[go: up one dir, main page]

JP2024546409A - Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method - Google Patents

Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method Download PDF

Info

Publication number
JP2024546409A
JP2024546409A JP2024521341A JP2024521341A JP2024546409A JP 2024546409 A JP2024546409 A JP 2024546409A JP 2024521341 A JP2024521341 A JP 2024521341A JP 2024521341 A JP2024521341 A JP 2024521341A JP 2024546409 A JP2024546409 A JP 2024546409A
Authority
JP
Japan
Prior art keywords
alloy
die
aluminum
metallic
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024521341A
Other languages
Japanese (ja)
Inventor
シン ワン,
Original Assignee
シェンユアンチュアン (シャンハイ) アドバンスド マテリアル テクノロジー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シェンユアンチュアン (シャンハイ) アドバンスド マテリアル テクノロジー カンパニー リミテッド filed Critical シェンユアンチュアン (シャンハイ) アドバンスド マテリアル テクノロジー カンパニー リミテッド
Publication of JP2024546409A publication Critical patent/JP2024546409A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

Figure 2024546409000001

【要約】
本発明は非熱処理高靭性Al-Si合金ダイカスト材及びその製造プロセスを開示する。当該合金は、Mn/Fe比率を一定範囲内に制御することでFe元素による悪影響を効果的に抑制できる。また、レアアースを一定の比率で導入することで、材料中のSiを効果的に微細化し、Al・Cuなどの元素と共に高温相を形成することで、材料がダイカスト一体成型の大型構造部品に適用した場合の変形抵抗を向上させることができる。大型ダイカスト品の本体をサンプリングして、試験したところ、前記合金のF材は290mpaの引張強度、140Mpaの降伏強度、13%の伸びに達することができ、優れたダイカスト性を備えるほか、クリーンエネルギーを使用しているため、低炭素排出量の基準を満たせる。



Figure 2024546409000001

【summary】
The present invention discloses a non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing process. The alloy can effectively suppress the adverse effects of Fe element by controlling the Mn/Fe ratio within a certain range. In addition, rare earth is introduced at a certain ratio to effectively refine the Si in the material and form a high-temperature phase together with elements such as Al and Cu, thereby improving the deformation resistance when the material is applied to large structural parts integrally molded by die-casting. After sampling and testing the main body of a large die-casting product, the F material of the alloy can reach a tensile strength of 290 MPa, a yield strength of 140 MPa, and an elongation of 13%, and has excellent die-castability and uses clean energy, so as to meet the standard of low carbon emissions.



Description

<関連出願の相互参照> <Cross-reference to related applications>

本出願は、2021年12月10日に出願された中国特許出願第202111507879.5号(発明の名称「非熱処理型高靭性Al-Si合金ダイカスト材及びその製造方法」)の優先権を主張するものであり、当該出願の全体は参照により本出願に組み込まれている。 This application claims priority to Chinese Patent Application No. 202111507879.5 filed on December 10, 2021 (titled "Non-heat-treatable high-toughness Al-Si alloy die-casting material and manufacturing method thereof"), the entirety of which is incorporated herein by reference.

本発明は、金属材料の技術分野に関し、具体的には非熱処理型高靭性Al-Si合金ダイカスト材及びその製造方法に関するものである。 The present invention relates to the technical field of metallic materials, specifically to non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method.

「CO2排出量ピークアウト・カーボンニュートラル」政策のさらなる推進により、炭素排出量の目標値が次第に引き下げられていくなか、再生アルミニウムは低エネルギー消費という明らかな優位性を発揮し、アルミニウム産業の「電気代の値上げに伴い、価格が上昇する」という電気依存からも脱却できるため、再生アルミニウム産業を主導産業とすることは、アルミニウム産業の健全で安定した長期的な発展により資することである。再生アルミニウムの炭素排出量は、火力発電による電気分解の方法でのアルミニウム新地金生産の炭素排出量よりも大幅に下回っており、火力発電による電気分解の方法でアルミニウム新地金1トンを生産するには二酸化炭素排出量が約12トンに対し、再生アルミニウム1トンの製造による二酸化炭素排出量は約300Kgに過ぎず、またその製造が、標準炭3.4トンと14立方メートルの水を節約し、固形廃棄物の排出量を20トン削減することができる。標準炭1トンから排出される二酸化炭素は3トンを基に計算する場合、他の補助原料から排出される二酸化炭素と合わせて、再生アルミニウム1トンは合計で約11.5トンの二酸化炭素排出を削減することができる。同時に、再生アルミニウムの経済的利益も大きい。アルミニウム新地金の生産にはボーキサイトの採掘、長距離輸送などが必要で、アルミナの抽出と火力発電による電気分解でのアルミニウム新地金生産には膨大なエネルギーを消費するため、アルミニウム新地金に比べて、再生アルミニウムの生産コストは低い。中国のアルミニウムスクラップ保有量の急速な成長と、廃棄物資源のリサイクルシステムの継続的な改善により、アルミニウムスクラップの価格はさらに低下すると予想され、火力発電による電気分解の方法でのアルミニウム新地金生産に対し、再生アルミニウム製造のコストの優位性はより顕著になると思われる。その他、アルミニウム新地金の生産での電気分解を水力、風力、太陽光発電など、二酸化炭素を排出しないクリーンエネルギーに替える方法も考えられる。 With the further promotion of the "peaking out of CO2 emissions and becoming carbon neutral" policy, the carbon emission target value is gradually lowered. Recycled aluminum has the obvious advantage of low energy consumption, and can break away from the aluminum industry's dependence on electricity, which causes the price to rise with the increase in electricity prices. Therefore, making the recycled aluminum industry the leading industry will contribute to the healthy, stable, and long-term development of the aluminum industry. The carbon emissions of recycled aluminum are significantly lower than those of new aluminum ingot production using electrolysis with thermal power generation. The carbon dioxide emissions of one ton of new aluminum ingot produced using electrolysis with thermal power generation are about 12 tons, while the carbon dioxide emissions of one ton of recycled aluminum are only about 300 kg. In addition, its production can save 3.4 tons of standard coal and 14 cubic meters of water, and reduce the emission of solid waste by 20 tons. Based on the calculation that one ton of standard coal emits 3 tons of carbon dioxide, one ton of recycled aluminum, together with the carbon dioxide emissions from other auxiliary materials, can reduce a total of about 11.5 tons of carbon dioxide emissions. At the same time, recycled aluminum also has great economic benefits. The production of virgin aluminum requires the mining of bauxite and long-distance transportation, and the extraction of alumina and the production of virgin aluminum through electrolysis using thermal power generation consume huge amounts of energy, so the production cost of recycled aluminum is lower than that of virgin aluminum. With the rapid growth of China's aluminum scrap reserves and the continuous improvement of the waste resource recycling system, the price of aluminum scrap is expected to further decline, and the cost advantage of recycled aluminum production over the production of virgin aluminum through electrolysis using thermal power generation is expected to become more prominent. In addition, it is also possible to consider replacing electrolysis in the production of virgin aluminum with clean energy that does not emit carbon dioxide, such as hydroelectric, wind, and solar power.

近年、新エネルギー車は続々と登場し、発展している。ただし、駆動用バッテリーの重量および航続距離の制約に加え、厳しい自動車省エネ・炭素排出量削減政策により、バッテリー駆動型の新エネルギー車の車両設計と材料選定においては、従来の自動車よりも車体軽量化の需要が高まっている。アルミ合金は軽量材料の一つであり、技術、運用の安全性とリサイクルの面では比較的に優位性があるため、自動車産業において徐々に鉄鋼に取って代わり、ダイカスト成形プロセスを応用し、自動車部品の製造に広く活用されている。 In recent years, new energy vehicles have been appearing and developing one after another. However, due to the constraints of the weight and driving range of the drive battery, as well as strict automobile energy conservation and carbon emission reduction policies, there is a higher demand for lighter body weight in the vehicle design and material selection of battery-powered new energy vehicles than in traditional automobiles. Aluminum alloy is one of the lightweight materials and has comparative advantages in terms of technology, operational safety and recycling. Therefore, it has gradually replaced steel in the automobile industry, and has been widely used in the manufacture of automobile parts through the application of die-casting molding process.

自動車産業と航空宇宙産業では、部品に厳しい要求が課せられており、特に変形時に優れた衝撃靭性と高い伸びが要求されている。自動車業界ではこのような要求をもとに、一体化した大型の車体構造部品に、引張強度が180MPa超え、降伏強度が120MPa超え、伸びが10%超えのアルミ合金ダイカスト品を必要としている。従来のAl-Si系合金は、強度が高く、鋳造性が良い。ただし、その塑性が悪く、伸びが低いため、自動車用大型一体化成形ダイカスト品の基準を満たすことができない。近年、自動車産業市場の需要を満たすために、高靭性アルミニウム合金の開発がますます注目されている。例えば、ドイツのラインランド社が開発したSilafont-36合金(特許公開番号:US 6364970B1)は、室温での伸びが6%以下だが、長時間のT7熱処理を経て、引張強度が約210Mpa、降伏強度が140Mpa、伸びが15%になり、自動車構造部品の要件を満たせる。ただし、当該プロセスの生産効率は低い上、熱処理プロセスが複雑で、熱処理工程の適切なコントロールが困難であるため、熱処理コストが非常に高い。もう一つの例として、上海交通大学が開発した非熱処理強化高強度高靭性Al-Mg-Si系合金ダイカスト材(特許開示番号:CN 108754256A)は、機械的性質がより優れているが、Al-Mg-Si系合金であるため、鋳造性が悪く、高マグネシウム含有量により酸化および焼損が発生しやすい。上述に加え、当該合金のアルミニウム液は粘度と収縮率が高く、ダイカスト金型への侵食が強く、金型の寿命を短縮するため、大型車体構造部品には適さない。また、鳳陽愛爾思と上海交通大学は、非熱処理自己強化Al-Si合金(特許公開番号:CN 104831129A)を開発した。ただし、当該合金は不純物元素に対する要求が高く、その生産にアルミニウムスクラップの使用が不可能で、将来の「CO2排出量ピークアウト・カーボンニュートラル」をもとにする各目標も満たせない。それに加えて、当該合金の精密ダイカスト下の鋳造品の伸びは約7.5%と、現段階の大型車体構造部品の高靭性の要件を満たすことができない。さらに、上海永茂泰汽車零部件と上海交通大学が開発した高強度靭性アルミ合金ダイカスト材(特許公開番号:CN 109881056A)は鋳造性が良いが、非熱処理状態でのダイカスト品の伸びがわずか7%であり、高靭性が要求される自動車構造部品に適用できない。蘇州慧馳軽合金が開発した高靭性アルミ合金ダイカスト材(特許公開番号:CN 106636787A)は鋳造性と強度は良いが、不純物元素の含有量が0.005%未満を必要とし、不純物含有量に対する要求が極めて高く、その生産にアルミニウムスクラップを使用することが不可能である一方、非熱処理状態でのダイカスト品の伸びもわずか9.7%であるため、高靭性が要求される自動車構造部品に適用できない。 The automotive and aerospace industries place strict requirements on parts, especially for excellent impact toughness and high elongation during deformation. Based on these requirements, the automotive industry requires aluminum alloy die-casting products with tensile strength exceeding 180MPa, yield strength exceeding 120MPa, and elongation exceeding 10% for large integrated body structural parts. Conventional Al-Si alloys have high strength and good castability. However, due to their poor plasticity and low elongation, they cannot meet the standards for large integrated die-casting products for automobiles. In recent years, the development of high-toughness aluminum alloys has attracted more and more attention to meet the demands of the automotive industry market. For example, the Silafont-36 alloy (Patent Publication No.: US 6364970B1) developed by Rheinland of Germany has an elongation of less than 6% at room temperature, but after long-term T7 heat treatment, it has a tensile strength of about 210Mpa, a yield strength of 140Mpa, and an elongation of 15%, which can meet the requirements of automotive structural parts. However, the production efficiency of this process is low, the heat treatment process is complicated, and it is difficult to properly control the heat treatment process, so the heat treatment cost is very high. Another example is the non-heat-treated reinforced high-strength and high-toughness Al-Mg-Si alloy die-casting material (patent disclosure number: CN 108754256A) developed by Shanghai Jiao Tong University, which has better mechanical properties, but because it is an Al-Mg-Si alloy, it has poor castability and is prone to oxidation and burning due to its high magnesium content. In addition to the above, the aluminum liquid of this alloy has high viscosity and shrinkage rate, which causes strong erosion of the die-casting mold and shortens the life of the mold, making it unsuitable for large body structural parts. In addition, Fengyang Aersi and Shanghai Jiao Tong University have developed a non-heat-treated self-reinforced Al-Si alloy (patent disclosure number: CN 104831129A). However, this alloy has high requirements for impurity elements, and it is impossible to use aluminum scrap in its production, which means that it cannot meet the various targets based on the future "peaking CO2 emissions and becoming carbon neutral". In addition, the elongation of the castings of this alloy after precision die casting is about 7.5%, which does not meet the high toughness requirements of large body structural parts at the current stage. Furthermore, the high-strength and tough aluminum alloy die casting material (patent publication number: CN 109881056A) developed by Shanghai Yongmaotai Automotive Parts and Shanghai Jiao Tong University has good castability, but the elongation of the die castings in a non-heat-treated state is only 7%, which is not applicable to automotive structural parts that require high toughness. The high-toughness aluminum alloy die-casting material (patent publication number: CN 106636787A) developed by Suzhou Huichi Light Alloy has good castability and strength, but the impurity element content must be less than 0.005%, which places extremely high requirements on the impurity content, making it impossible to use aluminum scrap in its production. Meanwhile, the elongation of the die-cast product in a non-heat-treated state is only 9.7%, making it unsuitable for automotive structural parts that require high toughness.

本発明の概要部分は、後に実施例で詳細に説明される構想を簡単な形で紹介する。本発明の概要部分は、保護が主張される技術的解決策の主要・必要な特徴の特定と、保護が主張される技術的解決策の範囲の限定を目的としていない。 This Summary introduces in a simplified form the concepts that are subsequently described in detail in the Examples. It is not intended to identify the main and essential features of the claimed technical solution, nor to limit the scope of the claimed technical solution.

本発明は、発生する炭素排出量を低減し、熱処理なしで11%~16%の伸びを達成できる非熱処理型高靭性Al-Si合金ダイカスト材及びその製造方法を提供する。 The present invention provides a non-heat-treatable, high-toughness Al-Si alloy die-casting material that reduces carbon emissions and achieves an elongation of 11% to 16% without heat treatment, and a manufacturing method thereof.

本発明の態様1として、合金の総重量に基づいて、本発明の実施例で提供された非熱処理高靭性Al-Si合金ダイカスト材の各成分の質量%は以下の通りである。 In aspect 1 of the present invention, the mass percentages of each component of the non-heat-treated high-toughness Al-Si alloy die casting material provided in the examples of the present invention, based on the total weight of the alloy, are as follows:

Si:6.3~8.3%、Fe:0.07~0.45%、Cu:0.05~0.5%、Mn:0.5~0.8%、Mg:0.15~0.35%、Ti:0.01~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上からなるレアアースの総量:0.04%~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%で、その他の不純物の総量は0.2%以下であることが好ましく、残部がAlである。 Si: 6.3-8.3%, Fe: 0.07-0.45%, Cu: 0.05-0.5%, Mn: 0.5-0.8%, Mg: 0.15-0.35%, Ti: 0.01-0.2%, Sr: 0.015-0.035%, total amount of rare earths consisting of one or more of La/Ce/Sc: 0.04%-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the total amount of other impurities is preferably 0.2% or less, with the balance being Al.

前記Al-Si合金ダイカスト材の各成分の質量%は以下の通りにしてもよい。 The mass percentage of each component of the Al-Si alloy die casting material may be as follows:

Si:6.3~7.0%、Fe:0.2~0.4%、Cu:0.35~0.45%、Mn:0.5~0.8%、Mg:0.25~0.35%、Ti:0.1~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上からなるレアアースの総量:0.04%~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%で、その他の不純物の総量は0.2%以下であることが好ましく、残部がAlである。 Si: 6.3-7.0%, Fe: 0.2-0.4%, Cu: 0.35-0.45%, Mn: 0.5-0.8%, Mg: 0.25-0.35%, Ti: 0.1-0.2%, Sr: 0.015-0.035%, total amount of rare earths consisting of one or more of La/Ce/Sc: 0.04%-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the total amount of other impurities is preferably 0.2% or less, with the balance being Al.

前記Al-Si合金ダイカスト材の各成分の質量%は以下の通りにしてもよい。 The mass percentage of each component of the Al-Si alloy die casting material may be as follows:

Si:6.4~7.1%、Fe:0.10~0.25%、Cu:0.05~0.28%、Mn:0.5~0.8%、Mg:0.25~0.35%、Ti:0.03~0.16%、Sr:0.025~0.035%、La/Ce/Scの1種以上からなるレアアースの総量:0.04%~0.15%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%で、その他の不純物の総量は0.2%以下であることが好ましく、残部がAlである。 Si: 6.4-7.1%, Fe: 0.10-0.25%, Cu: 0.05-0.28%, Mn: 0.5-0.8%, Mg: 0.25-0.35%, Ti: 0.03-0.16%, Sr: 0.025-0.035%, total amount of rare earths consisting of one or more of La/Ce/Sc: 0.04%-0.15%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the total amount of other impurities is preferably 0.2% or less, with the balance being Al.

前記Al-Si合金ダイカスト材の各成分の質量%は以下の通りにしてもよい。 The mass percentage of each component of the Al-Si alloy die casting material may be as follows:

Si:7.0~7.7%、Fe:0.15~0.3%、Cu:0.2~0.35%、Mn:0.6~0.8%、Mg:0.2~0.3%、Ti:0.05~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上からなるレアアースの総量:0.04%~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%で、その他の不純物の総量は0.2%以下であることが好ましく、残部がAlである。 Si: 7.0-7.7%, Fe: 0.15-0.3%, Cu: 0.2-0.35%, Mn: 0.6-0.8%, Mg: 0.2-0.3%, Ti: 0.05-0.2%, Sr: 0.015-0.035%, total amount of rare earths consisting of one or more of La/Ce/Sc: 0.04%-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the total amount of other impurities is preferably 0.2% or less, with the balance being Al.

前記Al-Si合金ダイカスト材の各成分の質量%は以下の通りにしてもよい。 The mass percentage of each component of the Al-Si alloy die casting material may be as follows:

Si:7.7~8.3%、Fe:0.07~0.2%、Cu:0.05~0.2%、Mn:0.6~0.8%、Mg:0.15~0.3%、Ti:0.01~0.15%、Sr:0.015~0.035%、La/Ce/Scの1種以上からなるレアアースの総量:0.04%~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%で、その他の不純物の総量は0.2%以下であることが好ましく、残部がAlである。 Si: 7.7-8.3%, Fe: 0.07-0.2%, Cu: 0.05-0.2%, Mn: 0.6-0.8%, Mg: 0.15-0.3%, Ti: 0.01-0.15%, Sr: 0.015-0.035%, total amount of rare earths consisting of one or more of La/Ce/Sc: 0.04%-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the total amount of other impurities is preferably 0.2% or less, with the balance being Al.

前記Al-Si合金ダイカスト材は、270MPa以上の引張強度、130MPa以上の降伏強度、および11%以上の伸びを示すことができる。 The Al-Si alloy die casting material can exhibit a tensile strength of 270 MPa or more, a yield strength of 130 MPa or more, and an elongation of 11% or more.

本発明の態様2として、本発明の実施例で提供されるAl-Si合金ダイカスト材の製造プロセスは以下のとおりである。 As a second aspect of the present invention, the manufacturing process of the Al-Si alloy die-cast material provided in the embodiment of the present invention is as follows.

まず、前記Al-Si合金ダイカスト材を調製するための焼損を起こしにくい原料を加熱溶融して、アルミニウム合金液を得る。次に、前記アルミニウム合金液にスラグ除去と精錬を行った後に焼損しやすい原料を添加し、成分が規定値に達した後、鋳込み処理を行い、前記Al-Si合金ダイカスト材を得る。 First, the raw materials that are unlikely to burn are heated and melted to prepare the Al-Si alloy die-cast material to obtain an aluminum alloy liquid. Next, the raw materials that are likely to burn are added to the aluminum alloy liquid after slag removal and refining, and after the components reach the specified values, a casting process is performed to obtain the Al-Si alloy die-cast material.

本発明は前記Al-Si合金ダイカスト材をダイカスト成形させることができる。なお、前記Al-Si合金ダイカスト材は、成形温度が680~720℃、ダイカスト速度が2.5~5m/s、保温時間が2~10秒で、非熱処理状態のダイカスト品を得ることを特徴とするAl-Si合金ダイカスト材である。 The present invention allows the Al-Si alloy die-casting material to be die-cast. The Al-Si alloy die-casting material is characterized in that the forming temperature is 680-720°C, the die-casting speed is 2.5-5 m/s, and the heat retention time is 2-10 seconds, resulting in a die-cast product in a non-heat-treated state.

本発明は各原料が完全に溶融した後、前記アルミニウム合金液を均一に撹拌し、静置した後にサンプリングおよび分析を行い、必要な元素の含有量を成分比の要求範囲内に調整することができる。 In the present invention, after each raw material is completely melted, the aluminum alloy liquid is uniformly stirred and allowed to stand, after which sampling and analysis are performed, and the content of the necessary elements can be adjusted to within the required range of the component ratio.

本発明は使用される精錬用フラックスをナトリウムイオンを含まないものにすることができる。 The present invention allows the refining flux used to be free of sodium ions.

本発明は、非熱処理型高靭性Al-Si合金ダイカスト材及びその製造方法を提供する。本発明により調製されるアルミニウム合金は、自動車車体の構造部品の要求を満たすためにT7熱処理を必要とする従来のアルミニウム合金ダイカスト材の限界を打破した上、アルミニウムスクラップから製造することができ、製造工程で発生する炭素排出量を低減し、熱処理なしで伸びが11~16%に達することができる。 The present invention provides a non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method. The aluminum alloy prepared by the present invention overcomes the limitations of conventional aluminum alloy die-casting materials that require T7 heat treatment to meet the requirements of structural parts of automobile bodies, and can be manufactured from aluminum scrap, reducing carbon emissions generated during the manufacturing process and achieving an elongation of 11-16% without heat treatment.

先の一般的な説明および以下の詳細な説明はいずれも例示的なものであり、保護が主張される本発明のさらなる説明を提供することを意図としているものであることを理解すべきである。 It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the invention which is claimed.

添付の図面と以下の実施形態を参照することにより、本開示の実施例の前述および他の特徴、優位性、および態様はより明瞭になる。添付図面全体を通して、同一または類似の添付符号は、同一または類似の要素を示す。添付図面は概略的なものであり、原図および要素は必ずしも縮尺通りに描かれているとは限らないことを理解すべきである。
本発明の実施例2で得られたアルミダイカストのミクロ組織の金属組織図であり、図(a)は100倍のミクロ組織の金属組織図、図(b)は500倍のミクロ組織の金属組織図である。 実施例2で得られたアルミダイカストの流動性テスト金型である。 実施例2、比較例1、比較例2で得られたアルミダイカストの引張応力ひずみ曲線を示している。
The above and other features, advantages, and aspects of the embodiments of the present disclosure will become more apparent with reference to the accompanying drawings and the following embodiments. Throughout the accompanying drawings, the same or similar affixed reference numerals refer to the same or similar elements. It should be understood that the accompanying drawings are schematic, and that the drawings and elements are not necessarily drawn to scale.
1A and 1B are metallographic diagrams of the microstructure of an aluminum die casting obtained in Example 2 of the present invention, where FIG. 1A is a metallographic diagram of the microstructure at 100 times magnification, and FIG. 1B is a metallographic diagram of the microstructure at 500 times magnification. 1 is a fluidity test mold for aluminum die casting obtained in Example 2. 1 shows tensile stress-strain curves of the aluminum die castings obtained in Example 2, Comparative Example 1, and Comparative Example 2.

以下、添付図面を参考に本開示の実施例についてさらに詳細に説明する。添付図面には一部の実施例が示されているが、本開示はこれらに限定されるものではなく、以下に説明される実施例の範囲を超えた様々な形態で実施できると理解されるべきである。これらの実施例の提供は、本開示へのより完全かつ徹底的な理解を目的とする。また、本開示の添付図面及び実施例は単なる例示であり、本開示の保護範囲を限定することを意図するものではないことを理解すべきである。 Below, the embodiments of the present disclosure will be described in more detail with reference to the attached drawings. Although some embodiments are shown in the attached drawings, it should be understood that the present disclosure is not limited thereto and can be implemented in various forms beyond the scope of the embodiments described below. The provision of these embodiments is for the purpose of a more complete and thorough understanding of the present disclosure. It should also be understood that the attached drawings and embodiments of the present disclosure are merely illustrative and are not intended to limit the scope of protection of the present disclosure.

なお、本開示方法の実施形態に記載されている各工程は、異なる順序で、および/または並行して実行されてもよいことを理解すべきである。さらに、本方法の実施形態は、追加の工程を含んでもよく、および/または示された工程の実行を省略してもよい。従って、本開示の範囲は、これらに限定されるものではない。 It should be understood that the steps described in the embodiments of the disclosed methods may be performed in different orders and/or in parallel. Additionally, the embodiments of the disclosed methods may include additional steps and/or omit the performance of steps shown. Accordingly, the scope of the disclosure is not limited in any way.

本開示は、非熱処理高靭性Al-Si合金ダイカスト材およびその製造方法を提供する。以下、添付図面を参考に本開示の実施例について詳細に説明する。 The present disclosure provides a non-heat-treated high-toughness Al-Si alloy die-cast material and a manufacturing method thereof. Below, examples of the present disclosure are described in detail with reference to the attached drawings.

実施例1
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、質量%で各成分の含有量が:Mg:0.2%、Si:6.5%、Fe:0.15%、Cu:0.1%、Mn:0.5%、Ti:0.03%、Sr:0.025%、La・Ce総量:0.05%、Ni:0.005%、Zn:0.006%、Ga:0.015%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Example 1
The non-heat-treated, high-toughness Al-Si alloy die-cast material with low carbon emissions and renewable properties of this embodiment contains, by mass, the following components: Mg: 0.2%, Si: 6.5%, Fe: 0.15%, Cu: 0.1%, Mn: 0.5%, Ti: 0.03%, Sr: 0.025%, total amount of La and Ce: 0.05%, Ni: 0.005%, Zn: 0.006%, Ga: 0.015%, with the remainder being aluminum and remaining impurities of 0.2% or less.

本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカストの製造方法は、以下の工程を含む。 The manufacturing method of this embodiment for producing a non-heat-treated, highly tough Al-Si alloy die casting that has low carbon emissions and is renewable includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Alの鋳塊を炉内に投入し、溶融温度を760~790℃に維持しつつ溶融を行う。Al鋳塊が全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, the Al metal ingot is placed in the furnace and melted while maintaining the melting temperature at 760-790°C. After the Al ingot is completely melted, the temperature is increased and the furnace temperature is maintained at 760-780°C. Industrial silicon, Fe metal, Al-Mn intermediate alloy or Mn metal, Cu metal or Al-Cu intermediate alloy, Ni metal, Zn metal and Ga metal are added for smelting.

(4)精錬およびスラグ処理:アルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, followed by primary and secondary refining by powder injection. The time interval between two refinings is controlled to 50-60 minutes, and slag treatment is carried out after each refining to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace using gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

実施例2
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、質量%で各成分の含有量が:Mg:0.3%、Si:6.9%、Fe:0.2%、Cu:0.2%、Mn:0.6%、Ti:0.07%、Sr:0.02%、La:0.1%、Ni:0.003%、Zn:0.07%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Example 2
The non-heat treated, high-toughness Al-Si alloy die casting material with low carbon emissions and renewable properties of this embodiment contains, by mass, the following components: Mg: 0.3%, Si: 6.9%, Fe: 0.2%, Cu: 0.2%, Mn: 0.6%, Ti: 0.07%, Sr: 0.02%, La: 0.1%, Ni: 0.003%, Zn: 0.07%, Ga: 0.02%, with the remainder being aluminum and 0.2% or less of remaining impurities.

本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカストの製造方法は、以下の工程を含む。 The manufacturing method of this embodiment for producing a non-heat-treated, highly tough Al-Si alloy die casting that has low carbon emissions and is renewable includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊もしくはアルミニウムスクラップ、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot or aluminum scrap, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Al鋳塊またはアルミニウムスクラップを炉内に投入し、溶融温度を760~790℃に維持しつつ溶融を行う。Al鋳塊またはアルミニウムスクラップが全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum metal ingots or aluminum scrap are put into the furnace and melted while maintaining the melting temperature at 760-790°C. After the aluminum ingots or aluminum scrap have all melted, the temperature is increased and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added for smelting.

(4)精錬およびスラグ処理:アルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, followed by primary and secondary refining by powder injection. The time interval between two refinings is controlled to 50-60 minutes, and slag treatment is carried out after each refining to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

実施例3
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、質量%で各成分の含有量が:Mg:0.35%、Si:7.5%、Fe:0.25%、Cu:0.3%、Mn:0.7%、Ti:0.15%、Sr:0.03%、Ce:0.08%、Ni:0.08%、Zn:0.09%、Ga:0.025%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Example 3
The non-heat treated, high-toughness Al-Si alloy die casting material with low carbon emissions and renewable properties of this embodiment contains, by mass, the following components: Mg: 0.35%, Si: 7.5%, Fe: 0.25%, Cu: 0.3%, Mn: 0.7%, Ti: 0.15%, Sr: 0.03%, Ce: 0.08%, Ni: 0.08%, Zn: 0.09%, Ga: 0.025%, with the remainder being aluminum and less than 0.2% remaining impurities.

本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカストの製造方法は、以下の工程を含む。 The manufacturing method of this embodiment for producing a non-heat-treated, highly tough Al-Si alloy die casting that has low carbon emissions and is renewable includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊もしくはアルミニウムスクラップ、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot or aluminum scrap, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Al鋳塊またはアルミニウムスクラップを炉内に投入し、溶融温度を760~790℃に維持しつつ溶融を行う。Al鋳塊またはアルミニウムスクラップが全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum metal ingots or aluminum scrap are put into the furnace and melted while maintaining the melting temperature at 760-790°C. After the aluminum ingots or aluminum scrap have all melted, the temperature is increased and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added for smelting.

(4)精錬およびスラグ処理:アルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, followed by primary and secondary refining by powder injection. The time interval between two refinings is controlled to 50-60 minutes, and slag treatment is carried out after each refining to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

実施例4
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、質量%で各成分の含有量が:Mg:0.25%、Si:7.8%、Fe:0.35%、Cu:0.4%、Mn:0.8%、Ti:0.2%、Sr:0.035%、Sc:0.15%、Ni:0.02%、Zn:0.08%、Ga:0.012%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Example 4
The non-heat treated, high-toughness Al-Si alloy die casting material with low carbon emissions and renewable properties of this embodiment contains, by mass, the following components: Mg: 0.25%, Si: 7.8%, Fe: 0.35%, Cu: 0.4%, Mn: 0.8%, Ti: 0.2%, Sr: 0.035%, Sc: 0.15%, Ni: 0.02%, Zn: 0.08%, Ga: 0.012%, with the remainder being aluminum and 0.2% or less of remaining impurities.

本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカストの製造方法は、以下の工程を含む。 The manufacturing method of this embodiment for producing a non-heat-treated, highly tough Al-Si alloy die casting that has low carbon emissions and is renewable includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊もしくはアルミニウムスクラップ、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot or aluminum scrap, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Al鋳塊またはアルミニウムスクラップを炉内に投入し、溶融温度を760~790℃に維持しつつ溶融を行う。Al鋳塊またはアルミニウムスクラップが全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum metal ingots or aluminum scrap are put into the furnace and melted while maintaining the melting temperature at 760-790°C. After the aluminum ingots or aluminum scrap have all melted, the temperature is increased and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added for smelting.

(4)精錬およびスラグ処理:アルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, followed by primary and secondary refining by powder injection. The time interval between two refinings is controlled to 50-60 minutes, and slag treatment is carried out after each refining to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

実施例5
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、質量%で各成分の含有量が:Mg:0.15%、Si:8.3%、Fe:0.45%、Cu:0.5%、Mn:0.65%、Ti:0.15%、Sr:0.03%、La・Sc総量:0.2%、Ni:0.08%、Zn:0.01%、Ga:0.018%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Example 5
The non-heat-treated, high-toughness Al-Si alloy die-cast material with low carbon emissions and renewable properties of this embodiment contains, by mass, the following components: Mg: 0.15%, Si: 8.3%, Fe: 0.45%, Cu: 0.5%, Mn: 0.65%, Ti: 0.15%, Sr: 0.03%, total amount of La and Sc: 0.2%, Ni: 0.08%, Zn: 0.01%, Ga: 0.018%, with the remainder being aluminum and less than 0.2% remaining impurities.

本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカストの製造方法は、以下の工程を含む。 The manufacturing method of this embodiment for producing a non-heat-treated, highly tough Al-Si alloy die casting that has low carbon emissions and is renewable includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊もしくはアルミニウムスクラップ、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot or aluminum scrap, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Al鋳塊またはアルミニウムスクラップを炉内に投入し、溶融温度を760~790℃に維持しつつ溶融を行う。Al鋳塊またはアルミニウムスクラップが全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum metal ingots or aluminum scrap are put into the furnace and melted while maintaining the melting temperature at 760-790°C. After the aluminum ingots or aluminum scrap have all melted, the temperature is increased and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added for smelting.

(4)精錬およびスラグ処理:アルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, followed by primary and secondary refining by powder injection. The time interval between two refinings is controlled to 50-60 minutes, and slag treatment is carried out after each refining to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

実施例6
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、リサイクルされたアルミニウムスクラップを原料として、以下の工程によって製造される。
Example 6
The low carbon emission, renewable, non-heat-treated, high-toughness Al-Si alloy die-cast material of this embodiment is manufactured using recycled aluminum scrap as raw material through the following process.

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:まず、リサイクルされたアルミニウムスクラップを選別し、処理する。次に、合金の成分比に基づいて金属Alの鋳塊、金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: First, recycled aluminum scrap is sorted and processed. Next, based on the alloy component ratio, the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot, metallic Mg ingot, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, are prepared and added according to the above alloy component ratio, taking into account the amount of burnt damage as appropriate.

(3)炉内融解:まず、順序を沿って金属Alの鋳塊およびアルミニウムスクラップを40%・60%の質量比で炉内に投入し、炉内温度を760~790℃に維持しつつ製錬をする。全て溶融した後にサンプリングおよび分析を行い、他の元素をそれぞれの割合に応じて添加する。次に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum metal ingots and aluminum scrap are placed in the furnace in a mass ratio of 40% and 60% in the correct order, and smelted while maintaining the furnace temperature at 760-790°C. After everything is melted, sampling and analysis are performed, and other elements are added according to their respective ratios. Next, the temperature is increased, and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added and smelted.

(4)精錬およびスラグ処理:成分分析で合格したアルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt that passed the component analysis is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, and primary and secondary refining is carried out by powder injection. The time interval between the two refining processes is controlled to 50-60 minutes, and slag treatment is carried out after each refining process to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:最終的に質量%で各成分の含有量が:Mg:0.25%、Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Ti:0.12%、Sr:0.028%、La・Ce・Sc総量:0.2%、Ni:0.005%、Zn:0.06%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: The final mass percent content of each component is: Mg: 0.25%, Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Ti: 0.12%, Sr: 0.028%, La/Ce/Sc total: 0.2%, Ni: 0.005%, Zn: 0.06%, Ga: 0.02%, and the remainder is aluminum and impurities of less than 0.2%. After the component analysis results before putting into the furnace are found to be acceptable, casting is performed at an appropriate casting temperature to create an ingot, and a die casting process is performed to cast at high pressure to create a die cast product in an unheated state.

実施例7
本実施例の炭素排出量が低く再生可能な非熱処理高靭性Al-Si合金ダイカスト材は、リサイクルされたアルミニウムスクラップを原料として、以下の工程によって製造される。
Example 7
The low carbon emission, renewable, non-heat-treated, high-toughness Al-Si alloy die-cast material of this embodiment is manufactured using recycled aluminum scrap as raw material through the following process.

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:まず、リサイクルされたアルミニウムスクラップを選別する。次に、合金の成分比に基づいて金属Mgの鋳塊、工業用シリコン、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、金属CuもしくはAl-Cu中間合金、金属Ni、金属Zn及び金属Ga、Al-Sr中間合金、希土類アルミニウム中間合金などアルミニウム合金を構成する各元素の原料を用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: First, recycled aluminum scrap is sorted. Next, based on the alloy component ratio, the raw materials for each element that makes up the aluminum alloy, such as metallic Mg ingots, industrial silicon, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga, Al-Sr intermediate alloy, and rare earth aluminum intermediate alloy, are prepared and added according to the above alloy component ratio, taking into account the amount of burnt damage as appropriate.

(3)炉内融解:まず、アルミニウムスクラップを100%の質量比で炉内に投入し、炉内温度を760~790℃に維持しつつ製錬する。全て溶融した後にサンプリングおよび分析を行い、他の元素をそれぞれの割合に応じて添加する。次に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、Al-Mn中間合金もしくは金属Mn、金属CuもしくはAl-Cu中間合金、金属Ni、金属Znおよび金属Gaを添加して製錬を行う。 (3) Melting in furnace: First, aluminum scrap is put into the furnace at a mass ratio of 100%, and smelted while maintaining the furnace temperature at 760-790°C. After it is all melted, sampling and analysis are carried out, and other elements are added according to their respective proportions. Next, the temperature is increased, and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, Al-Mn intermediate alloy or metallic Mn, metallic Cu or Al-Cu intermediate alloy, metallic Ni, metallic Zn and metallic Ga are added for smelting.

(4)精錬およびスラグ処理:成分分析で合格したアルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt that passed the component analysis is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, and primary and secondary refining is carried out by powder injection. The time interval between the two refining processes is controlled to 50-60 minutes, and slag treatment is carried out after each refining process to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯温度を740~760℃に維持しつつ、炉内にAl-Ti中間合金、希土類アルミニウム中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、微細化および接種を行い、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the molten metal temperature at 740-760°C, ingots of Al-Ti intermediate alloy, rare earth aluminum intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted, refined, and inoculated to obtain an aluminum alloy melt, which is then sampled and analyzed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:最終的に質量%で各成分の含有量が:Mg:0.3%、Si:7.7%、Fe:0.15%、Cu:0.3%、Mn:0.7%、Ti:0.15%、Sr:0.035%、Ce:0.08%、Ni:0.1%、Zn:0.1%、Ga:0.03%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: The final mass percent content of each component is: Mg: 0.3%, Si: 7.7%, Fe: 0.15%, Cu: 0.3%, Mn: 0.7%, Ti: 0.15%, Sr: 0.035%, Ce: 0.08%, Ni: 0.1%, Zn: 0.1%, Ga: 0.03%, with the remainder being aluminum and impurities of 0.2% or less. After the component analysis results before putting into the furnace are found to be acceptable, casting is performed at an appropriate casting temperature to create an ingot, and a die casting process is performed to create a die cast product in a non-heat-treated state.

比較例1
本比較例は実施例2を基にSr元素を減少してLa元素を除いたもので、質量%で各成分の含有量が:Si:6.9%、Fe:0.2%、Cu:0.2%、Mn:0.6%、Mg:0.3%、Ti:0.07%、Sr:0.008%、Ni:0.003%、Zn:0.07%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 1
This comparative example is based on Example 2, but the amount of Sr element has been reduced and the La element has been removed, and the contents of each component in mass% are: Si: 6.9%, Fe: 0.2%, Cu: 0.2%, Mn: 0.6%, Mg: 0.3%, Ti: 0.008%, Sr: 0.003%, Zn: 0.07%, Ga: 0.02%, and the remainder is aluminum and 0.2% or less of remaining impurities.

本比較例におけるアルミニウム合金ダイカスト材の製造方法は、以下の工程を含む。 The manufacturing method for the aluminum alloy die-cast material in this comparative example includes the following steps:

(1)炉内投入前の準備:炉の底を清浄にし、炉壁が赤色になるまで予熱する。同時に、すべての作業工具に黒鉛粉末を塗布し、乾燥および予熱を行う。 (1) Preparation before putting into the furnace: Clean the bottom of the furnace and preheat it until the furnace walls turn red. At the same time, apply graphite powder to all work tools, dry them, and preheat them.

(2)材料:金属Alの鋳塊、金属Mgの鋳塊、工業用シリコン、金属Cu、Al-Mn中間合金もしくは金属Mn、金属Fe、Al-Ti中間合金、Al-Sr中間合金などアルミニウム合金を構成する各元素の原料を予め用意し、焼損量を適宜考慮した上で、上記の合金成分比通りに添加する。 (2) Materials: Prepare the raw materials for each element that makes up the aluminum alloy, such as metallic Al ingot, metallic Mg ingot, industrial silicon, metallic Cu, Al-Mn intermediate alloy or metallic Mn, metallic Fe, Al-Ti intermediate alloy, and Al-Sr intermediate alloy, in advance and add them according to the alloy component ratios listed above, taking into account the amount of burnt damage.

(3)炉内融解:まず、金属Alの鋳塊を炉内に投入し、製錬温度を670~690℃に維持しつつ製錬を行う。Al鋳塊が全て溶融した後に温度を上昇させ、炉内温度を760~780℃に維持して、工業用シリコン、金属Fe、金属Cu、Al-Mn中間合金もしくは金属Mnを添加して製錬を行う。 (3) Melting in furnace: First, the aluminum metal ingot is placed in the furnace and smelting is carried out while maintaining the smelting temperature at 670-690°C. After the aluminum ingot is completely melted, the temperature is raised and the furnace temperature is maintained at 760-780°C, and industrial silicon, metallic Fe, metallic Cu, an Al-Mn intermediate alloy, or metallic Mn is added for smelting.

(4)精錬およびスラグ処理:成分分析で合格したアルミ合金融体の温度を740~760℃に維持しつつ均一に撹拌し、アルミニウム合金専用の精錬用フラックスを加えて、粉体吹込みによる一次精錬と二次精錬を行う。2回の精錬の時間間隔を50~60分間にコントロールし、毎回の精錬後にスラグ処理を行い、液面上の融剤と浮きかすを除去する。 (4) Refining and slag treatment: The aluminum alloy melt that passed the component analysis is stirred uniformly while maintaining the temperature at 740-760°C, and a special refining flux for aluminum alloys is added, and primary and secondary refining is carried out by powder injection. The time interval between the two refining processes is controlled to 50-60 minutes, and slag treatment is carried out after each refining process to remove the flux and floating dross on the liquid surface.

(5)他の金属元素の添加:溶湯の温度が740~760℃に維持しつつ、炉内にAl-Ti中間合金、金属Mg、Al-Sr中間合金の鋳塊を加えて製錬し、アルミニウム合金融体を得た後に、サンプリングおよび分析を行う。 (5) Addition of other metal elements: While maintaining the temperature of the molten metal at 740-760°C, ingots of Al-Ti intermediate alloy, metallic Mg, and Al-Sr intermediate alloy are added to the furnace and smelted to obtain an aluminum alloy melt, after which sampling and analysis are performed.

(6)炉内脱ガス。製錬温度を740~760℃に維持しつつ、窒素ガスにより約30~50分間の炉内脱ガスを行い、15~30分間静置する。 (6) Furnace degassing. While maintaining the smelting temperature at 740-760°C, degas the furnace with nitrogen gas for approximately 30-50 minutes, then leave it to stand for 15-30 minutes.

(7)鋳込みまたはダイカスト:炉内投入前の成分分析結果が合格と判明した後、適切な鋳込み温度下で鋳込みを行い、鋳塊を作成する、またダイカストプロセスで高圧鋳造し、非熱処理状態のダイカスト品を作成する。 (7) Casting or die casting: After the component analysis results before putting into the furnace are found to be acceptable, casting is carried out at an appropriate casting temperature to create an ingot, or high-pressure casting is carried out using a die casting process to create a die-cast product in an unheated state.

比較例2
本比較例は実施例2を基にSr元素を増加してLa元素を除いたもので、質量%で各成分の含有量が:Si:6.9%、Fe:0.2%、Cu:0.2%、Mn:0.6%、Mg:0.3%、Ti:0.07%、Sr:0.05%、Ni:0.003%、Zn:0.07%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 2
This comparative example is based on Example 2, but the amount of Sr element has been increased and the amount of La element has been removed. The contents of each component in mass% are: Si: 6.9%, Fe: 0.2%, Cu: 0.2%, Mn: 0.6%, Mg: 0.3%, Ti: 0.07%, Sr: 0.05%, Ni: 0.003%, Zn: 0.07%, Ga: 0.02%, and the remainder is aluminum and 0.2% or less of remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例3
本比較例は実施例6を基にLa、Ce、Sc、Zn、NiおよびGa元素を除いたもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 3
This comparative example is based on Example 6, but with the exception of the elements La, Ce, Sc, Zn, Ni, and Ga, and the contents of each component in mass% are: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, with the remainder being aluminum and 0.2% or less of remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例4 Comparative Example 4

本比較例は実施例6を基にLa、Ce、Sc元素を除いたもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%、Ni:0.06%、Zn:0.005%、Ga: 0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。 This comparative example is based on Example 6, but excluding the elements La, Ce, and Sc. The content of each component in mass percent is: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, Ni: 0.06%, Zn: 0.005%, Ga: 0.02%, and the remainder is aluminum and less than 0.2% of remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例5
本比較例は実施例6を基にLa、Ce、Sc元素を高い比率で添加したもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%、La:0.2%、Ce:0.2%、Sc:0.2%、Ni:0.06%、Zn:0.005%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 5
This comparative example is based on Example 6, but with high additions of La, Ce, and Sc elements, and the contents of each component, in mass%, are: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, La: 0.2%, Ce: 0.2%, Sc: 0.2%, Ni: 0.06%, Zn: 0.005%, Ga: 0.02%, with the remainder being aluminum and remaining impurities of 0.2% or less.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例6
本比較例は実施例6を基にLa元素を高い比率で添加したもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%、La:1.0%、Ni:0.06%、Zn:0.005%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 6
This comparative example is based on Example 6, but with a high La element added, and the contents of each component in mass% are: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, La: 1.0%, Ni: 0.06%, Zn: 0.005%, Ga: 0.02%, with the remainder being aluminum and 0.2% or less of remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例7
本比較例は実施例6を基にSc元素を高い比率で添加したもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%、Sc:0.5%、Ni:0.06%、Zn:0.005%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 7
This comparative example is based on Example 6, but with a high addition of Sc element, and the contents of each component in mass% are: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, Sc: 0.5%, Ni: 0.06%, Zn: 0.005%, Ga: 0.02%, with the remainder being aluminum and less than 0.2% remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

比較例8
本比較例は実施例6を基にSc元素を高い比率で添加したもので、質量%で各成分の含有量が:Si:7.0%、Fe:0.35%、Cu:0.25%、Mn:0.6%、Mg:0.25%、Ti:0.12%、Sr:0.028%、La:0.01%、Sc:0.01%、Ni:0.06%、Zn:0.005%、Ga:0.02%となっており、残部がアルミニウムおよび0.2%以下の残りの不純物である。
Comparative Example 8
This comparative example is based on Example 6, but with a high addition of Sc element, and the contents of each component in mass% are: Si: 7.0%, Fe: 0.35%, Cu: 0.25%, Mn: 0.6%, Mg: 0.25%, Ti: 0.12%, Sr: 0.028%, La: 0.01%, Sc: 0.01%, Ni: 0.06%, Zn: 0.005%, Ga: 0.02%, with the remainder being aluminum and less than 0.2% remaining impurities.

本比較例の製造方法は比較例1と同じである。 The manufacturing method for this comparative example is the same as that for comparative example 1.

表1は実施例1~7および比較例1~8で製造されたアルミニウム合金の成分を示す。 Table 1 shows the compositions of the aluminum alloys produced in Examples 1 to 7 and Comparative Examples 1 to 8.

表2は、実施例1~7および比較例1~8で製造されたアルミニウム合金鋳塊本体からサンプリングされたF材、および同材料を180℃で30分間加熱したものを、室温下で測定された機械的性質および流動性を併記したものである。
Table 2 shows the mechanical properties and fluidity measured at room temperature for the F materials sampled from the aluminum alloy ingot bodies produced in Examples 1 to 7 and Comparative Examples 1 to 8, and for the same materials heated at 180°C for 30 minutes.

表1および表2によれば、実施例2に比べて、Sr元素含有量を大幅に減少させ、レアアースを添加しない比較例1の降伏強度が26Mpa、伸びが4.2%低下した。実施例2に比べて、Sr元素含有量を大幅に増加させ、レアアースを添加しない比較例2は、降伏強度が17Mpa、伸びが4.9%低下した。実施例6に比べて、レアアース、Zn、NiおよびGa元素を添加しない比較例3は、降伏強度が25Mpa、伸びが3.3%低下した。実施例6に比べて、レアアースを添加しない比較例4は、降伏強度が23Mpa、伸びが3.6%低下した。実施例6に比べて、レアアースのLa・Ce・Scの総添加量を0.6%に調整した比較例5は、降伏強度が18Mpa、伸びが4.8%低下した。実施例6に比べて、レアアースのLaの添加量を1.0%に調整した比較例6は、降伏強度が16Mpa、伸びが5.1%低下した。実施例6に比べて、レアアースのScの添加量を0.5%に調整した比較例7は、降伏強度が20Mpa、伸びが4.1%低下した。実施例6に比べて、レアアースのLa・Scの総添加量を0.02%に調整した比較例8は、降伏強度が16Mpa、伸びが4.2%低下した。従って、には、Sr及びレアアースのLa・Ce・Sc元素の含有量が本発明の範囲内にのみ、優良な機械的性質を発揮させることができる。SrまたはレアアースのLa・Ce・Sc元素の含有量が少なすぎる、または多すぎる場合、総合的な機械的性質は低下する。 According to Tables 1 and 2, in Comparative Example 1, the Sr element content was significantly reduced and no rare earths were added, compared to Example 2, and the yield strength was 26 MPa and the elongation was 4.2% lower. In Comparative Example 2, the Sr element content was significantly increased and no rare earths were added, compared to Example 2, and the yield strength was 17 MPa and the elongation was 4.9% lower. In Comparative Example 3, in which no rare earths, Zn, Ni, or Ga elements were added, the yield strength was 25 MPa and the elongation was 3.3% lower. In Comparative Example 4, in which no rare earths were added, the yield strength was 23 MPa and the elongation was 3.6% lower. In Comparative Example 5, in which the total amount of rare earths La, Ce, and Sc added was adjusted to 0.6%, the yield strength was 18 MPa and the elongation was 4.8% lower than in Example 6. In Comparative Example 6, in which the amount of rare earth La added was adjusted to 1.0%, the yield strength was 16 MPa and the elongation was 5.1% lower than in Example 6. In comparison with Example 6, Comparative Example 7, in which the amount of rare earth Sc added was adjusted to 0.5%, had a yield strength that was 20 MPa and an elongation that was 4.1% lower. In comparison with Example 6, Comparative Example 8, in which the total amount of rare earth La and Sc added was adjusted to 0.02%, had a yield strength that was 16 MPa and an elongation that was 4.2% lower. Therefore, only when the content of Sr and rare earth La, Ce, and Sc elements is within the range of the present invention can excellent mechanical properties be exhibited. If the content of Sr or rare earth La, Ce, and Sc elements is too low or too high, the overall mechanical properties are reduced.

以上、本発明の好ましい実施形態を詳細に説明した。ただし、本発明はこれらに限定されるものではない。他の適切な方法で各技術的特徴を任意に組み合わせるなど、本発明の技術的思想の範囲内で本発明の技術的手段に対して様々な簡単な変更を行うことができる。これらすべての簡単な変更および組み合わせは、本発明の開示内容とみなされ、本発明の保護範囲内に属する。

The above is a detailed description of the preferred embodiments of the present invention. However, the present invention is not limited thereto. Various simple modifications can be made to the technical means of the present invention within the scope of the technical idea of the present invention, such as arbitrarily combining each technical feature in other suitable ways. All such simple modifications and combinations are considered to be the disclosure of the present invention and fall within the protection scope of the present invention.

Claims (10)

質量%で各成分の含有量が:Si:6.3~8.3%、Fe:0.07~0.45%、Cu:0.05~0.5%、Mn:0.5~0.8%、Mg:0.15~0.35%、Ti:0.01~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上を含むレアアースの総量:0.04~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%となっており、残部がAl及び0.2%以下の残りの不純物であることを特徴とする非熱処理高靭性Al-Si合金ダイカスト材。 A non-heat-treated high-toughness Al-Si alloy die-cast material, characterized by the following mass percent content of each component: Si: 6.3-8.3%, Fe: 0.07-0.45%, Cu: 0.05-0.5%, Mn: 0.5-0.8%, Mg: 0.15-0.35%, Ti: 0.01-0.2%, Sr: 0.015-0.035%, total amount of rare earths including one or more of La/Ce/Sc: 0.04-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, with the remainder being Al and 0.2% or less of remaining impurities. 質量%で各成分の含有量が:Si:6.3~7.0%、Fe:0.2~0.4%、Cu:0.35~0.45%、Mn:0.5~0.8%、Mg:0.25~0.35%、Ti:0.1~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上を含むレアアースの総量:0.04~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%となっており、残部がAl及び0.2%以下の残りの不純物であることを特徴とする請求項1に記載のAl-Si合金ダイカスト材。 The Al-Si alloy die casting material according to claim 1, characterized in that the content of each component in mass percent is: Si: 6.3-7.0%, Fe: 0.2-0.4%, Cu: 0.35-0.45%, Mn: 0.5-0.8%, Mg: 0.25-0.35%, Ti: 0.1-0.2%, Sr: 0.015-0.035%, total amount of rare earths including one or more of La/Ce/Sc: 0.04-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the balance is Al and 0.2% or less of remaining impurities. 質量%で各成分の含有量が:Si:6.4~7.1%、Fe:0.10~0.25%、Cu:0.05~0.28%、Mn:0.5~0.8%、Mg:0.25~0.35%、Ti:0.03~0.16%、Sr:0.025~0.035%、La/Ce/Scの1種を含むレアアースの総量:0.04~0.15%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%となっており、残部がAl及び0.2%以下の残りの不純物であることを特徴とする請求項1に記載の非熱処理高靭性Al-Si合金ダイカスト材。 The non-heat-treated high-toughness Al-Si alloy die-cast material according to claim 1, characterized in that the content of each component in mass percent is: Si: 6.4-7.1%, Fe: 0.10-0.25%, Cu: 0.05-0.28%, Mn: 0.5-0.8%, Mg: 0.25-0.35%, Ti: 0.03-0.16%, Sr: 0.025-0.035%, total amount of rare earths including one of La/Ce/Sc: 0.04-0.15%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the balance is Al and 0.2% or less of remaining impurities. 質量%で各成分の含有量が:Si:7.0~7.7%、Fe:0.15~0.3%、Cu:0.2~0.35%、Mn:0.6~0.8%、Mg:0.2~0.3%、Ti:0.05~0.2%、Sr:0.015~0.035%、La/Ce/Scの1種以上を含むレアアースの総量:0.04~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%となっており、残部がAl及び0.2%以下の残りの不純物であることを特徴とする請求項1に記載のAl-Si合金ダイカスト材。 The Al-Si alloy die casting material according to claim 1, characterized in that the content of each component in mass percent is: Si: 7.0-7.7%, Fe: 0.15-0.3%, Cu: 0.2-0.35%, Mn: 0.6-0.8%, Mg: 0.2-0.3%, Ti: 0.05-0.2%, Sr: 0.015-0.035%, total amount of rare earths including one or more of La/Ce/Sc: 0.04-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the balance is Al and 0.2% or less of remaining impurities. 質量%で各成分の含有量が:Si:7.7~8.3%、Fe:0.07~0.2%、Cu:0.05~0.2%、Mn:0.6~0.8%、Mg:0.15~0.3%、Ti:0.01~0.15%、Sr:0.015~0.035%、La/Ce/Scの1種以上を含むレアアースの総量:0.04~0.2%、Ni:0.001~0.1%、Zn:0.005~0.1%、Ga:0.01~0.03%となっており、残部がAl及び0.2%以下の残りの不純物であることを特徴とする請求項1に記載のAl-Si合金ダイカスト材。 The Al-Si alloy die casting material according to claim 1, characterized in that the content of each component in mass percent is: Si: 7.7-8.3%, Fe: 0.07-0.2%, Cu: 0.05-0.2%, Mn: 0.6-0.8%, Mg: 0.15-0.3%, Ti: 0.01-0.15%, Sr: 0.015-0.035%, total amount of rare earths including one or more of La/Ce/Sc: 0.04-0.2%, Ni: 0.001-0.1%, Zn: 0.005-0.1%, Ga: 0.01-0.03%, and the balance is Al and 0.2% or less of remaining impurities. 270MPa以上の引張強度、130MPa以上の降伏強度、および11%以上の伸びを有することを特徴とする請求項1~5のうち、いずれかに記載のAl-Si合金ダイカスト材。 An Al-Si alloy die-cast material according to any one of claims 1 to 5, characterized in that it has a tensile strength of 270 MPa or more, a yield strength of 130 MPa or more, and an elongation of 11% or more. 前記Al-Si合金ダイカスト材を調製するための焼損を起こしにくい原料を加熱溶融して、アルミニウム合金液を得て、当該アルミニウム合金液にスラグ除去と精錬を行った後に焼損しやすい原料を添加し、成分が規定値に達した後、鋳込み処理を行い、前記Al-Si合金ダイカスト材を得ることを特徴とする請求項1~6のうちのいずれかに記載のAl-Si合金ダイカスト材の製造プロセス。 The manufacturing process for the Al-Si alloy die-casting material according to any one of claims 1 to 6, characterized in that the raw material which is unlikely to burn is heated and melted to prepare the Al-Si alloy die-casting material, an aluminum alloy liquid is obtained, the aluminum alloy liquid is subjected to slag removal and refining, and then raw material which is likely to burn is added, and after the components reach the specified values, a casting process is performed to obtain the Al-Si alloy die-casting material. 前記Al-Si合金ダイカスト材を成形温度が680~720℃、ダイカスト速度が2.5~5m/s、保温時間が2~10秒でダイカスト成形させ、非熱処理状態のダイカスト品を得ることを特徴とする請求項7に記載の製造プロセス。 The manufacturing process described in claim 7 is characterized in that the Al-Si alloy die-cast material is die-cast at a forming temperature of 680 to 720°C, a die-casting speed of 2.5 to 5 m/s, and a heat-retention time of 2 to 10 seconds to obtain a die-cast product in a non-heat-treated state. 各原料が完全に溶融した後、前記アルミニウム合金液を均一に撹拌し、静置した後にサンプリングおよび分析を行い、必要な元素の含有量を成分比の要求範囲内に調整することを特徴とする請求項7に記載の製造プロセス。 The manufacturing process described in claim 7 is characterized in that after each raw material is completely melted, the aluminum alloy liquid is uniformly stirred and allowed to stand, after which sampling and analysis are performed, and the content of required elements is adjusted to within the required range of component ratio. 使用する精錬用フラックスにナトリウムイオンを含まないことを特徴とする請求項7に記載の製造プロセス。



8. The process according to claim 7, characterized in that the refining flux used does not contain sodium ions.



JP2024521341A 2021-12-10 2022-03-15 Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method Pending JP2024546409A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111507879.5A CN114231799B (en) 2021-12-10 2021-12-10 A non-heat-treated high-toughness die-casting aluminum-silicon alloy and its preparation method
CN202111507879.5 2021-12-10
PCT/CN2022/080807 WO2023103201A1 (en) 2021-12-10 2022-03-15 Non-heat-treated high-toughness die-casting aluminum-silicon alloy and preparation method therefor

Publications (1)

Publication Number Publication Date
JP2024546409A true JP2024546409A (en) 2024-12-24

Family

ID=80754649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024521341A Pending JP2024546409A (en) 2021-12-10 2022-03-15 Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method

Country Status (6)

Country Link
US (1) US20250051884A1 (en)
EP (1) EP4446448A1 (en)
JP (1) JP2024546409A (en)
KR (1) KR20240121707A (en)
CN (1) CN114231799B (en)
WO (1) WO2023103201A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024546404A (en) * 2022-01-13 2024-12-24 シャンハイ ジャオ トン ユニバーシティ High strength and toughness die-cast aluminum silicon alloy reinforced by non-heat treatment and its manufacturing method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233046B (en) * 2022-06-15 2023-04-28 浙江今飞凯达轮毂股份有限公司 Non-heat treatment high-iron content Al-Si-Mg-Fe aluminum alloy based on secondary aluminum and preparation method thereof
CN115305390B (en) * 2022-06-30 2023-11-07 丹阳荣嘉精密机械有限公司 Non-heat-treated high-strength and high-toughness die-casting aluminum alloy and preparation method and application thereof
CN115287507A (en) * 2022-08-02 2022-11-04 乔治费歇尔金属成型科技(苏州)有限公司 Heat treatment-free aluminum alloy, and preparation method, structural member and application thereof
CN116574944A (en) * 2023-05-10 2023-08-11 山西瑞格金属新材料有限公司 A kind of heat-free aluminum alloy for new energy automobile battery pack and preparation method thereof
CN116287891B (en) * 2023-05-25 2023-08-08 小米汽车科技有限公司 Heat-treatment-free die-casting aluminum alloy and preparation method and application thereof
CN117026020A (en) * 2023-08-01 2023-11-10 新疆众和股份有限公司 Aluminum alloy ingot for producing integrated die casting by using recycled aluminum and production method thereof
CN117026026B (en) * 2023-08-28 2024-02-23 南通众福新材料科技有限公司 High-elongation aluminum alloy material based on recycled aluminum and preparation method thereof
CN118048544B (en) * 2024-01-31 2024-11-01 广州致远新材料科技有限公司 Preparation method and die casting method of heat-treatment-free die-casting aluminum-silicon alloy material
CN118241085B (en) * 2024-05-24 2024-08-02 成都新格有色金属有限公司 Heat treatment-free aluminum alloy and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH689143A5 (en) 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
CN101629258A (en) * 2008-07-15 2010-01-20 太仓沪北特种铝材有限公司 Excellent RE-containing cast aluminum alloy material for automobile parts and method for manufacturing same
CN104561691B (en) * 2015-01-26 2017-02-01 上海交通大学 High-plasticity cast aluminum alloy and pressure casting preparation method thereof
CN104831129B (en) * 2015-04-10 2017-03-15 凤阳爱尔思轻合金精密成型有限公司 Non-heat treated is from reinforcing alusil alloy and its preparation technology
CN106636787B (en) 2016-11-14 2018-05-25 苏州慧驰轻合金精密成型科技有限公司 A kind of high tenacity pack alloy and preparation method thereof
CN108517446A (en) * 2018-05-22 2018-09-11 华中科技大学 A kind of preparation method of high toughness Al-alloy for evacuated die-casting process and products thereof
CN108754256B (en) 2018-07-16 2019-12-06 上海交通大学 Non-heat treatment strengthened high-strength and high-toughness die-casting aluminum-magnesium-silicon alloy and preparation method thereof
CN109881056B (en) 2019-03-25 2020-11-06 上海永茂泰汽车零部件有限公司 A kind of high-strength and toughness die-casting aluminum alloy and preparation method thereof
CN110983120A (en) * 2019-11-25 2020-04-10 安徽科技学院 300 MPa-grade high-strength plastic non-heat-treatment self-strengthening die-casting aluminum alloy and manufacturing method thereof
CN113755722A (en) * 2021-09-22 2021-12-07 隆达铝业(顺平)有限公司 High-strength and high-toughness heat-treatment-free aluminum alloy material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024546404A (en) * 2022-01-13 2024-12-24 シャンハイ ジャオ トン ユニバーシティ High strength and toughness die-cast aluminum silicon alloy reinforced by non-heat treatment and its manufacturing method

Also Published As

Publication number Publication date
US20250051884A1 (en) 2025-02-13
WO2023103201A1 (en) 2023-06-15
CN114231799A (en) 2022-03-25
KR20240121707A (en) 2024-08-09
EP4446448A1 (en) 2024-10-16
CN114231799B (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP2024546409A (en) Non-heat-treated high-toughness Al-Si alloy die-casting material and its manufacturing method
CN109881063B (en) A kind of high-strength, toughness and high-modulus die-casting magnesium alloy and preparation method thereof
CN113061787A (en) A high-strength and high-toughness Al-Si-Cu-Mg-Cr-Mn-Ti cast alloy and its preparation method
CN110079712B (en) As-cast high-toughness die-casting aluminum-silicon alloy and its preparation method and application
CN114150191B (en) Non-heat-treated high-toughness die-casting aluminum alloy and preparation method thereof
CN105177382B (en) A kind of high-strength and toughness casting magnesium alloy and preparation method thereof
CN112176231A (en) High-strength and high-toughness die-casting aluminum alloy for automobile structural member and preparation method and application thereof
CN110643862A (en) Aluminum alloy for new energy automobile battery shell and pressure casting preparation method thereof
CN110029250A (en) High-elongation birmastic and its compression casting preparation method
CN112921209B (en) Ultrahigh-heat-conductivity high-plasticity medium-strength aluminum alloy and preparation method thereof
CN111926222B (en) Heat-resistant regenerated die-casting aluminum alloy and preparation method thereof
CN110129629B (en) Heat-resistant cast Al-Si-Ni-Cu aluminum alloy and gravity casting preparation
CN113444929A (en) Microalloying non-heat treatment high-strength and high-toughness die-casting aluminum alloy and preparation process thereof
CN101871066A (en) A kind of high-strength toughness magnesium alloy containing tin and zinc and preparation method thereof
CN110079711B (en) Heat-resistant high-pressure casting Al-Si-Ni-Cu aluminum alloy and preparation method thereof
CN115852215A (en) High-strength and high-toughness cast aluminum alloy and preparation method thereof
CN101871068B (en) A kind of high-strength high-plasticity magnesium alloy containing tin and aluminum and preparation method thereof
CN109930044B (en) High strength, toughness and heat resistance Mg-Gd-Y alloy suitable for gravity casting and preparation method thereof
CN100999799A (en) Magnesium alloy
CN102094125B (en) Process method for preparing magnesium alloy through electro-slag remelting
CN116657008A (en) High-strength and high-heat-resistance die-casting magnesium alloy and preparation method thereof
CN115161521B (en) Heat treatment-free die-casting aluminum-silicon-zinc alloy
RU2837409C2 (en) Aluminium alloy not subject to heat treatment and method of its production
CN104862623A (en) Engine cylinder cover aluminium alloy material with good machinability and preparation method thereof
CN112280985B (en) Method for manufacturing high-strength and high-toughness aluminum alloy by adopting recycled aluminum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20250219