CN116179903A - Low-carbon heat-free high-pressure cast aluminum alloy - Google Patents
Low-carbon heat-free high-pressure cast aluminum alloy Download PDFInfo
- Publication number
- CN116179903A CN116179903A CN202310072479.9A CN202310072479A CN116179903A CN 116179903 A CN116179903 A CN 116179903A CN 202310072479 A CN202310072479 A CN 202310072479A CN 116179903 A CN116179903 A CN 116179903A
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- weight
- cast aluminum
- low
- pressure cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 61
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 48
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000011572 manganese Substances 0.000 claims abstract description 23
- 239000011651 chromium Substances 0.000 claims abstract description 21
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 239000011777 magnesium Substances 0.000 claims abstract description 14
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 11
- 239000010936 titanium Substances 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 10
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 8
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract description 25
- 238000010438 heat treatment Methods 0.000 abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 description 22
- 239000000956 alloy Substances 0.000 description 22
- 239000000463 material Substances 0.000 description 20
- 238000004512 die casting Methods 0.000 description 15
- 238000007670 refining Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910017150 AlTi Inorganic materials 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- YNDGDLJDSBUSEI-UHFFFAOYSA-N aluminum strontium Chemical compound [Al].[Sr] YNDGDLJDSBUSEI-UHFFFAOYSA-N 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003682 vanadium compounds Chemical class 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种高压铸铝合金领域,尤其涉及一种低碳免热处理的高压铸造铝合金。The invention relates to the field of high-pressure cast aluminum alloys, in particular to a low-carbon, heat-treatment-free high-pressure cast aluminum alloy.
背景技术Background Art
随着目前新能源汽车的发展,汽车轻量化设计已经成为新能源汽车发展的潮流。研究表明新能源汽车每减少100kg的重量,续航里程可以提升10%-11%,还可以减少20%的电池成本和20%的日常损耗成本。With the development of new energy vehicles, lightweight design has become a trend in the development of new energy vehicles. Studies have shown that for every 100kg weight reduction of new energy vehicles, the driving range can be increased by 10%-11%, and the battery cost and daily loss cost can be reduced by 20%.
铝合金作为汽车轻量化的首选材料,具有减重降耗、节能环保、可回收再利用、耐腐蚀性好,提高车辆行驶平衡性和安全性。压铸零部件由功能件向结构件转变,发展趋势偏向于薄壁件、集成化、结构复杂化一体化压铸零件,对材料要求高强度、高延伸,以致能满足零件铆接时不开裂。但目前很多压铸结构件需要热处理方可达到性能要求,但热处理过程不可控因素较多,最终会导致热处理后的压铸结构件变形、成品率低、且成本较高,而特斯拉兴起的用免热处理材料压铸汽车结构件逐渐兴起,但在目前使用的免热处理材料,为保证材料的塑性,铁含量控制很低,导致很难使用再生铝生产。As the preferred material for lightweight automobiles, aluminum alloy has the advantages of weight reduction, energy conservation, environmental protection, recyclability, good corrosion resistance, and improved vehicle driving balance and safety. Die-casting parts have shifted from functional parts to structural parts, and the development trend tends to be thin-walled parts, integrated, and structurally complex integrated die-casting parts, which require high strength and high elongation of the materials so that the parts will not crack when riveted. However, many die-casting structural parts currently require heat treatment to meet performance requirements, but there are many uncontrollable factors in the heat treatment process, which will eventually lead to deformation of die-casting structural parts after heat treatment, low yield, and high cost. Tesla's use of heat-treatment-free materials to die-cast automotive structural parts has gradually emerged, but in the heat-treatment-free materials currently used, the iron content is controlled very low to ensure the plasticity of the material, making it difficult to use recycled aluminum for production.
随着碳达峰和碳中和政策的深入推进,碳排放指标不断调低,再生铝体现了能源消耗低的明显优势,而且摆脱了铝业“价随电涨”的依赖,将再生铝业作为主导产业更有利于铝业健康稳定和长期发展。再生铝碳排放显著低于火力电解原铝排放,1吨火力电解原铝排放约12吨二氧化碳,而生产1吨再生铝仅排放约300Kg二氧化碳,生产1吨再生铝节约3.4吨标准煤,节水14立方米,减少固体废物排放20吨。按1吨标准煤排放3吨二氧化碳计算,加上其他辅料的碳排放,1吨再生铝总共可减少约11.5吨二氧化碳排放量。同时,再生铝经济效益显著。原铝的生产涉及铝土矿的开采、长途运输等,氧化铝经过火电或者水电、风电电解过程中能耗大,尤其是火电作为目前主要的能源供给,用风电或者水电生产的原铝目前普遍比火电铝价格高300-700元,成本高,货源不稳定,所以用再生铝生产的免热处理材料作为目前一体化压铸件的趋势;With the in-depth promotion of carbon peak and carbon neutrality policies, carbon emission indicators have been continuously lowered. Recycled aluminum has shown the obvious advantage of low energy consumption, and has gotten rid of the aluminum industry's dependence on "price increases with electricity". Taking recycled aluminum as a leading industry is more conducive to the healthy, stable and long-term development of the aluminum industry. The carbon emissions of recycled aluminum are significantly lower than those of thermal electrolytic aluminum. One ton of thermal electrolytic aluminum emits about 12 tons of carbon dioxide, while the production of one ton of recycled aluminum only emits about 300 kg of carbon dioxide. The production of one ton of recycled aluminum saves 3.4 tons of standard coal, 14 cubic meters of water, and reduces solid waste emissions by 20 tons. Calculated based on the emission of 3 tons of carbon dioxide per ton of standard coal, plus the carbon emissions of other auxiliary materials, one ton of recycled aluminum can reduce carbon dioxide emissions by about 11.5 tons in total. At the same time, recycled aluminum has significant economic benefits. The production of primary aluminum involves the mining of bauxite and long-distance transportation. Alumina consumes a lot of energy in the process of electrolysis by thermal power, hydropower or wind power. In particular, thermal power is currently the main energy supply. The price of primary aluminum produced by wind power or hydropower is generally 300-700 yuan higher than that of thermal power aluminum. The cost is high and the supply is unstable. Therefore, the heat-treatment-free material produced by recycled aluminum is the current trend of integrated die castings.
发明内容Summary of the invention
本发明的一个优势在于提供一种低碳免热处理的高压铸造铝合金,其中所述高压铸造的铝合金在铸态时>120MPa的拉伸屈服极限Rp0.2,同时>13.0%的断裂延伸率A,>240MPa的抗拉强度Rm,尤其是所述高压铸造的铝合金原材料生产用再生铝生产且压铸零件不需要热处理。One advantage of the present invention is to provide a low-carbon, heat-treatment-free high-pressure cast aluminum alloy, wherein the high-pressure cast aluminum alloy has a tensile yield limit Rp0.2 of >120MPa in the cast state, an elongation at break A of >13.0%, and a tensile strength Rm of >240MPa, and in particular, the raw material of the high-pressure cast aluminum alloy is produced from recycled aluminum and the die-cast parts do not require heat treatment.
本发明的一个优势在于提供一种低碳免热处理的高压铸造铝合金,其中所述高压铸造铝合金用再生铝生产且有较高的硬度和塑性。An advantage of the present invention is to provide a low-carbon, heat-treatment-free high-pressure casting aluminum alloy, wherein the high-pressure casting aluminum alloy is produced from recycled aluminum and has higher hardness and plasticity.
为达到上述至少一个优势,本发明提供一种低碳免热处理的高压铸造铝合金,所述免热处理的高压铸造铝合金包括:In order to achieve at least one of the above advantages, the present invention provides a low-carbon high-pressure casting aluminum alloy that does not require heat treatment, wherein the high-pressure casting aluminum alloy that does not require heat treatment comprises:
6.0~7.5重量%的硅;6.0-7.5 wt% silicon;
0.15~0.3重量%的铁;0.15-0.3 wt.% iron;
0.02~0.1重量%的铜;0.02-0.1 wt. % copper;
0.02~0.15重量%的锌;0.02-0.15 wt. % zinc;
0.4~0.6重量%的锰;0.4-0.6% by weight of manganese;
0.02~0.15重量%的铬;0.02-0.15 wt. % chromium;
0.1~0.4重量%的镁;0.1-0.4 wt% magnesium;
0.02~0.1重量%的钒;0.02-0.1 wt. % vanadium;
0.02~0.1重量%的钛;0.02-0.1 wt.% titanium;
0.01~0.03重量%的镓;0.01-0.03 wt.% gallium;
0.01~0.03重量%的锶;0.01-0.03 wt% strontium;
0.02~0.3重量%的稀土,单个杂质元素最多0.03重量%,其余为铝,其中Fe+Mn*1.5+Cr*2+V*2.5大于1.3,小于1.6;0.02-0.3 wt% rare earth, a single impurity element is at most 0.03 wt%, the rest is aluminum, of which Fe+Mn*1.5+Cr*2+V*2.5 is greater than 1.3 and less than 1.6;
根据本发明一实施例,铁含量为0.15~0.3重量%。According to an embodiment of the present invention, the iron content is 0.15-0.3 wt %.
根据本发明一实施例,所述稀土的含量为0.02~0.3重量%的According to one embodiment of the present invention, the rare earth content is 0.02 to 0.3% by weight.
根据本发明一实施例,所述稀土选自镧、铈、饵中至少一种。According to an embodiment of the present invention, the rare earth is selected from at least one of lanthanum, cerium and erbium.
根据本发明一实施例,所述免热处理的高压铸造铝合金包括0.02~0.1重量%的铜。According to an embodiment of the present invention, the heat treatment-free high pressure casting aluminum alloy includes 0.02-0.1 wt % copper.
根据本发明一实施例,所述免热处理的高压铸造铝合金包括0.4~0.6重量%的锰。According to an embodiment of the present invention, the heat treatment-free high pressure casting aluminum alloy includes 0.4-0.6 weight % manganese.
根据本发明一实施例,所述免热处理的高压铸造铝合金包括0.02~0.1重量%的镍。According to an embodiment of the present invention, the heat treatment-free high pressure casting aluminum alloy includes 0.02-0.1 wt % nickel.
根据本发明一实施例,所述免热处理的高压铸造铝合金包括0.02~0.15重量%的锌。According to an embodiment of the present invention, the heat treatment-free high pressure casting aluminum alloy includes 0.02-0.15 wt % zinc.
根据本发明一实施例,所述免热处理的高压铸造铝合金包括0.02~0.1重量%的钒。According to an embodiment of the present invention, the heat treatment-free high pressure casting aluminum alloy includes 0.02-0.1 wt % of vanadium.
根据本发明一实施例,Fe+Mn*1.5+Cr*2+V*2.5大于1.3,小于1.6;According to one embodiment of the present invention, Fe+Mn*1.5+Cr*2+V*2.5 is greater than 1.3 and less than 1.6;
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示低碳铝合金压铸零件本体取样金相图;Figure 1 shows a metallographic image of a low-carbon aluminum alloy die-casting part body sample;
具体实施方式DETAILED DESCRIPTION
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,该发明内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The following description is used to disclose the present invention so that those skilled in the art can implement the present invention. The preferred embodiments described below are only examples, and the summary of the invention is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.
所述低碳免热处理的高压铸造铝合金包括:The low-carbon heat-treatment-free high-pressure casting aluminum alloy comprises:
6.0~7.5重量%的硅;6.0-7.5 wt% silicon;
0.15~0.3重量%的铁;0.15-0.3 wt.% iron;
0.02~0.1重量%的铜;0.02-0.1 wt. % copper;
0.02~0.15重量%的锌;0.02-0.15 wt. % zinc;
0.4~0.6重量%的锰;0.4-0.6% by weight of manganese;
0.02~0.15重量%的铬;0.02-0.15 wt. % chromium;
0.1~0.4重量%的镁;0.1-0.4 wt% magnesium;
0.02~0.1重量%的钒;0.02-0.1 wt. % vanadium;
0.02~0.1重量%的钛;0.02-0.1 wt.% titanium;
0.01~0.03重量%的镓;0.01-0.03 wt.% gallium;
0.01~0.03重量%的锶;0.01-0.03 wt% strontium;
0.02~0.3重量%的稀土,单个杂质元素最多0.03重量%,其余为铝,其中Fe+Mn*1.5+Cr*2+V*2.5大于1.3,小于1.6;0.02-0.3 wt% rare earth, a single impurity element is at most 0.03 wt%, the rest is aluminum, of which Fe+Mn*1.5+Cr*2+V*2.5 is greater than 1.3 and less than 1.6;
值得一提的是,铁在高压铸造铝合金中的份额最多0.3重量%,因能最大限度的使用再生铝,优选0.2~0.3重量%。且铁含量增加能提高铸造铝合金的强度,但会降低铸造铝合金的塑性。It is worth mentioning that the content of iron in high pressure cast aluminum alloy is at most 0.3% by weight, and preferably 0.2-0.3% by weight, because it can maximize the use of recycled aluminum. In addition, the increase in iron content can improve the strength of the cast aluminum alloy, but it will reduce the plasticity of the cast aluminum alloy.
Mn的加入可以改变β-Fe相的形态,使其变为α-AlFeSi。这是因为Mn和Fe具有相似的原子半径。因此Mn可以被Fe取代,并且β-Fe相可以转变成α-AlFeSi。如果连续添加Mn过量,也会形成大块状的α-AlFeSi,这被认为是污泥,不利于合金的力学性能。由此可以看出,Mn导致了β-AlFeSi向α-AlFeSi的转变,因此锰含量控制在0.5~0.6重量%之内,但是很难综合铝合金中过多的Fe相;The addition of Mn can change the morphology of the β-Fe phase and turn it into α-AlFeSi. This is because Mn and Fe have similar atomic radii. Therefore, Mn can be replaced by Fe, and the β-Fe phase can be transformed into α-AlFeSi. If excessive Mn is added continuously, large pieces of α-AlFeSi will also be formed, which is considered to be sludge and is not conducive to the mechanical properties of the alloy. It can be seen that Mn causes the transformation of β-AlFeSi to α-AlFeSi, so the manganese content is controlled within 0.5-0.6 weight%, but it is difficult to integrate the excessive Fe phase in the aluminum alloy;
加入的Cr在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性过量的铬加入会导致铝合金内淤泥指数增加,导致炉底沉淀物增加,影响产品质量。优选Cr的含量在0.07~0.13重量%之间。The added Cr forms intermetallic compounds such as (CrFe) Al7 and (CrMn) Al12 in aluminum, which hinder the nucleation and growth process of recrystallization, have a certain strengthening effect on the alloy, and can also improve the toughness of the alloy and reduce the sensitivity of stress corrosion cracking. Excessive addition of chromium will increase the sludge index in the aluminum alloy, resulting in an increase in furnace bottom sediments, affecting product quality. The preferred Cr content is between 0.07 and 0.13 weight percent.
钒在铝合金的比例最多0.1%重量,钒的加入让β-Fe相的平均长度随V含量的增加逐渐变小,这是因为V的加入与Al、Si及一部分Fe生成了AlSiVFe相,即V的加入消耗掉了一部分Fe,在有锰的情况下,V将鱼骨状α-AlFeMnSi球化,提高材料塑性。V含量低或者没有情况下,限制了该材料再生铝的使用,使用再生铝生产铁含量高,这样就没法保证材料的塑性。The proportion of vanadium in aluminum alloy is up to 0.1% by weight. The addition of vanadium makes the average length of β-Fe phase gradually decrease with the increase of V content. This is because the addition of V generates AlSiVFe phase with Al, Si and part of Fe, that is, the addition of V consumes part of Fe. In the presence of manganese, V spheroidizes the fishbone-shaped α-AlFeMnSi and improves the plasticity of the material. When the V content is low or absent, the use of recycled aluminum of the material is limited. The use of recycled aluminum to produce high iron content cannot guarantee the plasticity of the material.
值得一提的是,所述稀土元素的加入可以提高合金的再结晶温度,显著细化晶粒。It is worth mentioning that the addition of the rare earth elements can increase the recrystallization temperature of the alloy and significantly refine the grains.
尤其是对于大铸件铸造铝合金的壁厚位置,稀土元素能够细化铝基体尺寸和改善铁相的形貌,提高产品的抗拉强度、延伸率及硬度。Especially for the wall thickness of large castings of cast aluminum alloys, rare earth elements can refine the size of the aluminum matrix and improve the morphology of the iron phase, thereby increasing the tensile strength, elongation and hardness of the product.
综上所述,加入锰、铬、钒及稀土主要作用在于对再生铝生产的铝合金中铁相的改变,降低因加入再生铝铁含量高对材料延伸率的影响,但综合考虑材料在使用过程中因重金属锰、铬、钒的化合物沉淀及完全改变针状铁相,控制Fe+Mn*1.5+Cr*2+V*2.5大于1.3,小于1.6;In summary, the main effect of adding manganese, chromium, vanadium and rare earth is to change the iron phase in the aluminum alloy produced by recycled aluminum, and reduce the influence of high iron content of recycled aluminum on the elongation of the material. However, considering the precipitation of heavy metal manganese, chromium and vanadium compounds and the complete change of needle-shaped iron phase during the use of the material, Fe+Mn*1.5+Cr*2+V*2.5 is controlled to be greater than 1.3 and less than 1.6;
控制Fe+Mn*1.5+Cr*2+V*2.5大于1.3,小于1.6之后,如果低于1.3,在高压铸造过程中会出现粘模情况,铸造没法生产,如果高于1.6的情况下,过量的铁,锰,铬,钒会生产更多的高熔点及高于铝的金属化合物,导致在生产过程中沉淀,成分偏析而无法生产。After controlling Fe+Mn*1.5+Cr*2+V*2.5 to be greater than 1.3 and less than 1.6, if it is lower than 1.3, mold sticking will occur during the high-pressure casting process and casting cannot be produced. If it is higher than 1.6, excessive iron, manganese, chromium and vanadium will produce more metal compounds with high melting points and higher than aluminum, resulting in precipitation during the production process, component segregation and inability to produce.
此外,在上述实施例中,所述高压铸造的铝合金中,硅在高压铸造的铝合金中的份额为6.0~7.5重量%,该区间范围内的压铸铝合金属于亚共晶铝合金,在压铸后具有优良的自然时效性和良好的流动性铸件热裂倾向极小。In addition, in the above-mentioned embodiment, in the high-pressure cast aluminum alloy, the proportion of silicon in the high-pressure cast aluminum alloy is 6.0-7.5% by weight. The die-cast aluminum alloy within this range belongs to a hypoeutectic aluminum alloy, which has excellent natural aging and good fluidity after die-casting, and the tendency of castings to hot cracking is extremely small.
加入0.01~0.1重量%的铜、0.02-0.15重量%的锌,铜和锌在铝合金中形成强化相,能提高材料的强度和硬度,但会降低材料的延伸率,限制一定范围主要兼顾材料的延伸率的同时能最大限度的使用再生铝。By adding 0.01-0.1 wt % copper and 0.02-0.15 wt % zinc, copper and zinc form a strengthening phase in the aluminum alloy, which can improve the strength and hardness of the material, but will reduce the elongation of the material. Limiting the elongation of the material to a certain range can maximize the use of recycled aluminum while taking into account the elongation of the material.
尤其是在以上提到的所述高压铸造铝合金中,镁在所述高压铸造铝合金中的份额为0.1~0.4重量%时,镁能够增强合金的强度和硬度,因为铝硅合金中加入少量镁可以形成Mg2Si相,可以随材料性能的实用需求调整镁的具体含量,但镁含量增加的同时会降低延伸率。Especially in the high pressure casting aluminum alloy mentioned above, when the proportion of magnesium in the high pressure casting aluminum alloy is 0.1-0.4 weight %, magnesium can enhance the strength and hardness of the alloy, because adding a small amount of magnesium to the aluminum silicon alloy can form a Mg2Si phase, and the specific content of magnesium can be adjusted according to the practical requirements of material properties, but the elongation will decrease as the magnesium content increases.
据试验得知,每提高0.1%的镁含量,抗拉强度和屈服强度相应增加5Mpa~10Mpa以内,但延伸率会降低1%~2.5%According to the test, for every 0.1% increase in magnesium content, the tensile strength and yield strength will increase by 5Mpa to 10Mpa, but the elongation will decrease by 1% to 2.5%.
钛在铸造铝合金中的份额为0.02~0.1重量%,钛可以以AlTi合金及AlTiB的形式加入,钛与铝生产ALTi3,能起到细化晶粒的效果,但钛含量增加会导致铝液在静止时偏聚沉淀,并且会降低产品的疲劳强度。The proportion of titanium in cast aluminum alloy is 0.02-0.1% by weight. Titanium can be added in the form of AlTi alloy and AlTiB. Titanium and aluminum produce AlTi 3 , which can play a role in refining grains. However, the increase in titanium content will cause aluminum liquid to segregate and precipitate when it is stationary, and will reduce the fatigue strength of the product.
而加入的锶,可对共晶硅的形态进行变质处理,避免了粗大的片状硅相产生。换句话说,加入锶后,能够形成细小的棒状共晶硅组织。由此,变质过后的共晶硅对铸件产品的机械性能影响很大,特别是能大幅提升断裂延伸率。The addition of strontium can modify the morphology of eutectic silicon and avoid the formation of coarse flaky silicon phases. In other words, after adding strontium, fine rod-shaped eutectic silicon structure can be formed. Therefore, the modified eutectic silicon has a great influence on the mechanical properties of casting products, especially it can greatly improve the elongation at break.
根据本发明的另一个方面,本发明提供了一种低碳免热处理高压铸造铝合金的制作方法,其中所述低碳免热处理的高压铸造铝合金的制作方法包括:According to another aspect of the present invention, the present invention provides a method for preparing a low-carbon heat-treatment-free high-pressure casting aluminum alloy, wherein the method for preparing a low-carbon heat-treatment-free high-pressure casting aluminum alloy comprises:
S1,熔化再生铝原料,并控制铝液温度控制在710~730℃之间;S1, melting the recycled aluminum raw material and controlling the aluminum liquid temperature between 710 and 730°C;
S1,按照低碳免热处理的高压铸造铝合金包括的以下组分:S1, according to the low carbon heat-free high pressure casting aluminum alloy including the following components:
6.0~7.5重量%的硅;6.0-7.5 wt% silicon;
0.15~0.3重量%的铁;0.15-0.3 wt.% iron;
0.02~0.1重量%的铜;0.02-0.1 wt. % copper;
0.02~0.15重量%的锌;0.02-0.15 wt. % zinc;
0.4~0.6重量%的锰;0.4-0.6% by weight of manganese;
0.02~0.15重量%的铬;0.02-0.15 wt. % chromium;
0.1~0.4重量%的镁;0.1-0.4 wt% magnesium;
0.02~0.1重量%的钒;0.02-0.1 wt. % vanadium;
0.02~0.1重量%的钛;0.02-0.1 wt.% titanium;
0.01~0.03重量%的镓;0.01-0.03 wt.% gallium;
0.01~0.03重量%的锶;0.01-0.03 wt% strontium;
0.02~0.3重量%的稀土,单个杂质元素最多0.03重量%,其余为铝,其中Fe+Mn*1.5+Cr*2+V*2.5大于1.0,小于1.6;0.02-0.3 wt% rare earth, a single impurity element is at most 0.03 wt%, the rest is aluminum, where Fe+Mn*1.5+Cr*2+V*2.5 is greater than 1.0 and less than 1.6;
加入所述滤液中,并通过升温铝液使加入的组分熔化;adding the components into the filtrate and melting the added components by heating the aluminum liquid;
S2,通过除气机将铝合金无钠精炼剂压入进行精炼,并在精炼时加入含0.01~0.03重量%的锶的铝锶中间合金,并精炼预定时间,以去除铝液中气体;S2, pressing a sodium-free refining agent into the aluminum alloy through a degasser for refining, adding an aluminum-strontium master alloy containing 0.01 to 0.03 weight percent of strontium during refining, and refining for a predetermined time to remove gas from the aluminum liquid;
S3,通过测氢仪检测含气量,并在含气量达到0.15ml/100g以下时,通过铝合金高压铸造设备压铸以形成所述低碳高压铸造免热处理的铝合金。S3, detecting the gas content by a hydrogen meter, and when the gas content reaches below 0.15 ml/100 g, die-casting is performed by an aluminum alloy high-pressure casting device to form the low-carbon high-pressure casting heat-treatment-free aluminum alloy.
优选地,所述高压铸造免热处理的铝合金制作方法包括步骤:Preferably, the method for producing aluminum alloy by high pressure casting without heat treatment comprises the steps of:
S4,备料和炉子清理:根据合金成分比例备料,料备完炉子需要清洗干净。S4, material preparation and furnace cleaning: prepare materials according to the alloy composition ratio, and clean the furnace after material preparation.
值得一提的是,合金元素以纯合金或中间合金形式加入。It is worth mentioning that the alloying elements are added in the form of pure alloys or master alloys.
例如,Cu元素以Al-Cu中间合金形式加入,Si元素以单质3303硅形式加入,Mg元素以纯Mg锭形式加入,Mn元素是以Al-Mn中间合金形式加入,Ti元素以Al-Ti中间合金形式加入,Cr元素以中间合金形式加入,Sr元素以Sr中间合金形式加入,V元素以V中间合金形式加入,稀土元素如镧、铈、钪元素以中间合金形式加入。For example, the Cu element is added in the form of Al-Cu master alloy, the Si element is added in the form of elemental 3303 silicon, the Mg element is added in the form of pure Mg ingot, the Mn element is added in the form of Al-Mn master alloy, the Ti element is added in the form of Al-Ti master alloy, the Cr element is added in the form of a master alloy, the Sr element is added in the form of a Sr master alloy, the V element is added in the form of a V master alloy, and rare earth elements such as lanthanum, cerium, and scandium are added in the form of master alloys.
在熔化铝锭中,再生铝原料表面清洁干净后,将纯铝锭和3303硅放入电阻坩埚内进行加热熔炼,铝液温度控制在710~730℃之间;In the melting aluminum ingot, after the surface of the recycled aluminum raw material is cleaned, the pure aluminum ingot and 3303 silicon are placed in a resistance crucible for heating and melting, and the aluminum liquid temperature is controlled between 710 and 730°C;
在加入中间合金中:待铝液温度达到720℃时,将烘干后的Al-Cu中间合金、镁锭、Al-Ti等其余中间合金加入到铝液中,铝液升温至740℃,保温15分钟,保证加入的中间合金全部熔化;When adding the master alloy: when the temperature of the aluminum liquid reaches 720℃, add the dried Al-Cu master alloy, magnesium ingot, Al-Ti and other master alloys into the aluminum liquid, heat the aluminum liquid to 740℃, and keep it warm for 15 minutes to ensure that all the added master alloys are melted;
在精炼变质除气时,铝液温度降低至710~730℃时,开始用移动式旋转除气机将铝合金无钠精炼剂压入进行精炼,在精炼时加入铝锶中间合金,精炼预定时间。优选为10-30分钟,然后扒渣,静置。如静置1小时,静置后用在线测氢仪检测含气量,达到0.15ml/100g以下时,进行压铸,未达到要求,则继续以上精炼变质除气工艺。During refining, modification and degassing, when the temperature of the aluminum liquid drops to 710-730℃, the aluminum alloy sodium-free refining agent is pressed into the mobile rotary degasser for refining, and the aluminum strontium master alloy is added during refining. The refining time is set. Preferably, it is 10-30 minutes, and then the slag is removed and the mixture is allowed to stand. If the mixture is allowed to stand for 1 hour, the gas content is detected by an online hydrogen meter after standing. If the gas content reaches 0.15ml/100g or less, die casting is performed. If the requirement is not met, the above refining, modification and degassing process is continued.
压铸生产验证:Die casting production verification:
1)生产设备及辅助配件:280T力劲压铸机,自动给汤机,模温机,品牌真空机,市面上压铸结构件专用进口脱模剂,进口颗粒珠,3mm*80mm*250mm自制试片模具(图1),50mm冲头及熔杯;1) Production equipment and auxiliary accessories: 280T LK die-casting machine, automatic ladle feeder, mold temperature controller, brand vacuum machine, imported mold release agent for die-casting structural parts on the market, imported granular beads, 3mm*80mm*250mm self-made test piece mold (Figure 1), 50mm punch and melting cup;
2)压铸工艺控制:压铸铝液温度控制在680-690℃,模温机温度控制在160~170℃,高速速度控制在2.7-2.9m/S,真空度控制在10~40mbar之间,增压压力65Mpa;2) Die-casting process control: The temperature of die-casting aluminum liquid is controlled at 680-690℃, the temperature of the mold temperature controller is controlled at 160~170℃, the high speed is controlled at 2.7-2.9m/S, the vacuum degree is controlled between 10~40mbar, and the boost pressure is 65Mpa;
3)以下为不同成分配比压铸试片按照GBT228标准试片线切割后,用三思拉力机,进口引伸计测试性能。3) The following are the performance tests of die-casting test pieces with different composition ratios after cutting according to GBT228 standard test piece wire using Sansi tensile testing machine and imported extensometer.
通过上述制备工艺制作分别制作了五个实施例的所述高压铸造的铝合金,并对其性能进行检测,具体可见下表1。The high pressure cast aluminum alloys of the five embodiments were respectively manufactured by the above-mentioned preparation process, and their properties were tested, as shown in Table 1 below.
表1Table 1
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的优势已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。It should be understood by those skilled in the art that the embodiments of the present invention described above and shown in the accompanying drawings are only examples and do not limit the present invention. The advantages of the present invention have been fully and effectively achieved. The functional and structural principles of the present invention have been demonstrated and explained in the embodiments, and the embodiments of the present invention may be deformed or modified in any way without departing from the principles.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310072479.9A CN116179903A (en) | 2023-02-07 | 2023-02-07 | Low-carbon heat-free high-pressure cast aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310072479.9A CN116179903A (en) | 2023-02-07 | 2023-02-07 | Low-carbon heat-free high-pressure cast aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116179903A true CN116179903A (en) | 2023-05-30 |
Family
ID=86443799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310072479.9A Pending CN116179903A (en) | 2023-02-07 | 2023-02-07 | Low-carbon heat-free high-pressure cast aluminum alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116179903A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090087341A1 (en) * | 2007-09-29 | 2009-04-02 | Zhou Cai | Reinforced aluminum alloy with high electrical and thermal conductivity and its manufacturing process thereof |
CN102676887A (en) * | 2012-06-11 | 2012-09-19 | 东莞市闻誉实业有限公司 | Aluminum alloy for pressure casting and casting of the aluminum alloy |
US20150190984A1 (en) * | 2014-01-09 | 2015-07-09 | Baker Hughes Incorporated | Degradable metal composites, methods of manufacture, and uses thereof |
WO2016034857A1 (en) * | 2014-09-01 | 2016-03-10 | Brunel University | A casting al-mg-zn-si based aluminium alloy for improved mechanical performance |
CN105695818A (en) * | 2016-03-22 | 2016-06-22 | 杜生龙 | Preparation method of electronic aluminium alloy material |
CN113373352A (en) * | 2021-06-22 | 2021-09-10 | 帅翼驰新材料集团有限公司 | High-pressure cast aluminum alloy and preparation method thereof |
CN115125420A (en) * | 2022-07-06 | 2022-09-30 | 保定市立中车轮制造有限公司 | A kind of cast aluminum alloy for high-performance structural parts without heat treatment and preparation method thereof |
CN115161522A (en) * | 2022-08-09 | 2022-10-11 | 帅翼驰新材料集团有限公司 | High pressure cast aluminum alloy |
CN115233017A (en) * | 2022-08-09 | 2022-10-25 | 帅翼驰新材料集团有限公司 | Method for manufacturing high-pressure cast aluminum alloy |
CN115305392A (en) * | 2022-08-12 | 2022-11-08 | 清华大学 | High-strength and high-toughness die-casting aluminum-silicon alloy and preparation method and application thereof |
-
2023
- 2023-02-07 CN CN202310072479.9A patent/CN116179903A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090087341A1 (en) * | 2007-09-29 | 2009-04-02 | Zhou Cai | Reinforced aluminum alloy with high electrical and thermal conductivity and its manufacturing process thereof |
CN102676887A (en) * | 2012-06-11 | 2012-09-19 | 东莞市闻誉实业有限公司 | Aluminum alloy for pressure casting and casting of the aluminum alloy |
US20150190984A1 (en) * | 2014-01-09 | 2015-07-09 | Baker Hughes Incorporated | Degradable metal composites, methods of manufacture, and uses thereof |
WO2016034857A1 (en) * | 2014-09-01 | 2016-03-10 | Brunel University | A casting al-mg-zn-si based aluminium alloy for improved mechanical performance |
CN105695818A (en) * | 2016-03-22 | 2016-06-22 | 杜生龙 | Preparation method of electronic aluminium alloy material |
CN113373352A (en) * | 2021-06-22 | 2021-09-10 | 帅翼驰新材料集团有限公司 | High-pressure cast aluminum alloy and preparation method thereof |
CN115125420A (en) * | 2022-07-06 | 2022-09-30 | 保定市立中车轮制造有限公司 | A kind of cast aluminum alloy for high-performance structural parts without heat treatment and preparation method thereof |
CN115161522A (en) * | 2022-08-09 | 2022-10-11 | 帅翼驰新材料集团有限公司 | High pressure cast aluminum alloy |
CN115233017A (en) * | 2022-08-09 | 2022-10-25 | 帅翼驰新材料集团有限公司 | Method for manufacturing high-pressure cast aluminum alloy |
CN115305392A (en) * | 2022-08-12 | 2022-11-08 | 清华大学 | High-strength and high-toughness die-casting aluminum-silicon alloy and preparation method and application thereof |
Non-Patent Citations (2)
Title |
---|
张东等: "现代压铸技术概论", 31 July 2022, 机械工业出版社, pages: 22 - 23 * |
张磊: "铸造合金及其熔炼", 30 April 2021, 华中科技大学出版社, pages: 21 - 22 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115287506B (en) | Heat treatment-free high-strength and high-toughness cast aluminum alloy, and preparation method and application thereof | |
CN100519799C (en) | Cerium lanthanum containing high-strength anti-corrosion die-casting magnesium alloy | |
CN105483465B (en) | A kind of die casting Al-Si-Mg cast aluminium alloy golds and preparation method thereof | |
CN100467644C (en) | Composite aluminium alloy for piston and producing process | |
CN113234949B (en) | A kind of method for preparing regenerated deformed aluminum alloy from waste miscellaneous aluminum alloy | |
CN104789824A (en) | Die-casting rare earth aluminum alloy with characteristics of high fluidity and oxidability | |
JP2024546409A (en) | Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method | |
CN111979456B (en) | A kind of Zn-containing medium-strength and high-toughness die-casting aluminum alloy and preparation method thereof | |
CN116200632B (en) | High-strength and high-toughness die-casting aluminum alloy, and preparation method and application thereof | |
CN115074584B (en) | Die-casting aluminum alloy and preparation method thereof | |
CN115233017A (en) | Method for manufacturing high-pressure cast aluminum alloy | |
CN101660074A (en) | Alterant for high-strength aluminum alloy and use method thereof | |
CN114150191B (en) | Non-heat-treated high-toughness die-casting aluminum alloy and preparation method thereof | |
CN114807689A (en) | High-thermal-conductivity regenerated die-casting aluminum alloy material and preparation method thereof | |
CN111926222B (en) | Heat-resistant regenerated die-casting aluminum alloy and preparation method thereof | |
CN107354349A (en) | A kind of tank body material is with high-performance containing nearly cocrystallized Al-Si alloys of Zn and preparation method thereof | |
CN113444929A (en) | Microalloying non-heat treatment high-strength and high-toughness die-casting aluminum alloy and preparation process thereof | |
CN116103543A (en) | A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method | |
CN105401005A (en) | Al-Si alloy material and production method thereof | |
CN115821127A (en) | High pressure cast aluminum alloys with improved performance after baking | |
CN115161522A (en) | High pressure cast aluminum alloy | |
CN1442501A (en) | High purity high strength aluminium alloy | |
CN114574736A (en) | Preparation method of high-strength aluminum alloy and high-strength aluminum alloy | |
CN116179903A (en) | Low-carbon heat-free high-pressure cast aluminum alloy | |
CN112522555A (en) | High-toughness extrusion casting aluminum-silicon alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |