EP0985747B1 - Verfahren zur Herstellung von Cellulosefasern - Google Patents
Verfahren zur Herstellung von Cellulosefasern Download PDFInfo
- Publication number
- EP0985747B1 EP0985747B1 EP99123391A EP99123391A EP0985747B1 EP 0985747 B1 EP0985747 B1 EP 0985747B1 EP 99123391 A EP99123391 A EP 99123391A EP 99123391 A EP99123391 A EP 99123391A EP 0985747 B1 EP0985747 B1 EP 0985747B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- groups
- polyisocyanates
- compounds
- diisocyanate
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F11/00—Chemical after-treatment of artificial filaments or the like during manufacture
- D01F11/02—Chemical after-treatment of artificial filaments or the like during manufacture of cellulose, cellulose derivatives, or proteins
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F2/00—Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/35—Heterocyclic compounds
- D06M13/355—Heterocyclic compounds having six-membered heterocyclic rings
- D06M13/358—Triazines
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/395—Isocyanates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/402—Amides imides, sulfamic acids
- D06M13/419—Amides having nitrogen atoms of amide groups substituted by hydroxyalkyl or by etherified or esterified hydroxyalkyl groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/402—Amides imides, sulfamic acids
- D06M13/432—Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/39—Aldehyde resins; Ketone resins; Polyacetals
- D06M15/423—Amino-aldehyde resins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
- D06M15/568—Reaction products of isocyanates with polyethers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/564—Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
- D06M15/572—Reaction products of isocyanates with polyesters or polyesteramides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/35—Abrasion, pilling or fibrillation resistance
Definitions
- the present invention relates to a new method of manufacture of cellulose fibers spun from solvents reduced tendency to fibrillate by treating the fibers with certain reactive compounds.
- GB-A-2 043 525 describes the production of cellulose fibers by spinning a cellulose solution in a suitable solvent, e.g. an N-oxide of a tertiary amine, such as N-methylmorpholine-N-oxide, known. In such a spinning process the Cellulose solution extruded through a suitable nozzle and the resulting fiber precursor washed in water and then dried. Such fibers are called “solvent spun Fibers ".
- Such cellulose fibers spun from solvents offer many application advantages, but tend to fibrillate. This is the splicing of the finest fiber fibrils, the processing of cellulose fibers in textile production can lead to problems.
- WO-A-92/07124 recommends the to solve this problem Treatment of the cellulose fibers with an aqueous solution or Dispersion of a polymer that has a variety of cationically ionizable Groups, e.g. a polyvinylimidazoline.
- EP-A-538 977 teaches the use of compounds which have 2 to 6 functional groups with cellulose can react, e.g. Products based on dichlorotriazine, for this purpose.
- the object of the present invention was to develop a new method for the production of cellulose fibers spun from solvents with reduced tendency to fibrillate, that comes from other chemical defibrillation reagents.
- Hydrophilically modified polyisocyanates (C) are usually in the form of aqueous dispersions, which are essentially free of organic solvents and other emulsifiers are used. Your stake is not an object of the present invention.
- Polyisocyanates serve the usual dizsocyanates and / or usual higher functional polyisocyanates with a medium NCO functionality from 2.0 to 4.5. These components can alone or in a mixture.
- Examples of common diisocyanates are aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (1,6-diisocyanatohexane), Octamethylene diisocyanate, decamethylene diisocyanate, Dodecamethylene diisocyanate, tetradecamethylene diisocyanate, trimethylhexane diisocyanate or tetramethylhexane diisocyanate, cycloaliphatic Diisocyanates such as 1,4-, 1,3- or 1,2-diisocyanatocyclohexane, 4,4'-di (isocyanatocyclohexyl) methane, 1-isocyanato-3,3,5-trimethyl-5- (isocyanatomethyl) cyclohexane (Isophorone diisocyanate) or 2,4- or 2,6-diisocyanato-1-methylcyclohexane and aromatic di
- Suitable, higher-functionality polyisocyanates are Triisocyanates such as 2,4,6-triisocyanatotoluene or 2,4,4'-triisocyanatodiphenyl ether or the mixtures of di-, Tri and higher polyisocyanates by phosgenation of corresponding aniline / formaldehyde condensates are obtained and Represent polyphenyl polyisocyanates having methylene bridges.
- the described diisocyanates and / or more functionalized Polyisocyanates become non-ionic hydrophilic for conversion modified polyisocyanates with NCO-reactive compounds implemented the hydrophilic structural elements with nonionic Groups or with polar groups that are not in ion groups can be transferred. That’s it Diisocyanate or polyisocyanate in a stoichiometric excess before so the resulting hydrophilically modified polyisocyanate still has free NCO groups.
- Non-ionically hydrophilically modified polyisocyanates which contain the built-in polyethers VII are particularly preferably ethylene oxide or propylene oxide polyethers with average molecular weights of 250 to 7000, in particular 450 to 1500, started on C 1 to C 4 alkanol.
- hydroxyl-terminated polyesters other hydroxyl-terminated polyethers or on polyols, e.g. Ethylene glycol, trimethylolpropane or butanediol
- prepolymers generate and then these prepolymers or simultaneously with the polyethers VII in deficit to the hydrophilic implement modified polyisocyanates with free NCO groups.
- non-ionically hydrophilically modified polyisocyanates from diisocyanate or polyisocyanate and polyalkylene glycols of the formula HO- (DO) n -H, in which D and n have the meanings given above. Both terminal OH groups of the polyalkylene glycol react with isocyanate.
- non-ionic hydrophilic modified Polyisocyanates are described in DE-A 24 47 135, DE-A 26 10 552, DE-A 29 08 844, EP-A 0 13 112, EP-A 019 844, DE-A 40 36 927, DE-A 41 36 618, EP-B 206 059, EP-A 464 781 and EP-A 516 361 described in more detail.
- the described diisocyanates and / or more functionalized Polyisocyanates become anionically hydrophilic for conversion modified polyisocyanates reacted with NCO-reactive compounds, the hydrophilizing anionic groups, in particular Acid groups such as carboxyl groups, sulfonic acid groups or Phosphonic acid groups.
- the diisocyanate or Polyisocyanate in a stoichiometric excess, so that resulting hydrophilically modified polyisocyanate is still free Has NCO groups.
- NCO-reactive compounds with anionic groups come especially hydroxycarboxylic acids like 2-hydroxyacetic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid or hydroxylpivalic acid and 2,2-bis- and 2,2,2-tris (hydroxymethyl) alkanoic acids, e.g. 2,2-bis (hydroxymethyl) acetic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butyric acid or 2,2,2-tris (hydroxymethyl) acetic acid.
- the carboxyl groups can be partially or completely by a base be neutralized to in a water soluble or water dispersible Form.
- the base is preferred here a tertiary amine, which is known to Isocyanate is inert.
- the described diisocyanates and / or more functionalized Polyisocyanates can also be mixed with a non-ionic hydrophilically modifying and anionically hydrophobically modifying Compounds that are added sequentially or simultaneously are implemented, for example with a deficit the polyethers VII and the hydroxycarboxylic acids described.
- anionically hydrophilically modified polyisocyanates are in the documents DE-A 40 01 783, DE-A 41 13 160 and DE-A 41 42 275 described in more detail.
- the described diisocyanates and / or more functionalized Polyisocyanates become cationically hydrophilic for conversion modified polyisocyanates reacted with NCO-reactive compounds, the chemically built-in alkylatable or protonable Functions with the formation of a cationic center included.
- such functions are tertiary nitrogen atoms, which are known to be inert to isocyanate and can be easily quaternized or protonated.
- amino alcohols VIII are N-methyldiethanolamine, N-methyldi (iso) propanolamine, N-butyldiethanolamine, N-butyldi (iso) propanolamine, N-stearyldiethanolamine, N-stearyldi (iso) propanolamine, N, N-dimethylethanolamine, N, N-dimethyl (iso) propanolamine, N, N-diethylethanolamine, N, N-diethyl (iso) propanolamine, N, N-dibutylethanolamine, N, N-dibutyl (iso) propanolamine, triethanolamine, tri (iso) propanolamine, N- (2-hydroxyethyl) morpholine, N- (2-hydroxypropyl) morpholine, N- (2-hydroxyethyl) piperidine, N- (2-hydroxypropyl) piperidine, N-methyl-N '- (2-hydroxye
- NCO-reactive compounds with tertiary nitrogen atoms are preferably diamines of the general formula IXa or IXb in which R 9 to R 11 have the meanings given above and R 12 denotes C 1 to C 5 alkyl or forms a five- or six-membered ring, in particular a piperazine ring, with R 9 .
- diamines IXa are N, N-dimethylethylenediamine, N, N-diethyl-ethylenediamine, N, N-dimethyl-1,3-diamino-2,2-dimethylpropane, N, N-diethyl-1,3-propylenediamine, N- (3-aminopropyl) morpholine, N- (2-aminopropyl) morpholine, N- (3-aminopropyl) piperidine, N- (2-aminopropyl) piperidine, 4-amino-1- (N, N-diethylamino) pentane, 2-amino-1- (N, N-dimethylamino) propane, 2-amino-1- (N, N-diethylamino) propane or 2-amino-1- (N, N-diethylamino) -2-methylpropane.
- Particularly suitable diamines IXb are N, N, N'-trimethyl-ethylenediamine, N, N, N'-triethylethylenediamine, N-methylpiperazine or N-ethylpiperazine.
- polyether (poly) oles can also be used as NCO-reactive compounds with built-in tertiary nitrogen atoms, the by propoxylation and / or ethoxylation of amine nitrogen having starter molecules can be used become.
- Such polyether (poly) ole are, for example Propoxylation and ethoxylation products of ammonia, Ethanolamine, diethanolamine, ethylenediamine or N-methylaniline.
- NCO-reactive compounds are tertiary nitrogen atoms containing polyester and polyamide resins, tertiary Polyols containing urethane groups and nitrogen atoms Polyhydroxypolyacrylates containing tertiary nitrogen atoms.
- the described diisocyanates and / or more functionalized Polyisocyanates can also be mixed with a non-ionic hydrophilically modifying and cationically hydrophilically modifying Compounds that are added sequentially or simultaneously are implemented, for example with a deficit the polyethers VII and the amino alcohols VIII or the diamines IXa or IXb. Mixtures of non-ionic hydrophilic modifying and anionically hydrophilically modifying Connections are possible.
- hydrophilically modified polyisocyanates (C) mentioned in usually used in aqueous media is sufficient for To ensure dispersibility of the polyisocyanates.
- the mixtures of polyurethanes and isocyanates (D) are like the compounds (C) usually in the form of aqueous Dispersions that are essentially free of organic solvents and in most cases are free of emulsifiers, used in the method according to the invention.
- Polyurethanes are made from polyisocyanates (hereinafter also Called monomers I) and reactive towards polyisocyanates Compounds with at least one hydroxyl group and optionally Connections with at least one primary or secondary Understanding amino group built systems.
- the polyurethanes generally no longer have any free isocyanate groups.
- polyurethanes contained serve the usual diisocyanates and / or usual higher functional polyisocyanates such as those in the hydrophilic modified polyisocyanates (C) are described. Also here aliphatic diisocyanates and aliphatic become higher functional polyisocyanates preferred.
- the other structural components of the polyurethane are concerned are initially polyols with a molecular weight of 400 to 6000 g / mol, preferably 600 to 4000 g / mol (monomers II).
- Polyether polyols or polyester polyols are particularly suitable.
- the polyester diols are in particular the known reaction products of dihydric alcohols with dibasic carboxylic acids.
- the free polycarboxylic acids can also the corresponding polycarboxylic anhydrides or corresponding Polycarboxylic esters of lower alcohols or their Mixtures can be used to produce the polyester polyols.
- the polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic or be heterocyclic and optionally, e.g. by Halogen atoms, substituted and / or unsaturated.
- succinic acid adipic acid, suberic acid, Azelaic acid, sebacic acid, phthalic acid, isophthalic acid, Phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic Endomethylene tetrahydrophthalic anhydride, glutaric anhydride, Maleic acid, maleic anhydride, fumaric acid, dimeric fatty acids.
- polyhydric alcohols are e.g.
- Lactone-based polyester diols are also suitable homopolymers or copolymers of lactones, preferably terminal ones Addition products of lactones containing hydroxyl groups or lactone mixtures, e.g. ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone and / or methyl- ⁇ -caprolactone to suitable difunctional starter molecules, e.g. the above as a structural component for the low molecular weight polyester polyols, dihydric alcohols.
- suitable difunctional starter molecules e.g. the above as a structural component for the low molecular weight polyester polyols, dihydric alcohols.
- the corresponding polymers ⁇ -caprolactone are particularly preferred.
- Even lower polyester diols or polyether diols can be used as starters for the preparation the lactone polymers can be used.
- Lactones can also be chemically equivalent Polycondensates of the hydroxycarboxylic acids corresponding to the lactones be used.
- the polyether diols which can also be used in a mixture with polyester diols, are in particular by polymerization of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, for example in the presence of BF 3 or by addition of these compounds, optionally in a mixture or in succession
- Starting components with reactive hydrogen atoms such as alcohols or amines, for example water, ethylene glycol, propylene glycol (1,3) or - (1,2), 4,4'-dihydroxydiphenylpropane, aniline, are available.
- the proportion of monomer II described above is in generally 0.1 to 0.8 gram equivalent, preferably 0.2 to 0.7 Gram equivalent of the hydroxyl group of the monomer II based on 1 gram equivalent of isocyanate of the polyisocyanate.
- polyurethane are concerned compared to chain extenders or crosslinkers with at least two Isocyanate-reactive groups selected from hydroxyl groups, primary or secondary amino groups.
- Polyols in particular diols and triols, with a Molecular weight below 400 g / mol to 62 g / mol (monomers III).
- polyester polyols diols and triols are used to manufacture the Suitable polyester polyols diols and triols, as well as higher than trifunctional alcohols such as pentaerythritol or sorbitol in Consideration.
- the proportion of the monomers III is generally 0 to 0.8, in particular 0 to 0.7 gram equivalent based on 1 gram equivalent Isocyanate.
- the monomers IV which may be used are are at least difunctional amine chain extenders or Crosslinker of the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which have at least two primary, two secondary or one primary and one secondary amino group contain.
- Examples include diamines, such as diaminoethane, diaminopropanes, Diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, Amino-3-aminomethyl-3,5,5-trimethyl-cyclohexane (isophoronediamine, IPDA), 4,4'-diaminodicyclohexylmethane, 1,4-diaminocyclohexane, Aminoethylethanolamine, hydrazine, hydrazine hydrate or triamines such as Diethylenetriamine or 1,8-diamino-4-aminomethyloctane.
- diamines such as diaminoethane, diaminopropanes, Diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, Amino-3-aminomethyl-3,5,5-trimethyl-cyclohexane (
- Chain extenders can also be blocked Shape, e.g. in the form of the corresponding ketimines (see e.g. CA-1 129 128), ketazines (see e.g. U.S.-A-4,269,748) or amine salts (see US-A-4,292,226).
- Polyurethanes for chain extension of the prepolymers can be used.
- When using such capped Polyamines are generally used with the prepolymers in Absence of water mixed and then this mixture with the water of dispersion or part of the water of dispersion mixed, so that the corresponding hydrolytically Polyamines are released.
- Mixtures of di- and triamines are preferably used, especially preferably mixtures of isophoronediamine and diethylenetriamine.
- Monomers V are amino alcohols with a Hydroxyl and a primary or secondary amino group such as Ethanolamine, isopropanolamine, methylethanolamine or aminoethoxyethanol.
- the proportion of the monomers IV or V is in each case preferably 0 to 0.4, particularly preferably 0 to 0.2 gram equivalent to 1 gram equivalent of isocyanate of the polyisocyanate.
- Connections can be used as a further structural component be at least one, preferably two over isocyanate groups reactive groups, i.e. hydroxyl, primary or secondary amino groups, and also in contrast to the Monomers described above or by ionic groups a simple neutralization or quaternization reaction in ionic groups convertible, potentially ionic groups.
- (Monomers VI) By introducing the monomers VI the polyurethanes themselves dispersible, i.e. when dispersing in In this case, water is not used as a dispersing agent Protective colloids or emulsifiers are required.
- the introduction of the cationic or anionic groups can by using (potential) cationic or (potential) compounds with anionic groups with opposite Isocyanate-reactive hydrogen atoms take place.
- Groups of connections include e.g. tertiary nitrogen atoms containing polyethers with preferably two terminal hydroxyl groups, such as by alkoxylation of two on amine nitrogen bonded amine hydrogen atoms, e.g. Methylamine, aniline, or N, N'-dimethylhydrazine, in itself are accessible in the usual way.
- Such polyethers have generally a molecular weight between 500 and 6000 g / mol on.
- the ionic groups are preferred by concomitant use of comparatively low molecular weight compounds with (potential) ionic groups and towards isocyanate groups reactive groups introduced. Examples of this are in U.S. Patents 3,479,310 and 4,056,564 and GB 1,455,554. Also dihydroxyphosphonates, such as the sodium salt of 2,3-Dihydroxypropane-phosphonic acid ethyl ester or the corresponding Sodium salt of the non-esterified phosphonic acid can also be used as an ionic structural component.
- Preferred (potential) ionic monomers VI are N-alkyl dialkanolamines, such as. N-methyldiethanolamine, N-ethyldiethanolamine, Diamino sulfonates, such as the Na salt of N- (2-aminoethyl) -2-aminoethanesulfonic acid, Dihydroxysulfonates, dihydroxycarboxylic acids such as dimethylolpropionic acid, diaminocarboxylic acids or carboxylates such as lysine or the Na salt of N- (2-aminoethyl) -2-aminoethane carboxylic acid and diamines with at least one additional tertiary amine nitrogen, e.g. N-methyl bis (3-aminopropyl) -amine.
- N-alkyl dialkanolamines such as. N-methyldiethanolamine, N-ethyldiethanolamine, Diamino sulfonates, such as the
- Diamino- and dihydroxycarboxylic acids are particularly preferred, in particular the adduct of ethylenediamine with sodium acrylate or Dimethylolpropionic.
- the transfer of the first optionally into the polyaddition product built-in potential ionic groups at least partly in ionic groups happens in a conventional manner by neutralizing the potential anionic or cationic Groups or by quaternization of tertiary amine nitrogen atoms.
- Ammonium groups are inorganic or neutralizing agents organic acids, e.g. Salt, phosphorus, ants, vinegar, Fumaric, maleic, lactic, tartaric or oxalic acid or as quaternizing agent, e.g. Methyl chloride, methyl bromide, methyl iodide, Dimethyl sulfate, benzyl chloride, chloroacetic acid ester or bromoacetamide suitable.
- Other neutralizing or quaternizing agents are e.g. in US-A 3,479,310 column 6.
- This neutralization or quaternization of the potential ion groups can be before, during, but preferably after the isocanate polyaddition reaction respectively.
- the amounts of the monomers VI, in the case of potential ion groups is suitably chosen so that the polyurethanes have a content of 0.05 to 2 meq / g polyurethane, preferably from 0.07 to 1.0 and particularly preferably from 0.1 to Have 0.7 meq / g of polyurethane on ionic groups.
- monohydric polyether alcohols Molecular weight range 500 to 10,000 g / mol, preferably from 800 up to 5,000 g / mol.
- Monohydric polyether alcohols are e.g. by Alkoxylation of monovalent starter molecules, e.g. methanol, Ethanol or n-butanol available, being used as an alkoxylating agent Ethylene oxide or mixtures of ethylene oxide with other alkylene oxides, especially propylene oxide. In case of use of alkylene oxide mixtures, however, preferably contain them at least 40, particularly preferably at least 65 mol% Ethylene oxide.
- Monomers VII can thus optionally in the polyurethanes present in terminally arranged polyether chains
- Polyethylene oxide segments to be installed in addition to the polyurethane influence the hydrophilic character of the ionic groups and ensure or improve dispersibility in water.
- the compounds of the type mentioned are preferred, according to uses them in such quantities that they from 0 to 10, preferably from 0 to 5% by weight of polyethylene oxide units be introduced into the polyurethane.
- Suitable monomers VIII which, in contrast to the above monomers, contain ethylenically unsaturated groups, are, for example, esters of acrylic or methacrylic acid with polyols, at least one OH group of the polyol remaining unesterified.
- the adducts of (meth) acrylic acid with bisglycidyl ether of diols such as, for example, bisphenol A or butanediol are particularly suitable.
- Adducts of (meth) acrylic acid with epoxidized can also be used Diolefins such as 3,4-epoxycyclohexylmethyl 3 ', 4'-epoxycyclohexane carboxylate.
- the polyurethane can, if desired thermally or photochemically, optionally in the presence of an initiator, are subsequently hardened.
- the proportion of ethylenically unsaturated is Groups under 0.2 mol per 100 g of polyurethane.
- the proportion of the structural components is preferably so chosen that the sum of the hydroxyl groups reactive towards isocyanate and primary or secondary amino groups 0.9 to 1.2, particularly preferably 0.95 to 1.1, based on 1 isocyanate group, is.
- the reaction temperature is generally between 20 and 160 ° C, preferably between 50 and 100 ° C.
- the usual catalysts such as dibutyltin dilaurate, stannous octoate or diazabicyclo- (2,2,2) octane.
- the polyurethane prepolymer obtained can, if appropriate, after (further) dilution with solvents of the type mentioned above, preferably with solvents with boiling points below 100 ° C, at a temperature between 20 and 80 ° C with amino functional Compounds of the monomers VI and optionally IV further implemented become.
- the organic solvent After dispersion, the organic solvent, if its boiling point is below that of the water, distilled off become. Optionally used solvents with a higher boiling points can remain in the dispersion.
- the content of the polyurethane in the dispersions can in particular between 5 and 70 percent by weight, preferably between 20 and 50 % By weight, based on the dispersions.
- Customary auxiliaries e.g. Thickeners, Thixotropic agents, oxidation and UV stabilizers or Release agents can be added.
- Hydrophobic aids that can be difficult to homogenize to be distributed in the finished dispersion can also be distributed the method described in US-A 4,306,998, the polyurethane or be added to the prepolymer before the dispersion.
- isocyanates the second component in the mixtures (D), In principle, all connections with at least one are suitable free isocyanate group.
- the usual ones are of particular importance here Diisocyanates, the usual higher functional polyisocyanates, as with the hydrophilically modified polyisocyanates (C) and those described under (C) Hydrophilically mofified polyisocyanates themselves. But also monoisocyanates such as phenyl isocyanate or tolyl isocyanates are suitable.
- polyurethanes and isocyanates mentioned are in usually as mixtures in a weight ratio of 10:90 to 90:10, especially 25:75 to 75:25, especially 40:60 to 60:40.
- the compounds (D) can be used in the process according to the invention for the production of cellulose fibers generally in an aqueous System, preferably in aqueous solution or emulsion, for Application, the aqueous system in general, based on the weight of the aqueous system, 0.1 to 20% by weight, preferably 0.5 to 10% by weight, which has compounds (A) to (D).
- step 1 Dissolve the cellulose in a water-miscible solvent Level 2 Extrude the solution through a die to form the fiber precursor level 3 Treatment of the fiber precursor with water to remove solvents and form the cellulose fiber Level 4 Drying the fiber
- the preferred solvent in stage 1 is N-methylmorpholine-N-oxide used.
- the wet fiber obtained in Step 3 is called undried Fiber is usually referred to and referred to the dry weight of the fiber, 120 to 150 wt .-% water.
- the water content of the dried fiber is generally based on the dry weight of the fiber, 60 to 80 wt .-%.
- Treatment according to the invention with the compounds (A) to (D) can either on the wet fiber (during or after level 3) or on the dried fiber (after step 4). It is but also a treatment in the fiber production stage (Level 2), e.g. in a precipitation bath, possible.
- the treatment can for example by adding the aqueous system of the compounds (D) happen to a circulating bath that is the fiber precursor contains.
- the fiber precursor can e.g. as staple fiber available.
- the treatment is done on the dried fiber, it can these e.g. as staple fiber, fleece, yarn, knitwear or fabric available.
- the treatment of the fibers in this case can e.g. in aqueous liquor.
- Treatment is usually at a temperature of 20 to 200 ° C, preferably 40 to 180 ° C, made.
- the duration of treatment is usually 1 second to 20 minutes, preferably 5 to 60 seconds and in particular 5 to 30 seconds.
- the treatment can be carried out both at room temperature (20 ° C) with subsequent drying up to 100 ° C as well Condensation at temperatures up to 200 ° C, in particular at 150 to 180 ° C.
- the treatment of the moist or dried fiber can be 0.1 up to 10% by weight, preferably 0.2 to 5% by weight, in particular 0.2 up to 2% by weight, based in each case on the dry weight of the fiber, of the connections (D). In some cases it can however, it may also be advantageous to increase the amounts mentioned, e.g. up to approx. 20% by weight.
- connections (D) can face the compounds described in EP-A-538 977 pure can be fixed thermally (without alkali), making them optimal have it integrated into the fiber production process.
- the dyeability the fibers treated in this way with all the usual cellulose fiber dyes, reactive dyes are generally also possible.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Artificial Filaments (AREA)
Description
- R8
- für C1- bis C20-Alkyl, insbesondere C1- bis C4-Alkyl, oder C2-bis C20-Alkenyl, Cyclopentyl, Cyclohexyl, Glycidyl, Oxethyl, Phenyl, Tolyl, Benzyl, Furfuryl oder Tetrahydrofurfuryl steht,
- E
- Schwefel oder insbesondere Sauerstoff bezeichnet,
- D
- Propylen oder vor allem Ethylen bedeutet, wobei auch insbesondere blockweise gemischt ethoxylierte und propoxylierte Verbindungen auftreten können, und
- n
- für eine Zahl von 5 bis 120, insbesondere 10 bis 25 steht,
- R9 und R10
- lineares oder verzweigtes C1- bis C20-Alkyl, insbesondere C1- bis C5-Alkyl, bedeuten oder zusammen mit dem N-Atom einen fünf- oder sechsgliedrigen Ring bilden, der noch ein O-Atom oder ein tertiäres N-Atom enthalten kann, insbesondere einen Piperidin-, Morpholin-, Piperazin-, Pyrrolidin-, Oxazolin- oder Dihydrooxazin-Ring, wobei die Reste R2 und R3 noch zusätzlich Hydroxylgruppen, insbesondere jeweils eine Hydroxylgruppe, tragen können, und
- R11
- eine C2- bis C10-Alkylengruppe, insbesondere eine C2- bis C6-Alkylengruppe, die linear oder verzweigt sein kann, bezeichnet,
Stufe 1 | Lösen der Cellulose in einem mit Wasser mischbaren Lösungsmittel |
Stufe 2 | Extrudieren der Lösung durch eine Düse unter Bildung der Faservorstufe |
Stufe 3 | Behandlung der Faservorstufe mit Wasser um Lösungsmittel zu entfernen und die Cellulosefaser auszubilden |
Stufe 4 | Trocknung der Faser |
Claims (4)
- Verfahren zur Herstellung von aus Lösungsmitteln gesponnenen Cellulosefasern mit verringerter Neigung zum Fibrillieren, dadurch gekennzeichnet, daß man die Fasern mit einer oder mehreren Verbindungen aus der Gruppe der(D) Mischungen von Polyurethanen mit Isocyanaten
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Verbindungen (D) Mischungen aus Polyesterurethanen und aliphatischen Diisocyanaten, aliphatischen höher funktionellen Polyisocyanaten oder hydrophil modifizierten Polyisocyanaten im Gew.-Verhältnis von 10:90 bis 90:10 einsetzt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man die Fasern mit 0,1 bis 10 Gew.-%, bezogen auf das Trokkengewicht der Fasern, der Verbindungen (D) behandelt.
- Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die Behandlung bei einer Temperatur von 20 bis 200°C vornimmt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4431635A DE4431635A1 (de) | 1994-09-06 | 1994-09-06 | Verfahren zur Herstellung von Cellulosefasern |
DE4431635 | 1994-09-06 | ||
EP95931179A EP0779942B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur herstellung von cellulosefasern |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95931179A Division EP0779942B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur herstellung von cellulosefasern |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0985747A2 EP0985747A2 (de) | 2000-03-15 |
EP0985747A3 EP0985747A3 (de) | 2000-04-19 |
EP0985747B1 true EP0985747B1 (de) | 2002-10-30 |
Family
ID=6527487
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99123391A Expired - Lifetime EP0985747B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur Herstellung von Cellulosefasern |
EP95931179A Expired - Lifetime EP0779942B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur herstellung von cellulosefasern |
EP99123392A Expired - Lifetime EP0984084B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur Herstellung von Cellulosefasern |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95931179A Expired - Lifetime EP0779942B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur herstellung von cellulosefasern |
EP99123392A Expired - Lifetime EP0984084B1 (de) | 1994-09-06 | 1995-08-22 | Verfahren zur Herstellung von Cellulosefasern |
Country Status (8)
Country | Link |
---|---|
US (1) | US5776394A (de) |
EP (3) | EP0985747B1 (de) |
JP (1) | JPH10505389A (de) |
AT (3) | ATE230447T1 (de) |
DE (4) | DE4431635A1 (de) |
DK (1) | DK0779942T3 (de) |
ES (2) | ES2148552T3 (de) |
WO (1) | WO1996007780A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1886427B (zh) * | 2003-11-28 | 2012-05-23 | 伊士曼化工公司 | 纤维素共聚体和氧化方法 |
US8980054B2 (en) | 2012-12-26 | 2015-03-17 | Kimberly-Clark Worldwide, Inc. | Soft tissue having reduced hydrogen bonding |
US9416494B2 (en) | 2012-12-26 | 2016-08-16 | Kimberly-Clark Worldwide, Inc. | Modified cellulosic fibers having reduced hydrogen bonding |
US9410292B2 (en) | 2012-12-26 | 2016-08-09 | Kimberly-Clark Worldwide, Inc. | Multilayered tissue having reduced hydrogen bonding |
KR102440861B1 (ko) * | 2020-05-26 | 2022-09-05 | 오영세 | 라이오셀 섬유의 제조방법 및 이로부터 제조된 라이오셀 섬유 |
CN116926971B (zh) * | 2023-06-30 | 2024-07-12 | 广东德美精细化工集团股份有限公司 | 一种抗原纤化组合物及在莱赛尔织物上的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0516361A1 (de) * | 1991-05-29 | 1992-12-02 | Imperial Chemical Industries Plc | Polyisocyanatzusammensetzung |
EP0531820A1 (de) * | 1991-09-10 | 1993-03-17 | Bayer Ag | Polyisocyanatgemische, ein Verfahren zu ihrer Herstellung und ihre Verwendung |
EP0538977A1 (de) * | 1991-10-21 | 1993-04-28 | Courtaulds Plc | Faserbehandlung |
DE4142275A1 (de) * | 1991-12-20 | 1993-06-24 | Bayer Ag | Isocyanatocarbonsaeuren, ein verfahren zu ihrer herstellung und ihrer verwendung |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246221A (en) * | 1979-03-02 | 1981-01-20 | Akzona Incorporated | Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent |
DE3831093A1 (de) * | 1988-09-13 | 1990-03-15 | Basf Ag | Verfahren zur pflegeleichtausruestung von textilen materialien |
DE3912084A1 (de) * | 1989-04-13 | 1990-10-25 | Basf Ag | Verfahren zur herstellung waessriger loesungen von n-methylolethern |
GB9022175D0 (en) * | 1990-10-12 | 1990-11-28 | Courtaulds Plc | Treatment of fibres |
JP3130148B2 (ja) * | 1992-10-30 | 2001-01-31 | 日清紡績株式会社 | 溶剤紡糸されたセルロース系繊維のフイブリル化防止加工方法 |
GB9304887D0 (en) * | 1993-03-10 | 1993-04-28 | Courtaulds Plc | Fibre treatment |
DE4313262A1 (de) * | 1993-04-23 | 1994-10-27 | Pfersee Chem Fab | Verfahren zur Pflegeleichtausrüstung von Cellulose enthaltenden Fasermaterialien |
GB9313128D0 (en) * | 1993-06-24 | 1993-08-11 | Courtaulds Fibres Ltd | Fabric treatment |
-
1994
- 1994-09-06 DE DE4431635A patent/DE4431635A1/de not_active Withdrawn
-
1995
- 1995-08-22 DE DE59510440T patent/DE59510440D1/de not_active Expired - Fee Related
- 1995-08-22 DK DK95931179T patent/DK0779942T3/da active
- 1995-08-22 AT AT99123392T patent/ATE230447T1/de not_active IP Right Cessation
- 1995-08-22 US US08/793,607 patent/US5776394A/en not_active Expired - Fee Related
- 1995-08-22 DE DE59510523T patent/DE59510523D1/de not_active Expired - Fee Related
- 1995-08-22 WO PCT/EP1995/003327 patent/WO1996007780A1/de active IP Right Grant
- 1995-08-22 ES ES95931179T patent/ES2148552T3/es not_active Expired - Lifetime
- 1995-08-22 EP EP99123391A patent/EP0985747B1/de not_active Expired - Lifetime
- 1995-08-22 EP EP95931179A patent/EP0779942B1/de not_active Expired - Lifetime
- 1995-08-22 DE DE59508498T patent/DE59508498D1/de not_active Expired - Fee Related
- 1995-08-22 EP EP99123392A patent/EP0984084B1/de not_active Expired - Lifetime
- 1995-08-22 ES ES99123392T patent/ES2190169T3/es not_active Expired - Lifetime
- 1995-08-22 AT AT99123391T patent/ATE226985T1/de not_active IP Right Cessation
- 1995-08-22 JP JP8509162A patent/JPH10505389A/ja not_active Ceased
- 1995-08-22 AT AT95931179T patent/ATE194018T1/de not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0516361A1 (de) * | 1991-05-29 | 1992-12-02 | Imperial Chemical Industries Plc | Polyisocyanatzusammensetzung |
EP0531820A1 (de) * | 1991-09-10 | 1993-03-17 | Bayer Ag | Polyisocyanatgemische, ein Verfahren zu ihrer Herstellung und ihre Verwendung |
EP0538977A1 (de) * | 1991-10-21 | 1993-04-28 | Courtaulds Plc | Faserbehandlung |
DE4142275A1 (de) * | 1991-12-20 | 1993-06-24 | Bayer Ag | Isocyanatocarbonsaeuren, ein verfahren zu ihrer herstellung und ihrer verwendung |
Also Published As
Publication number | Publication date |
---|---|
ATE226985T1 (de) | 2002-11-15 |
WO1996007780A1 (de) | 1996-03-14 |
DE59510523D1 (de) | 2003-02-06 |
DE4431635A1 (de) | 1996-03-07 |
EP0985747A2 (de) | 2000-03-15 |
EP0984084A3 (de) | 2000-04-19 |
EP0779942B1 (de) | 2000-06-21 |
EP0779942A1 (de) | 1997-06-25 |
DE59510440D1 (de) | 2002-12-05 |
ATE194018T1 (de) | 2000-07-15 |
US5776394A (en) | 1998-07-07 |
EP0984084A2 (de) | 2000-03-08 |
DK0779942T3 (da) | 2000-08-28 |
ES2148552T3 (es) | 2000-10-16 |
JPH10505389A (ja) | 1998-05-26 |
EP0984084B1 (de) | 2003-01-02 |
ATE230447T1 (de) | 2003-01-15 |
ES2190169T3 (es) | 2003-07-16 |
EP0985747A3 (de) | 2000-04-19 |
DE59508498D1 (de) | 2000-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1379724B1 (de) | Verwendung von hydrophil modifizierten polyisocyanaten und polyurethanen als antiknitteradditiv für den heimbereich | |
DE2535376A1 (de) | Gegen verfaerbung stabilisiertes polyurethan | |
DE3512918A1 (de) | Carbodiimidgruppen enthaltende isocyanat-derivate, ein verfahren zu ihrer herstellung und ihre verwendung als zusatzmittel fuer waessrige loesungen oder dispersionen von kunststoffen | |
EP0490150B1 (de) | In Wasser dispergierbare, elektrolytstabile Polyetherester-modifizierte Polyurethanionomere | |
DE1278687B (de) | Verfahren zur Herstellung hochelastischer Faeden oder Fasern aus Isocyanat-Polyadditionsprodukten | |
EP0985747B1 (de) | Verfahren zur Herstellung von Cellulosefasern | |
DE2536678A1 (de) | Verfahren zur herstellung von amphoteren, waessrigen harzemulsionen | |
EP1184400A1 (de) | Mit Pyrazol oder Pyrazolderivaten blockierte aromatische Polyisocyanate, Verfahren zu deren Herstellung und Verwendung | |
EP0758417B1 (de) | Verwendung von hydrophil modifizierten polyisocyanaten im textilbereich | |
EP0342439B1 (de) | Verfahren zur Nachbehandlung von gefärbten Textilmaterialien | |
EP0538649A1 (de) | Modifizierte Polyharnstoffe | |
EP1211346B1 (de) | Filzfrei ausgerüstete Wolle und Verfahren zur Filzfreiausrüstung | |
EP0726352B1 (de) | Verfahren zur Herstellung von gemusterten Textilien | |
DE1494610A1 (de) | Verfahren zur Herstellung gummielastischer Faeden und Fasern mit verbesserter Anfaerbbarkeit | |
DE19537240A1 (de) | Verfahren zur Stabilisierung von gefärbtem Textilgut gegen Vergilbung | |
DE1494613C3 (de) | Verfahren zur Herstellung vernetzter gummielastischer Fäden und Fasern | |
DE4415451A1 (de) | Verwendung von hydrophil modifizierten Polyisocyanaten zur Veredlung von Textilmaterialien | |
DE19736542A1 (de) | Filzfrei ausgerüstete Wolle und selbstdispergierende Isocyanate hierfür | |
DE4430165A1 (de) | Verwendung von hydrophil modifizierten Polyisocyanaten zur Herstellung von Textilmaterialien mit waschpermanentem Glanz | |
EP1437437A2 (de) | Verfahren zur Filzfreiausrüstung von Keratinfasern | |
DE1204406B (de) | Verwendung eines Zusatzes zur Verbesserung der Anfaerbbarkeit, der Lichtbestaendigkeit und Abgasechtheit zu auf elastische Polyurethan-formkoerper verarbeitbaren Massen | |
DE2542500A1 (de) | Segmentierte, selbstvernetzbare polyurethanelastomere | |
DE1916331C3 (de) | Verfahren zum Veredeln von aus Wolle oder wollhaltigen Fasern bestehenden Textilmaterialien | |
DE1669412B2 (de) | ||
WO2001034895A2 (de) | Filzfrei ausgerüstete wolle und verfahren zur filzfreiausrüstung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19991124 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 779942 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
AKX | Designation fees paid |
Free format text: AT BE CH DE DK ES FR GB IT LI NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7D 01F 2/00 A, 7D 01F 11/02 B, 7D 06M 15/564 B, 7D 06M 101:06 Z |
|
17Q | First examination report despatched |
Effective date: 20020410 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 779942 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20021030 |
|
REF | Corresponds to: |
Ref document number: 226985 Country of ref document: AT Date of ref document: 20021115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59510440 Country of ref document: DE Date of ref document: 20021205 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030130 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20030429 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030731 |
|
BERE | Be: lapsed |
Owner name: *BASF A.G. Effective date: 20030831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040810 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20050811 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050817 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050818 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060428 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060822 |