[go: up one dir, main page]

CN110628810B - A kind of method to improve plant photosynthetic efficiency - Google Patents

A kind of method to improve plant photosynthetic efficiency Download PDF

Info

Publication number
CN110628810B
CN110628810B CN201910744555.XA CN201910744555A CN110628810B CN 110628810 B CN110628810 B CN 110628810B CN 201910744555 A CN201910744555 A CN 201910744555A CN 110628810 B CN110628810 B CN 110628810B
Authority
CN
China
Prior art keywords
ala
leu
val
ser
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910744555.XA
Other languages
Chinese (zh)
Other versions
CN110628810A (en
Inventor
张先文
王东芳
向雅琴
沈志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910744555.XA priority Critical patent/CN110628810B/en
Publication of CN110628810A publication Critical patent/CN110628810A/en
Application granted granted Critical
Publication of CN110628810B publication Critical patent/CN110628810B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8269Photosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01062-Hydroxy-3-oxopropionate reductase (1.1.1.60)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/99Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
    • C12Y101/99014Glycolate dehydrogenase (1.1.99.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01047Tartronate-semialdehyde synthase (4.1.1.47)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种提高植物光合效率的方法,所述方法为:抑制或敲除植物中胆汁酸钠协同转运蛋白基因,同时过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因。本发明创造性地发现抑制植物中BASS6基因的表达,结合在叶绿体中过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因,能显著减少光呼吸,提高植物的光合效率,提高植物生物量或产量,更重要的是这种转基因植物的耐旱性显著高于抑制PLGG1基因表达的植株,在干旱条件下生物量或产量比非转基因对照增加3%‑45%。The invention discloses a method for improving plant photosynthetic efficiency. The method comprises the following steps of inhibiting or knocking out a sodium bile co-transporter gene in a plant, and simultaneously overexpressing a glycolate dehydrogenase gene, a glyoxylate carboxylase gene and a Tartrate semialdehyde reductase gene. The invention creatively finds that inhibiting the expression of BASS6 gene in plants, combined with overexpression of glycolate dehydrogenase gene, glyoxylate carboxylase gene and tartrate semialdehyde reductase gene in chloroplast, can significantly reduce photorespiration and improve plant The photosynthetic efficiency increases plant biomass or yield, and more importantly, the drought tolerance of this transgenic plant is significantly higher than that of plants with suppressed PLGG1 gene expression, and the biomass or yield under drought conditions is increased by 3% compared with the non-transgenic control. 45 %.

Description

一种提高植物光合效率的方法A kind of method to improve plant photosynthetic efficiency

(一)技术领域(1) Technical field

本发明涉及一种提高植物光合效率的方法,通过转基因的方法来提高植物的光合效率、生物量或产量,改良植物种植资源。The invention relates to a method for improving the photosynthetic efficiency of plants. The photosynthetic efficiency, biomass or yield of plants can be improved by means of transgenic methods, and plant planting resources can be improved.

(二)背景技术(2) Background technology

人类数量的增加和生活水平的提高,需要消耗更多的粮食和饲料,这就要求在有限的土地上收获更多粮食。因此,培育新的高产植物品种非常重要。The increase in the number of human beings and the improvement of living standards require more food and feed to be consumed, which requires more food to be harvested on limited land. Therefore, it is very important to breed new high-yielding plant varieties.

植物整体的光合作用产物全部来源于酶催化CO2转化为有机碳化合物。1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)是卡尔文循环(Calvin-Benson(CB)cycle)中的羧化酶。由于RubisCO与CO2或O2都能反应,RubisCO与O2反应产生磷酸乙醇酸,进入光呼吸循环,光呼吸导致植物中固定的碳和氮的浪费。在全球范围内,这一过程每年将大约29GT的新鲜同化碳被重新释放到大气中(Anav A,etal.Spatiotemporal patterns of terrestrial grossprimary production:a review.Rev Geophys 2015,53:785-818.)。The photosynthesis products of the whole plant are all derived from the enzyme-catalyzed conversion of CO2 to organic carbon compounds. Ribulose 1,5-diphosphate carboxylase/oxygenase (RubisCO) is a carboxylase in the Calvin-Benson (CB) cycle. Since RubisCO reacts with either CO or O, RubisCO reacts with O to produce phosphoglycolic acid , which enters the photorespiration cycle, which leads to a waste of fixed carbon and nitrogen in plants. Globally, this process re-releases approximately 29GT of fresh assimilated carbon into the atmosphere each year (Anav A, et al. Spatiotemporal patterns of terrestrial grossprimary production: a review. Rev Geophys 2015, 53:785-818.).

为了减少光呼吸造成的损失,提高植物的光合效率,目前常用的方法是通过新的光呼吸支路来回收乙醇酸中的CO2,从而达到减少光呼吸提高光合效率的目的(Peterhansel C,Blume C,Offermann S.Photorespiratory bypasses:how can theywork?[J].Journal of Experimental Botany,2013,64(3):709-715.)。In order to reduce the loss caused by photorespiration and improve the photosynthetic efficiency of plants, the commonly used method is to recover CO 2 in glycolic acid through a new photorespiration branch, so as to achieve the purpose of reducing photorespiration and improving photosynthetic efficiency (Peterhansel C, Blume C, Offermann S. Photorespiratory bypasses: how can they work? [J]. Journal of Experimental Botany, 2013, 64(3):709-715.).

乙醇酸脱氢酶(glycolate dehydrogenase,GDH)可以将乙醇酸转换成乙醛酸。目前用于植物转基因研究和应用的乙醇酸脱氢酶主要是来源于低等植物绿藻(Chlamydomonas reinhardtii)或者大肠杆菌。绿藻中的乙醇酸脱氢酶由一个基因编码,而大杆菌中的乙醇酸脱氢酶分别由3个基因编码的D、E、F三个亚基构成。有报到通过在土豆中过表达D、E、F三个亚基的编码基因的融合基因后,植株中的DEFp融合蛋白表达量增加,葡萄糖、果糖和蔗糖等糖分成倍增加,生物量也显著增加(Nolke G,Houdelet M,Kreuzaler F,et al.The expression of a recombinant glycolate dehydrogenase polyprotein inpotato(Solanum tuberosum)plastids strongly enhances photosynthesis and tuberyield[J].Plant Biotechnology Journal,2014,12(6):734-742.)。但是大肠杆菌来源和绿藻来源的乙醇酸脱氢酶在功能和活性方面都有显著差异,所以在转基因植物中的表现也有很大的差异。Glycolate dehydrogenase (GDH) can convert glycolate to glyoxylate. Glycolic acid dehydrogenases currently used in plant transgenic research and applications are mainly derived from lower plant Chlamydomonas reinhardtii or Escherichia coli. The glycolate dehydrogenase in green algae is encoded by one gene, while the glycolate dehydrogenase in Bacillus is composed of three subunits, D, E, and F encoded by three genes. It has been reported that after overexpressing the fusion gene of the three subunits of D, E, and F in potatoes, the expression of DEFp fusion protein in the plant increases, and the sugars such as glucose, fructose and sucrose are doubled, and the biomass is also significant. Increase (Nolke G, Houdelet M, Kreuzaler F, et al. The expression of a recombinant glycolate dehydrogenase polyprotein inpotato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuberyield [J]. Plant Biotechnology Journal, 2014, 12(6): 734- 742.). However, the functions and activities of glycolate dehydrogenases derived from Escherichia coli and green algae are significantly different, so the performance in transgenic plants is also very different.

乙醛酸羧化酶(GCL,glyoxylate carboxylyase)能催化乙醛酸转换成酒石半醛(tartronic semialdehyde,TS),这种酶最早是从大肠杆菌中克隆出来的(Chang YY,WangAY,Cronan Jr JE.1993.Molecular cloning,DNAsequencing,and biochemical analysesof Escherichia coli glyoxylatecarboligase.An enzyme of the acetohydroxy acidsynthase-pyruvateoxidase family.Journal of Biological Chemistry 268,3911–3919.)。酒石半醛还原酶(tartronic semialdehydereductase,TSR)可以把酒石半醛还原成甘油酸。Glyoxylate carboxylase (GCL, glyoxylate carboxylyase) can catalyze the conversion of glyoxylate to tartronic semialdehyde (TS), this enzyme was first cloned from Escherichia coli (Chang YY, WangAY, Cronan Jr JE. 1993. Molecular cloning, DNAsequencing, and biochemical analyses of Escherichia coli glyoxylatecarboligase. An enzyme of the acetohydroxy acidsynthase-pyruvateoxidase family. Journal of Biological Chemistry 268, 3911-3919.). Tartrate semialdehyde reductase (tartronic semialdehydereductase, TSR) can reduce tartar semialdehyde to glyceric acid.

胆汁酸钠协同转运蛋白(Bile Acid Sodium Symporter,BASS)和质体乙醇酸/甘油酸转运子1(plastidal glycolate/glyceratetranslocator 1,PLGG1)是光呼吸中,把叶绿体中的乙醇酸转运到过氧化物酶体的关键蛋白质(South P F,Walker B J,Cavanagh AP,et al.Bile Acid Sodium Symporter BASS6Can Transport Glycolate and IsInvolved in Photorespiratory Metabolism in Arabidopsis thaliana[J].The PlantCell,2017:tpc.00775.2016.)。BASS和PLGG1基因都有转运乙醇酸的功能,但是PLGG1同时还具有转运乙醇酸和甘油酸的功能。之前的研究表明在烟草叶绿体中过表达GDH和MS基因,同时抑制PLGG1基因的表达,可以显著提高烟草的生物量(PF South,AP Cavanagh,HW Liu,etal.Synthetic glycolate metabolism pathways stimulate crop growth andproductivity in the field,Science,2019:363(6422):eaat9077.)。Bile Acid Sodium Symporter (BASS) and plastidal glycolate/glyceratetranslocator 1 (PLGG1) are responsible for transporting chloroplast glycolate to peroxides in photorespiration The key protein of the enzyme body (South P F, Walker B J, Cavanagh AP, et al. Bile Acid Sodium Symporter BASS6Can Transport Glycolate and IsInvolved in Photorespiratory Metabolism in Arabidopsis thaliana [J]. The PlantCell, 2017:tpc.00775.2016.). Both BASS and PLGG1 genes have the function of transporting glycolic acid, but PLGG1 also has the function of transporting glycolic acid and glyceric acid. Previous studies have shown that overexpression of GDH and MS genes in tobacco chloroplasts while inhibiting the expression of PLGG1 gene can significantly increase tobacco biomass (PF South, AP Cavanagh, HW Liu, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field, Science, 2019:363(6422):eaat9077.).

耐旱是植物非常重要的特性。植物具有一定的耐旱性有利于其抵抗干旱逆境,适应不同地理环境。在水资源日益紧张的情况下,培育耐旱能力强的作物新品种非常重要。Drought tolerance is a very important characteristic of plants. Plants have a certain degree of drought tolerance, which is conducive to their ability to resist drought stress and adapt to different geographical environments. In the context of increasing water stress, it is very important to cultivate new crop varieties with strong drought tolerance.

但是我们研究发现,在叶绿体中过表达GDH和MS基因,同时抑制PLGG1基因的表达的植物与对照相比,耐旱性显著降低。相比之下,在叶绿体中过表达GDH和MS基因,同时抑制BASS6基因的表达的植物的耐旱性显著高于抑制PLGG1基因的表达的植物。However, our study found that plants that overexpressed GDH and MS genes in chloroplasts while suppressing the expression of PLGG1 gene had significantly reduced drought tolerance compared with controls. In contrast, plants that overexpressed GDH and MS genes in chloroplasts while suppressing the expression of the BASS6 gene had significantly higher drought tolerance than plants that suppressed the expression of the PLGG1 gene.

(三)发明内容(3) Contents of the invention

本发明目的是提供一种保持或提高植物耐旱性,且减少植物光呼吸,提高植物光合效率,提高植物生物量或产量的方法,为了实现上述技术目的,本发明的技术手段是抑制或敲除植物中BASS基因的表达,并在叶绿体中过表达GDH、GCL和TSR基因。The object of the present invention is to provide a method for maintaining or improving plant drought tolerance, reducing plant photorespiration, improving plant photosynthetic efficiency, and increasing plant biomass or yield. In order to achieve the above technical purpose, the technical means of the present invention is to inhibit or knock In addition to BASS gene expression in plants, GDH, GCL and TSR genes were overexpressed in chloroplasts.

本发明采用的技术方案是:The technical scheme adopted in the present invention is:

本发明提供一种提高植物光合效率的方法,所述方法为:抑制或敲除植物中胆汁酸钠协同转运蛋白(BASS)基因,同时过表达乙醇酸脱氢酶(GDH)基因、乙醛酸羧化酶(GCL)基因和酒石半醛还原酶(TSR)基因。The present invention provides a method for improving plant photosynthetic efficiency. The method comprises the following steps: inhibiting or knocking out sodium bile co-transporter (BASS) gene in plants, and simultaneously overexpressing glycolate dehydrogenase (GDH) gene, glyoxylate Carboxylase (GCL) gene and tartrate semialdehyde reductase (TSR) gene.

进一步,所述胆汁酸钠协同转运蛋白的编码基因来源于植物(表1),其氨基酸序列如SEQ ID NO.1,SEQ ID NO.2或SEQ ID NO.3之一所示。当所述植物为水稻时,所述BASS6基因的氨基酸序列如SEQ ID NO.1所示;当所述植物为大豆时,所述BASS6基因的氨基酸序列如SEQ ID NO.2和SEQ ID NO.3所示。Further, the gene encoding the sodium bile co-transporter is derived from plants (Table 1), and its amino acid sequence is shown in one of SEQ ID NO.1, SEQ ID NO.2 or SEQ ID NO.3. When the plant is rice, the amino acid sequence of the BASS6 gene is shown in SEQ ID NO.1; when the plant is soybean, the amino acid sequence of the BASS6 gene is shown in SEQ ID NO.2 and SEQ ID NO. 3 shown.

进一步,抑制植物中胆汁酸钠协同转运蛋白基因的方法为RNA干扰法,具体是向植物中导入形成靶向胆汁酸钠协同转运蛋白基因发夹结构的双链RNA核苷酸序列。优选当植物为水稻时,导入靶向水稻OsBASS基因形成发夹结构的OsBASS-RNAi序列,核苷酸序列分别为SEQ ID NO.4;当所述植物为大豆时,导入靶向大豆GmBASS基因形成发夹结构的GmBASS-RNAi序列,核苷酸序列为SEQ ID NO.5所示。Further, the method for inhibiting the sodium bile cotransporter gene in the plant is RNA interference method, specifically, introducing a double-stranded RNA nucleotide sequence that forms a hairpin structure targeting the sodium bile cotransporter gene into the plant. Preferably, when the plant is rice, an OsBASS-RNAi sequence targeting the OsBASS gene of rice to form a hairpin structure is introduced, and the nucleotide sequences are respectively SEQ ID NO. 4; when the plant is soybean, the GmBASS gene targeting soybean is introduced to form a hairpin structure. The GmBASS-RNAi sequence of the hairpin structure, the nucleotide sequence is shown in SEQ ID NO.5.

进一步,所述乙醇酸脱氢酶(GDH)基因可以来源于原核生物或者真核生物,包括但不限于表2所示,优选核苷酸序列如SEQ ID NO.6(氨基酸序列为SEQ ID NO.7)。Further, the glycolate dehydrogenase (GDH) gene can be derived from prokaryotes or eukaryotes, including but not limited to those shown in Table 2, and the preferred nucleotide sequence is SEQ ID NO.6 (the amino acid sequence is SEQ ID NO. .7).

进一步,所述乙醛酸羧化酶(GCL)基因可以来源于原核生物或者真核生物,优选GCL基因核苷酸序列如SEQ ID NO.8所示,氨基酸序列为SEQ ID NO.9所示。Further, the glyoxylate carboxylase (GCL) gene can be derived from prokaryotes or eukaryotes, preferably the nucleotide sequence of the GCL gene is shown in SEQ ID NO.8, and the amino acid sequence is shown in SEQ ID NO.9 .

进一步,所述酒石半醛还原酶(TSR)基因可以来源于原核生物或者真核生物(表2),优选TSR基因核苷酸序列如SEQ ID NO.10所示,氨基酸序列为SEQ ID NO.11所示。Further, the tartrate semialdehyde reductase (TSR) gene can be derived from prokaryotes or eukaryotes (Table 2), preferably the nucleotide sequence of the TSR gene is shown in SEQ ID NO.10, and the amino acid sequence is SEQ ID NO. .11 shown.

表1:胆汁酸钠协同转运蛋白(BASS)基因Table 1: Sodium bile cotransporter (BASS) genes

编号Numbering 来源物种source species NCBI Accession NumberNCBI Accession Number 11 ArabidopsisthalianaArabidopsisthaliana <u>NP</u> 567671<u>NP</u> 567671 22 ZeamaysZeamays <u>NP</u> 001158917<u>NP</u> 001158917 33 SorghumbicolorSorghumbicolor XP 021308938XP 021308938 44 OryzasativaOryzasativa <u>XP</u>015612294<u>XP</u>015612294 55 GlycinemaxGlycinemax XP 003538535/XP 003517442XP 003538535/XP 003517442

表2:不同物种来源的乙醇酸脱氢酶(GDH)基因Table 2: Glycolic acid dehydrogenase (GDH) genes from different species

编号Numbering 来源物种source species NCBI Accession NumberNCBI Accession Number 11 Chlamydomonas reinhardtiiChlamydomonas reinhardtii <u>XP 001695381.1</u><u>XP 001695381.1</u> 22 Volvox carteri f.nagariensisVolvox carteri f.nagariensis <u>XP002946459.1</u><u>XP002946459.1</u> 33 Gonium pectoraleGonium pectorale <u>KXZ46746.1</u><u>KXZ46746.1</u> 44 Chlamydomonas eustigmaChlamydomonas eustigma <u>GAX77289.1</u><u>GAX77289.1</u> 55 Escherichia coli K-12Escherichia coli K-12 <u>NP</u> 417453.1、YP 026191.1、YP 026190.1<u>NP</u> 417453.1, YP 026191.1, YP 026190.1

本发明所述方法是构建T-DNA载体,导入植物中完成;所述T-DNA载体构建方法为:以含有耐草铵膦bar基因的pCambia1300双元载体为基础载体,再分别连入乙醇酸脱氢酶基因(GDH)表达框、乙醛酸羧化酶基因(GCL)表达框、酒石半醛还原酶基因(TSR)表达框和胆汁酸钠协同转运蛋白基因RNAi表达框;所述含有耐草铵膦bar基因的pCambia1300双元载体是将原来的抗潮霉素基因hptII替换为抗草铵膦基因bar。The method of the present invention is to construct a T-DNA vector and introduce it into a plant; the T-DNA vector construction method is as follows: the pCambia1300 binary vector containing the glufosinate-resistant bar gene is used as the basic vector, and then glycolic acid is respectively connected to it. Dehydrogenase gene (GDH) expression cassette, glyoxylate carboxylase gene (GCL) expression cassette, tartrate semialdehyde reductase gene (TSR) expression cassette and sodium bile co-transporter gene RNAi expression cassette; the containing The pCambia1300 binary vector of the glufosinate resistance bar gene replaces the original hygromycin resistance gene hptII with the glufosinate resistance gene bar.

本发明中BASS基因RNAi表达框,GDH基因过表达框、GCL基因过表达框和TSR基因过表达框可以通过分子聚合或者杂交聚合的方法实现。分子聚合是指将BASS基因抑制表达框、GDH、GCL和TSR基因的表达框构建在同一个载体的T-DNA上,通过转基因的方法将T-DNA转入的受体植物基因组中,从而使得目标植株中同时对BASS基因的表达进行抑制,且过表达GDH基因、GCL和TSR基因。杂交聚合是指分别获得包含BASS基因抑制表达框、GDH过表达框、GCL过表达框和TSR过表达框的植株,再用传统育种的方法,将分别含有一个或两个上述表达框的植株进行杂交,获得同时含有上述3个表达框的转基因植株。In the present invention, the RNAi expression box of BASS gene, the overexpression box of GDH gene, the overexpression box of GCL gene and the overexpression box of TSR gene can be realized by the method of molecular polymerization or hybridization polymerization. Molecular polymerization refers to constructing the BASS gene suppressor expression cassette, GDH, GCL and TSR gene expression cassettes on the T-DNA of the same vector, and transferring the T-DNA into the recipient plant genome by transgenic method, so that In the target plants, the expression of BASS gene was inhibited at the same time, and GDH gene, GCL and TSR gene were overexpressed. Hybrid polymerization refers to obtaining plants containing the BASS gene suppression expression box, GDH overexpression box, GCL overexpression box and TSR overexpression box respectively, and then using traditional breeding methods to carry out the plants containing one or two of the above expression boxes respectively. Crossed to obtain transgenic plants containing the above three expression cassettes at the same time.

本发明介导GDH、GCL和TSR基因在叶绿体中过表达的信号肽来源于植物RuBisCO小亚基(RbcS)或磷酸葡萄糖变位酶转运肽序列,优选叶绿体信号肽的氨基酸序列如SEQ IDNO.12或SEQ ID NO.13所示,叶绿体信号肽序列融合在GDH、GCL和TSR蛋白的N端。本发明介导GDH、GCL和TSR过表达的启动子可以来源于真核生物或者原核生物,也可以通过人工合成获得,可以是组成型启动子或者特异性启动子。所述的启动子包括包括p35S(NCBIACCESSION:MG719235 REGION:848-1628),玉米UBI启动子(NCBI ACCESSION:KR297238REGION:4879-6876)和水稻Actin1启动子(NCBI ACCESSION:AY452735 REGION:2428-3797)。The signal peptide that mediates the overexpression of GDH, GCL and TSR genes in the chloroplast of the present invention is derived from the plant RuBisCO small subunit (RbcS) or the phosphoglucomutase transit peptide sequence, preferably the amino acid sequence of the chloroplast signal peptide is as SEQ ID NO.12 Or as shown in SEQ ID NO. 13, the chloroplast signal peptide sequence is fused to the N-terminus of GDH, GCL and TSR proteins. The promoter that mediates the overexpression of GDH, GCL and TSR in the present invention can be derived from eukaryotes or prokaryotes, or can be obtained by artificial synthesis, and can be a constitutive promoter or a specific promoter. The promoters include p35S (NCBIACCESSION: MG719235 REGION: 848-1628), maize UBI promoter (NCBI ACCESSION: KR297238 REGION: 4879-6876) and rice Actin1 promoter (NCBI ACCESSION: AY452735 REGION: 2428-3797).

本发明终止子可以来源于真核生物或者原核生物,也可以通过人工合成获得,优选终止子为ter1(NCBI ACCESSION:KJ716235 REGION:3962-4158)和ter2(NCBIACCESSION:MG733984 REGION:2092-2314)。The terminators of the present invention can be derived from eukaryotes or prokaryotes, and can also be obtained by artificial synthesis. Preferably, the terminators are ter1 (NCBI ACCESSION: KJ716235 REGION: 3962-4158) and ter2 (NCBI ACCESSION: MG733984 REGION: 2092-2314).

本发明所述植物为C3植物,是指CO2同化的最初产物是光合碳循环中的三碳化合物3-磷酸甘油酸的植物,主要包括水稻和大豆。The plants in the present invention are C3 plants, which refer to plants in which the initial product of CO 2 assimilation is the three-carbon compound 3-phosphoglycerate in the photosynthetic carbon cycle, mainly including rice and soybean.

本发明提供了一种通过提高植物光合效率来显著提高植物生物量或产量且保持或提高其耐旱性的方法,通过对植物BASS基因进行RNA干扰,并结合在植物的叶绿体中过表达乙醇酸脱氢酶基因(GDH)、乙醛酸羧化酶基因(GCL)和酒石半醛还原酶基因(TSR),在叶绿体中将乙醇酸转化为乙醛酸并进一步转化为酒石半醛,酒石半醛在酒石半醛还原酶的作用下变成甘油酸,从而达到减少光呼吸、提高光合效率和产量的目的。在水稻和大豆叶绿体中对BASS基因进行RNA干扰,并过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因,使得水稻产量增加3%-45%,大豆产量增加3%-45%,且耐旱性与非转基因对照相当,或者比对照更好。The present invention provides a method for significantly increasing plant biomass or yield and maintaining or improving its drought tolerance by increasing plant photosynthetic efficiency, by performing RNA interference on plant BASS gene, combined with overexpressing glycolic acid in plant chloroplasts Dehydrogenase gene (GDH), glyoxylate carboxylase gene (GCL), and tartrate semialdehyde reductase gene (TSR), which convert glycolic acid to glyoxylic acid and further to tartaric semialdehyde in the chloroplast, Tartar semialdehyde is converted into glyceric acid under the action of tartar semialdehyde reductase, so as to reduce photorespiration and improve photosynthetic efficiency and yield. RNA interference of BASS gene in rice and soybean chloroplasts and overexpression of glycolate dehydrogenase gene, glyoxylate carboxylase gene and tartrate semialdehyde reductase gene increased rice yield by 3%-45%, soybean Yield was increased by 3%-45%, and drought tolerance was comparable to, or better than, non-transgenic controls.

与现有技术相比,本发明有益效果主要体现在:Compared with the prior art, the beneficial effects of the present invention are mainly reflected in:

本发明创造性地发现抑制植物中BASS6基因的表达,结合在叶绿体中过表达乙醇酸脱氢酶基因(GDH)、乙醛酸羧化酶基因(GCL)和酒石半醛还原酶基因(TSR),能显著减少光呼吸,提高植物的光合效率,提高植物生物量或产量,更重要的是这种转基因植物的耐旱性显著高于抑制PLGG1基因表达的植株,在干旱条件下生物量或产量比非转基因对照增加3%-45%。The present invention creatively finds that inhibiting the expression of BASS6 gene in plants, combined with overexpression of glycolate dehydrogenase gene (GDH), glyoxylate carboxylase gene (GCL) and tartrate semialdehyde reductase gene (TSR) in chloroplasts , can significantly reduce photorespiration, increase the photosynthetic efficiency of plants, and increase plant biomass or yield. More importantly, the drought tolerance of this transgenic plant is significantly higher than that of plants that inhibit PLGG1 gene expression, and the biomass or yield under drought conditions 3%-45% increase over non-transgenic controls.

(四)具体实施方式(4) Specific implementations

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but the protection scope of the present invention is not limited to this:

实施例1、载体的构建Embodiment 1, the construction of carrier

本发明GDH基因可以来源原核生物,也可以来源于真核生物,本发明提供的GDH基因包括但不限于表2中所示的基因。为了构建转化载体,人工合成了大肠杆菌来源的GDH基因以及对应的终止子序列,包含叶绿体信号肽、GDH编码基因和终止子,核苷酸序列如SEQID NO.6所示,5‘端和3‘端分别设置有BamHI和KpnI位点。人工合成GCL基因,包含叶绿体信号肽、GCL编码基因和终止子,核苷酸序列如SEQ ID NO.8所示,5‘端和3‘端分别设置有BamHI和HindIII位点。人工合成TSR基因,包含叶绿体信号肽、TSR编码基因和终止子,核苷酸序列如SEQ ID NO.10所示,5‘端和3‘端分别设置有BamHI和EcoRI位点。The GDH genes of the present invention can be derived from prokaryotes or eukaryotes. The GDH genes provided by the present invention include but are not limited to the genes shown in Table 2. In order to construct the transformation vector, the E. coli-derived GDH gene and the corresponding terminator sequence were artificially synthesized, including the chloroplast signal peptide, the GDH coding gene and the terminator. The nucleotide sequence is shown in SEQID NO. ' ends are provided with BamHI and KpnI sites, respectively. The artificially synthesized GCL gene includes a chloroplast signal peptide, a GCL coding gene and a terminator, the nucleotide sequence is shown in SEQ ID NO. 8, and the 5' end and the 3' end are respectively provided with BamHI and HindIII sites. The artificially synthesized TSR gene includes a chloroplast signal peptide, a TSR coding gene and a terminator, the nucleotide sequence is shown in SEQ ID NO. 10, and the 5' end and the 3' end are respectively provided with BamHI and EcoRI sites.

为了实现对BASS基因的表达抑制或敲除,本发明提供了植物自身的BASS基因;当所述植物为水稻时,所述BASS6基因的氨基酸序列如SEQ ID NO.1所示;当所述植物为大豆时,所述BASS6基因的氨基酸序列如SEQ ID NO.2和SEQ ID NO.3所示。为了构建BASS基因干扰表达框,分别人工合成靶向水稻OsBASS基因和大豆GmBASS基因的可以形成发夹结构的OsBASS-RNAi和GmBASS-RNAi序列,序列如SEQ ID NO.4和SEQ ID NO.5所示。作为对照分别合成了靶向水稻OsPGGL1基因和大豆GmPGGL1基因的可以形成发夹结构的Os PGGL1-RNAi和Gm PGGL1-RNAi序列,如SEQ ID NO.14和SEQ ID NO.15所示。上述序列的3’端都分别加有终止子ter1,最终构成OsBASS-RNAi-ter、GmBASS-RNAi-ter和Os PGGL1-RNAi-ter、Gm PGGL1-RNAi-ter。5‘端和3‘端分别设置有BglII和HindIII位点。In order to realize the expression inhibition or knockout of the BASS gene, the present invention provides the BASS gene of the plant itself; when the plant is rice, the amino acid sequence of the BASS6 gene is shown in SEQ ID NO. 1; when the plant is rice In the case of soybean, the amino acid sequence of the BASS6 gene is shown in SEQ ID NO.2 and SEQ ID NO.3. In order to construct the BASS gene interference expression cassette, the OsBASS-RNAi and GmBASS-RNAi sequences targeting the rice OsBASS gene and soybean GmBASS gene, which can form hairpin structures, were artificially synthesized, as shown in SEQ ID NO.4 and SEQ ID NO.5. Show. As controls, Os PGGL1-RNAi and Gm PGGL1-RNAi sequences targeting rice OsPGGL1 gene and soybean GmPGGL1 gene that can form hairpin structures were synthesized, as shown in SEQ ID NO.14 and SEQ ID NO.15. Terminator ter1 is added to the 3' ends of the above sequences respectively, and finally constitutes OsBASS-RNAi-ter, GmBASS-RNAi-ter, Os PGGL1-RNAi-ter, Gm PGGL1-RNAi-ter. The 5' and 3' ends are provided with BglII and HindIII sites, respectively.

同时,人工合成玉米Ubi启动子序列、水稻Actin启动子和花椰菜花叶病毒(CaMV)的35S启动子序列。Ubi启动子5‘端和3‘端分别设置有EcoRI和BamHI位点,Actin启动子的5‘端和3‘端分别设置有EcoRI和BamHI位点,35S启动子5‘端和3‘端分别设置有KpnI和BamHI位点。同时合成一个5‘端和3‘端分别设置有HindIII和BamHI位点的Ubi启动子,用于介导RNAi序列的转录。At the same time, the maize Ubi promoter sequence, the rice Actin promoter and the 35S promoter sequence of cauliflower mosaic virus (CaMV) were synthesized. EcoRI and BamHI sites are set at the 5' and 3' ends of the Ubi promoter, respectively, EcoRI and BamHI sites are set at the 5' and 3' ends of the Actin promoter, respectively, and the 5' and 3' ends of the 35S promoter are respectively set KpnI and BamHI sites are provided. At the same time, a Ubi promoter with HindIII and BamHI sites at the 5' and 3' ends was synthesized to mediate the transcription of RNAi sequences.

为了构建可以用于农杆菌方法转化植物所用的双元载体,用商业化的双元载体pCambia1300为基础,通过XhoI酶切位点把之前的hptII(hygromycin resistance)基因置换成耐草铵膦的bar基因(NCBI ACCESSIONp:MG719235 REGION:287-835),置换后的载体命名为pCambia1300-bar。In order to construct a binary vector that can be used to transform plants by Agrobacterium, the commercial binary vector pCambia1300 was used as the basis, and the previous hptII (hygromycin resistance) gene was replaced by a glufosinate-resistant bar through the XhoI restriction site. Gene (NCBI ACCESSIONp:MG719235 REGION:287-835), the substituted vector was named pCambia1300-bar.

通过EcoRI和KpnI位点把Ubi启动子与GDH基因连入pCambia1300-bar载体中,获得过度载体pCambia1300-bar-GDH。再通过KpnI和HindIII位点把35S启动子和GCL基因连入过度载体pCambia1300-bar-GDH中,获得过度载体pCambia1300-bar-GDH-GCL。然后通过EcoRI对pCambia1300-bar-GDH-GCL进行单酶切,再与用EcoRI和BamHI酶切后的Actin启动子和用BamHI和EcoRI酶切的TSR基因连接,获得过度载体pCambia1300-bar-GDH-GCL-TSR。最后通过HindIII对pCambia1300-bar-GDH-GCL-TSR进行单酶切,再把用BglII和HindIII双酶切后的OsBASS-RNAi-ter或GmBASS-RNAi-ter和用BamHI和HindIII酶切后的Ubi启动子连接,构建成终载体,分别命名为pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)。The Ubi promoter and GDH gene were ligated into the pCambia1300-bar vector through EcoRI and KpnI sites to obtain the transition vector pCambia1300-bar-GDH. Then, the 35S promoter and GCL gene were ligated into the transition vector pCambia1300-bar-GDH through KpnI and HindIII sites to obtain the transition vector pCambia1300-bar-GDH-GCL. Then, pCambia1300-bar-GDH-GCL was single digested with EcoRI, and then ligated with the Actin promoter digested with EcoRI and BamHI and the TSR gene digested with BamHI and EcoRI to obtain the over-vector pCambia1300-bar-GDH- GCL-TSR. Finally, pCambia1300-bar-GDH-GCL-TSR was single digested by HindIII, then OsBASS-RNAi-ter or GmBASS-RNAi-ter digested with BglII and HindIII and Ubi digested with BamHI and HindIII were digested The promoters were ligated to construct final vectors, named pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi (GGTOsBi) and pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi (GGTGmBi), respectively.

作为对照,用同样的方法构建含有抑制PGGL1基因表达框的载体,分别命名为pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)。As a control, vectors containing the PGGL1 gene expression cassette were constructed in the same way and named as pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi (GGTOsPi) and pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi, respectively (GGTGmPi).

最后,通过电转的方法把T-DNA质粒转入农杆菌LB4404中,通过含有15μg/ml四环素和50μg/mL的卡那霉素的YEP固体培养基筛选出阳性克隆,并保菌,用于接下来的植物转化。Finally, the T-DNA plasmid was transferred into Agrobacterium LB4404 by electroporation, and positive clones were screened out by YEP solid medium containing 15 μg/ml tetracycline and 50 μg/mL kanamycin, and the bacteria were preserved for the next step. plant transformation.

实施例2、水稻转化Example 2, rice transformation

转基因水稻的获得方法是采用现有技术(卢雄斌,龚祖埙(1998)生命科学10:125-131;刘凡等(2003)分子植物育种1:108-115)。选取成熟饱满的“秀水-134”种子去壳,诱导产生愈伤组织作为转化材料。取实施例1中构建好的分别含有pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)质粒的农杆菌划板。挑单菌落接种,准备转化用农杆菌。将待转化的愈伤组织放入OD为0.6左右的农杆菌菌液中(农杆菌菌液的制备:将农杆菌接种至培养基,培养至OD为0.6左右;培养基组成:3g/L K2HPO4、1g/L NaH2PO4、1g/L NH4Cl、0.3g/L MgSO4·7H2O、0.15g/L KCl、0.01g/L CaCl2、0.0025g/L FeSO4·7H2O、5g/L蔗糖、20mg/L乙酰丁香酮,溶剂为水,pH=5.8),让农杆菌结合到愈伤组织表面,然后把愈伤组织转移到共培养培养基(MS+2mg/L 2,4-D+30g/L葡萄糖+30g/L蔗糖+3g/L琼脂(sigma 7921)+20mg/L乙酰丁香酮)中,共培养2-3天。用无菌水冲洗转化后的愈伤,转移到筛选培养基(MS+2mg/L 2,4-D(2,4-二氯苯氧乙酸)+30g/L蔗糖+3g/L琼脂(sigma 7921)+20mg/L乙酰丁香酮+2mM草甘膦(Sigma))上,筛选培养两个月(中间继代一次)。把筛选后,生长活力良好的愈伤转移到预分化培养基(MS+0.1g/L肌醇+5mg/L ABA(脱落酸)+1mg/L NAA(萘乙酸)+5mg/L 6-BA(6-苄胺基腺嘌呤)+20g/L山梨醇+30g/L蔗糖+2.5g/L植物凝胶(gelrite))上培养20天左右,然后将预分化好的愈伤组织移到分化培养基上,每天14小时光照分化发芽。2-3周后,把抗性再生植株转移到生根培养基(1/2MS+0.2mg/L NAA+20g/L蔗糖+2.5g/L gelrite)上壮苗生根,最后将再生植株洗去琼脂移植于温室,选择产量高、种子大或者生物量高等能够提高水稻产量的转基因株系,培育新品种。分别获得含上述转化载体的转基因水稻植株。The method of obtaining transgenic rice is to use the existing technology (Lu Xiongbin, Gong Zuxun (1998) Life Science 10: 125-131; Liu Fan et al. (2003) Molecular Plant Breeding 1: 108-115). The mature and plump "Xiushui-134" seeds were selected and shelled to induce callus as the transformation material. Take the Agrobacterium plates constructed in Example 1 containing the plasmids pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi (GGTOsBi) and pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi (GGTOsPi) respectively. Pick a single colony to inoculate and prepare for transformation with Agrobacterium. Put the callus to be transformed into the Agrobacterium liquid with an OD of about 0.6 (the preparation of the Agrobacterium liquid: inoculate the Agrobacterium into the culture medium, and cultivate to an OD of about 0.6; the medium consists of 3 g/LK 2 HPO 4 , 1 g/L NaH 2 PO 4 , 1 g/L NH 4 Cl, 0.3 g/L MgSO 4 ·7H 2 O, 0.15 g/L KCl, 0.01 g/L CaCl 2 , 0.0025 g/L FeSO 4 ·7H 2 O, 5g/L sucrose, 20mg/L acetosyringone, the solvent is water, pH=5.8), let Agrobacterium bind to the surface of the callus, and then transfer the callus to the co-cultivation medium (MS+2mg/ L 2,4-D+30g/L glucose+30g/L sucrose+3g/L agar (sigma 7921)+20mg/L acetosyringone), co-cultured for 2-3 days. The transformed callus was washed with sterile water and transferred to screening medium (MS+2mg/L 2,4-D(2,4-dichlorophenoxyacetic acid)+30g/L sucrose+3g/L agar (sigma 7921) + 20 mg/L acetosyringone + 2 mM glyphosate (Sigma)), screened and cultured for two months (one intermediate passage). After selection, the callus with good growth vigor was transferred to pre-differentiation medium (MS+0.1g/L inositol+5mg/L ABA (abscisic acid)+1mg/L NAA (naphthalene acetic acid)+5mg/L 6-BA (6-benzylaminoadenine)+20g/L sorbitol+30g/L sucrose+2.5g/L phytogel (gelrite)) for about 20 days, and then the pre-differentiated callus was transferred to differentiated On the medium, 14 hours a day of light differentiation and germination. After 2-3 weeks, the resistant regenerated plants were transferred to rooting medium (1/2MS+0.2mg/L NAA+20g/L sucrose+2.5g/L gelrite) for strong seedlings and rooting, and finally the regenerated plants were washed off the agar Transplant in the greenhouse, select transgenic lines with high yield, large seeds or high biomass that can increase rice yield, and cultivate new varieties. Transgenic rice plants containing the above transformation vectors were obtained respectively.

实施例3.大豆转化Example 3. Soybean Transformation

这里使用的获得转基因大豆的步骤来自于已有的技术(Deng et al.,1998,PlantPhysiology Communications 34:381-387;Ma et al.,2008,ScientiaAgriculturaSinica 41:661-668;Zhou et al.,2001,Journal of NortheastAgricultural University 32:313-319)。选取健康、饱满、成熟的“天隆1号”大豆,用80%乙醇消毒2分钟,再用无菌水清洗,然后放置在充满氯气(由50ml NaClO与2ml浓HCl反应生成)的干燥器中灭菌4-6个小时。灭菌后的大豆在超净工作台里被播撒到B5培养基中,25℃条件下培养5天,同时光密度在90-150μmol光子/m2·s水平。当子叶变绿并顶破种皮,无菌的豆芽就会长出。去掉了下胚轴的豆芽在长度上被切成五五开,使得两片外植体都具有子叶和上胚轴。在子叶和上胚轴的节点处切外植体大约7-8处,即可用作被侵染的目标组织。The steps used here to obtain transgenic soybeans were derived from existing techniques (Deng et al., 1998, PlantPhysiology Communications 34:381-387; Ma et al., 2008, Scientia Agricultura Sinica 41:661-668; Zhou et al., 2001 , Journal of Northeast Agricultural University 32:313-319). Select healthy, plump and mature soybeans of "Tianlong No. 1", sterilize them with 80% ethanol for 2 minutes, rinse with sterile water, and place them in a desiccator filled with chlorine gas (produced by the reaction of 50ml NaClO and 2ml concentrated HCl) Sterilize for 4-6 hours. The sterilized soybeans were sown into B5 medium in an ultra-clean workbench, and cultivated at 25°C for 5 days, while the optical density was at the level of 90-150 μmol photons/m 2 ·s. When the cotyledons turn green and burst the seed coat, sterile sprouts will grow. The sprouts with the hypocotyls removed were cut in half in length so that both explants had cotyledons and epicotyls. Explants are cut at approximately 7-8 points at the junction of cotyledons and epicotyls and can be used as target tissue for infection.

分别取通过实施例1构建的含有载体pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)的单克隆农杆菌被分开培养待用。准备好的外植体浸没在农杆菌悬浮液(同实施例2方法制备)中共培养30分钟左右。然后,将侵染的组织上多余的细胞悬浮液用吸水纸吸收干净,再转移到1/10B5共培养培养基里25℃暗培养3-5天。The monoclonal Agrobacterium containing the vectors pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi (GGTGmBi) and pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi (GGTGmPi) constructed by Example 1 were separated Cultivated for use. The prepared explants were immersed in the Agrobacterium suspension (prepared by the method of Example 2) and co-cultured for about 30 minutes. Then, the excess cell suspension on the infected tissue was absorbed with absorbent paper, and then transferred to 1/10B5 co-culture medium for 3-5 days in the dark at 25°C.

共培养的植物组织用B5液体培养基清洗,以除去多余的农杆菌,然后放置到B5固体培养基中25℃下培养5天,待其发芽。诱导发生的胚芽组织转移到含有0.1mM草甘膦的B5筛选培养基中,25℃光照培养4周,期间每两周更换一次培养基。筛选出来的胚芽组织再转移到固体培养基中,25℃培养,待其长成小苗。随后,将转基因植株苗转移到1/2B5培养基中进行生根诱导。最后,长成的小植株经清洗去除琼脂后栽种在温室中。The co-cultured plant tissues were washed with B5 liquid medium to remove excess Agrobacterium, and then placed in B5 solid medium for 5 days at 25°C and allowed to germinate. The induced embryonic tissue was transferred to B5 selection medium containing 0.1 mM glyphosate, and incubated in the light at 25°C for 4 weeks, during which the medium was changed every two weeks. The screened embryo tissues were then transferred to solid medium and cultured at 25°C until they grew into seedlings. Subsequently, the transgenic plantlets were transferred to 1/2B5 medium for rooting induction. Finally, the grown plantlets were washed to remove the agar and planted in the greenhouse.

实施例4:转基因水稻的鉴定Example 4: Identification of transgenic rice

通过实施例2分别获得了载体pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)的转基因水稻植株。上述转基因植株与非转基因对照相比生物量和产量都有所增加,并且,GGTOsBi植株在生物量或产量方面的增加幅度最大。为了进一步鉴定GGTOsBi转基因植株的表现变化,我们对上述转基因植株的生物量和种子产量进行了评估和比较,结果如表3所示。在正常条件下GGTOsBi转基因植株和GGTOsPi转基因植株的生物量或产量与非转基因对照相比都有显著增加,增幅达5%-45%;但是在干旱条件(表5)下,GGTOsBi转基因植株与对照相比生物量或产量仍然显著增加,而GGTOsPi转基因植株与非转基因对照相比生物量或产量没有显著增加。Transgenic rice plants of vectors pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi) and pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi) were obtained in Example 2, respectively. The above-mentioned transgenic plants showed increased biomass and yield compared with non-transgenic controls, and GGTOsBi plants showed the greatest increase in biomass or yield. In order to further identify the performance changes of GGTOsBi transgenic plants, we evaluated and compared the biomass and seed yield of the above transgenic plants, and the results are shown in Table 3. Under normal conditions, the biomass or yield of GGTOsBi transgenic plants and GGTOsPi transgenic plants were significantly increased compared with non-transgenic controls, with an increase of 5%-45%; but under drought conditions (Table 5), GGTOsBi transgenic plants were significantly higher than those of non-transgenic controls. The control still had a significant increase in biomass or yield, while the GGTOsPi transgenic plants did not have a significant increase in biomass or yield compared to the non-transgenic controls.

表3生物量和产量对比Table 3 Comparison of biomass and yield

Figure BDA0002165124390000081
Figure BDA0002165124390000081

实施例5:转基因大豆的鉴定Example 5: Identification of Transgenic Soybeans

通过实施例3分别获得了载体pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)的转基因大豆植株。上述转基因植株与非转基因对照相比生物量和产量都有所增加,并且转基因植株在生物量或产量方面的增加幅度最大。为了进一步鉴定转基因植株的表现变化,我们对上述转基因植株的生物量和种子产量进行了评估,结果如表4所示。在正常条件下GGTGmBi转基因植株和GGTGmPi转基因植株的生物量或产量与非转基因对照相比都有显著增加,增幅达5%-45%;但是在干旱条件(表5)下,GGTGmBi转基因植株与对照相比生物量或产量仍然显著增加,而GGTGmPi转基因植株与非转基因对照相比生物量或产量没有显著增加。The transgenic soybean plants of the vectors pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi (GGTGmBi) and pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi (GGTGmPi) were obtained in Example 3, respectively. The above transgenic plants showed increased biomass and yield compared to non-transgenic controls, and the transgenic plants showed the greatest increase in biomass or yield. In order to further identify the performance changes of the transgenic plants, we evaluated the biomass and seed yield of the above-mentioned transgenic plants, and the results are shown in Table 4. Under normal conditions, the biomass or yield of GGTGmBi transgenic plants and GGTGmPi transgenic plants were significantly increased compared with non-transgenic controls by 5%-45%; Controls still had significant increases in biomass or yield, while GGTGmPi transgenic plants did not have significant increases in biomass or yield compared to non-transgenic controls.

表4生物量、产量比较Table 4 Comparison of biomass and yield

Figure BDA0002165124390000091
Figure BDA0002165124390000091

表5、基于农田与作物干旱形态指标等级(GB/T 32136-2015)Table 5. Index grades based on farmland and crop drought morphology (GB/T 32136-2015)

Figure BDA0002165124390000092
Figure BDA0002165124390000092

序列表sequence listing

<110> 浙江大学<110> Zhejiang University

<120> 一种提高植物光合效率的方法<120> A method for improving plant photosynthetic efficiency

<160> 15<160> 15

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 401<211> 401

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 1<400> 1

Met Ala Pro Asn Ala Ala Val Leu Val Arg Pro His Ile Ala Gly ValMet Ala Pro Asn Ala Ala Val Leu Val Arg Pro His Ile Ala Gly Val

1 5 10 151 5 10 15

His His Leu Pro Thr Gly Arg Arg Leu Pro Arg Leu Ala Pro Pro GlnHis His Leu Pro Thr Gly Arg Arg Leu Pro Arg Leu Ala Pro Pro Gln

20 25 30 20 25 30

Ala Val Ser Pro Pro Phe Ser Arg Gln Lys Gly Ser Val Val Ala AlaAla Val Ser Pro Pro Phe Ser Arg Gln Lys Gly Ser Val Val Ala Ala

35 40 45 35 40 45

Ser Gly Arg Val Trp Ala Ser Ala Ser Gly Ser Phe Glu Lys Asp ArgSer Gly Arg Val Trp Ala Ser Ala Ser Gly Ser Phe Glu Lys Asp Arg

50 55 60 50 55 60

Ile Gly Asp Asp Asp Val Leu Ala Ser Pro Gln Ile Val Glu Glu SerIle Gly Asp Asp Asp Val Leu Ala Ser Pro Gln Ile Val Glu Glu Ser

65 70 75 8065 70 75 80

Lys Val Asp Leu Leu Lys Ile Leu Lys Ser Ala Asn Thr Ile Ile ProLys Val Asp Leu Leu Lys Ile Leu Lys Ser Ala Asn Thr Ile Ile Pro

85 90 95 85 90 95

His Val Val Leu Gly Ser Thr Ile Leu Ala Leu Val Tyr Pro Pro SerHis Val Val Leu Gly Ser Thr Ile Leu Ala Leu Val Tyr Pro Pro Ser

100 105 110 100 105 110

Phe Thr Trp Phe Thr Thr Arg Tyr Tyr Ala Pro Ala Leu Gly Phe LeuPhe Thr Trp Phe Thr Thr Arg Tyr Tyr Ala Pro Ala Leu Gly Phe Leu

115 120 125 115 120 125

Met Phe Ala Val Gly Val Asn Ser Ser Val Lys Asp Phe Ile Glu AlaMet Phe Ala Val Gly Val Asn Ser Ser Val Lys Asp Phe Ile Glu Ala

130 135 140 130 135 140

Ile Gln Arg Pro Asp Ala Ile Ala Ala Gly Tyr Val Gly Gln Phe IleIle Gln Arg Pro Asp Ala Ile Ala Ala Gly Tyr Val Gly Gln Phe Ile

145 150 155 160145 150 155 160

Ile Lys Pro Phe Leu Gly Phe Leu Phe Gly Thr Leu Ala Val Thr IleIle Lys Pro Phe Leu Gly Phe Leu Phe Gly Thr Leu Ala Val Thr Ile

165 170 175 165 170 175

Phe Asn Leu Pro Thr Ala Leu Gly Ala Gly Ile Met Leu Val Ser CysPhe Asn Leu Pro Thr Ala Leu Gly Ala Gly Ile Met Leu Val Ser Cys

180 185 190 180 185 190

Val Ser Gly Ala Gln Leu Ser Asn Tyr Ala Thr Phe Leu Thr Asp ProVal Ser Gly Ala Gln Leu Ser Asn Tyr Ala Thr Phe Leu Thr Asp Pro

195 200 205 195 200 205

His Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala ThrHis Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala Thr

210 215 220 210 215 220

Ala Val Phe Val Thr Pro Thr Leu Ser Tyr Phe Leu Ile Gly Lys LysAla Val Phe Val Thr Pro Thr Leu Ser Tyr Phe Leu Ile Gly Lys Lys

225 230 235 240225 230 235 240

Leu Pro Val Asp Val Lys Gly Met Met Ser Ser Ile Val Gln Ile ValLeu Pro Val Asp Val Lys Gly Met Met Ser Ser Ile Val Gln Ile Val

245 250 255 245 250 255

Val Ala Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Tyr Leu Pro ArgVal Ala Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Tyr Leu Pro Arg

260 265 270 260 265 270

Leu Cys Ser Ala Ile Gln Pro Phe Leu Pro Pro Leu Ser Val Phe ValLeu Cys Ser Ala Ile Gln Pro Phe Leu Pro Pro Leu Ser Val Phe Val

275 280 285 275 280 285

Thr Ala Leu Cys Val Gly Ser Pro Leu Ala Ile Asn Ile Lys Ala ValThr Ala Leu Cys Val Gly Ser Pro Leu Ala Ile Asn Ile Lys Ala Val

290 295 300 290 295 300

Leu Ser Pro Phe Gly Leu Ala Thr Val Leu Leu Leu Phe Ala Phe HisLeu Ser Pro Phe Gly Leu Ala Thr Val Leu Leu Leu Phe Ala Phe His

305 310 315 320305 310 315 320

Thr Ser Ser Phe Ile Ala Gly Tyr His Leu Ala Gly Thr Trp Phe ArgThr Ser Ser Phe Ile Ala Gly Tyr His Leu Ala Gly Thr Trp Phe Arg

325 330 335 325 330 335

Glu Ser Ala Asp Val Lys Ala Leu Gln Arg Thr Val Ser Phe Glu ThrGlu Ser Ala Asp Val Lys Ala Leu Gln Arg Thr Val Ser Phe Glu Thr

340 345 350 340 345 350

Gly Met Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Arg Phe PheGly Met Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Arg Phe Phe

355 360 365 355 360 365

Pro Asp Pro Leu Val Gly Val Pro Pro Ala Ile Ser Val Val Leu MetPro Asp Pro Leu Val Gly Val Pro Pro Ala Ile Ser Val Val Leu Met

370 375 380 370 375 380

Ser Leu Met Gly Phe Ala Leu Val Met Val Trp Ser Lys Arg Thr LysSer Leu Met Gly Phe Ala Leu Val Met Val Trp Ser Lys Arg Thr Lys

385 390 395 400385 390 395 400

GluGlu

<210> 2<210> 2

<211> 408<211> 408

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 2<400> 2

Met Ile Ser Ser Gly Leu Lys Leu Lys His Phe Arg Asn Ile Asp SerMet Ile Ser Ser Gly Leu Lys Leu Lys His Phe Arg Asn Ile Asp Ser

1 5 10 151 5 10 15

Leu Phe His Phe Pro Lys Ser Lys Pro Pro Ile Leu Leu Pro Cys CysLeu Phe His Phe Pro Lys Ser Lys Pro Pro Ile Leu Leu Pro Cys Cys

20 25 30 20 25 30

Pro Thr Ile Ser Ser Pro Cys Ser Ile Arg Phe Asn Ser His Phe ProPro Thr Ile Ser Ser Pro Cys Ser Ile Arg Phe Asn Ser His Phe Pro

35 40 45 35 40 45

Tyr Arg Ser Thr Lys Val Pro Leu Lys Cys Ala Pro Leu Pro Ser SerTyr Arg Ser Thr Lys Val Pro Leu Lys Cys Ala Pro Leu Pro Ser Ser

50 55 60 50 55 60

Asp Ser Leu Pro Pro Asp Leu Ser Asp Ala Pro Thr Gln Thr Glu GlnAsp Ser Leu Pro Pro Asp Leu Ser Asp Ala Pro Thr Gln Thr Glu Gln

65 70 75 8065 70 75 80

Asn Ser Met Ser Ile Leu Glu Ile Leu Lys Gln Ser Asn Ser Tyr LeuAsn Ser Met Ser Ile Leu Glu Ile Leu Lys Gln Ser Asn Ser Tyr Leu

85 90 95 85 90 95

Pro His Val Leu Ile Ala Ser Ile Leu Leu Ala Leu Ile Tyr Pro ProPro His Val Leu Ile Ala Ser Ile Leu Leu Ala Leu Ile Tyr Pro Pro

100 105 110 100 105 110

Ser Leu Thr Trp Phe Thr Ser Arg Tyr Tyr Ala Pro Ala Leu Gly PheSer Leu Thr Trp Phe Thr Ser Arg Tyr Tyr Ala Pro Ala Leu Gly Phe

115 120 125 115 120 125

Leu Met Phe Ala Val Gly Val Asn Ser Asn Glu Asn Asp Phe Leu GluLeu Met Phe Ala Val Gly Val Asn Ser Asn Glu Asn Asp Phe Leu Glu

130 135 140 130 135 140

Ala Phe Lys Arg Pro Ala Glu Ile Val Thr Gly Tyr Phe Gly Gln PheAla Phe Lys Arg Pro Ala Glu Ile Val Thr Gly Tyr Phe Gly Gln Phe

145 150 155 160145 150 155 160

Ala Val Lys Pro Leu Leu Gly Tyr Leu Phe Cys Met Ile Ala Val ThrAla Val Lys Pro Leu Leu Gly Tyr Leu Phe Cys Met Ile Ala Val Thr

165 170 175 165 170 175

Val Leu Ser Leu Pro Thr Thr Val Gly Ala Gly Ile Val Leu Val AlaVal Leu Ser Leu Pro Thr Thr Val Gly Ala Gly Ile Val Leu Val Ala

180 185 190 180 185 190

Cys Val Ser Gly Ala Gln Leu Ser Ser Tyr Ala Thr Phe Leu Thr AspCys Val Ser Gly Ala Gln Leu Ser Ser Tyr Ala Thr Phe Leu Thr Asp

195 200 205 195 200 205

Pro Gln Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr AlaPro Gln Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala

210 215 220 210 215 220

Ser Ala Val Phe Val Thr Pro Leu Leu Leu Leu Leu Leu Ile Gly LysSer Ala Val Phe Val Thr Pro Leu Leu Leu Leu Leu Leu Ile Gly Lys

225 230 235 240225 230 235 240

Lys Leu Pro Ile Asp Val Arg Gly Met Val Tyr Ser Ile Thr Gln IleLys Leu Pro Ile Asp Val Arg Gly Met Val Tyr Ser Ile Thr Gln Ile

245 250 255 245 250 255

Val Val Val Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Phe Tyr ProVal Val Val Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Phe Tyr Pro

260 265 270 260 265 270

Arg Ile Cys Asn Val Ile Arg Pro Phe Leu Pro Pro Leu Ser Val LeuArg Ile Cys Asn Val Ile Arg Pro Phe Leu Pro Pro Leu Ser Val Leu

275 280 285 275 280 285

Val Ala Ser Ile Cys Ala Gly Ala Pro Leu Ala Phe Asn Val Glu ThrVal Ala Ser Ile Cys Ala Gly Ala Pro Leu Ala Phe Asn Val Glu Thr

290 295 300 290 295 300

Met Lys Ser Pro Leu Gly Val Val Ile Leu Leu Leu Val Val Ala PheMet Lys Ser Pro Leu Gly Val Val Ile Leu Leu Leu Val Val Ala Phe

305 310 315 320305 310 315 320

His Leu Ser Ser Phe Ile Ala Gly Tyr Ile Leu Ser Gly Phe Val PheHis Leu Ser Ser Phe Ile Ala Gly Tyr Ile Leu Ser Gly Phe Val Phe

325 330 335 325 330 335

Arg Asp Ser Leu Asp Val Lys Ala Leu Gln Arg Thr Ile Ser Phe GluArg Asp Ser Leu Asp Val Lys Ala Leu Gln Arg Thr Ile Ser Phe Glu

340 345 350 340 345 350

Thr Gly Leu Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Lys PheThr Gly Leu Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Lys Phe

355 360 365 355 360 365

Phe Glu Asp Pro Lys Val Ala Ile Pro Pro Ala Ile Phe Thr Ser IlePhe Glu Asp Pro Lys Val Ala Ile Pro Pro Ala Ile Phe Thr Ser Ile

370 375 380 370 375 380

Met Ser Leu Met Gly Phe Val Leu Val Leu Ile Trp Thr Arg Arg GlyMet Ser Leu Met Gly Phe Val Leu Val Leu Ile Trp Thr Arg Arg Gly

385 390 395 400385 390 395 400

Lys Arg Asp Ile Lys His Ser SerLys Arg Asp Ile Lys His Ser Ser

405 405

<210> 3<210> 3

<211> 416<211> 416

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 3<400> 3

Met Ile Ser Ser Gly Leu Lys Pro Lys His Phe Asn Asn Val His SerMet Ile Ser Ser Gly Leu Lys Pro Lys His Phe Asn Asn Val His Ser

1 5 10 151 5 10 15

Leu Phe Asn Leu Ser Lys Ser Gln Gln Pro Pro Asn Pro Ile Ile ValLeu Phe Asn Leu Ser Lys Ser Gln Gln Pro Pro Asn Pro Ile Ile Val

20 25 30 20 25 30

Pro Cys Cys Arg Thr Asn Thr Asn Asn Asn Ile Ser Ser Pro Phe SerPro Cys Cys Arg Thr Asn Thr Asn Asn Asn Ile Ser Ser Pro Phe Ser

35 40 45 35 40 45

Ile Arg Phe Asn Ser Pro Phe Pro Tyr Arg Ser Pro Lys Ile Pro LeuIle Arg Phe Asn Ser Pro Phe Pro Tyr Arg Ser Pro Lys Ile Pro Leu

50 55 60 50 55 60

Lys Cys Ala Pro Leu His Ser Ser Asp Ser Leu Pro Pro Asp Pro SerLys Cys Ala Pro Leu His Ser Ser Asp Ser Leu Pro Pro Asp Pro Ser

65 70 75 8065 70 75 80

Ser Ala Ser Thr Gln Met Glu Gln Asn Ser Met Ser Ile Leu Glu IleSer Ala Ser Thr Gln Met Glu Gln Asn Ser Met Ser Ile Leu Glu Ile

85 90 95 85 90 95

Leu Lys Gln Ser Asn Ser Tyr Leu Pro His Ala Leu Ile Ala Ser IleLeu Lys Gln Ser Asn Ser Tyr Leu Pro His Ala Leu Ile Ala Ser Ile

100 105 110 100 105 110

Leu Leu Ala Leu Ile Tyr Pro Arg Ser Leu Thr Trp Phe Thr Ser ArgLeu Leu Ala Leu Ile Tyr Pro Arg Ser Leu Thr Trp Phe Thr Ser Arg

115 120 125 115 120 125

Phe Tyr Ala Pro Ala Leu Gly Phe Leu Met Phe Ala Val Gly Val AsnPhe Tyr Ala Pro Ala Leu Gly Phe Leu Met Phe Ala Val Gly Val Asn

130 135 140 130 135 140

Ser Asn Glu Asn Asp Phe Leu Glu Ala Phe Lys Arg Pro Ala Glu IleSer Asn Glu Asn Asp Phe Leu Glu Ala Phe Lys Arg Pro Ala Glu Ile

145 150 155 160145 150 155 160

Val Thr Gly Tyr Phe Gly Gln Phe Ala Val Lys Pro Leu Leu Gly TyrVal Thr Gly Tyr Phe Gly Gln Phe Ala Val Lys Pro Leu Leu Gly Tyr

165 170 175 165 170 175

Leu Phe Cys Met Ile Ala Val Thr Val Leu Gly Leu Pro Thr Thr ValLeu Phe Cys Met Ile Ala Val Thr Val Leu Gly Leu Pro Thr Thr Val

180 185 190 180 185 190

Gly Ala Gly Ile Val Leu Val Ala Cys Val Ser Gly Ala Gln Leu SerGly Ala Gly Ile Val Leu Val Ala Cys Val Ser Gly Ala Gln Leu Ser

195 200 205 195 200 205

Ser Tyr Ala Thr Phe Leu Thr Asp Pro Gln Met Ala Pro Leu Ser IleSer Tyr Ala Thr Phe Leu Thr Asp Pro Gln Met Ala Pro Leu Ser Ile

210 215 220 210 215 220

Val Met Thr Ser Leu Ser Thr Ala Ser Ala Val Phe Val Thr Pro LeuVal Met Thr Ser Leu Ser Thr Ala Ser Ala Val Phe Val Thr Pro Leu

225 230 235 240225 230 235 240

Leu Leu Leu Leu Leu Ile Gly Lys Lys Leu Pro Ile Asp Val Lys GlyLeu Leu Leu Leu Leu Ile Gly Lys Lys Leu Pro Ile Asp Val Lys Gly

245 250 255 245 250 255

Met Val Tyr Asn Ile Thr Gln Ile Val Val Val Pro Ile Ala Ala GlyMet Val Tyr Asn Ile Thr Gln Ile Val Val Val Pro Ile Ala Ala Gly

260 265 270 260 265 270

Leu Leu Leu Asn Arg Phe Phe Pro Arg Ile Cys Asn Val Ile Arg ProLeu Leu Leu Asn Arg Phe Phe Pro Arg Ile Cys Asn Val Ile Arg Pro

275 280 285 275 280 285

Phe Leu Pro Pro Leu Ser Val Leu Val Ala Ser Ile Cys Ala Gly AlaPhe Leu Pro Pro Leu Ser Val Leu Val Ala Ser Ile Cys Ala Gly Ala

290 295 300 290 295 300

Pro Leu Ala Leu Asn Val Glu Thr Met Lys Ser Pro Leu Gly Val AlaPro Leu Ala Leu Asn Val Glu Thr Met Lys Ser Pro Leu Gly Val Ala

305 310 315 320305 310 315 320

Ile Leu Leu Leu Val Val Ala Phe His Leu Ser Ser Phe Ile Ala GlyIle Leu Leu Leu Val Val Ala Phe His Leu Ser Ser Phe Ile Ala Gly

325 330 335 325 330 335

Tyr Ile Leu Ser Gly Phe Val Phe Arg Asp Ser Leu Asp Val Lys AlaTyr Ile Leu Ser Gly Phe Val Phe Arg Asp Ser Leu Asp Val Lys Ala

340 345 350 340 345 350

Leu Gln Arg Thr Ile Ser Phe Glu Thr Gly Met Gln Ser Ser Leu LeuLeu Gln Arg Thr Ile Ser Phe Glu Thr Gly Met Gln Ser Ser Leu Leu

355 360 365 355 360 365

Ala Leu Ala Leu Ala Asn Lys Phe Phe Glu Asp Pro Lys Val Ala IleAla Leu Ala Leu Ala Asn Lys Phe Phe Glu Asp Pro Lys Val Ala Ile

370 375 380 370 375 380

Pro Pro Ala Ile Ser Thr Ser Ile Met Ser Leu Met Gly Phe Val LeuPro Pro Ala Ile Ser Thr Ser Ile Met Ser Leu Met Gly Phe Val Leu

385 390 395 400385 390 395 400

Val Leu Ile Trp Thr Arg Arg Gly Lys Ser Glu Ile Lys Asn Ser SerVal Leu Ile Trp Thr Arg Arg Gly Lys Ser Glu Ile Lys Asn Ser Ser

405 410 415 405 410 415

<210> 4<210> 4

<211> 856<211> 856

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 4<400> 4

gcttttgatg gaaagacaga catcataccg aatttataaa aggaaaagaa ataaattcaa 60gcttttgatg gaaagacaga catcataccg aatttataaa aggaaaagaa ataaattcaa 60

aactttacat tttttatgcc accaaccaaa ggtgaatcaa agatatgaac aagagtttct 120aactttacat tttttatgcc accaaccaaa ggtgaatcaa agatatgaac aagagtttct 120

taagactatt agcccccccc cccccccccc aacgacctcc aactccaatc ctccttaatc 180taagactatt agcccccccc cccccccccc aacgacctcc aactccaatc ctccttaatc 180

gccaacccac acagctataa aaaggggata tttcagatcg gatcaagcag agcacctacg 240gccaacccac acagctataa aaaggggata tttcagatcg gatcaagcag agcacctacg 240

ccgtgaaaac ggcggcgaga ccgcctgggg aggagccaga cggggcagtc gccggccggt 300ccgtgaaaac ggcggcgaga ccgcctgggg aggagccaga cggggcagtc gccggccggt 300

gggcagatgg tggacgccgg cgatgtgggg ccgcaccagg acggcggcgt tgggggccat 360gggcagatgg tggacgccgg cgatgtgggg ccgcaccagg acggcggcgt tgggggccat 360

tcgagcgccg gcgaccgcga gggtgggtgg gttttggttt cagagtttca gagctgatga 420tcgagcgccg gcgaccgcga gggtgggtgg gttttggttt cagagtttca gagctgatga 420

cgcaacgcag cgaaagagac gattcagatt tcagtgagaa gttgggagtt tcgacaagga 480cgcaacgcag cgaaagagac gattcagatt tcagtgagaa gttgggagtt tcgacaagga 480

acgaacaatc agtcgaatgg cccccaacgc cgccgtcctg gtgcggcccc acatcgccgg 540acgaacaatc agtcgaatgg cccccaacgc cgccgtcctg gtgcggcccc acatcgccgg 540

cgtccaccat ctgcccaccg gccggcgact gccccgtctg gctcctcccc aggcggtctc 600cgtccaccat ctgcccaccg gccggcgact gccccgtctg gctcctcccc aggcggtctc 600

gccgccgttt tcacggcgta ggtgctctgc ttgatccgat ctgaaatatc ccctttttat 660gccgccgttt tcacggcgta ggtgctctgc ttgatccgat ctgaaatatc ccctttttat 660

agctgtgtgg gttggcgatt aaggaggatt ggagttggag gtcgttgggg gggggggggg 720agctgtgtgg gttggcgatt aaggaggatt ggagttggag gtcgttgggg gggggggggg 720

ggggctaata gtcttaagaa actcttgttc atatctttga ttcacctttg gttggtggca 780ggggctaata gtcttaagaa actcttgttc atatctttga ttcacctttg gttggtggca 780

taaaaaatgt aaagttttga atttatttct tttcctttta taaattcggt atgatgtctg 840taaaaaatgt aaagttttga atttatttct tttcctttta taaattcggt atgatgtctg 840

tctttccatc aaaagt 856tctttccatc aaaagt 856

<210> 5<210> 5

<211> 771<211> 771

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 5<400> 5

aagaggccag cagaaattgt cactggttat tttggccagt ttgctgtgaa gcctcttctt 60aagaggccag cagaaattgt cactggttat tttggccagt ttgctgtgaa gcctcttctt 60

ggatatctgt tttgcatgat tgcagtaact gttttaggcc taccaacaac agtaggcgca 120ggatatctgt tttgcatgat tgcagtaact gttttaggcc taccaacaac agtaggcgca 120

ggaattgtat tggtggcttg tgttagtggt gctcagcttt caagttatgc tactttcctg 180ggaattgtat tggtggcttg tgttagtggt gctcagcttt caagttatgc tactttcctg 180

actgatccac aaatggcacc tttaagcata gttatgacat cactgtccac tgcttctgca 240actgatccac aaatggcacc tttaagcata gttatgacat cactgtccac tgcttctgca 240

gtttttgtca cgccactctt attactgttg ctcattggga agaaattgcc ttcatagtct 300gtttttgtca cgccactctt attactgttg ctcattggga agaaattgcc ttcatagtct 300

caacatttaa ggcaagtggc gctccggcac agatagatgc caccagtaca gatagcggag 360caacatttaa ggcaagtggc gctccggcac agatagatgc caccagtaca gatagcggag 360

gcaaaaatgg tcgaataaca ttacaaatac gaggaaagaa tcgatttaga agcaggccag 420gcaaaaatgg tcgaataaca ttacaaatac gaggaaagaa tcgatttaga agcaggccag 420

ctgcaatagg cacaaccaca atctgtgtaa tgttatacac cattcctttt acatctatag 480ctgcaatagg cacaaccaca atctgtgtaa tgttatacac cattcctttt acatctatag 480

gcaatttctt cccaatgagc aacagtaata agagtggcgt gacaaaaact gcagaagcag 540gcaatttctt cccaatgagc aacagtaata agagtggcgt gacaaaaact gcagaagcag 540

tggacagtga tgtcataact atgcttaaag gtgccatttg tggatcagtc aggaaagtag 600tggacagtga tgtcataact atgcttaaag gtgccatttg tggatcagtc aggaaagtag 600

cataacttga aagctgagca ccactaacac aagccaccaa tacaattcct gcgcctactg 660cataacttga aagctgagca ccactaacac aagccaccaa tacaattcct gcgcctactg 660

ttgttggtag gcctaaaaca gttactgcaa tcatgcaaaa cagatatcca agaagaggct 720ttgttggtag gcctaaaaca gttactgcaa tcatgcaaaa cagatatcca agaagaggct 720

tcacagcaaa ctggccaaaa taaccagtga caatttctgc tggcctcttt a 771tcacagcaaa ctggccaaaa taaccagtga caatttctgc tggcctcttt a 771

<210> 6<210> 6

<211> 3668<211> 3668

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 6<400> 6

ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60

gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120

caacgtgtcc aacggcggcc gcatccgctg catgccgcgc ggccagggca agcgcctcgc 180caacgtgtcc aacggcggcc gcatccgctg catgccgcgc ggccagggca agcgcctcgc 180

ccagctcctc ggcgcccagc tcaagcagta cgccgccgag gtgcgcggca tctccaccgc 240ccagctcctc ggcgcccagc tcaagcagta cgccgccgag gtgcgcggca tctccaccgc 240

cggcggcgcc tcccgcggcg gcgcccgcgg cccggcctcc ccgtcctccc tcgagcagca 300cggcggcgcc tcccgcggcg gcgcccgcgg cccggcctcc ccgtcctccc tcgagcagca 300

gacccgccag gtggcccagg tggccgtgca gcagtccacc cagcaggccg tgaaggtggt 360gacccgccag gtggcccagg tggccgtgca gcagtccacc cagcaggccg tgaaggtggt 360

ggtgccggcc atcaaggtgg acctcgtggg cgccgtgtcc tccgtgtccg agtccgacaa 420ggtgccggcc atcaaggtgg acctcgtggg cgccgtgtcc tccgtgtccg agtccgacaa 420

ggtggagccg ggcgtgttca agaacgtgga cggccaccgc ttcgaggacg gccgctacgc 480ggtggagccg ggcgtgttca agaacgtgga cggccaccgc ttcgaggacg gccgctacgc 480

cgccttcgtg gaggagatca ccaagttcat cccgaaggag cgccagtact ccgacccggt 540cgccttcgtg gaggagatca ccaagttcat cccgaaggag cgccagtact ccgacccggt 540

gcgcaccttc gcctacggca ccgacgcctc cttctaccgc ctcaacccga agctcgtggt 600gcgcaccttc gcctacggca ccgacgcctc cttctaccgc ctcaacccga agctcgtggt 600

gaaggtgcac aacgaggacg aggtgcgccg catcatgccg atcgccgagc gcctccaggt 660gaaggtgcac aacgaggacg aggtgcgccg catcatgccg atcgccgagc gcctccaggt 660

gccgatcacc ttccgcgccg ccggcacctc cctctccggc caggccatca ccgactccgt 720gccgatcacc ttccgcgccg ccggcacctc cctctccggc caggccatca ccgactccgt 720

gctcatcaag ctctcccaca ccggcaagaa cttccgcaac ttcaccgtgc acggcgacgg 780gctcatcaag ctctcccaca ccggcaagaa cttccgcaac ttcaccgtgc acggcgacgg 780

ctccgtgatc accgtggagc cgggcctcat cggcggcgag gtgaaccgca tcctcgccgc 840ctccgtgatc accgtggagc cgggcctcat cggcggcgag gtgaaccgca tcctcgccgc 840

ccaccagaag aagaacaagc tcccgatcca gtacaagatc ggcccggacc cgtcctccat 900ccaccagaag aagaacaagc tcccgatcca gtacaagatc ggcccggacc cgtcctccat 900

cgactcctgc atgatcggcg gcatcgtgtc caacaactcc tccggcatgt gctgcggcgt 960cgactcctgc atgatcggcg gcatcgtgtc caacaactcc tccggcatgt gctgcggcgt 960

gtcccagaac acctaccaca ccctcaagga catgcgcgtg gtgttcgtgg acggcaccgt 1020gtcccagaac acctaccaca ccctcaagga catgcgcgtg gtgttcgtgg acggcaccgt 1020

gctcgacacc gccgacccga actcctgcac cgccttcatg aagtcccacc gctccctcgt 1080gctcgacacc gccgacccga actcctgcac cgccttcatg aagtcccacc gctccctcgt 1080

ggacggcgtg gtgtccctcg cccgccgcgt gcaggccgac aaggagctca ccgccctcat 1140ggacggcgtg gtgtccctcg cccgccgcgt gcaggccgac aaggagctca ccgccctcat 1140

ccgccgcaag ttcgccatca agtgcaccac cggctactcc ctcaacgccc tcgtggactt 1200ccgccgcaag ttcgccatca agtgcaccac cggctactcc ctcaacgccc tcgtggactt 1200

cccggtggac aacccgatcg agatcatcaa gcacctcatc atcggctccg agggcaccct 1260cccggtggac aacccgatcg agatcatcaa gcacctcatc atcggctccg agggcaccct 1260

cggcttcgtg tcccgcgcca cctacaacac cgtgccggag tggccgaaca aggcctccgc 1320cggcttcgtg tcccgcgcca cctacaacac cgtgccggag tggccgaaca aggcctccgc 1320

cttcatcgtg ttcccggacg tgcgcgccgc ctgcaccggc gcctccgtgc tccgcaacga 1380cttcatcgtg ttcccggacg tgcgcgccgc ctgcaccggc gcctccgtgc tccgcaacga 1380

gacctccgtg gacgccgtgg agctcttcga ccgcgcctcc ctccgcgagt gcgagaacaa 1440gacctccgtg gacgccgtgg agctcttcga ccgcgcctcc ctccgcgagt gcgagaacaa 1440

cgaggacatg atgcgcctcg tgccggacat caagggctgc gacccgatgg ccgccgccct 1500cgaggacatg atgcgcctcg tgccggacat caagggctgc gacccgatgg ccgccgccct 1500

cctcatcgag tgccgcggcc aggacgaggc cgccctccag tcccgcatcg aggaggtggt 1560cctcatcgag tgccgcggcc aggacgaggc cgccctccag tcccgcatcg aggaggtggt 1560

gcgcgtgctc accgccgccg gcctcccgtt cggcgccaag gccgcccagc cgatggccat 1620gcgcgtgctc accgccgccg gcctcccgtt cggcgccaag gccgcccagc cgatggccat 1620

cgacgcctac ccgttccacc acgaccagaa gaacgccaag gtgttctggg acgtgcgccg 1680cgacgcctac ccgttccacc acgaccagaa gaacgccaag gtgttctggg acgtgcgccg 1680

cggcctcatc ccgatcgtgg gcgccgcccg cgagccgggc acctccatgc tcatcgagga 1740cggcctcatc ccgatcgtgg gcgccgcccg cgagccgggc acctccatgc tcatcgagga 1740

cgtggcctgc ccggtggaca agctcgccga catgatgatc gacctcatcg acatgttcca 1800cgtggcctgc ccggtggaca agctcgccga catgatgatc gacctcatcg acatgttcca 1800

gcgccacggc taccacgacg cctcctgctt cggccacgcc ctcgagggca acctccacct 1860gcgccacggc taccacgacg cctcctgctt cggccacgcc ctcgagggca acctccacct 1860

cgtgttctcc cagggcttcc gcaacaagga ggaggtgcag cgcttctccg acatgatgga 1920cgtgttctcc cagggcttcc gcaacaagga ggaggtgcag cgcttctccg acatgatgga 1920

ggagatgtgc cacctcgtgg ccaccaagca ctccggctcc ctcaagggcg agcacggcac 1980ggagatgtgc cacctcgtgg ccaccaagca ctccggctcc ctcaagggcg agcacggcac 1980

cggccgcaac gtggccccgt tcgtggagat ggagtggggc aacaaggcct acgagctcat 2040cggccgcaac gtggccccgt tcgtggagat ggagtggggc aacaaggcct acgagctcat 2040

gtgggagctc aaggccctct tcgacccgtc ccacaccctc aacccgggcg tgatcctcaa 2100gtgggagctc aaggccctct tcgacccgtc ccacaccctc aacccgggcg tgatcctcaa 2100

ccgcgaccag gacgcccaca tcaagttcct caagccgtcc ccggccgcct ccccgatcgt 2160ccgcgaccag gacgcccaca tcaagttcct caagccgtcc ccggccgcct ccccgatcgt 2160

gaaccgctgc atcgagtgcg gcttctgcga gtccaactgc ccgtcccgcg acatcaccct 2220gaaccgctgc atcgagtgcg gcttctgcga gtccaactgc ccgtcccgcg acatcaccct 2220

caccccgcgc cagcgcatct ccgtgtaccg cgagatgtac cgcctcaagc agctcggccc 2280caccccgcgc cagcgcatct ccgtgtaccg cgagatgtac cgcctcaagc agctcggccc 2280

gggcgcctcc gaggaggaga agaagcagct cgccgccatg tcctcctcct acgcctacga 2340gggcgcctcc gaggaggaga agaagcagct cgccgccatg tcctcctcct acgcctacga 2340

cggcgagcag acctgcgccg ccgacggcat gtgccaggag aagtgcccgg tgaagatcaa 2400cggcgagcag acctgcgccg ccgacggcat gtgccaggag aagtgcccgg tgaagatcaa 2400

caccggcgac ctcatcaagt ccatgcgcgc cgagcacatg aaggaggaga agaccgcctc 2460caccggcgac ctcatcaagt ccatgcgcgc cgagcacatg aaggaggaga agaccgcctc 2460

cggcatggcc gactggctcg ccgccaactt cggcgtgatc aactccaacg tgccgcgctt 2520cggcatggcc gactggctcg ccgccaactt cggcgtgatc aactccaacg tgccgcgctt 2520

cctcaacatc gtgaacgcca tgcactccgt ggtgggctcc gccccgctct ccgccatctc 2580cctcaacatc gtgaacgcca tgcactccgt ggtgggctcc gccccgctct ccgccatctc 2580

ccgcgccctc aacgccgcca ccaaccactt cgtgccggtg tggaacccgt acatgccgaa 2640ccgcgccctc aacgccgcca ccaaccactt cgtgccggtg tggaacccgt acatgccgaa 2640

gggcgccgcc ccgctcaagg tgccggcccc gccggccccg gccgccgccg aggcctccgg 2700gggcgccgcc ccgctcaagg tgccggcccc gccggccccg gccgccgccg aggcctccgg 2700

catcccgcgc aaggtggtgt acatgccgtc ctgcgtgacc cgcatgatgg gcccggccgc 2760catcccgcgc aaggtggtgt acatgccgtc ctgcgtgacc cgcatgatgg gcccggccgc 2760

ctccgacacc gagaccgccg ccgtgcacga gaaggtgatg tccctcttcg gcaaggccgg 2820ctccgacacc gagaccgccg ccgtgcacga gaaggtgatg tccctcttcg gcaaggccgg 2820

ctacgaggtg atcatcccgg agggcgtggc ctcccagtgc tgcggcatga tgttcaactc 2880ctacgaggtg atcatcccgg agggcgtggc ctcccagtgc tgcggcatga tgttcaactc 2880

ccgcggcttc aaggacgccg ccgcctccaa gggcgccgag ctcgaggccg ccctcctcaa 2940ccgcggcttc aaggacgccg ccgcctccaa gggcgccgag ctcgaggccg ccctcctcaa 2940

ggcctccgac aacggcaaga tcccgatcgt gatcgacacc tccccgtgcc tcgcccaggt 3000ggcctccgac aacggcaaga tcccgatcgt gatcgacacc tccccgtgcc tcgcccaggt 3000

gaagtcccaa atctccgagc cgtccctccg cttcgccctc tacgagccgg tggagttcat 3060gaagtcccaa atctccgagc cgtccctccg cttcgccctc tacgagccgg tggagttcat 3060

ccgccacttc ctcgtggaca agctcgagtg gaagaaggtg cgcgaccagg tggccatcca 3120ccgccacttc ctcgtggaca agctcgagtg gaagaaggtg cgcgaccagg tggccatcca 3120

cgtgccgtgc tcctccaaga agatgggcat cgaggagtcc ttcgccaagc tcgccggcct 3180cgtgccgtgc tcctccaaga agatgggcat cgaggagtcc ttcgccaagc tcgccggcct 3180

ctgcgccaac gaggtggtgc cgtccggcat cccgtgctgc ggcatggccg gcgaccgcgg 3240ctgcgccaac gaggtggtgc cgtccggcat cccgtgctgc ggcatggccg gcgaccgcgg 3240

catgcgcttc ccggagctca ccggcgcctc cctccagcac ctcaacctcc cgaagacctg 3300catgcgcttc ccggagctca ccggcgcctc cctccagcac ctcaacctcc cgaagacctg 3300

caaggacggc tactccacct cccgcacctg cgagatgtcc ctctccaacc acgccggcat 3360caaggacggc tactccacct cccgcacctg cgagatgtcc ctctccaacc acgccggcat 3360

caacttccgc ggcctcgtgt acctcgtgga cgaggccacc gccccgaaga agcaggccgc 3420caacttccgc ggcctcgtgt acctcgtgga cgaggccacc gccccgaaga agcaggccgc 3420

cgccgccaag accgcctaag tagatgccga ccggatctgt cgatcgacaa gctcgagttt 3480cgccgccaag accgcctaag tagatgccga ccggatctgt cgatcgacaa gctcgagttt 3480

ctccataata atgtgtgagt agttcccaga taagggaatt agggttccta tagggtttcg 3540ctccataata atgtgtgagt agttcccaga taagggaatt agggttccta tagggtttcg 3540

ctcatgtgtt gagcatataa gaaaccctta gtatgtattt gtatttgtaa aatacttcta 3600ctcatgtgtt gagcatataa gaaaccctta gtatgtattt gtatttgtaa aatacttcta 3600

tcaataaaat ttctaattcc taaaaccaaa atccagtact aaaatccaga tcccccgaat 3660tcaataaaat ttctaattcc taaaaccaaa atccagtact aaaatccaga tcccccgaat 3660

taaagctt 3668taaagctt 3668

<210> 7<210> 7

<211> 1136<211> 1136

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 7<400> 7

Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro AlaMet Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala

1 5 10 151 5 10 15

Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala AlaGln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala

20 25 30 20 25 30

Phe Pro Ala Thr Arg Lys Ala Asn Gly Gly Pro Arg Gly Gln Gly LysPhe Pro Ala Thr Arg Lys Ala Asn Gly Gly Pro Arg Gly Gln Gly Lys

35 40 45 35 40 45

Arg Leu Ala Gln Leu Leu Gly Ala Gln Leu Lys Gln Tyr Ala Ala GluArg Leu Ala Gln Leu Leu Gly Ala Gln Leu Lys Gln Tyr Ala Ala Glu

50 55 60 50 55 60

Val Arg Gly Ile Ser Thr Ala Gly Gly Ala Ser Arg Gly Gly Ala ArgVal Arg Gly Ile Ser Thr Ala Gly Gly Ala Ser Arg Gly Gly Ala Arg

65 70 75 8065 70 75 80

Gly Pro Ala Ser Pro Ser Ser Leu Glu Gln Gln Thr Arg Gln Val AlaGly Pro Ala Ser Pro Ser Ser Leu Glu Gln Gln Thr Arg Gln Val Ala

85 90 95 85 90 95

Gln Val Ala Val Gln Gln Ser Thr Gln Gln Ala Val Lys Val Val ValGln Val Ala Val Gln Gln Ser Thr Gln Gln Ala Val Lys Val Val Val

100 105 110 100 105 110

Pro Ala Ile Lys Val Asp Leu Val Gly Ala Val Ser Ser Val Ser GluPro Ala Ile Lys Val Asp Leu Val Gly Ala Val Ser Ser Val Ser Glu

115 120 125 115 120 125

Ser Asp Lys Val Glu Pro Gly Val Phe Lys Asn Val Asp Gly His ArgSer Asp Lys Val Glu Pro Gly Val Phe Lys Asn Val Asp Gly His Arg

130 135 140 130 135 140

Phe Glu Asp Gly Arg Tyr Ala Ala Phe Val Glu Glu Ile Thr Lys PhePhe Glu Asp Gly Arg Tyr Ala Ala Phe Val Glu Glu Ile Thr Lys Phe

145 150 155 160145 150 155 160

Ile Pro Lys Glu Arg Gln Tyr Ser Asp Pro Val Arg Thr Phe Ala TyrIle Pro Lys Glu Arg Gln Tyr Ser Asp Pro Val Arg Thr Phe Ala Tyr

165 170 175 165 170 175

Gly Thr Asp Ala Ser Phe Tyr Arg Leu Asn Pro Lys Leu Val Val LysGly Thr Asp Ala Ser Phe Tyr Arg Leu Asn Pro Lys Leu Val Val Lys

180 185 190 180 185 190

Val His Asn Glu Asp Glu Val Arg Arg Ile Met Pro Ile Ala Glu ArgVal His Asn Glu Asp Glu Val Arg Arg Ile Met Pro Ile Ala Glu Arg

195 200 205 195 200 205

Leu Gln Val Pro Ile Thr Phe Arg Ala Ala Gly Thr Ser Leu Ser GlyLeu Gln Val Pro Ile Thr Phe Arg Ala Ala Gly Thr Ser Leu Ser Gly

210 215 220 210 215 220

Gln Ala Ile Thr Asp Ser Val Leu Ile Lys Leu Ser His Thr Gly LysGln Ala Ile Thr Asp Ser Val Leu Ile Lys Leu Ser His Thr Gly Lys

225 230 235 240225 230 235 240

Asn Phe Arg Asn Phe Thr Val His Gly Asp Gly Ser Val Ile Thr ValAsn Phe Arg Asn Phe Thr Val His Gly Asp Gly Ser Val Ile Thr Val

245 250 255 245 250 255

Glu Pro Gly Leu Ile Gly Gly Glu Val Asn Arg Ile Leu Ala Ala HisGlu Pro Gly Leu Ile Gly Gly Glu Val Asn Arg Ile Leu Ala Ala His

260 265 270 260 265 270

Gln Lys Lys Asn Lys Leu Pro Ile Gln Tyr Lys Ile Gly Pro Asp ProGln Lys Lys Asn Lys Leu Pro Ile Gln Tyr Lys Ile Gly Pro Asp Pro

275 280 285 275 280 285

Ser Ser Ile Asp Ser Cys Met Ile Gly Gly Ile Val Ser Asn Asn SerSer Ser Ile Asp Ser Cys Met Ile Gly Gly Ile Val Ser Asn Asn Ser

290 295 300 290 295 300

Ser Gly Met Cys Cys Gly Val Ser Gln Asn Thr Tyr His Thr Leu LysSer Gly Met Cys Cys Gly Val Ser Gln Asn Thr Tyr His Thr Leu Lys

305 310 315 320305 310 315 320

Asp Met Arg Val Val Phe Val Asp Gly Thr Val Leu Asp Thr Ala AspAsp Met Arg Val Val Phe Val Asp Gly Thr Val Leu Asp Thr Ala Asp

325 330 335 325 330 335

Pro Asn Ser Cys Thr Ala Phe Met Lys Ser His Arg Ser Leu Val AspPro Asn Ser Cys Thr Ala Phe Met Lys Ser His Arg Ser Leu Val Asp

340 345 350 340 345 350

Gly Val Val Ser Leu Ala Arg Arg Val Gln Ala Asp Lys Glu Leu ThrGly Val Val Ser Leu Ala Arg Arg Val Gln Ala Asp Lys Glu Leu Thr

355 360 365 355 360 365

Ala Leu Ile Arg Arg Lys Phe Ala Ile Lys Cys Thr Thr Gly Tyr SerAla Leu Ile Arg Arg Lys Phe Ala Ile Lys Cys Thr Thr Gly Tyr Ser

370 375 380 370 375 380

Leu Asn Ala Leu Val Asp Phe Pro Val Asp Asn Pro Ile Glu Ile IleLeu Asn Ala Leu Val Asp Phe Pro Val Asp Asn Pro Ile Glu Ile Ile

385 390 395 400385 390 395 400

Lys His Leu Ile Ile Gly Ser Glu Gly Thr Leu Gly Phe Val Ser ArgLys His Leu Ile Ile Gly Ser Glu Gly Thr Leu Gly Phe Val Ser Arg

405 410 415 405 410 415

Ala Thr Tyr Asn Thr Val Pro Glu Trp Pro Asn Lys Ala Ser Ala PheAla Thr Tyr Asn Thr Val Pro Glu Trp Pro Asn Lys Ala Ser Ala Phe

420 425 430 420 425 430

Ile Val Phe Pro Asp Val Arg Ala Ala Cys Thr Gly Ala Ser Val LeuIle Val Phe Pro Asp Val Arg Ala Ala Cys Thr Gly Ala Ser Val Leu

435 440 445 435 440 445

Arg Asn Glu Thr Ser Val Asp Ala Val Glu Leu Phe Asp Arg Ala SerArg Asn Glu Thr Ser Val Asp Ala Val Glu Leu Phe Asp Arg Ala Ser

450 455 460 450 455 460

Leu Arg Glu Cys Glu Asn Asn Glu Asp Met Met Arg Leu Val Pro AspLeu Arg Glu Cys Glu Asn Asn Glu Asp Met Met Arg Leu Val Pro Asp

465 470 475 480465 470 475 480

Ile Lys Gly Cys Asp Pro Met Ala Ala Ala Leu Leu Ile Glu Cys ArgIle Lys Gly Cys Asp Pro Met Ala Ala Ala Leu Leu Ile Glu Cys Arg

485 490 495 485 490 495

Gly Gln Asp Glu Ala Ala Leu Gln Ser Arg Ile Glu Glu Val Val ArgGly Gln Asp Glu Ala Ala Leu Gln Ser Arg Ile Glu Glu Val Val Arg

500 505 510 500 505 510

Val Leu Thr Ala Ala Gly Leu Pro Phe Gly Ala Lys Ala Ala Gln ProVal Leu Thr Ala Ala Gly Leu Pro Phe Gly Ala Lys Ala Ala Gln Pro

515 520 525 515 520 525

Met Ala Ile Asp Ala Tyr Pro Phe His His Asp Gln Lys Asn Ala LysMet Ala Ile Asp Ala Tyr Pro Phe His His Asp Gln Lys Asn Ala Lys

530 535 540 530 535 540

Val Phe Trp Asp Val Arg Arg Gly Leu Ile Pro Ile Val Gly Ala AlaVal Phe Trp Asp Val Arg Arg Gly Leu Ile Pro Ile Val Gly Ala Ala

545 550 555 560545 550 555 560

Arg Glu Pro Gly Thr Ser Met Leu Ile Glu Asp Val Ala Cys Pro ValArg Glu Pro Gly Thr Ser Met Leu Ile Glu Asp Val Ala Cys Pro Val

565 570 575 565 570 575

Asp Lys Leu Ala Asp Met Met Ile Asp Leu Ile Asp Met Phe Gln ArgAsp Lys Leu Ala Asp Met Met Ile Asp Leu Ile Asp Met Phe Gln Arg

580 585 590 580 585 590

His Gly Tyr His Asp Ala Ser Cys Phe Gly His Ala Leu Glu Gly AsnHis Gly Tyr His Asp Ala Ser Cys Phe Gly His Ala Leu Glu Gly Asn

595 600 605 595 600 605

Leu His Leu Val Phe Ser Gln Gly Phe Arg Asn Lys Glu Glu Val GlnLeu His Leu Val Phe Ser Gln Gly Phe Arg Asn Lys Glu Glu Val Gln

610 615 620 610 615 620

Arg Phe Ser Asp Met Met Glu Glu Met Cys His Leu Val Ala Thr LysArg Phe Ser Asp Met Met Glu Glu Met Cys His Leu Val Ala Thr Lys

625 630 635 640625 630 635 640

His Ser Gly Ser Leu Lys Gly Glu His Gly Thr Gly Arg Asn Val AlaHis Ser Gly Ser Leu Lys Gly Glu His Gly Thr Gly Arg Asn Val Ala

645 650 655 645 650 655

Pro Phe Val Glu Met Glu Trp Gly Asn Lys Ala Tyr Glu Leu Met TrpPro Phe Val Glu Met Glu Trp Gly Asn Lys Ala Tyr Glu Leu Met Trp

660 665 670 660 665 670

Glu Leu Lys Ala Leu Phe Asp Pro Ser His Thr Leu Asn Pro Gly ValGlu Leu Lys Ala Leu Phe Asp Pro Ser His Thr Leu Asn Pro Gly Val

675 680 685 675 680 685

Ile Leu Asn Arg Asp Gln Asp Ala His Ile Lys Phe Leu Lys Pro SerIle Leu Asn Arg Asp Gln Asp Ala His Ile Lys Phe Leu Lys Pro Ser

690 695 700 690 695 700

Pro Ala Ala Ser Pro Ile Val Asn Arg Cys Ile Glu Cys Gly Phe CysPro Ala Ala Ser Pro Ile Val Asn Arg Cys Ile Glu Cys Gly Phe Cys

705 710 715 720705 710 715 720

Glu Ser Asn Cys Pro Ser Arg Asp Ile Thr Leu Thr Pro Arg Gln ArgGlu Ser Asn Cys Pro Ser Arg Asp Ile Thr Leu Thr Pro Arg Gln Arg

725 730 735 725 730 735

Ile Ser Val Tyr Arg Glu Met Tyr Arg Leu Lys Gln Leu Gly Pro GlyIle Ser Val Tyr Arg Glu Met Tyr Arg Leu Lys Gln Leu Gly Pro Gly

740 745 750 740 745 750

Ala Ser Glu Glu Glu Lys Lys Gln Leu Ala Ala Met Ser Ser Ser TyrAla Ser Glu Glu Glu Lys Lys Gln Leu Ala Ala Met Ser Ser Ser Tyr

755 760 765 755 760 765

Ala Tyr Asp Gly Glu Gln Thr Cys Ala Ala Asp Gly Met Cys Gln GluAla Tyr Asp Gly Glu Gln Thr Cys Ala Ala Asp Gly Met Cys Gln Glu

770 775 780 770 775 780

Lys Cys Pro Val Lys Ile Asn Thr Gly Asp Leu Ile Lys Ser Met ArgLys Cys Pro Val Lys Ile Asn Thr Gly Asp Leu Ile Lys Ser Met Arg

785 790 795 800785 790 795 800

Ala Glu His Met Lys Glu Glu Lys Thr Ala Ser Gly Met Ala Asp TrpAla Glu His Met Lys Glu Glu Lys Thr Ala Ser Gly Met Ala Asp Trp

805 810 815 805 810 815

Leu Ala Ala Asn Phe Gly Val Ile Asn Ser Asn Val Pro Arg Phe LeuLeu Ala Ala Asn Phe Gly Val Ile Asn Ser Asn Val Pro Arg Phe Leu

820 825 830 820 825 830

Asn Ile Val Asn Ala Met His Ser Val Val Gly Ser Ala Pro Leu SerAsn Ile Val Asn Ala Met His Ser Val Val Gly Ser Ala Pro Leu Ser

835 840 845 835 840 845

Ala Ile Ser Arg Ala Leu Asn Ala Ala Thr Asn His Phe Val Pro ValAla Ile Ser Arg Ala Leu Asn Ala Ala Thr Asn His Phe Val Pro Val

850 855 860 850 855 860

Trp Asn Pro Tyr Met Pro Lys Gly Ala Ala Pro Leu Lys Val Pro AlaTrp Asn Pro Tyr Met Pro Lys Gly Ala Ala Pro Leu Lys Val Pro Ala

865 870 875 880865 870 875 880

Pro Pro Ala Pro Ala Ala Ala Glu Ala Ser Gly Ile Pro Arg Lys ValPro Pro Ala Pro Ala Ala Ala Glu Ala Ser Gly Ile Pro Arg Lys Val

885 890 895 885 890 895

Val Tyr Met Pro Ser Cys Val Thr Arg Met Met Gly Pro Ala Ala SerVal Tyr Met Pro Ser Cys Val Thr Arg Met Met Gly Pro Ala Ala Ser

900 905 910 900 905 910

Asp Thr Glu Thr Ala Ala Val His Glu Lys Val Met Ser Leu Phe GlyAsp Thr Glu Thr Ala Ala Val His Glu Lys Val Met Ser Leu Phe Gly

915 920 925 915 920 925

Lys Ala Gly Tyr Glu Val Ile Ile Pro Glu Gly Val Ala Ser Gln CysLys Ala Gly Tyr Glu Val Ile Ile Pro Glu Gly Val Ala Ser Gln Cys

930 935 940 930 935 940

Cys Gly Met Met Phe Asn Ser Arg Gly Phe Lys Asp Ala Ala Ala SerCys Gly Met Met Phe Asn Ser Arg Gly Phe Lys Asp Ala Ala Ala Ser

945 950 955 960945 950 955 960

Lys Gly Ala Glu Leu Glu Ala Ala Leu Leu Lys Ala Ser Asp Asn GlyLys Gly Ala Glu Leu Glu Ala Ala Leu Leu Lys Ala Ser Asp Asn Gly

965 970 975 965 970 975

Lys Ile Pro Ile Val Ile Asp Thr Ser Pro Cys Leu Ala Gln Val LysLys Ile Pro Ile Val Ile Asp Thr Ser Pro Cys Leu Ala Gln Val Lys

980 985 990 980 985 990

Ser Gln Ile Ser Glu Pro Ser Leu Arg Phe Ala Leu Tyr Glu Pro ValSer Gln Ile Ser Glu Pro Ser Leu Arg Phe Ala Leu Tyr Glu Pro Val

995 1000 1005 995 1000 1005

Glu Phe Ile Arg His Phe Leu Val Asp Lys Leu Glu Trp Lys Lys ValGlu Phe Ile Arg His Phe Leu Val Asp Lys Leu Glu Trp Lys Lys Val

1010 1015 1020 1010 1015 1020

Arg Asp Gln Val Ala Ile His Val Pro Cys Ser Ser Lys Lys Met GlyArg Asp Gln Val Ala Ile His Val Pro Cys Ser Ser Lys Lys Met Gly

1025 1030 1035 10401025 1030 1035 1040

Ile Glu Glu Ser Phe Ala Lys Leu Ala Gly Leu Cys Ala Asn Glu ValIle Glu Glu Ser Phe Ala Lys Leu Ala Gly Leu Cys Ala Asn Glu Val

1045 1050 1055 1045 1050 1055

Val Pro Ser Gly Ile Pro Cys Cys Gly Met Ala Gly Asp Arg Gly MetVal Pro Ser Gly Ile Pro Cys Cys Gly Met Ala Gly Asp Arg Gly Met

1060 1065 1070 1060 1065 1070

Arg Phe Pro Glu Leu Thr Gly Ala Ser Leu Gln His Leu Asn Leu ProArg Phe Pro Glu Leu Thr Gly Ala Ser Leu Gln His Leu Asn Leu Pro

1075 1080 1085 1075 1080 1085

Lys Thr Cys Lys Asp Gly Tyr Ser Thr Ser Arg Thr Cys Glu Met SerLys Thr Cys Lys Asp Gly Tyr Ser Thr Ser Arg Thr Cys Glu Met Ser

1090 1095 1100 1090 1095 1100

Leu Ser Asn His Ala Gly Ile Asn Phe Arg Gly Leu Val Tyr Leu ValLeu Ser Asn His Ala Gly Ile Asn Phe Arg Gly Leu Val Tyr Leu Val

1105 1110 1115 11201105 1110 1115 1120

Asp Glu Ala Thr Ala Pro Lys Lys Gln Ala Ala Ala Ala Lys Thr AlaAsp Glu Ala Thr Ala Pro Lys Lys Gln Ala Ala Ala Ala Lys Thr Ala

1125 1130 1135 1125 1130 1135

<210> 8<210> 8

<211> 2135<211> 2135

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 8<400> 8

ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60

gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120

caacgtgtcc aacggcggcc gcatccgctg catggccaag atgcgcgccg tggacgccgc 180caacgtgtcc aacggcggcc gcatccgctg catggccaag atgcgcgccg tggacgccgc 180

catgtacgtg ctcgagaagg agggcatcac caccgccttc ggcgtgccgg gcgccgccat 240catgtacgtg ctcgagaagg agggcatcac caccgccttc ggcgtgccgg gcgccgccat 240

caacccgttc tactccgcca tgcgcaagca cggcggcatc cgccacatcc tcgcccgcca 300caacccgttc tactccgcca tgcgcaagca cggcggcatc cgccacatcc tcgcccgcca 300

cgtggagggc gcctcccaca tggccgaggg ctacacccgc gccaccgccg gcaacatcgg 360cgtggagggc gcctcccaca tggccgaggg ctacacccgc gccaccgccg gcaacatcgg 360

cgtgtgcctc ggcacctccg gcccggccgg caccgacatg atcaccgccc tctactccgc 420cgtgtgcctc ggcacctccg gcccggccgg caccgacatg atcaccgccc tctactccgc 420

ctccgccgac tccatcccga tcctctgcat caccggccag gccccgcgcg cccgcctcca 480ctccgccgac tccatcccga tcctctgcat caccggccag gccccgcgcg cccgcctcca 480

caaggaggac ttccaggccg tggacatcga ggccatcgcc aagccggtgt ccaagatggc 540caaggaggac ttccaggccg tggacatcga ggccatcgcc aagccggtgt ccaagatggc 540

cgtgaccgtg cgcgaggccg ccctcgtgcc gcgcgtgctc cagcaggcct tccacctcat 600cgtgaccgtg cgcgaggccg ccctcgtgcc gcgcgtgctc cagcaggcct tccacctcat 600

gcgctccggc cgcccgggcc cggtgctcgt ggacctcccg ttcgacgtgc aggtggccga 660gcgctccggc cgcccgggcc cggtgctcgt ggacctcccg ttcgacgtgc aggtggccga 660

gatcgagttc gacccggaca tgtacgagcc gctcccggtg tacaagccgg ccgcctcccg 720gatcgagttc gacccggaca tgtacgagcc gctcccggtg tacaagccgg ccgcctcccg 720

catgcagatc gagaaggccg tggagatgct catccaggcc gagcgcccgg tgatcgtggc 780catgcagatc gagaaggccg tggagatgct catccaggcc gagcgcccgg tgatcgtggc 780

cggcggcggc gtgatcaacg ccgacgccgc cgccctcctc cagcagttcg ccgagctcac 840cggcggcggc gtgatcaacg ccgacgccgc cgccctcctc cagcagttcg ccgagctcac 840

ctccgtgccg gtgatcccga ccctcatggg ctggggctgc atcccggacg accacgagct 900ctccgtgccg gtgatcccga ccctcatggg ctggggctgc atcccggacg accacgagct 900

catggccggc atggtgggcc tccagaccgc ccaccgctac ggcaacgcca ccctcctcgc 960catggccggc atggtgggcc tccagaccgc ccaccgctac ggcaacgcca ccctcctcgc 960

ctccgacatg gtgttcggca tcggcaaccg cttcgccaac cgccacaccg gctccgtgga 1020ctccgacatg gtgttcggca tcggcaaccg cttcgccaac cgccacaccg gctccgtgga 1020

gaagtacacc gagggccgca agatcgtgca catcgacatc gagccgaccc agatcggccg 1080gaagtacacc gagggccgca agatcgtgca catcgacatc gagccgaccc agatcggccg 1080

cgtgctctgc ccggacctcg gcatcgtgtc cgacgccaag gccgccctca ccctcctcgt 1140cgtgctctgc ccggacctcg gcatcgtgtc cgacgccaag gccgccctca ccctcctcgt 1140

ggaggtggcc caggagatgc agaaggccgg ccgcctcccg tgccgcaagg agtgggtggc 1200ggaggtggcc caggagatgc agaaggccgg ccgcctcccg tgccgcaagg agtgggtggc 1200

cgactgccag cagcgcaagc gcaccctcct ccgcaagacc cacttcgaca acgtgccggt 1260cgactgccag cagcgcaagc gcaccctcct ccgcaagacc cacttcgaca acgtgccggt 1260

gaagccgcag cgcgtgtacg aggagatgaa caaggccttc ggccgcgacg tgtgctacgt 1320gaagccgcag cgcgtgtacg aggagatgaa caaggccttc ggccgcgacg tgtgctacgt 1320

gaccaccatc ggcctctccc agatcgccgc cgcccagatg ctccacgtgt tcaaggaccg 1380gaccaccatc ggcctctccc agatcgccgc cgcccagatg ctccacgtgt tcaaggaccg 1380

ccactggatc aactgcggcc aggccggccc gctcggctgg accatcccgg ccgccctcgg 1440ccactggatc aactgcggcc aggccggccc gctcggctgg accatcccgg ccgccctcgg 1440

cgtgtgcgcc gccgacccga agcgcaacgt ggtggccatc tccggcgact tcgacttcca 1500cgtgtgcgcc gccgacccga agcgcaacgt ggtggccatc tccggcgact tcgacttcca 1500

gttcctcatc gaggagctcg ccgtgggcgc ccagttcaac atcccgtaca tccacgtgct 1560gttcctcatc gaggagctcg ccgtgggcgc ccagttcaac atcccgtaca tccacgtgct 1560

cgtgaacaac gcctacctcg gcctcatccg ccagtcccag cgcgccttcg acatggacta 1620cgtgaacaac gcctacctcg gcctcatccg ccagtcccag cgcgccttcg acatggacta 1620

ctgcgtgcag ctcgccttcg agaacatcaa ctcctccgag gtgaacggct acggcgtgga 1680ctgcgtgcag ctcgccttcg agaacatcaa ctcctccgag gtgaacggct acggcgtgga 1680

ccacgtgaag gtggccgagg gcctcggctg caaggccatc cgcgtgttca agccggagga 1740ccacgtgaag gtggccgagg gcctcggctg caaggccatc cgcgtgttca agccggagga 1740

catcgccccg gccttcgagc aggccaaggc cctcatggcc cagtaccgcg tgccggtggt 1800catcgccccg gccttcgagc aggccaaggc cctcatggcc cagtaccgcg tgccggtggt 1800

ggtggaggtg atcctcgagc gcgtgaccaa catctccatg ggctccgagc tcgacaacgt 1860ggtggaggtg atcctcgagc gcgtgaccaa catctccatg ggctccgagc tcgacaacgt 1860

gatggagttc gaggacatcg ccgacaacgc cgccgacgcc ccgaccgaga cctgcttcat 1920gatggagttc gaggacatcg ccgacaacgc cgccgacgcc ccgaccgaga cctgcttcat 1920

gcactacgag taagagctct agatcgttct gcacaaagtg gagtagtcag tcatcgatca 1980gcactacgag taagagctct agatcgttct gcacaaagtg gagtagtcag tcatcgatca 1980

ggaaccagac accagacttt tattcataca gtgaagtgaa gtgaagtgca gtgcagtgag 2040ggaaccagac accagacttt tattcataca gtgaagtgaa gtgaagtgca gtgcagtgag 2040

ttgctggttt ttgtacaact tagtatgtat ttgtatttgt aaaatacttc tatcaataaa 2100ttgctggttt ttgtacaact tagtatgtat ttgtatttgt aaaatacttc tatcaataaa 2100

atttctaatt cctaaaacca aaatccagga agctt 2135atttctaatt cctaaaacca aaatccagga agctt 2135

<210> 9<210> 9

<211> 593<211> 593

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 9<400> 9

Met Ala Lys Met Arg Ala Val Asp Ala Ala Met Tyr Val Leu Glu LysMet Ala Lys Met Arg Ala Val Asp Ala Ala Met Tyr Val Leu Glu Lys

1 5 10 151 5 10 15

Glu Gly Ile Thr Thr Ala Phe Gly Val Pro Gly Ala Ala Ile Asn ProGlu Gly Ile Thr Thr Ala Phe Gly Val Pro Gly Ala Ala Ile Asn Pro

20 25 30 20 25 30

Phe Tyr Ser Ala Met Arg Lys His Gly Gly Ile Arg His Ile Leu AlaPhe Tyr Ser Ala Met Arg Lys His Gly Gly Ile Arg His Ile Leu Ala

35 40 45 35 40 45

Arg His Val Glu Gly Ala Ser His Met Ala Glu Gly Tyr Thr Arg AlaArg His Val Glu Gly Ala Ser His Met Ala Glu Gly Tyr Thr Arg Ala

50 55 60 50 55 60

Thr Ala Gly Asn Ile Gly Val Cys Leu Gly Thr Ser Gly Pro Ala GlyThr Ala Gly Asn Ile Gly Val Cys Leu Gly Thr Ser Gly Pro Ala Gly

65 70 75 8065 70 75 80

Thr Asp Met Ile Thr Ala Leu Tyr Ser Ala Ser Ala Asp Ser Ile ProThr Asp Met Ile Thr Ala Leu Tyr Ser Ala Ser Ala Asp Ser Ile Pro

85 90 95 85 90 95

Ile Leu Cys Ile Thr Gly Gln Ala Pro Arg Ala Arg Leu His Lys GluIle Leu Cys Ile Thr Gly Gln Ala Pro Arg Ala Arg Leu His Lys Glu

100 105 110 100 105 110

Asp Phe Gln Ala Val Asp Ile Glu Ala Ile Ala Lys Pro Val Ser LysAsp Phe Gln Ala Val Asp Ile Glu Ala Ile Ala Lys Pro Val Ser Lys

115 120 125 115 120 125

Met Ala Val Thr Val Arg Glu Ala Ala Leu Val Pro Arg Val Leu GlnMet Ala Val Thr Val Arg Glu Ala Ala Leu Val Pro Arg Val Leu Gln

130 135 140 130 135 140

Gln Ala Phe His Leu Met Arg Ser Gly Arg Pro Gly Pro Val Leu ValGln Ala Phe His Leu Met Arg Ser Gly Arg Pro Gly Pro Val Leu Val

145 150 155 160145 150 155 160

Asp Leu Pro Phe Asp Val Gln Val Ala Glu Ile Glu Phe Asp Pro AspAsp Leu Pro Phe Asp Val Gln Val Ala Glu Ile Glu Phe Asp Pro Asp

165 170 175 165 170 175

Met Tyr Glu Pro Leu Pro Val Tyr Lys Pro Ala Ala Ser Arg Met GlnMet Tyr Glu Pro Leu Pro Val Tyr Lys Pro Ala Ala Ser Arg Met Gln

180 185 190 180 185 190

Ile Glu Lys Ala Val Glu Met Leu Ile Gln Ala Glu Arg Pro Val IleIle Glu Lys Ala Val Glu Met Leu Ile Gln Ala Glu Arg Pro Val Ile

195 200 205 195 200 205

Val Ala Gly Gly Gly Val Ile Asn Ala Asp Ala Ala Ala Leu Leu GlnVal Ala Gly Gly Gly Val Ile Asn Ala Asp Ala Ala Ala Leu Leu Gln

210 215 220 210 215 220

Gln Phe Ala Glu Leu Thr Ser Val Pro Val Ile Pro Thr Leu Met GlyGln Phe Ala Glu Leu Thr Ser Val Pro Val Ile Pro Thr Leu Met Gly

225 230 235 240225 230 235 240

Trp Gly Cys Ile Pro Asp Asp His Glu Leu Met Ala Gly Met Val GlyTrp Gly Cys Ile Pro Asp Asp His Glu Leu Met Ala Gly Met Val Gly

245 250 255 245 250 255

Leu Gln Thr Ala His Arg Tyr Gly Asn Ala Thr Leu Leu Ala Ser AspLeu Gln Thr Ala His Arg Tyr Gly Asn Ala Thr Leu Leu Ala Ser Asp

260 265 270 260 265 270

Met Val Phe Gly Ile Gly Asn Arg Phe Ala Asn Arg His Thr Gly SerMet Val Phe Gly Ile Gly Asn Arg Phe Ala Asn Arg His Thr Gly Ser

275 280 285 275 280 285

Val Glu Lys Tyr Thr Glu Gly Arg Lys Ile Val His Ile Asp Ile GluVal Glu Lys Tyr Thr Glu Gly Arg Lys Ile Val His Ile Asp Ile Glu

290 295 300 290 295 300

Pro Thr Gln Ile Gly Arg Val Leu Cys Pro Asp Leu Gly Ile Val SerPro Thr Gln Ile Gly Arg Val Leu Cys Pro Asp Leu Gly Ile Val Ser

305 310 315 320305 310 315 320

Asp Ala Lys Ala Ala Leu Thr Leu Leu Val Glu Val Ala Gln Glu MetAsp Ala Lys Ala Ala Leu Thr Leu Leu Val Glu Val Ala Gln Glu Met

325 330 335 325 330 335

Gln Lys Ala Gly Arg Leu Pro Cys Arg Lys Glu Trp Val Ala Asp CysGln Lys Ala Gly Arg Leu Pro Cys Arg Lys Glu Trp Val Ala Asp Cys

340 345 350 340 345 350

Gln Gln Arg Lys Arg Thr Leu Leu Arg Lys Thr His Phe Asp Asn ValGln Gln Arg Lys Arg Thr Leu Leu Arg Lys Thr His Phe Asp Asn Val

355 360 365 355 360 365

Pro Val Lys Pro Gln Arg Val Tyr Glu Glu Met Asn Lys Ala Phe GlyPro Val Lys Pro Gln Arg Val Tyr Glu Glu Met Asn Lys Ala Phe Gly

370 375 380 370 375 380

Arg Asp Val Cys Tyr Val Thr Thr Ile Gly Leu Ser Gln Ile Ala AlaArg Asp Val Cys Tyr Val Thr Thr Ile Gly Leu Ser Gln Ile Ala Ala

385 390 395 400385 390 395 400

Ala Gln Met Leu His Val Phe Lys Asp Arg His Trp Ile Asn Cys GlyAla Gln Met Leu His Val Phe Lys Asp Arg His Trp Ile Asn Cys Gly

405 410 415 405 410 415

Gln Ala Gly Pro Leu Gly Trp Thr Ile Pro Ala Ala Leu Gly Val CysGln Ala Gly Pro Leu Gly Trp Thr Ile Pro Ala Ala Leu Gly Val Cys

420 425 430 420 425 430

Ala Ala Asp Pro Lys Arg Asn Val Val Ala Ile Ser Gly Asp Phe AspAla Ala Asp Pro Lys Arg Asn Val Val Ala Ile Ser Gly Asp Phe Asp

435 440 445 435 440 445

Phe Gln Phe Leu Ile Glu Glu Leu Ala Val Gly Ala Gln Phe Asn IlePhe Gln Phe Leu Ile Glu Glu Leu Ala Val Gly Ala Gln Phe Asn Ile

450 455 460 450 455 460

Pro Tyr Ile His Val Leu Val Asn Asn Ala Tyr Leu Gly Leu Ile ArgPro Tyr Ile His Val Leu Val Asn Asn Ala Tyr Leu Gly Leu Ile Arg

465 470 475 480465 470 475 480

Gln Ser Gln Arg Ala Phe Asp Met Asp Tyr Cys Val Gln Leu Ala PheGln Ser Gln Arg Ala Phe Asp Met Asp Tyr Cys Val Gln Leu Ala Phe

485 490 495 485 490 495

Glu Asn Ile Asn Ser Ser Glu Val Asn Gly Tyr Gly Val Asp His ValGlu Asn Ile Asn Ser Ser Glu Val Asn Gly Tyr Gly Val Asp His Val

500 505 510 500 505 510

Lys Val Ala Glu Gly Leu Gly Cys Lys Ala Ile Arg Val Phe Lys ProLys Val Ala Glu Gly Leu Gly Cys Lys Ala Ile Arg Val Phe Lys Pro

515 520 525 515 520 525

Glu Asp Ile Ala Pro Ala Phe Glu Gln Ala Lys Ala Leu Met Ala GlnGlu Asp Ile Ala Pro Ala Phe Glu Gln Ala Lys Ala Leu Met Ala Gln

530 535 540 530 535 540

Tyr Arg Val Pro Val Val Val Glu Val Ile Leu Glu Arg Val Thr AsnTyr Arg Val Pro Val Val Val Glu Val Ile Leu Glu Arg Val Thr Asn

545 550 555 560545 550 555 560

Ile Ser Met Gly Ser Glu Leu Asp Asn Val Met Glu Phe Glu Asp IleIle Ser Met Gly Ser Glu Leu Asp Asn Val Met Glu Phe Glu Asp Ile

565 570 575 565 570 575

Ala Asp Asn Ala Ala Asp Ala Pro Thr Glu Thr Cys Phe Met His TyrAla Asp Asn Ala Ala Asp Ala Pro Thr Glu Thr Cys Phe Met His Tyr

580 585 590 580 585 590

GluGlu

<210> 10<210> 10

<211> 1232<211> 1232

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 10<400> 10

ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60

gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120

caacgtgtcc aacggcggcc gcatccgctg catgaagctc ggcttcatcg gcctcggcat 180caacgtgtcc aacggcggcc gcatccgctg catgaagctc ggcttcatcg gcctcggcat 180

catgggcacc ccgatggcca tcaacctcgc ccgcgccggc caccagctcc acgtgaccac 240catgggcacc ccgatggcca tcaacctcgc ccgcgccggc caccagctcc acgtgaccac 240

catcggcccg gtggccgacg agctcctctc cctcggcgcc gtgaacgtgg acaccgcccg 300catcggcccg gtggccgacg agctcctctc cctcggcgcc gtgaacgtgg acaccgcccg 300

ccaggtgacc gaggccgccg acatcatctt catcatggtg ccggacaccc cgcaggtgga 360ccaggtgacc gaggccgccg acatcatctt catcatggtg ccggacaccc cgcaggtgga 360

ggaggtgctc ttcggcgaga acggctgcac caaggcctcc ctcaagggca agaccatcgt 420ggaggtgctc ttcggcgaga acggctgcac caaggcctcc ctcaagggca agaccatcgt 420

ggacatgtcc tccatctccc cgatcgagac caagcgcttc gcccgccagg tgaacgagct 480ggacatgtcc tccatctccc cgatcgagac caagcgcttc gcccgccagg tgaacgagct 480

cggcggcgac tacctcgacg ccccggtgtc cggcggcgag atcggcgccc gcgagggcac 540cggcggcgac tacctcgacg ccccggtgtc cggcggcgag atcggcgccc gcgagggcac 540

cctctccatc atggtgggcg gcgacgaggc cgtgttcgag cgcgtgaagc cgctcttcga 600cctctccatc atggtgggcg gcgacgaggc cgtgttcgag cgcgtgaagc cgctcttcga 600

gctcctcggc aagaacatca ccctcgtggg cggcaacggc gacggccaga cctgcaaggt 660gctcctcggc aagaacatca ccctcgtggg cggcaacggc gacggccaga cctgcaaggt 660

ggccaaccag atcatcgtgg ccctcaacat cgaggccgtg tccgaggccc tcctcttcgc 720ggccaaccag atcatcgtgg ccctcaacat cgaggccgtg tccgaggccc tcctcttcgc 720

ctccaaggcc ggcgccgacc cggtgcgcgt gcgccaggcc ctcatgggcg gcttcgcctc 780ctccaaggcc ggcgccgacc cggtgcgcgt gcgccaggcc ctcatgggcg gcttcgcctc 780

ctcccgcatc ctcgaggtgc acggcgagcg catgatcaag cgcaccttca acccgggctt 840ctcccgcatc ctcgaggtgc acggcgagcg catgatcaag cgcaccttca acccgggctt 840

caagatcgcc ctccaccaga aggacctcaa cctcgccctc cagtccgcca aggccctcgc 900caagatcgcc ctccaccaga aggacctcaa cctcgccctc cagtccgcca aggccctcgc 900

cctcaacctc ccgaacaccg ccacctgcca ggagctcttc aacacctgcg ccgccaacgg 960cctcaacctc ccgaacaccg ccacctgcca ggagctcttc aacacctgcg ccgccaacgg 960

cggctcccag ctcgaccact ccgccctcgt gcaggccctc gagctcatgg ccaaccacaa 1020cggctcccag ctcgaccact ccgccctcgt gcaggccctc gagctcatgg ccaaccacaa 1020

gctcgcctaa gagctctaga tcgttctgca caaagtggag tagtcagtca tcgatcagga 1080gctcgcctaa gagctctaga tcgttctgca caaagtggag tagtcagtca tcgatcagga 1080

accagacacc agacttttat tcatacagtg aagtgaagtg aagtgcagtg cagtgagttg 1140accagacacc agacttttat tcatacagtg aagtgaagtg aagtgcagtg cagtgagttg 1140

ctggtttttg tacaacttag tatgtatttg tatttgtaaa atacttctat caataaaatt 1200ctggtttttg tacaacttag tatgtatttg tatttgtaaa atacttctat caataaaatt 1200

tctaattcct aaaaccaaaa tccagggaat tc 1232tctaattcct aaaaccaaaa tccagggaat tc 1232

<210> 11<210> 11

<211> 292<211> 292

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 11<400> 11

Met Lys Leu Gly Phe Ile Gly Leu Gly Ile Met Gly Thr Pro Met AlaMet Lys Leu Gly Phe Ile Gly Leu Gly Ile Met Gly Thr Pro Met Ala

1 5 10 151 5 10 15

Ile Asn Leu Ala Arg Ala Gly His Gln Leu His Val Thr Thr Ile GlyIle Asn Leu Ala Arg Ala Gly His Gln Leu His Val Thr Thr Ile Gly

20 25 30 20 25 30

Pro Val Ala Asp Glu Leu Leu Ser Leu Gly Ala Val Asn Val Asp ThrPro Val Ala Asp Glu Leu Leu Ser Leu Gly Ala Val Asn Val Asp Thr

35 40 45 35 40 45

Ala Arg Gln Val Thr Glu Ala Ala Asp Ile Ile Phe Ile Met Val ProAla Arg Gln Val Thr Glu Ala Ala Asp Ile Ile Phe Ile Met Val Pro

50 55 60 50 55 60

Asp Thr Pro Gln Val Glu Glu Val Leu Phe Gly Glu Asn Gly Cys ThrAsp Thr Pro Gln Val Glu Glu Val Leu Phe Gly Glu Asn Gly Cys Thr

65 70 75 8065 70 75 80

Lys Ala Ser Leu Lys Gly Lys Thr Ile Val Asp Met Ser Ser Ile SerLys Ala Ser Leu Lys Gly Lys Thr Ile Val Asp Met Ser Ser Ile Ser

85 90 95 85 90 95

Pro Ile Glu Thr Lys Arg Phe Ala Arg Gln Val Asn Glu Leu Gly GlyPro Ile Glu Thr Lys Arg Phe Ala Arg Gln Val Asn Glu Leu Gly Gly

100 105 110 100 105 110

Asp Tyr Leu Asp Ala Pro Val Ser Gly Gly Glu Ile Gly Ala Arg GluAsp Tyr Leu Asp Ala Pro Val Ser Gly Gly Glu Ile Gly Ala Arg Glu

115 120 125 115 120 125

Gly Thr Leu Ser Ile Met Val Gly Gly Asp Glu Ala Val Phe Glu ArgGly Thr Leu Ser Ile Met Val Gly Gly Asp Glu Ala Val Phe Glu Arg

130 135 140 130 135 140

Val Lys Pro Leu Phe Glu Leu Leu Gly Lys Asn Ile Thr Leu Val GlyVal Lys Pro Leu Phe Glu Leu Leu Gly Lys Asn Ile Thr Leu Val Gly

145 150 155 160145 150 155 160

Gly Asn Gly Asp Gly Gln Thr Cys Lys Val Ala Asn Gln Ile Ile ValGly Asn Gly Asp Gly Gln Thr Cys Lys Val Ala Asn Gln Ile Ile Val

165 170 175 165 170 175

Ala Leu Asn Ile Glu Ala Val Ser Glu Ala Leu Leu Phe Ala Ser LysAla Leu Asn Ile Glu Ala Val Ser Glu Ala Leu Leu Phe Ala Ser Lys

180 185 190 180 185 190

Ala Gly Ala Asp Pro Val Arg Val Arg Gln Ala Leu Met Gly Gly PheAla Gly Ala Asp Pro Val Arg Val Arg Gln Ala Leu Met Gly Gly Phe

195 200 205 195 200 205

Ala Ser Ser Arg Ile Leu Glu Val His Gly Glu Arg Met Ile Lys ArgAla Ser Ser Arg Ile Leu Glu Val His Gly Glu Arg Met Ile Lys Arg

210 215 220 210 215 220

Thr Phe Asn Pro Gly Phe Lys Ile Ala Leu His Gln Lys Asp Leu AsnThr Phe Asn Pro Gly Phe Lys Ile Ala Leu His Gln Lys Asp Leu Asn

225 230 235 240225 230 235 240

Leu Ala Leu Gln Ser Ala Lys Ala Leu Ala Leu Asn Leu Pro Asn ThrLeu Ala Leu Gln Ser Ala Lys Ala Leu Ala Leu Asn Leu Pro Asn Thr

245 250 255 245 250 255

Ala Thr Cys Gln Glu Leu Phe Asn Thr Cys Ala Ala Asn Gly Gly SerAla Thr Cys Gln Glu Leu Phe Asn Thr Cys Ala Ala Asn Gly Gly Ser

260 265 270 260 265 270

Gln Leu Asp His Ser Ala Leu Val Gln Ala Leu Glu Leu Met Ala AsnGln Leu Asp His Ser Ala Leu Val Gln Ala Leu Glu Leu Met Ala Asn

275 280 285 275 280 285

His Lys Leu AlaHis Lys Leu Ala

290 290

<210> 12<210> 12

<211> 47<211> 47

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 12<400> 12

Met Ala Pro Ser Val Met Ala Ser Ser Ala Thr Thr Val Ala Pro PheMet Ala Pro Ser Val Met Ala Ser Ser Ala Thr Thr Val Ala Pro Phe

1 5 10 151 5 10 15

Gln Gly Leu Lys Ser Thr Ala Gly Met Pro Val Ala Arg Arg Ser GlyGln Gly Leu Lys Ser Thr Ala Gly Met Pro Val Ala Arg Arg Ser Gly

20 25 30 20 25 30

Asn Ser Ser Phe Gly Asn Val Ser Asn Gly Gly Arg Ile Arg CysAsn Ser Ser Phe Gly Asn Val Ser Asn Gly Gly Arg Ile Arg Cys

35 40 45 35 40 45

<210> 13<210> 13

<211> 42<211> 42

<212> PRT<212> PRT

<213> 未知(Unknown)<213> Unknown

<400> 13<400> 13

Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro AlaMet Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala

1 5 10 151 5 10 15

Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala AlaGln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala

20 25 30 20 25 30

Phe Pro Ala Thr Arg Lys Ala Asn Gly GlyPhe Pro Ala Thr Arg Lys Ala Asn Gly Gly

35 40 35 40

<210> 14<210> 14

<211> 838<211> 838

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 14<400> 14

cgatcggcag gtcatgcgaa atcgcgacga ggctgcgtgc attttgactg attgacgact 60cgatcggcag gtcatgcgaa atcgcgacga ggctgcgtgc attttgactg attgacgact 60

cacgctgggt aggcccgagg gagaggtggc gcccgcgcct cctcctcctc ctccggcggc 120cacgctgggt aggcccgagg gagaggtggc gcccgcgcct cctcctcctc ctccggcggc 120

ggcggcggcg tggatcgggg cgatgaggcg gtggcgagga ttggcgggag ccatggagat 180ggcggcggcg tggatcgggg cgatgaggcg gtggcgagga ttggcgggag ccatggagat 180

tgccgccgct tggcgggagg aggaggagga ggaggagggg ttgcgtcggc atcggcgggg 240tgccgccgct tggcgggagg aggaggagga ggaggagggg ttgcgtcggc atcggcgggg 240

aggaagcgtg cggaggcggg gcggcgacgt ggcggtggcg gagggcgaaa ggcggcagcg 300aggaagcgtg cggaggcggg gcggcgacgt ggcggtggcg gagggcgaaa ggcggcagcg 300

atggctgctg cgtagcgagg caatcatgca gggggaggat gatgatgagg tcgctgccat 360atggctgctg cgtagcgagg caatcatgca gggggaggat gatgatgagg tcgctgccat 360

ctcttctctt ctcttctctt cttctccttc tcctttggcc agcgagagag cagtggcagt 420ctcttctctt ctcttctctt cttctccttc tcctttggcc agcgagagag cagtggcagt 420

gacagtggat gagaagggag ctgggagcag tggcagaggc caggtggaag agaggagatg 480gacagtggat gagaagggag ctgggagcag tggcagaggc caggtggaag agaggagatg 480

gcagcgacct catcatcatc ctccccctgc atgattgcct cgctacgcag cagccatcgc 540gcagcgacct catcatcatc ctccccctgc atgattgcct cgctacgcag cagccatcgc 540

tgccgccttt cgccctccgc caccgccacg tcgccgcccc gcctccgcac gcttcctccc 600tgccgccttt cgccctccgc caccgccacg tcgccgcccc gcctccgcac gcttcctccc 600

cgccgatgcc gacgcaaccc ctcctcctcc tcctcctcct cccgccaagc ggcggcaatc 660cgccgatgcc gacgcaaccc ctcctcctcc tcctcctcct cccgccaagc ggcggcaatc 660

tccatggctc ccgccaatcc tcgccaccgc ctcatcgccc cgatccacgc cgccgccgcc 720tccatggctc ccgccaatcc tcgccaccgc ctcatcgccc cgatccacgc cgccgccgcc 720

gccggaggag gaggaggagg cgcgggcgcc acctctccct cgggcctacc cagcgtgagt 780gccggaggag gaggaggagg cgcgggcgcc acctctccct cgggcctacc cagcgtgagt 780

cgtcaatcag tcaaaatgca cgcagcctcg tcgcgatttc gcatgacctg ccgatcgg 838cgtcaatcag tcaaaatgca cgcagcctcg tcgcgatttc gcatgacctg ccgatcgg 838

<210> 15<210> 15

<211> 491<211> 491

<212> DNA<212> DNA

<213> 未知(Unknown)<213> Unknown

<400> 15<400> 15

gccgtgacat aaatgacagt ctcagccaac aattgcaagc aaactttgtc taacagcagg 60gccgtgacat aaatgacagt ctcagccaac aattgcaagc aaactttgtc taacagcagg 60

aatcgagcaa agaatggatc caaatatacc attcagagca taagcaatgg cacaaaatgg 120aatcgagcaa agaatggatc caaatatacc attcagagca taagcaatgg cacaaaatgg 120

gagagcctcg ggttccttgg cagacaaagc tgctgttcca agcccgtggg cactgaaaaa 180gagagcctcg ggttccttgg cagacaaagc tgctgttcca agcccgtggg cactgaaaaa 180

taaaatttag gtcaagagag taagtaaata accatgcacg cacaaagaaa atgtcattca 240taaaatttag gtcaagagag taagtaaata accatgcacg cacaaagaaa atgtcattca 240

actattattg catgtttggt atagattaat ttttgagaaa taatcactta ttttacagaa 300actattattg catgtttggt atagattaat ttttgagaaa taatcactta ttttacagaa 300

actaatttta tttttcagtg cccacgggct tggaacagca gctttgtctg ccaaggaacc 360actaatttta tttttcagtg cccacgggct tggaacagca gctttgtctg ccaaggaacc 360

cgaggctctc ccattttgtg ccattgctta tgctctgaat ggtatatttg gatccattct 420cgaggctctc ccattttgtg ccattgctta tgctctgaat ggtatatttg gatccattct 420

ttgctcgatt cctgctgtta gacaaagttt gcttgcaatt gttggctgag actgtcattt 480ttgctcgatt cctgctgtta gacaaagttt gcttgcaatt gttggctgag actgtcattt 480

atgtcacggc c 491atgtcacggc c 491

Claims (10)

1. A method for improving the photosynthetic efficiency of a plant, characterized in that the method comprises: inhibiting or knocking out sodium bile cotransporter gene in plants, and simultaneously over-expressing glycollic acid dehydrogenase gene, glyoxylate carboxylase gene and tartrate semialdehyde reductase gene.
2. The method of claim 1, wherein the amino acid sequence of the sodium bile acid cotransporter is as set forth in one of SEQ ID No.1, SEQ ID No.2 or SEQ ID No. 3.
3. The method of claim 1, wherein the method of inhibiting a sodium bile acid cotransporter gene in a plant comprises: introducing into a plant a double-stranded RNA nucleotide sequence that forms a hairpin structure of a targeted bile acid sodium cotransporter gene.
4. The method of claim 3, wherein the double stranded RNA has the nucleotide sequence set forth in SEQ ID No.4 and SEQ ID No. 5.
5. The method according to claim 1, wherein the nucleotide sequence of the ethanol dehydrogenase gene is as shown in SEQ ID No. 6.
6. The method according to claim 1, wherein the nucleotide sequence of the glyoxylate carboxylase gene is as set forth in SEQ ID No. 8.
7. The method of claim 1, wherein the tartrate semialdehyde reductase gene has the nucleotide sequence set forth in SEQ ID No. 10.
8. The method of claim 3, wherein said method is performed by constructing a T-DNA vector, and introducing the vector into a plant; the construction method of the T-DNA vector comprises the following steps: taking pCambia1300 binary vector containing glufosinate-ammonium-resistant bar gene as a basic vector, and respectively connecting a glycollic acid dehydrogenase gene expression frame, a glyoxylate carboxylase gene expression frame, a tartrate semialdehyde reductase gene expression frame and a bile acid sodium cotransporter gene RNAi expression frame.
9. The method of claim 8, wherein the promoters used for the expression cassette construction include the maize Ubi promoter sequence, the rice Actin promoter, and the 35S promoter of cauliflower mosaic virus CaMV; the terminator is the terminator ter.
10. The method of claim 8, wherein said plant is rice or soybean.
CN201910744555.XA 2019-08-13 2019-08-13 A kind of method to improve plant photosynthetic efficiency Active CN110628810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910744555.XA CN110628810B (en) 2019-08-13 2019-08-13 A kind of method to improve plant photosynthetic efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910744555.XA CN110628810B (en) 2019-08-13 2019-08-13 A kind of method to improve plant photosynthetic efficiency

Publications (2)

Publication Number Publication Date
CN110628810A CN110628810A (en) 2019-12-31
CN110628810B true CN110628810B (en) 2022-06-28

Family

ID=68970369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910744555.XA Active CN110628810B (en) 2019-08-13 2019-08-13 A kind of method to improve plant photosynthetic efficiency

Country Status (1)

Country Link
CN (1) CN110628810B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114574529B (en) * 2020-12-01 2024-08-20 天津国家合成生物技术创新中心有限公司 Method for generating target product from glycollic acid under action of enzyme
WO2023147222A1 (en) 2022-01-25 2023-08-03 Living Carbon PBC Compositions and methods for enhancing biomass productivity in plants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082120A (en) * 2007-10-01 2009-04-23 Tatsuhisa Mitoma Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis
CN102016012A (en) * 2008-02-21 2011-04-13 科隆大学 Means for improving agrobiological traits in a plant by providing a plant cell comprising in its chloroplasts enzymatic activities for converting glycolate into malate
CN102105591A (en) * 2008-08-01 2011-06-22 拜耳生物科学股份有限公司 A method for increasing photosynthetic carbon fixation in rice
CN107106873A (en) * 2015-01-09 2017-08-29 吉利德阿波罗公司 ACC inhibitor combined therapies for treating non-alcoholic fatty liver disease

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180258440A1 (en) * 2017-03-07 2018-09-13 The United States Of America, As Represented By The Secretary Of Agriculture Plants With Increased Photorespiration Efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082120A (en) * 2007-10-01 2009-04-23 Tatsuhisa Mitoma Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis
CN102016012A (en) * 2008-02-21 2011-04-13 科隆大学 Means for improving agrobiological traits in a plant by providing a plant cell comprising in its chloroplasts enzymatic activities for converting glycolate into malate
CN102105591A (en) * 2008-08-01 2011-06-22 拜耳生物科学股份有限公司 A method for increasing photosynthetic carbon fixation in rice
CN107106873A (en) * 2015-01-09 2017-08-29 吉利德阿波罗公司 ACC inhibitor combined therapies for treating non-alcoholic fatty liver disease

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana;Paul F. South等;《The Plant Cell》;20170430;第29卷;第808-823页 *
Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana;Rashad Kebeish等;《Nature Biotechnology》;20070531;第25卷(第5期);第593-599页 *
probable sodium/metabolite cotransporter BASS5, chloroplastic [Oryza sativa JaponicaGroup];Eukaryota等;《Gene Bank》;20180807;全文 *
probable sodium/metabolite cotransporter BASS5, chloroplastic isoform X1 [Glycine max];Eukaryota等;《Gene Bank》;20180831;全文 *
植物光呼吸途径及其支路研究进展;张树伟等;《山西农业大学学报》;20161231;第36卷(第12期);第885-889页 *

Also Published As

Publication number Publication date
CN110628810A (en) 2019-12-31

Similar Documents

Publication Publication Date Title
CN110564760B (en) Method for improving drought tolerance of plants through light respiration
US9556422B2 (en) Highly glyphosate-resistant mutated gene, method of modification and use thereof
CN103436547B (en) A kind of gene and application thereof with glyphosate-tolerant
CN103421804B (en) Application of Ghd7-1 gene to regulate rice yield, flowering period and plant height
CN107746846A (en) The IbABF4 genes of coding sweet potato bZIP transcription factors and application
WO2014069339A1 (en) Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield
WO2012136129A1 (en) Application of ossro1c gene in controlling rice drought resistance
CN110184293B (en) A method for increasing plant biomass or yield by increasing photosynthetic efficiency
CN110628810B (en) A kind of method to improve plant photosynthetic efficiency
CN102391369A (en) Stress tolerance related 14-3-3 protein GRF9 and application thereof
CN106520782A (en) Application of a gene GmRAV1 related to soybean photoperiod regulation
CN108893481A (en) Tomato SlOAS7 gene and its application
CN102719449A (en) Clone of apple resistance-related gene MdSIMYB1 and application thereof
CN102978218A (en) Cloning of apple stress-resistant related gene MdSIMYB2 and application of cloning of apple stress-resistant related gene MdSIMYB2
US10072271B2 (en) Methods for improving crop yield
CN112626111B (en) A kind of herbicide resistance gene expression vector and its application
CN114214358B (en) An inducible expression vector and its application in cultivating sentinel crops
CN117264964A (en) Application of wheat TaGSKB protein and encoding gene thereof in regulation and control of plant stress tolerance
CN106350532A (en) Glyphosate-resistant Fusion Gene, Encoding Protein and Application
CN102250226A (en) Paddy rice output related protein, and coding gene and application thereof
US5569833A (en) Method for enhancing the earliness of a plant and/or lowering the content of nitrates stored in the plant
CN101781363B (en) Protein regulating development of plants and encoding gene and application thereof
CN116589545B (en) Application of ONAC096 gene in controlling drought resistance of rice
CN111574606A (en) Wheat disease resistance and heading regulatory gene TaCOK and its related biomaterials and applications
CN112458110B (en) Application of plant disease-resistant gene AtIQD1

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant