 2018-05-21 2020-01-16 美商坎伯斯治療有限責任公司 用於增強nk細胞對標靶細胞之殺死之組合物及方法
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
EP3806962A1 (de) 2018-06-13 2021-04-21 Novartis AG Bcma-chimäre antigenrezeptoren und verwendungen davon
KR20210035173A (ko) 2018-06-19 2021-03-31 아타르가, 엘엘씨 보체 성분 5에 대한 항체분자 및 이의 용도
EP3818083A2 (de) 2018-07-03 2021-05-12 Elstar Therapeutics, Inc. Anti-tcr-antikörpermoleküle und ihre verwendungen
AR116109A1 (es) 2018-07-10 2021-03-31 Novartis Ag Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos
WO2020014353A1 (en) 2018-07-11 2020-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibody for the detection of the antiretroviral drug emtricitabine (ftc, 2',3'-dideoxy-5-fluoro-3'-thiacytidine)
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
WO2020053122A1 (en) 2018-09-10 2020-03-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Combination of her2/neu antibody with heme for treating cancer
EP3636657A1 (de) 2018-10-08 2020-04-15 Ablynx N.V. Chromatographiefreies antikörperreinigungsverfahren
CA3117520A1 (en) 2018-10-25 2020-04-30 Polpharma Biologics Utrecht B.V. Anti-human cd89 antibodies and uses thereof
TWI840442B (zh) 2018-11-13 2024-05-01 美商坎伯斯治療有限責任公司 對抗檢查點分子之多特異性結合構築體及其用途
CA3123511A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
EP3883609A2 (de) 2018-12-20 2021-09-29 The United States of America, as represented by the Secretary, Department of Health and Human Services Glykoprotein-spezifische monoklonale antikörper des ebola-virus und deren verwendungen
CN113226320A (zh) 2018-12-20 2021-08-06 诺华股份有限公司 Mdm2抑制剂的延长的低剂量方案
EP3924054B1 (de) 2019-02-15 2025-04-02 Novartis AG 3-(1-oxo-5- (piperidin-4-yl)isoindolin-2-yl)piperidin-2,6-dionderivate und ihre verwendungen
MX2021009764A (es) 2019-02-15 2021-09-08 Novartis Ag Derivados de 3-(1-oxoisoindolin-2-il)piperidina-2,6-diona sustituidos y usos de los mismos.
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
CN114026122B (zh) 2019-02-21 2024-12-31 马伦戈治疗公司 结合t细胞相关癌细胞的多功能分子及其用途
EP3927371A1 (de) 2019-02-22 2021-12-29 Novartis AG Kombinationstherapien von chimären egfrviii-antigenrezeptoren und pd-1-inhibitoren
US20220177558A1 (en) 2019-03-25 2022-06-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
CN113874392A (zh) 2019-03-28 2021-12-31 丹尼斯科美国公司 工程化抗体
MA55519A (fr) 2019-03-29 2022-02-09 Atarga Llc Anticorps anti-fgf23
EP3976067A1 (de) 2019-05-28 2022-04-06 Vib Vzw Cd8+-t-zellen ohne plexine und ihre anwendung zur krebsbehandlung
EP3976650A1 (de) 2019-05-28 2022-04-06 Vib Vzw Krebsbehandlung durch abzielen auf plexine im immunbereich
KR20220031054A (ko) 2019-07-02 2022-03-11 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Egfrviii에 결합하는 단일클론 항체 및 이의 용도
EP4034560A1 (de) 2019-09-27 2022-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müller-hemmungssubstanz-antikörper und verwendungen davon
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
TW202128166A (zh) 2019-10-21 2021-08-01 瑞士商諾華公司 組合療法
AU2020370832A1 (en) 2019-10-21 2022-05-19 Novartis Ag TIM-3 inhibitors and uses thereof
WO2021084104A1 (en) 2019-10-30 2021-05-06 Bioinvent International Ab Tetravalent antibody molecules
AR120566A1 (es) 2019-11-26 2022-02-23 Novartis Ag Receptores de antígeno quiméricos y sus usos
EP4072682A1 (de) 2019-12-09 2022-10-19 Institut National de la Santé et de la Recherche Médicale (INSERM) Antikörper mit spezifität gegen her4 und verwendungen davon
GB201918279D0 (en) 2019-12-12 2020-01-29 Vib Vzw Glycosylated single chain immunoglobulin domains
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
CN115087672A (zh) 2019-12-24 2022-09-20 Jjp佰优罗机克斯有限公司 抗人hvem(tnfrsf14)抗体及其用途
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US20210222244A1 (en) 2020-01-17 2021-07-22 Becton, Dickinson And Company Methods and compositions for single cell secretomics
CN113248611A (zh) 2020-02-13 2021-08-13 湖南华康恒健生物技术有限公司 抗bcma抗体、其药物组合物及应用
MX2022010685A (es) 2020-02-27 2022-09-23 Novartis Ag Metodos de produccion de celulas que expresan receptores de antigeno quimericos.
AU2021259052A1 (en) 2020-04-21 2022-12-01 Jjp Biologics Sp. Z O.O. Humanized anti-human CD89 antibodies and uses thereof
US20230181753A1 (en) 2020-05-12 2023-06-15 Inserm (Institut National De La Sante Et De La Recherche Medicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
US20230133118A1 (en) 2020-05-13 2023-05-04 Adagene Ag Compositions and methods for treating cancer
WO2021229104A1 (en) 2020-05-15 2021-11-18 Université de Liège Anti-cd38 single-domain antibodies in disease monitoring and treatment
US20230183376A1 (en) 2020-05-22 2023-06-15 Chugai Seiyaku Kabushiki Kaisha Antibody for neutralizing substance having coagulation factor viii (f.viii) function-substituting activity
IL298262A (en) 2020-06-23 2023-01-01 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
CR20230009A (es) 2020-07-16 2023-01-25 Novartis Ag Anticuerpos anti-betacelulina, fragmentos de los mismos, y moléculas de unión multiespecíficas
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
JP2023536164A (ja) 2020-08-03 2023-08-23 ノバルティス アーゲー ヘテロアリール置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用
EP4206224A4 (de) 2020-08-26 2025-04-02 National University Corporation Kumamoto University Menschlicher antikörper oder antigenbindendes fragment davon gegen coronavirus-spike-protein
CN114106173A (zh) 2020-08-26 2022-03-01 上海泰槿生物技术有限公司 抗ox40抗体、其药物组合物及应用
US20230321285A1 (en) 2020-08-31 2023-10-12 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
US20230338587A1 (en) 2020-08-31 2023-10-26 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
WO2022063947A1 (en) 2020-09-24 2022-03-31 Vib Vzw Combination of p2y6 inhibitors and immune checkpoint inhibitors
WO2022063957A1 (en) 2020-09-24 2022-03-31 Vib Vzw Biomarker for anti-tumor therapy
EP4240765A2 (de) 2020-11-06 2023-09-13 Novartis AG Antikörper-fc-varianten
CN116635062A (zh) 2020-11-13 2023-08-22 诺华股份有限公司 使用表达嵌合抗原受体(car)的细胞的组合疗法
EP4284510A1 (de) 2021-01-29 2023-12-06 Novartis AG Dosierungsschemata für anti-cd73- und anti-enpd2-antikörper und verwendungen davon
CA3211257A1 (en) 2021-02-17 2022-08-25 Vib Vzw Inhibition of slc4a4 in the treatment of cancer
AU2022224636A1 (en) 2021-02-19 2023-09-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Single domain antibodies that neutralize sars-cov-2
TW202304979A (zh) 2021-04-07 2023-02-01 瑞士商諾華公司 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途
WO2022216993A2 (en) 2021-04-08 2022-10-13 Marengo Therapeutics, Inc. Multifuntional molecules binding to tcr and uses thereof
US20240261446A1 (en) 2021-05-17 2024-08-08 Université de Liège Anti-cd38 single domain antibodies in disease monitoring and treatment
AR125874A1 (es) 2021-05-18 2023-08-23 Novartis Ag Terapias de combinación
CA3232067A1 (en) * 2021-09-18 2023-03-23 Skyline Therapeutics Limited Aav for the gene therapy of wet-amd
EP4405396A2 (de) 2021-09-20 2024-07-31 Voyager Therapeutics, Inc. Zusammensetzungen und verfahren zur behandlung von her2-positivem krebs
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
CA3240378A1 (en) 2021-12-23 2023-06-29 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Anti-dll3 antibody and pharmaceutical use thereof, and antibody-drug conjugate containing anti-dll3 antibody
US20230383010A1 (en) 2022-02-07 2023-11-30 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
WO2023175171A1 (en) 2022-03-18 2023-09-21 Inserm (Institut National De La Sante Et De La Recherche Medicale) Bk polyomavirus antibodies and uses thereof
EP4522757A2 (de) 2022-05-13 2025-03-19 Voyager Therapeutics, Inc. Zusammensetzungen und verfahren zur behandlung von her2-positivem krebs
EP4541373A1 (de) 2022-06-16 2025-04-23 Osaka University Neuartiges mittel zur behandlung von entzündungskrankheiten und screening-verfahren dafür
WO2024008755A1 (en) 2022-07-04 2024-01-11 Vib Vzw Blood-cerebrospinal fluid barrier crossing antibodies
EP4565597A2 (de) 2022-08-03 2025-06-11 Voyager Therapeutics, Inc. Zusammensetzungen und verfahren zur durchquerung der blut-hirn-schranke
WO2024053719A1 (ja) 2022-09-08 2024-03-14 国立大学法人熊本大学 コロナウイルス変異株に対するヒト抗体またはその抗原結合断片
EP4584291A1 (de) 2022-09-08 2025-07-16 Institut National de la Santé et de la Recherche Médicale Antikörper mit spezifität gegen ltbp2 und verwendungen davon
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
WO2024083843A1 (en) 2022-10-18 2024-04-25 Confo Therapeutics N.V. Amino acid sequences directed against the melanocortin 4 receptor and polypeptides comprising the same for the treatment of mc4r-related diseases and disorders
WO2024156888A1 (en) 2023-01-27 2024-08-02 Vib Vzw Cd163-binding conjugates
WO2024156881A1 (en) 2023-01-27 2024-08-02 Vib Vzw CD8b-BINDING POLYPEPTIDES
WO2024168061A2 (en) 2023-02-07 2024-08-15 Ayan Therapeutics Inc. Antibody molecules binding to sars-cov-2
WO2024208816A1 (en) 2023-04-03 2024-10-10 Vib Vzw Blood-brain barrier crossing antibodies
WO2024231348A1 (en) 2023-05-11 2024-11-14 Vib Vzw Slc4a4/nbce1 inhibitors
WO2025014896A1 (en) 2023-07-07 2025-01-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Humanized 40h3 antibody
WO2025012417A1 (en) 2023-07-13 2025-01-16 Institut National de la Santé et de la Recherche Médicale Anti-neurotensin long fragment and anti-neuromedin n long fragment antibodies and uses thereof
WO2025032158A1 (en) 2023-08-08 2025-02-13 Institut National de la Santé et de la Recherche Médicale Method to treat tauopathies
WO2025073890A1 (en) 2023-10-06 2025-04-10 Institut National de la Santé et de la Recherche Médicale Method to capture circulating tumor extracellular vesicles
WO2025093683A1 (en) 2023-11-03 2025-05-08 Neuvasq Biotechnologies Sa Wnt7 signaling agonists
WO2025099120A1 (en) 2023-11-09 2025-05-15 F. Hoffmann-La Roche Ag Multispecific antibodies with conditional activity
WO2025114411A1 (en) 2023-11-29 2025-06-05 Institut National de la Santé et de la Recherche Médicale New method to treat brain or neurologic disorders
WO2025122634A1 (en) 2023-12-05 2025-06-12 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU22545A1 (es) * 1994-11-18 1999-03-31 Centro Inmunologia Molecular Obtención de un anticuerpo quimérico y humanizado contra el receptor del factor de crecimiento epidérmico para uso diagnóstico y terapéutico
US5225539A (en) * 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US5120712A (en) * 1986-05-05 1992-06-09 The General Hospital Corporation Insulinotropic hormone
WO1989006692A1 (en) * 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
AU4128089A (en) * 1988-09-15 1990-03-22 Rorer International (Overseas) Inc. Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same
JP2919890B2 (ja) * 1988-11-11 1999-07-19 メディカル リサーチ カウンスル 単一ドメインリガンド、そのリガンドからなる受容体、その製造方法、ならびにそのリガンドおよび受容体の使用
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US6498237B2 (en) * 1989-08-07 2002-12-24 Peptech Limited Tumor necrosis factor antibodies
GB8928501D0 (en) * 1989-12-18 1990-02-21 Unilever Plc Reagents
US5459061A (en) * 1990-01-26 1995-10-17 W. Alton Jones Cell Science Center, Inc. Hybridomas producing monoclonal antibodies which specifically bind to continuous epitope on the human EGF receptor and compete with EGF for binding to the EGF receptor
US6916605B1 (en) * 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
GB9016299D0 (en) * 1990-07-25 1990-09-12 Brien Caroline J O Binding substances
US5726152A (en) * 1990-09-21 1998-03-10 Merck & Co., Inc. Vascular endothelial cell growth factor II
AU658396B2 (en) * 1991-03-06 1995-04-13 Merck Patent Gesellschaft Mit Beschrankter Haftung Humanized and chimeric monoclonal antibodies
OA10149A (en) * 1991-03-29 1996-12-18 Genentech Inc Vascular endothelial cell growth factor antagonists
US6582959B2 (en) * 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
US5962255A (en) * 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
CA2112473A1 (en) * 1991-07-05 1993-01-21 Patricia A. Bacha Epidermal growth factor receptor targeted molecules for treatment of inflammatory arthritis
US5872215A (en) * 1991-12-02 1999-02-16 Medical Research Council Specific binding members, materials and methods
US5965132A (en) * 1992-03-05 1999-10-12 Board Of Regents, The University Of Texas System Methods and compositions for targeting the vasculature of solid tumors
IL112372A (en) * 1994-02-07 2001-08-26 Res Dev Foundation Non-viral vector for the delivery of genetic information to cells
MX9603570A (es) * 1994-02-23 1997-03-29 Chiron Corp Metodo y composiciones para incrementar la vida media en suero de agentes farmacologicamente activos.
GB9410533D0 (en) * 1994-05-26 1994-07-13 Lynxvale Ltd In situ hybridisation and immuno-Chemical localisation of a growth factor
US6010861A (en) * 1994-08-03 2000-01-04 Dgi Biotechnologies, Llc Target specific screens and their use for discovering small organic molecular pharmacophores
PT706799E (pt) * 1994-09-16 2002-05-31 Merck Patent Gmbh Imunoconjugados ii
US5928939A (en) * 1995-03-01 1999-07-27 Ludwig Institute For Cancer Research Vascular endothelial growth factor-b and dna coding therefor
US6410690B1 (en) * 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
US7060808B1 (en) * 1995-06-07 2006-06-13 Imclone Systems Incorporated Humanized anti-EGF receptor monoclonal antibody
US6020473A (en) * 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
AU6873396A (en) * 1995-10-16 1997-05-07 Unilever N.V. A bifunctional or bivalent antibody fragment analogue
US5664034A (en) * 1996-05-21 1997-09-02 Lucent Technologies Inc. Lightwave communication monitoring switch
GB9712818D0 (en) * 1996-07-08 1997-08-20 Cambridge Antibody Tech Labelling and selection of specific binding molecules
US5922845A (en) * 1996-07-11 1999-07-13 Medarex, Inc. Therapeutic multispecific compounds comprised of anti-Fcα receptor antibodies
US6013780A (en) * 1996-09-06 2000-01-11 Technion Research & Development Co. Ltd. VEGF145 expression vectors
US6750044B1 (en) * 1996-10-17 2004-06-15 Genentech, Inc. Variants of vascular endothelial cell growth factor having antagonistic properties, nucleic acids encoding the same and host cells comprising those nucleic acids
US20030165467A1 (en) * 1997-01-21 2003-09-04 Technion Research & Development Co., Ltd. Angiogenic factor and use thereof in treating cardiovascular disease
US6294170B1 (en) * 1997-08-08 2001-09-25 Amgen Inc. Composition and method for treating inflammatory diseases
US6485942B1 (en) * 1997-02-14 2002-11-26 Genentech, Inc. Variants of vascular endothelial cell growth factor having altered pharmacological properties, and recombinant methods of production
US20020032315A1 (en) * 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
US20030207346A1 (en) * 1997-05-02 2003-11-06 William R. Arathoon Method for making multispecific antibodies having heteromultimeric and common components
US20020173629A1 (en) * 1997-05-05 2002-11-21 Aya Jakobovits Human monoclonal antibodies to epidermal growth factor receptor
GB9722131D0 (en) 1997-10-20 1997-12-17 Medical Res Council Method
US6777534B1 (en) * 1997-12-09 2004-08-17 Children's Medical Center Corporation Peptide antagonists of vascular endothelial growth factor
DE19819846B4 (de) * 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalente Antikörper-Konstrukte
ZA200007412B (en) * 1998-05-15 2002-03-12 Imclone Systems Inc Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases.
US20030175271A1 (en) * 1998-05-20 2003-09-18 Kyowa Hakko Kogyo Co., Ltd. VEGF activity inhibitor
US20020172678A1 (en) * 2000-06-23 2002-11-21 Napoleone Ferrara EG-VEGF nucleic acids and polypeptides and methods of use
US7488590B2 (en) * 1998-10-23 2009-02-10 Amgen Inc. Modified peptides as therapeutic agents
IL127127A0 (en) * 1998-11-18 1999-09-22 Peptor Ltd Small functional units of antibody heavy chain variable regions
JP4731016B2 (ja) * 1998-12-22 2011-07-20 ジェネンテック, インコーポレイテッド 血管内皮細胞増殖因子アンタゴニストとその用途
WO2000064946A2 (en) * 1999-04-28 2000-11-02 Board Of Regents, The University Of Texas System Compositions and methods for cancer treatment by selectively inhibiting vegf
US6703020B1 (en) * 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
US7049410B2 (en) * 1999-05-14 2006-05-23 Majumdar Adhip P N Antibodies to a novel EGF-receptor related protein (ERRP)
BR0010524A (pt) * 1999-05-14 2002-05-28 Imclone Systems Inc Tratamento de tumores humanos refratários com antagonistas de receptor de fator de crescimento epidérmico
EP1183352A1 (de) * 1999-05-20 2002-03-06 Scios Inc. Varianten vom vaskuläre endothelzellen wachstumsfaktor (vegf)
WO2001062942A2 (en) * 2000-02-25 2001-08-30 Ludwig Institute For Cancer Research MATERIALS AND METHODS INVOLVING HYBRID VASCULAR ENDOTHELIAL GROWTH FACTOR DNAs AND PROTEINS AND SCREENING METHODS FOR MODULATORS
US20050019826A1 (en) * 2000-03-31 2005-01-27 Roselyne Tournaire Peptides blocking vascular endothelial growth factor(vegf)-mediated angiogenesis, polynucleotides encoding said pepetides and methods of use thereof
KR20020093029A (ko) * 2000-04-11 2002-12-12 제넨테크, 인크. 다가 항체 및 그의 용도
US20030166524A1 (en) * 2000-05-22 2003-09-04 John Ford Therapeutic uses of IL-1 receptor antagonist
JP2004511430A (ja) * 2000-05-24 2004-04-15 イムクローン システムズ インコーポレイティド 二重特異性免疫グロブリン様抗原結合蛋白および製造方法
MXPA02012867A (es) * 2000-06-29 2003-09-05 Abbott Lab Anticuerpos de especificidad doble y metodos para la elaboracion y el uso de los mismos.
DE10038624C2 (de) * 2000-08-03 2002-11-21 Broekelmann Aluminium F W Wärmeübertragungsrohr mit gedrallten Innenrippen
JP2004529610A (ja) * 2000-10-13 2004-09-30 ユーエイビー リサーチ ファンデーション ヒト抗上皮増殖因子受容体一本鎖抗体
US20030133939A1 (en) * 2001-01-17 2003-07-17 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
US7667004B2 (en) * 2001-04-17 2010-02-23 Abmaxis, Inc. Humanized antibodies against vascular endothelial growth factor
US20040131611A1 (en) * 2001-05-08 2004-07-08 Rosen Oliver Combination therapy using anti-egfr antibodies and anti-hormonal agents
IL159225A0 (en) * 2001-06-13 2004-06-01 Genmab As Human monoclonal antibodies to epidermal growth factor receptor (egfr)
WO2004058821A2 (en) * 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
EP1448780A4 (de) * 2001-10-15 2005-08-31 Immunomedics Inc Direkt zielgerichtete bindungsproteine
DE10163459A1 (de) * 2001-12-21 2003-07-03 Merck Patent Gmbh Lyophilisierte Zubereitung enthaltend Antikörper gegen EGF-Rezeptor
CA2478011C (en) * 2002-03-01 2013-05-21 Immunomedics, Inc. Bispecific antibody point mutations for enhancing rate of clearance
ES2449578T3 (es) * 2002-09-06 2014-03-20 Amgen Inc. Anticuerpo monoclonal anti-IL-1R1 humano terapéutico
TW200501960A (en) * 2002-10-02 2005-01-16 Bristol Myers Squibb Co Synergistic kits and compositions for treating cancer
US20050043233A1 (en) * 2003-04-29 2005-02-24 Boehringer Ingelheim International Gmbh Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells or angiogenesis
EP2311875A1 (de) * 2003-05-30 2011-04-20 Genentech, Inc. Behandlung mit Anti-VEGF Antikörpern
MXPA05014152A (es) * 2003-06-27 2006-05-25 Abgenix Inc Anticuerpos dirigidos a los mutantes de delecion de receptor de factor de crecimiento epidermico y sus usos.
AR046510A1 (es) * 2003-07-25 2005-12-14 Regeneron Pharma Composicion de un antagonista de vegf y un agente anti-proliferativo
US20050196340A1 (en) * 2003-08-06 2005-09-08 Jocelyn Holash Use of a VEGF antagonist in combination with radiation therapy
WO2005014618A2 (en) * 2003-08-08 2005-02-17 Immunomedics, Inc. Bispecific antibodies for inducing apoptosis of tumor and diseased cells
CA2550551C (en) * 2004-01-16 2013-10-29 Regeneron Pharmaceuticals, Inc. Fusion polypeptides capable of activating receptors
US7767792B2 (en) * 2004-02-20 2010-08-03 Ludwig Institute For Cancer Research Ltd. Antibodies to EGF receptor epitope peptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03002609A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097251B2 (en) * 2001-10-24 2012-01-17 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof
US9156905B2 (en) 2001-10-24 2015-10-13 Vib Vzw Functional heavy chain antibodies, fragments thereof, library thereof and methods of production thereof
US8188223B2 (en) 2005-05-18 2012-05-29 Ablynx N.V. Serum albumin binding proteins
US9067991B2 (en) 2005-05-18 2015-06-30 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha
US8703131B2 (en) 2005-05-21 2014-04-22 Ablynx N.V. Nanobodies against tumor necrosis factor-alpha

Also Published As

Publication number Publication date
WO2003002609A2 (en) 2003-01-09
DE60237282D1 (de) 2010-09-23
WO2003002609A3 (en) 2003-08-21
EP1399484B1 (de) 2010-08-11
ATE477280T1 (de) 2010-08-15
JP2005504524A (ja) 2005-02-17
CA2447851C (en) 2012-08-28
JP4303105B2 (ja) 2009-07-29
US20040219643A1 (en) 2004-11-04
CA2447851A1 (en) 2003-01-09
DK1399484T3 (da) 2010-11-08
AU2002319402B2 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
EP1399484B1 (de) Doppelspezifischer ligand und dessen verwendung
AU2002319402A1 (en) Dual-specific ligand and its use
EP1025218B2 (de) Bibliotheken von humanen antikörper-polypeptiden
US9321832B2 (en) Ligand
JP2006512895A (ja) リガンド
JP2006523090A (ja) リガンドに、そしてリガンド受容体に特異的な二重特異性単一ドメイン抗体
WO2004003019A9 (en) Immunoglobin single variant antigen-binding domains and dual-specific constructs
US20060280734A1 (en) Retargeting
JP2013018785A (ja) 炎症性疾患を治療するための組成物及び方法
JP2009511892A (ja) 抗体ポリペプチドライブラリーのスクリーニングと選択された抗体ポリペプチド
JP2009082141A (ja) 二重特異性リガンドとその利用
HK1156044A (en) Dual-specific ligand and its use
HK1138017A (en) Ligand
KR20050024397A (ko) 리간드
HK1156053A (en) Ligand
AU2936302A (en) Method to screen phage display libaries with different ligands

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031022

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOMANTIS LIMITED

17Q First examination report despatched

Effective date: 20050627

17Q First examination report despatched

Effective date: 20050627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TOMLINSON, IANDOMANTIS LIMITED

Inventor name: WINTER, GREGMRC LABORATORY OF MOLECULAR BIOLOGY

Inventor name: IGNATOVICH, OLGADOMANTIS LIMITED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOMANTIS LIMITED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: IGNATOVICH, OLGA,DOMANTIS LIMITED

Inventor name: TOMLINSON, IAN,DOMANTIS LIMITED

Inventor name: WINTER, GREG,MRC LABORATORY OF MOLECULAR BIOLOGY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60237282

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100402262

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101125

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: FISHER, ADRIAN J.

Effective date: 20110511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 60237282

Country of ref document: DE

Effective date: 20110511

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: FISHER, ADRIAN J.

Effective date: 20110511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170526

Year of fee payment: 16

Ref country code: DK

Payment date: 20170530

Year of fee payment: 16

Ref country code: IE

Payment date: 20170526

Year of fee payment: 16

Ref country code: GR

Payment date: 20170526

Year of fee payment: 16

Ref country code: FR

Payment date: 20170518

Year of fee payment: 16

Ref country code: MC

Payment date: 20170529

Year of fee payment: 16

Ref country code: CH

Payment date: 20170424

Year of fee payment: 16

R26 Opposition filed (corrected)

Opponent name: FISHER, ADRIAN J.

Effective date: 20110511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170613

Year of fee payment: 16

Ref country code: AT

Payment date: 20170526

Year of fee payment: 16

Ref country code: SE

Payment date: 20170608

Year of fee payment: 16

Ref country code: BE

Payment date: 20170614

Year of fee payment: 16

Ref country code: IT

Payment date: 20170609

Year of fee payment: 16

Ref country code: FI

Payment date: 20170526

Year of fee payment: 16

Ref country code: LU

Payment date: 20170605

Year of fee payment: 16

Ref country code: PT

Payment date: 20170526

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170530

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170705

Year of fee payment: 16

Ref country code: DE

Payment date: 20170623

Year of fee payment: 16

Ref country code: CY

Payment date: 20170523

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 60237282

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 60237282

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20180327

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20180327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 477280

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180327

REG Reference to a national code

Ref country code: GR

Ref legal event code: NF

Ref document number: 20100402262

Country of ref document: GR

Effective date: 20190109

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC