CN116103543A - A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method - Google Patents
A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method Download PDFInfo
- Publication number
- CN116103543A CN116103543A CN202211701401.0A CN202211701401A CN116103543A CN 116103543 A CN116103543 A CN 116103543A CN 202211701401 A CN202211701401 A CN 202211701401A CN 116103543 A CN116103543 A CN 116103543A
- Authority
- CN
- China
- Prior art keywords
- aluminum
- melt
- master alloy
- rare earth
- thermal conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 79
- 238000004512 die casting Methods 0.000 title claims abstract description 51
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 147
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 73
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 73
- 239000000126 substance Substances 0.000 claims abstract description 35
- 238000007670 refining Methods 0.000 claims abstract description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 23
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 19
- CYUOWZRAOZFACA-UHFFFAOYSA-N aluminum iron Chemical compound [Al].[Fe] CYUOWZRAOZFACA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 15
- 238000003723 Smelting Methods 0.000 claims abstract description 13
- 239000002699 waste material Substances 0.000 claims abstract description 13
- 229910052786 argon Inorganic materials 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 135
- 239000000203 mixture Substances 0.000 claims description 70
- 239000000155 melt Substances 0.000 claims description 57
- 238000012360 testing method Methods 0.000 claims description 49
- 239000011777 magnesium Substances 0.000 claims description 28
- 229910052749 magnesium Inorganic materials 0.000 claims description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 22
- 239000010949 copper Substances 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 21
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 19
- 239000002893 slag Substances 0.000 claims description 19
- YNDGDLJDSBUSEI-UHFFFAOYSA-N aluminum strontium Chemical compound [Al].[Sr] YNDGDLJDSBUSEI-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 14
- -1 aluminum-manganese Chemical compound 0.000 claims description 14
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 13
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 13
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims description 12
- QQHSIRTYSFLSRM-UHFFFAOYSA-N alumanylidynechromium Chemical compound [Al].[Cr] QQHSIRTYSFLSRM-UHFFFAOYSA-N 0.000 claims description 12
- HIPVTVNIGFETDW-UHFFFAOYSA-N aluminum cerium Chemical compound [Al].[Ce] HIPVTVNIGFETDW-UHFFFAOYSA-N 0.000 claims description 12
- ZWOQODLNWUDJFT-UHFFFAOYSA-N aluminum lanthanum Chemical compound [Al].[La] ZWOQODLNWUDJFT-UHFFFAOYSA-N 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 10
- 239000011701 zinc Substances 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 239000011572 manganese Substances 0.000 claims description 9
- 229910052793 cadmium Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000011651 chromium Substances 0.000 claims description 8
- 229910052745 lead Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 7
- 239000013589 supplement Substances 0.000 claims description 7
- 241001062472 Stokellia anisodon Species 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract description 8
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract 1
- 238000004134 energy conservation Methods 0.000 abstract 1
- 239000012856 weighed raw material Substances 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于铝合金材料与锻造技术领域,特别涉及一种含有稀土元素的再生高导热压铸铝合金及其制备方法。The invention belongs to the technical field of aluminum alloy materials and forging, in particular to a regenerated high thermal conductivity die-casting aluminum alloy containing rare earth elements and a preparation method thereof.
背景技术Background technique
铝从矿石到成金属,再到制成品成本极高、耗能巨大,仅电解一道工序生产一吨金属铝就需13000-15000度电。而由废弃铝合金、铝屑再生再用则能使能耗辅料消耗大大降低,节约资源成本。因此,废弃铝合金的回收与再利用,无论从节约资源、能源、成本,缩短生产流程周期,还是从环境保护、改善人类生态环境等各方面都具有十分巨大的意义。The cost of aluminum from ore to metal, and then to finished products is extremely high and consumes a lot of energy. Only one process of electrolysis to produce one ton of metal aluminum requires 13,000-15,000 kilowatt-hours of electricity. The recycling of waste aluminum alloys and aluminum shavings can greatly reduce the consumption of energy and auxiliary materials and save resource costs. Therefore, the recycling and reuse of waste aluminum alloys is of great significance in terms of saving resources, energy, and costs, shortening the production process cycle, environmental protection, and improving the human ecological environment.
铝及其合金由于重量较轻,导热率较高,成型性与耐腐蚀性好,以及成本低廉而成为目前使用最广泛的散热器材料。压铸(Die Casting或High Pressure Die Casting)技术因其较高的生产效率,及可生产薄壁复杂形状工件等特点而广泛用于铝合金散热器制造,目前LED灯、电子器件、通信设备的散热器大多使用压铸工艺生产。压铸工艺是通过压铸机对熔化的铝合金熔体施加较高的压力,使熔体形成压射流进入并充满钢铁模具型腔,凝固后形成一定形状的铝合金铸件。因钢铁模具要同时承受高温铝合金熔体的热冲击及高压铝合金流体的冲刷与摩擦,使得压铸过程中会发生铝合金“粘黏”在钢铁模具表面的现象,通常称之为“粘模”。在铝合金中添加一定量的铁(Fe)元素可降低铝合金熔体在压铸过程中的“粘模”倾向。Aluminum and its alloys are currently the most widely used radiator materials due to their light weight, high thermal conductivity, good formability and corrosion resistance, and low cost. Die Casting (Die Casting or High Pressure Die Casting) technology is widely used in the manufacture of aluminum alloy radiators due to its high production efficiency and the ability to produce thin-walled and complex-shaped workpieces. At present, the heat dissipation of LED lights, electronic devices, and communication equipment Devices are mostly produced using the die-casting process. The die-casting process is to apply high pressure to the molten aluminum alloy melt through the die-casting machine, so that the melt forms a pressure jet and enters and fills the cavity of the steel mold, and forms an aluminum alloy casting of a certain shape after solidification. Because the steel mold has to bear the thermal shock of the high-temperature aluminum alloy melt and the scour and friction of the high-pressure aluminum alloy fluid, the phenomenon that the aluminum alloy "sticks" to the surface of the steel mold will occur during the die-casting process, which is usually called "sticking mold". ". Adding a certain amount of iron (Fe) element to aluminum alloy can reduce the "sticking" tendency of aluminum alloy melt during die casting.
但过高的铁含量会在凝固后的铝合金内部形成针片状的富铁相,对铝合金基体产生“割裂”作用,降低铝合金压铸件的强度与塑性。通常废铝中会不可避免的含有一定量的钢铁,使得废铝生产的再生铝通常铁含量较高,且再生铝中铁元素的净化与去除较困难,在高强高韧铝合金材料中的应用具有一定的限制。但再生铝中较高的铁元素对于压铸铝合金来说则是有益的。利用废铝再生铝中铁含量较高的这一特点,可以利用再生铝来生产散热器用的高导热压铸铝合金材料。However, an excessively high iron content will form a needle-like iron-rich phase inside the solidified aluminum alloy, which will have a "splitting" effect on the aluminum alloy matrix and reduce the strength and plasticity of the aluminum alloy die-casting. Generally, scrap aluminum will inevitably contain a certain amount of iron and steel, so that the recycled aluminum produced from scrap aluminum usually has a high iron content, and the purification and removal of iron elements in recycled aluminum is difficult. The application in high-strength and high-toughness aluminum alloy materials has great potential Certain restrictions. However, the higher iron element in recycled aluminum is beneficial for die-casting aluminum alloys. Utilizing the characteristic of high iron content in recycled aluminum from waste aluminum, recycled aluminum can be used to produce high thermal conductivity die-casting aluminum alloy materials for radiators.
发明内容Contents of the invention
针对目前废铝再利用存在的利用率低的问题,本发明提供一种含有稀土元素的再生高导热压铸铝合金及其制备方法,通过合理设计合金成分,利用废铝为原料,适量添加稀土元素镧、铈,开发出一种铸造性能优秀,兼具高导热性与优秀力学性能的压铸铝合金材料,为废铝的再利用提供了新途径。Aiming at the problem of low utilization rate existing in the current recycling of waste aluminum, the present invention provides a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and a preparation method thereof. By rationally designing the alloy composition, using waste aluminum as a raw material, an appropriate amount of rare earth elements is added Lanthanum and cerium have developed a die-casting aluminum alloy material with excellent casting performance, high thermal conductivity and excellent mechanical properties, which provides a new way for the reuse of waste aluminum.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 9.0%~12.0%、Fe 0.6%~1.2%、Cu 0.5%~3.0%、Mg 0.1%~1.0%、Zn 0.1%~1.0%、Mn 0.05%~0.4%、Cr 0.03%~0.2%、Ti 0.05%~0.2%、Ni 0.05%~0.2%、Sn≤0.05%、Zr≤0.05%、V≤0.05%、Cd≤0.01%、Pb≤0.01%、Sr 0.01%~0.1%、La 0.03%~0.3%、Ce 0.03%~0.3%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。A recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements, its chemical composition and the mass percentage of each chemical composition are as follows: Si 9.0%-12.0%, Fe 0.6%-1.2%, Cu 0.5%-3.0%, Mg 0.1%- 1.0%, Zn 0.1%~1.0%, Mn 0.05%~0.4%, Cr 0.03%~0.2%, Ti 0.05%~0.2%, Ni 0.05%~0.2%, Sn≤0.05%, Zr≤0.05%, V≤ 0.05%, Cd≤0.01%, Pb≤0.01%, Sr 0.01%~0.1%, La 0.03%~0.3%, Ce 0.03%~0.3%, other single impurity content ≤0.03%, total impurity content ≤0.15%, other The amount is aluminum.
优选的,所述的含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 9.5%~11.0%、Fe 0.8%~1.1%、Cu 0.8%~1.8%、Mg 0.4%~0.8%、Zn 0.2%~0.6%、Mn 0.1%~0.25%、Cr 0.06%~0.12%、Ti 0.06%~0.12%、Ni 0.06%~0.12%、Sn≤0.03%、Zr≤0.03%、V≤0.03%、Cd≤0.005%、Pb≤0.005%、Sr 0.01%~0.05%、La 0.06%~0.15%、Ce 0.06%~0.15%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。Preferably, the chemical composition and the mass percentage of each chemical composition of the recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements are as follows: Si 9.5%-11.0%, Fe 0.8%-1.1%, Cu 0.8%-1.8%, Mg 0.4%~0.8%, Zn 0.2%~0.6%, Mn 0.1%~0.25%, Cr 0.06%~0.12%, Ti 0.06%~0.12%, Ni 0.06%~0.12%, Sn≤0.03%, Zr≤0.03 %, V≤0.03%, Cd≤0.005%, Pb≤0.005%, Sr 0.01%~0.05%, La 0.06%~0.15%, Ce 0.06%~0.15%, other single impurity content ≤0.03%, total impurity content ≤ 0.15%, the balance is aluminum.
同时,本发明还提供了所述的含有稀土元素的再生高导热压铸铝合金的制备方法,包括以下步骤:At the same time, the present invention also provides a method for preparing the regenerated high thermal conductivity die-casting aluminum alloy containing rare earth elements, comprising the following steps:
(1)对回收的废铝进行化学成分检测,根据其主要化学成分将其进行分类,根据目标合金的化学成分进行计算,计算出废铝的用量,随后按比例称量废铝、纯铝锭、铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金、镁锭、铝锶中间合金;(1) Test the chemical composition of the recovered aluminum scrap, classify it according to its main chemical composition, calculate the chemical composition of the target alloy, calculate the amount of scrap aluminum, and then weigh the scrap aluminum and pure aluminum ingots in proportion , aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy, aluminum-lanthanum master alloy, aluminum-cerium master alloy, magnesium ingot, Aluminum strontium master alloy;
(2)将称量好的废铝、纯铝锭以及铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金装入熔炼炉中,升温熔炼炉料,熔化后进行机械搅拌15~30分钟,随后静置,进行第一次扒渣,得到熔体Ⅰ,并对熔体Ⅰ取样进行第一次成分检测;(2) Put the weighed aluminum scrap, pure aluminum ingot, aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy , aluminum-lanthanum master alloy, and aluminum-cerium master alloy are put into a smelting furnace, and the furnace charge is heated up to smelt. After melting, it is mechanically stirred for 15 to 30 minutes, then left to stand, and the slag is removed for the first time to obtain melt I, and the melt is Ⅰ Sampling for the first component testing;
(3)根据熔体Ⅰ的成分检测结果,补充含量不足的元素原料,待添加的炉料完全熔化后进行机械搅拌15~30分钟,随后静置,进行第二次扒渣,得到熔体Ⅱ,并对熔体Ⅱ取样进行第二次成分检测;(3) According to the composition test results of the melt I, supplement the elemental raw materials with insufficient content, mechanically stir for 15 to 30 minutes after the added charge is completely melted, then stand still, and carry out the second slag removal to obtain the melt II, And take a sample of the melt II for the second component detection;
(4)若第二次成分检测不合格,则继续步骤(3)操作直到熔体Ⅱ的成分合格;若第二次成分检测合格,则将熔体Ⅱ降温,添加镁锭与铝锶中间合金,镁锭与铝锶中间合金需压入熔体Ⅱ内部进行熔炼使其熔化,进行机械搅拌,随后静置,取样进行第三次成分检测,若第三次检测结果符合要求,则得到的熔体Ⅲ进行下一步精炼操作;若第三次检测结果不符合要求,则补充所缺少的元素直至合格,得到熔体Ⅲ;(4) If the second composition test is unqualified, continue to step (3) until the composition of the melt II is qualified; if the second composition test is qualified, then cool down the melt II and add magnesium ingots and aluminum-strontium master alloys , magnesium ingots and aluminum-strontium intermediate alloys need to be pressed into the melt II for melting to melt, then mechanically stirred, then left to stand, and samples are taken for the third composition test. If the third test result meets the requirements, the obtained melt Melt III for the next step of refining operation; if the third test result does not meet the requirements, supplement the missing elements until it is qualified to obtain melt III;
(5)对熔体Ⅲ进行精炼,向熔体Ⅲ内通入氩气,通气时间为15~30 min;(5) Refining the melt Ⅲ, passing argon gas into the melt Ⅲ, the ventilation time is 15-30 min;
(6)精炼结束后静置15~20 min,进行最终扒渣,随后浇铸成锭,浇铸温度为690~710℃,得到含有稀土元素的再生高导热压铸铝合金。(6) Stand still for 15 to 20 minutes after refining, carry out final slag removal, and then cast into ingots at a casting temperature of 690 to 710°C to obtain a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements.
本发明利用稀土元素对铝合金熔体的净化、晶粒细化与变质作用,通过添加适量低值稀土元素镧、铈改善铝合金性能,制备利用废铝为原料的含有稀土元素的再生高导热压铸铝合金材料。The invention uses rare earth elements to purify, grain refine and modify the aluminum alloy melt, and improves the performance of the aluminum alloy by adding an appropriate amount of low-value rare earth elements lanthanum and cerium, and prepares a regenerated high thermal conductivity material containing rare earth elements using waste aluminum as a raw material. Die-cast aluminum alloy material.
稀土元素元素镧(La)、铈(Ce)对铝合金具有净化作用,主要是元素镧(La)、铈(Ce)能够与铝合金熔体中的氢(H)元素结合,降低熔体中的游离氢含量,同时与熔体中的夹杂物结合,形成复杂的化合物,通过静置可下沉至熔炼炉底部,与铝合金熔体分离。此外,稀土元素镧(La)、铈(Ce)在铝合金体系中可形成一类金属间化合物,如Al11La3、Al11Ce3,具有熔点高、热稳定性高等特点,在铝合金的凝固过程中可作为α-Al的形核核心,促进α-Al晶粒形核率,起到细化晶粒的效果。稀土元素元素镧(La)、铈(Ce)在Al-Si系压铸铝合金的凝固过程中,可在共晶硅(Si)与铝熔体的“固-液”界面富集,一定程度上阻碍Si沿特殊晶向生长,达到细化与改善共晶Si形态的效果。La、Ce元素在压铸铝合金的凝固过程中可有效地改变富Fe相的结晶动力学,从而将其由针片状转变为较细小的鱼骨状、汉字状或短棒状,提高合金的塑性。The rare earth elements lanthanum (La) and cerium (Ce) have a purifying effect on aluminum alloys, mainly because the elements lanthanum (La) and cerium (Ce) can combine with hydrogen (H) elements in the aluminum alloy melt to reduce the At the same time, it combines with the inclusions in the melt to form a complex compound, which can sink to the bottom of the melting furnace after standing still and separate from the aluminum alloy melt. In addition, rare earth elements lanthanum (La) and cerium (Ce) can form a class of intermetallic compounds in the aluminum alloy system, such as Al 11 La 3 , Al 11 Ce 3 , which have the characteristics of high melting point and high thermal stability. During the solidification process, it can be used as the nucleation core of α-Al, promote the nucleation rate of α-Al grains, and have the effect of refining grains. Rare earth elements lanthanum (La) and cerium (Ce) can be enriched at the "solid-liquid" interface between eutectic silicon (Si) and aluminum melt during the solidification process of Al-Si series die-casting aluminum alloys. It hinders the growth of Si along a special crystal direction, and achieves the effect of refining and improving the shape of eutectic Si. La and Ce elements can effectively change the crystallization kinetics of the Fe-rich phase during the solidification process of the die-casting aluminum alloy, thereby changing it from a needle-like shape to a smaller fishbone shape, Chinese character shape or short rod shape, improving the plasticity of the alloy .
稀土元素La、Ce在铝合金中具有“固氢”的作用,主要表现在两个方面,一是La、Ce元素较活泼,与H有较大的亲和力,可与氢生成稳定的高熔点化合物LaH2或CeH2,将游离态氢转变为化合态;另一方面,某些富La或Ce的金属间化合物相能够化学吸附部分氢,将游离态氢转化为吸附态。La、Ce具有的以上两方面作用可有效地减少游离态的氢,从而在凝固过程中抑制氢气形成,减少铸态下氢气逸出的可能,减少合金铸态气孔。最后这些稀土氢化物可通过静置或其他手段与熔体分离,这种行为通常被称为“固氢”作用。Rare earth elements La and Ce have the function of "fixing hydrogen" in aluminum alloys, which is mainly manifested in two aspects. One is that La and Ce elements are relatively active and have a greater affinity with H, and can form stable high-melting point compounds with hydrogen. LaH 2 or CeH 2 convert free hydrogen into a combined state; on the other hand, some La or Ce-rich intermetallic compound phases can chemisorb part of hydrogen and convert free hydrogen into an adsorbed state. The above two effects of La and Ce can effectively reduce free hydrogen, thereby inhibiting the formation of hydrogen during solidification, reducing the possibility of hydrogen escape in the as-cast state, and reducing the porosity of the alloy in the as-cast state. Finally, these rare earth hydrides can be separated from the melt by standing or other means, this behavior is usually called "hydrogen fixation" effect.
铝合金熔体中的夹杂主要是Al2O3,会降低铝合金性能。La、Ce可与铝合金熔体内部的Al2O3夹杂物反应,形成某种RE-Al-O的多元相物质,这些物质密度较铝熔体大,静置可使其下沉至坩埚底部,实现夹杂物分离。The inclusions in the aluminum alloy melt are mainly Al 2 O 3 , which will reduce the performance of the aluminum alloy. La and Ce can react with the Al 2 O 3 inclusions in the aluminum alloy melt to form a multi-phase material of RE-Al-O, which is denser than the aluminum melt and can sink to the crucible when left standing Bottom, achieve separation of inclusions.
优选的,步骤(1)中废铝占原料总重量的30%~40%。Preferably, aluminum scrap accounts for 30% to 40% of the total weight of raw materials in step (1).
优选的,制备得到的含有稀土元素的再生高导热压铸铝合金的热导率不低于140W/mK,抗拉强度不低于240MPa,延伸率不低于4.5%。Preferably, the thermal conductivity of the prepared recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements is not lower than 140W/mK, the tensile strength is not lower than 240MPa, and the elongation is not lower than 4.5%.
优选的,步骤(2)的熔化温度为720~760℃。Preferably, the melting temperature of step (2) is 720-760°C.
优选的,步骤(3)的熔炼温度为720~760℃。Preferably, the melting temperature in step (3) is 720-760°C.
优选的,步骤(4)的熔炼温度为700~740℃。Preferably, the melting temperature in step (4) is 700-740°C.
优选的,步骤(5)的精炼温度为700~740℃。Preferably, the refining temperature in step (5) is 700-740°C.
优选的,步骤(6)的氩气为99.99%的高纯度氩气,保证熔体内部的氧化物夹杂与其他杂质能够最大限度的去除。Preferably, the argon gas used in step (6) is 99.99% high-purity argon gas, so as to ensure that oxide inclusions and other impurities inside the melt can be removed to the greatest extent.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1.本发明利用废铝铁含量较高的特点,以废铝为原料制备可再生且具有高导热性能的铝合金材料,降低原料中纯铝锭的用量,从而达到节能减排,控制成本的目的。1. The present invention utilizes the characteristics of high content of waste aluminum and iron, and uses waste aluminum as raw material to prepare renewable aluminum alloy materials with high thermal conductivity, reducing the amount of pure aluminum ingots in raw materials, thereby achieving energy saving and emission reduction, and cost control Purpose.
2.本发明利用稀土元素La、Ce对铝合金具有“固氢”、促进α-Al晶粒形核率和细化共晶Si形态的作用,通过添加适量低值稀土元素镧、铈改善铝合金性能,使所制备的铝合金材料具有较高的热导率与力学性能,适应铝合金散热器压铸生产的需要。2. The present invention utilizes rare earth elements La and Ce to have the effect of "fixing hydrogen" on aluminum alloys, promoting the nucleation rate of α-Al grains and refining the eutectic Si morphology, and improving the aluminum alloy by adding an appropriate amount of low-value rare earth elements lanthanum and cerium. The properties of the alloy make the prepared aluminum alloy material have high thermal conductivity and mechanical properties, which meet the needs of die-casting production of aluminum alloy radiators.
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific examples.
实施例1Example 1
一种含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 10.2%、Fe 0.89%、Cu 0.92%、Mg 0.46%、Zn 0.53%、Mn 0.13%、Cr 0.08%、Ti0.09%、Ni 0.06%、Sn 0.01%、Zr 0.01%、V 0.005%、Cd 0.004%、Pb 0.004%、Sr 0.02%、La0.12%、Ce 0.10%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。A recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements, its chemical composition and the mass percentage of each chemical composition are as follows: Si 10.2%, Fe 0.89%, Cu 0.92%, Mg 0.46%, Zn 0.53%, Mn 0.13%, Cr 0.08%, Ti0.09%, Ni 0.06%, Sn 0.01%, Zr 0.01%, V 0.005%, Cd 0.004%, Pb 0.004%, Sr 0.02%, La0.12%, Ce 0.10%, other single impurity content ≤ 0.03%, the total impurity content is ≤0.15%, and the balance is aluminum.
其制备方法,包括以下步骤:Its preparation method comprises the following steps:
(1)对回收的废铝进行化学成分检测,根据其主要化学成分将其进行分类,根据目标合金的化学成分进行计算,计算出废铝的用量,随后按比例称量废铝、纯铝锭、铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金、镁锭、铝锶中间合金;(1) Test the chemical composition of the recovered aluminum scrap, classify it according to its main chemical composition, calculate the chemical composition of the target alloy, calculate the amount of scrap aluminum, and then weigh the scrap aluminum and pure aluminum ingots in proportion , aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy, aluminum-lanthanum master alloy, aluminum-cerium master alloy, magnesium ingot, Aluminum strontium master alloy;
(2)将称量好的废铝、纯铝锭以及铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金装入熔炼炉中,升温至740℃熔炼炉料,熔化后进行机械搅拌30分钟,随后静置,进行第一次扒渣,得到熔体Ⅰ,并对熔体Ⅰ取样进行第一次成分检测;(2) Put the weighed aluminum scrap, pure aluminum ingot, aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy , aluminum-lanthanum master alloy, and aluminum-cerium master alloy are put into a smelting furnace, heated to 740°C to smelt the charge, and mechanically stirred for 30 minutes after melting, then left to stand for the first slag removal to obtain melt I, and the melt Body I was sampled for the first component detection;
(3)根据熔体Ⅰ的成分检测结果,补充含量不足的元素原料,待添加的炉料在740℃下完全熔化后进行机械搅拌30分钟,随后静置,进行第二次扒渣,得到熔体Ⅱ,并对熔体Ⅱ取样进行第二次成分检测;(3) According to the composition test results of the melt Ⅰ, the elemental raw materials with insufficient content are supplemented, and the charge to be added is completely melted at 740°C, then mechanically stirred for 30 minutes, then left to stand, and the slag is removed for the second time to obtain a melt Ⅱ, and take a sample of the melt Ⅱ for the second component detection;
(4)若第二次成分检测不合格,则继续步骤(3)操作直到熔体Ⅱ的成分合格;若第二次成分检测合格,则将熔体Ⅱ降温至700℃,添加镁锭与铝锶中间合金,镁锭与铝锶中间合金需压入熔体Ⅱ内部进行熔炼使其熔化,进行机械搅拌,随后静置,取样进行第三次成分检测,若第三次检测结果符合要求,则进行下一步精炼操作;若第三次检测结果不符合要求,则需补充所缺少的元素直至合格,得到熔体Ⅲ;(4) If the second composition test is unqualified, continue to step (3) until the composition of the melt II is qualified; if the second composition test is qualified, then cool the melt II to 700°C, add magnesium ingots and aluminum Strontium master alloys, magnesium ingots and aluminum strontium master alloys need to be pressed into the melt II to be smelted to melt them, mechanically stirred, then left to stand, and samples are taken for the third composition test. If the third test results meet the requirements, then Carry out the next step of refining operation; if the third test result does not meet the requirements, it is necessary to supplement the missing elements until it is qualified to obtain melt III;
(5)对熔体Ⅲ进行精炼,向熔体Ⅲ内通入99.99%的高纯氩气,通气时间为30 min;(5) Refining the melt III, passing 99.99% high-purity argon gas into the melt III for 30 minutes;
(6)精炼结束后静置20 min,进行最终扒渣,随后浇铸成锭,浇铸温度为700℃,得到含有稀土元素的再生高导热压铸铝合金。(6) Stand still for 20 min after refining, carry out final slag removal, and then cast into ingots at a casting temperature of 700 °C to obtain a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements.
实施例2Example 2
一种含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 9.8%、Fe 1.05 %、Cu 1.52%、Mg 0.54%、Zn 0.48%、Mn 0.21%、Cr 0.12%、Ti0.08%、Ni 0.10%、Sn 0.01%、Zr 0.01%、V 0.005%、Cd 0.004%、Pb 0.004%、Sr 0.03%、La0.11%、Ce 0.14%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。A recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements, its chemical composition and the mass percentage of each chemical composition are as follows: Si 9.8%, Fe 1.05%, Cu 1.52%, Mg 0.54%, Zn 0.48%, Mn 0.21%, Cr 0.12%, Ti0.08%, Ni 0.10%, Sn 0.01%, Zr 0.01%, V 0.005%, Cd 0.004%, Pb 0.004%, Sr 0.03%, La0.11%, Ce 0.14%, other single impurity content≤ 0.03%, the total impurity content is ≤0.15%, and the balance is aluminum.
其制备方法,包括以下步骤:Its preparation method comprises the following steps:
(1)对回收的废铝进行化学成分检测,根据其主要化学成分将其进行分类,根据目标合金的化学成分进行计算,计算出废铝的用量,随后按比例称量废铝、纯铝锭、铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金、镁锭、铝锶中间合金;(1) Test the chemical composition of the recovered aluminum scrap, classify it according to its main chemical composition, calculate the chemical composition of the target alloy, calculate the amount of scrap aluminum, and then weigh the scrap aluminum and pure aluminum ingots in proportion , aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy, aluminum-lanthanum master alloy, aluminum-cerium master alloy, magnesium ingot, Aluminum strontium master alloy;
(2)将称量好的废铝、纯铝锭以及铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金装入熔炼炉中,升温至736℃熔炼炉料,熔化后进行机械搅拌30分钟,随后静置,进行第一次扒渣,得到熔体Ⅰ,并对熔体Ⅰ取样进行第一次成分检测;(2) Put the weighed aluminum scrap, pure aluminum ingot, aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy , aluminum-lanthanum master alloy, and aluminum-cerium master alloy are put into a smelting furnace, heated to 736°C to smelt the charge, and mechanically stirred for 30 minutes after melting, then left to stand for the first slag removal to obtain melt I, and to melt Body I was sampled for the first component detection;
(3)根据熔体Ⅰ的成分检测结果,补充含量不足的元素原料,待添加的炉料在736℃下完全熔化后进行机械搅拌30分钟,随后静置,进行第二次扒渣,得到熔体Ⅱ,并对熔体Ⅱ取样进行第二次成分检测;(3) According to the composition test results of the melt Ⅰ, the elemental raw materials with insufficient content are supplemented, and the charge to be added is completely melted at 736°C, then mechanically stirred for 30 minutes, then left to stand, and the slag is removed for the second time to obtain the melt Ⅱ, and take a sample of the melt Ⅱ for the second component detection;
(4)若第二次成分检测不合格,则继续步骤(3)操作直到熔体Ⅱ的成分合格;若第二次成分检测合格,则将熔体Ⅱ降温至713℃,添加镁锭与铝锶中间合金,镁锭与铝锶中间合金需压入熔体Ⅱ内部进行熔炼使其熔化,进行机械搅拌,随后静置,取样进行第三次成分检测,若第三次成分检测结果符合要求,则进行下一步精炼操作,若第三次成分检测结果不符合要求,则需补充所缺少的元素直至合格,得到熔体Ⅲ;(4) If the second composition test is unqualified, continue to step (3) until the composition of the melt II is qualified; if the second composition test is qualified, then cool the melt II to 713°C, add magnesium ingots and aluminum Strontium master alloys, magnesium ingots and aluminum strontium master alloys need to be pressed into the melt II for smelting to melt them, mechanically stirred, then left to stand, and samples are taken for the third composition test. If the third composition test results meet the requirements, Then proceed to the next step of refining operation, if the result of the third component test does not meet the requirements, it is necessary to supplement the missing elements until it is qualified, and obtain the melt III;
(5)对熔体Ⅲ进行精炼,向熔体Ⅲ内通入99.99%的高纯氩气,通气时间为30 min;(5) Refining the melt III, passing 99.99% high-purity argon gas into the melt III for 30 minutes;
(6)精炼结束后静置20 min,进行最终扒渣,随后浇铸成锭,浇铸温度为704℃,得到含有稀土元素的再生高导热压铸铝合金。(6) Stand still for 20 minutes after refining, carry out final slag removal, and then cast into ingots at a casting temperature of 704°C to obtain a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements.
实施例3Example 3
一种含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 10.9%、Fe 1.12 %、Cu 1.67%、Mg 0.69%、Zn 0.56%、Mn 0.18%、Cr 0.10%、Ti0.11%、Ni 0.06%、Sn 0.01%、Zr 0.01%、V 0.005%、Cd 0.004%、Pb 0.004%、Sr 0.02%、La0.09%、Ce 0.14%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。A recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements, its chemical composition and the mass percentage of each chemical composition are as follows: Si 10.9%, Fe 1.12%, Cu 1.67%, Mg 0.69%, Zn 0.56%, Mn 0.18%, Cr 0.10%, Ti0.11%, Ni 0.06%, Sn 0.01%, Zr 0.01%, V 0.005%, Cd 0.004%, Pb 0.004%, Sr 0.02%, La0.09%, Ce 0.14%, other single impurity content≤ 0.03%, the total impurity content is ≤0.15%, and the balance is aluminum.
其制备方法,包括以下步骤:Its preparation method comprises the following steps:
(1)对回收的废铝进行化学成分检测,根据其主要化学成分将其进行分类,根据目标合金的化学成分进行计算,计算出废铝的用量,随后按比例称量废铝、纯铝锭、铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金、镁锭、铝锶中间合金;(1) Test the chemical composition of the recovered aluminum scrap, classify it according to its main chemical composition, calculate the chemical composition of the target alloy, calculate the amount of scrap aluminum, and then weigh the scrap aluminum and pure aluminum ingots in proportion , aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy, aluminum-lanthanum master alloy, aluminum-cerium master alloy, magnesium ingot, Aluminum strontium master alloy;
(2)将称量好的废铝、纯铝锭以及铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金装入熔炼炉中,升温至728℃熔炼炉料,熔化后进行机械搅拌30分钟,随后静置,进行第一次扒渣,得到熔体Ⅰ,并对熔体Ⅰ取样进行第一次成分检测;(2) Put the weighed aluminum scrap, pure aluminum ingot, aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy , aluminum-lanthanum master alloy, and aluminum-cerium master alloy are put into a smelting furnace, heated to 728°C to smelt the charge, and mechanically stirred for 30 minutes after melting, then left to stand for the first slag removal to obtain melt I, and Body I was sampled for the first component detection;
(3)根据熔体Ⅰ的成分检测结果,补充含量不足的元素原料,待添加的炉料在728℃下完全熔化后进行机械搅拌30分钟,随后静置,进行第二次扒渣,得到熔体Ⅱ,并对熔体Ⅱ取样进行第二次成分检测;(3) According to the composition test results of the melt Ⅰ, the elemental raw materials with insufficient content are supplemented, and the charge to be added is completely melted at 728°C, then mechanically stirred for 30 minutes, then left to stand, and the slag is removed for the second time to obtain the melt Ⅱ, and take a sample of the melt Ⅱ for the second component detection;
(4)若第二次成分检测不合格,则继续步骤(3)操作直到熔体Ⅱ的成分合格;若第二次成分检测合格,则将熔体Ⅱ降温至715℃,添加镁锭与铝锶中间合金,镁锭与铝锶中间合金需压入熔体Ⅱ内部进行熔炼使其熔化,进行机械搅拌,随后静置,取样进行第三次成分检测,若第三次成分检测结果符合要求,则进行下一步精炼操作;若第三次成分检测结果不符合要求,则需补充所缺少的元素直至合格,得到熔体Ⅲ;(4) If the second composition test is unqualified, continue to step (3) until the composition of the melt II is qualified; if the second composition test is qualified, then cool the melt II to 715°C, add magnesium ingots and aluminum Strontium master alloys, magnesium ingots and aluminum strontium master alloys need to be pressed into the melt II for smelting to melt them, mechanically stirred, then left to stand, and samples are taken for the third composition test. If the third composition test results meet the requirements, Then proceed to the next step of refining operation; if the result of the third component test does not meet the requirements, it is necessary to supplement the missing elements until it is qualified to obtain the melt III;
(5)对熔体Ⅲ进行精炼,向熔体Ⅲ内通入99.99%的高纯氩气,通气时间为30 min;(5) Refining the melt III, passing 99.99% high-purity argon gas into the melt III for 30 minutes;
(6)精炼结束后静置20 min,进行最终扒渣,随后浇铸成锭,浇铸温度为705℃,得到含有稀土元素的再生高导热压铸铝合金。(6) Stand still for 20 minutes after refining, carry out final slag removal, and then cast into ingots at a casting temperature of 705°C to obtain a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements.
实施例4Example 4
一种含有稀土元素的再生高导热压铸铝合金,其化学成分及各化学成分的质量百分数如下:Si 10.3%、Fe 1.21 %、Cu 1.09%、Mg 0.48%、Zn 0.43%、Mn 0.14%、Cr 0.11%、Ti0.10%、Ni 0.09%、Sn 0.01%、Zr 0.01%、V 0.005%、Cd 0.004%、Pb 0.004%、Sr 0.02%、La0.09%、Ce 0.14%,其余单个杂质含量≤0.03%,总杂质含量≤0.15%,余量为铝。A recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements, its chemical composition and the mass percentage of each chemical composition are as follows: Si 10.3%, Fe 1.21%, Cu 1.09%, Mg 0.48%, Zn 0.43%, Mn 0.14%, Cr 0.11%, Ti0.10%, Ni 0.09%, Sn 0.01%, Zr 0.01%, V 0.005%, Cd 0.004%, Pb 0.004%, Sr 0.02%, La0.09%, Ce 0.14%, other single impurity content ≤ 0.03%, the total impurity content is ≤0.15%, and the balance is aluminum.
其制备方法,包括以下步骤:Its preparation method comprises the following steps:
(1)对回收的废铝进行化学成分检测,根据其主要化学成分将其进行分类,根据目标合金的化学成分进行计算,计算出废铝的用量,随后按比例称量废铝、纯铝锭、铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金、镁锭、铝锶中间合金;(1) Test the chemical composition of the recovered aluminum scrap, classify it according to its main chemical composition, calculate the chemical composition of the target alloy, calculate the amount of scrap aluminum, and then weigh the scrap aluminum and pure aluminum ingots in proportion , aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy, aluminum-lanthanum master alloy, aluminum-cerium master alloy, magnesium ingot, Aluminum strontium master alloy;
(2)将称量好的废铝、纯铝锭以及铝硅中间合金、铝铁中间合金、纯铜、锌锭、铝锰中间合金、铝钛中间合金、铝铬中间合金、铝镍中间合金、铝镧中间合金、铝铈中间合金装入熔炼炉中,升温至748℃熔炼炉料,熔化后进行机械搅拌30分钟,随后静置,进行第一次扒渣,得到熔体Ⅰ,并对熔体Ⅰ取样进行第一次成分检测;(2) Put the weighed aluminum scrap, pure aluminum ingot, aluminum-silicon master alloy, aluminum-iron master alloy, pure copper, zinc ingot, aluminum-manganese master alloy, aluminum-titanium master alloy, aluminum-chromium master alloy, aluminum-nickel master alloy , aluminum-lanthanum master alloy, and aluminum-cerium master alloy are put into a smelting furnace, heated to 748°C to smelt the charge, and mechanically stirred for 30 minutes after melting, then left to stand for the first slag removal to obtain melt I, and to melt Body I was sampled for the first component detection;
(3)根据熔体Ⅰ的成分检测结果,补充含量不足的元素原料,待添加的炉料在748℃下完全熔化后进行机械搅拌30分钟,随后静置,进行第二次扒渣,得到熔体Ⅱ,并对熔体Ⅱ取样进行第二次成分检测;(3) According to the composition test results of the melt Ⅰ, the elemental raw materials with insufficient content are supplemented, and the charge to be added is completely melted at 748°C, then mechanically stirred for 30 minutes, then left to stand, and the slag is removed for the second time to obtain the melt Ⅱ, and take a sample of the melt Ⅱ for the second component detection;
(4)若第二次成分检测不合格,则继续步骤(3)操作直到熔体Ⅱ的成分合格;若第二次成分检测合格,则将熔体Ⅱ降温至740℃,添加镁锭与铝锶中间合金,镁锭与铝锶中间合金需压入熔体Ⅱ内部进行熔炼使其熔化,进行机械搅拌,随后静置,取样进行第三次成分检测,若第三次成分检测结果符合要求,则进行下一步精炼操作;若第三次成分检测结果不符合要求,则需补充所缺少的元素直至合格,得到熔体Ⅲ;(4) If the second composition test is unqualified, continue to step (3) until the composition of the melt II is qualified; if the second composition test is qualified, then cool the melt II to 740°C, add magnesium ingots and aluminum Strontium master alloys, magnesium ingots and aluminum strontium master alloys need to be pressed into the melt II for smelting to melt them, mechanically stirred, then left to stand, and samples are taken for the third composition test. If the third composition test results meet the requirements, Then proceed to the next step of refining operation; if the result of the third component test does not meet the requirements, it is necessary to supplement the missing elements until it is qualified to obtain the melt III;
(5)对熔体Ⅲ进行精炼,向熔体Ⅲ内通入99.99%的高纯氩气,通气时间为30 min;(5) Refining the melt III, passing 99.99% high-purity argon gas into the melt III for 30 minutes;
(6)精炼结束后静置20 min,进行最终扒渣,随后浇铸成锭,浇铸温度为740℃,得到含有稀土元素的再生高导热压铸铝合金。(6) Stand still for 20 minutes after refining, carry out final slag removal, and then cast into ingots at a casting temperature of 740°C to obtain a recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements.
对比实施例comparative example
一种压铸铝合金材料ADC12,其成分及重量百分比为:Si 12.0%、Fe 1.0%、Cu2.5%、Mg 0.5%、Zn 1.0%、Mn 0.5%、Ti 0.2%,余量为铝。A die-casting aluminum alloy material ADC12, its composition and weight percentage are: Si 12.0%, Fe 1.0%, Cu2.5%, Mg 0.5%, Zn 1.0%, Mn 0.5%, Ti 0.2%, and the balance is aluminum.
其制备方法,包括以下步骤:Its preparation method comprises the following steps:
(1)将铝铁中间合金、铝硅中间合金、铜锭和铝锭装入熔炼炉中,铝锭分别放在底部与顶部,中间依次是铝硅中间合金、铝铁中间合金和铜锭,设置熔炼温度为730℃,炉料完全熔化后得到熔体Ⅰ;(1) Put the aluminum-iron master alloy, aluminum-silicon master alloy, copper ingot and aluminum ingot into the melting furnace, the aluminum ingot is placed on the bottom and the top respectively, and the middle is followed by aluminum-silicon master alloy, aluminum-iron master alloy and copper ingot, Set the smelting temperature to 730°C, and obtain melt I after the charge is completely melted;
(2)向熔体Ⅰ中加入铝锰中间合金进行熔炼,设置熔炼温度为730℃,炉料完全熔化后得到熔体Ⅱ;(2) Add aluminum-manganese master alloy to melt I for melting, set the melting temperature to 730°C, and obtain melt II after the charge is completely melted;
(3)向熔体Ⅱ中加入镁锭和锌锭进行熔炼,设置熔炼温度为730℃,炉料完全熔化后得到熔体Ⅲ;(3) Add magnesium ingots and zinc ingots to melt II for smelting, set the melting temperature to 730°C, and obtain melt III after the charge is completely melted;
(4)向熔体Ⅲ中加入铝钛中间合金进行熔炼,设置熔炼温度为730℃,炉料完全熔化后得到熔体Ⅳ;(4) Add aluminum-titanium master alloy to melt III for melting, set the melting temperature to 730°C, and obtain melt IV after the charge is completely melted;
(5)对熔体Ⅳ进行炉前成分检测,成分合格后对熔体Ⅳ进行精炼,向熔体Ⅳ内通入氩气,设置精炼温度为730℃,时间为25 min;(5) Carry out pre-furnace composition testing on melt IV, refine melt IV after the composition is qualified, pass argon gas into melt IV, set the refining temperature to 730°C, and set the refining time to 25 min;
(6)精炼结束后静置18 min,扒渣,然后浇铸成锭,浇铸温度为700℃,得到压铸铝合金ADC12。(6) Stand still for 18 minutes after refining, remove slag, and then cast into ingots at a casting temperature of 700°C to obtain die-casting aluminum alloy ADC12.
性能测试Performance Testing
对上述实施例1~2制备的含有稀土元素的再生高导热压铸铝合金和对比实施例制备的压铸铝合金ADC12进行如下测试:The following tests were carried out on the recycled high thermal conductivity die-casting aluminum alloys containing rare earth elements prepared in the above-mentioned Examples 1-2 and the die-casting aluminum alloy ADC12 prepared in the comparative example:
1、热导率与力学性能检测1. Testing of thermal conductivity and mechanical properties
合金的热导率使用热导率测试仪测定,力学性能使用拉伸机测定,结果如表1所示。The thermal conductivity of the alloy was measured using a thermal conductivity tester, and the mechanical properties were measured using a tensile machine. The results are shown in Table 1.
表1 合金材料热导率与力学性能检测结果Table 1 Test results of thermal conductivity and mechanical properties of alloy materials
由表1可以看出,本发明实施例1~2得到的含有稀土元素的再生高导热压铸铝合金材料的热导率均大于145 W/mK,远远大于ADC12合金的热导率90 W/mK;此外,其延伸率也高于ADC12的延伸率2.0%,而抗拉强度均在240 MPa以上,高于ADC12的232MPa。可见,本发明的含有稀土元素的再生高导热压铸铝合金在不仅具有较高的热导率,其力学性能也优于ADC12合金。It can be seen from Table 1 that the thermal conductivity of the regenerated high thermal conductivity die-casting aluminum alloy materials containing rare earth elements obtained in Examples 1 to 2 of the present invention are all greater than 145 W/mK, far greater than the thermal conductivity of ADC12 alloy of 90 W/mK mK; in addition, its elongation is higher than that of ADC12 by 2.0%, and its tensile strength is above 240 MPa, which is higher than that of ADC12 at 232 MPa. It can be seen that the recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements of the present invention not only has higher thermal conductivity, but also has better mechanical properties than ADC12 alloy.
再用实施例3~4的含有稀土元素的再生高导热压铸铝合金进行热导率与力学性能测试,得到的效果与实施例1-2得到的效果相近,说明本发明配方及方法得到含有稀土元素的再生高导热压铸铝合金具有良好的重现性。Then use the regenerated high thermal conductivity die-casting aluminum alloys containing rare earth elements of Examples 3 to 4 to test thermal conductivity and mechanical properties, and the obtained effects are similar to those obtained in Examples 1-2, indicating that the formula and method of the present invention can obtain rare earth-containing aluminum alloys. Elements of recycled high thermal conductivity die-cast aluminum alloys have good reproducibility.
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。The above embodiments are only exemplary embodiments of the present invention, and are not intended to limit the present invention, and the protection scope of the present invention is defined by the claims. Those skilled in the art can make various modifications or equivalent replacements to the present invention within the spirit and protection scope of the present invention, and such modifications or equivalent replacements should also be deemed to fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211701401.0A CN116103543A (en) | 2022-12-29 | 2022-12-29 | A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211701401.0A CN116103543A (en) | 2022-12-29 | 2022-12-29 | A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116103543A true CN116103543A (en) | 2023-05-12 |
Family
ID=86262219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211701401.0A Pending CN116103543A (en) | 2022-12-29 | 2022-12-29 | A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116103543A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117660814A (en) * | 2023-11-14 | 2024-03-08 | 帅翼驰(河南)新材料科技有限公司 | Heat-treatment-free die-casting aluminum alloy material and preparation method and application thereof |
CN117947319A (en) * | 2024-03-21 | 2024-04-30 | 北京车和家汽车科技有限公司 | Aluminum alloy and preparation method thereof, and aluminum alloy die casting |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109207806A (en) * | 2017-06-30 | 2019-01-15 | 宝山钢铁股份有限公司 | A kind of the cast Al-Si alloy ingot and its application method of hot-dip aluminizing silicon production |
CN110079713A (en) * | 2019-05-07 | 2019-08-02 | 中铝广西崇左稀钪新材料科技有限公司 | A kind of rare earth modified die-cast aluminum alloy material and preparation method thereof with high heat conductance |
US20200190634A1 (en) * | 2017-08-14 | 2020-06-18 | Brunel University London | Method of forming a cast aluminium alloy |
CN114182142A (en) * | 2021-12-09 | 2022-03-15 | 东北轻合金有限责任公司 | Al-Si-Cu-Mg-Mn die-casting aluminum alloy and preparation method thereof |
-
2022
- 2022-12-29 CN CN202211701401.0A patent/CN116103543A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109207806A (en) * | 2017-06-30 | 2019-01-15 | 宝山钢铁股份有限公司 | A kind of the cast Al-Si alloy ingot and its application method of hot-dip aluminizing silicon production |
US20200190634A1 (en) * | 2017-08-14 | 2020-06-18 | Brunel University London | Method of forming a cast aluminium alloy |
CN110079713A (en) * | 2019-05-07 | 2019-08-02 | 中铝广西崇左稀钪新材料科技有限公司 | A kind of rare earth modified die-cast aluminum alloy material and preparation method thereof with high heat conductance |
CN114182142A (en) * | 2021-12-09 | 2022-03-15 | 东北轻合金有限责任公司 | Al-Si-Cu-Mg-Mn die-casting aluminum alloy and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
《中国商品大辞典》编辑委员会: "《中国商品大辞典 金属材料分册》", 30 September 1996, 中国商业出版社, pages: 343 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117660814A (en) * | 2023-11-14 | 2024-03-08 | 帅翼驰(河南)新材料科技有限公司 | Heat-treatment-free die-casting aluminum alloy material and preparation method and application thereof |
CN117660814B (en) * | 2023-11-14 | 2024-05-28 | 帅翼驰(河南)新材料科技有限公司 | Heat-treatment-free die-casting aluminum alloy material and preparation method and application thereof |
CN117947319A (en) * | 2024-03-21 | 2024-04-30 | 北京车和家汽车科技有限公司 | Aluminum alloy and preparation method thereof, and aluminum alloy die casting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111690849A (en) | Refining method of iron-rich phase in Al-Si series die-casting aluminum alloy and alloy | |
CN115287506A (en) | Heat treatment-free high-strength and high-toughness cast aluminum alloy, and preparation method and application thereof | |
CN108559875B (en) | High-strength heat-resistant aluminum alloy material for engine piston and preparation method thereof | |
CN111690844B (en) | Eutectic Al-Fe-Mn-Si-Mg die casting alloy and preparation method and application thereof | |
CN116103543A (en) | A kind of recycled high thermal conductivity die-casting aluminum alloy containing rare earth elements and its preparation method | |
CN101440450A (en) | Preparation of lanthanum-containing AE heat resisting die-casting magnesium alloy | |
CN111979456B (en) | A kind of Zn-containing medium-strength and high-toughness die-casting aluminum alloy and preparation method thereof | |
CN101469387B (en) | Yttrium-rich rare earth high-strength heat-resistant creep-resistant die-casting magnesium alloy | |
CN107354349A (en) | A kind of tank body material is with high-performance containing nearly cocrystallized Al-Si alloys of Zn and preparation method thereof | |
CN102154580A (en) | High-intensity heat-resistant magnesium alloy material and preparation process thereof | |
CN111411268A (en) | A kind of Al-RE-Y-Zr alloy with high strength, toughness and heat resistance suitable for pressure casting and preparation method thereof | |
CN103540812A (en) | Aluminum alloy material for engine cylinder cover and preparation method thereof | |
CN113444929A (en) | Microalloying non-heat treatment high-strength and high-toughness die-casting aluminum alloy and preparation process thereof | |
CN110129629A (en) | Heat-resistant cast Al-Si-Ni-Cu aluminum alloy and its preparation by gravity casting | |
CN105088026A (en) | Castable aluminum alloy material for cylinder cover and preparation method thereof | |
CN101838759A (en) | 4032 alloy alterant and use method thereof | |
CN114855036B (en) | High-strength high-thermal-conductivity cast aluminum alloy, preparation method thereof and aluminum alloy product | |
CN111321326A (en) | Al-RE-Y-Mg alloy and preparation method thereof | |
CN111455246A (en) | A kind of high thermal conductivity magnesium alloy and preparation method thereof | |
CN114717453B (en) | High-toughness cast aluminum-silicon alloy and preparation method thereof | |
CN115821130B (en) | A high temperature resistant Al-Cu-Mg-Ag-Sc alloy and preparation method thereof | |
CN113718144B (en) | High-plasticity high-elastic-modulus aluminum-silicon casting alloy and preparation method and application thereof | |
CN104862623A (en) | Engine cylinder cover aluminium alloy material with good machinability and preparation method thereof | |
CN111485139B (en) | Al-RE-Y alloy and preparation method thereof | |
CN116024462A (en) | High-heat-conductivity pressure casting aluminum alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |