[go: up one dir, main page]

CN107746846A - The IbABF4 genes of coding sweet potato bZIP transcription factors and application - Google Patents

The IbABF4 genes of coding sweet potato bZIP transcription factors and application Download PDF

Info

Publication number
CN107746846A
CN107746846A CN201711018018.4A CN201711018018A CN107746846A CN 107746846 A CN107746846 A CN 107746846A CN 201711018018 A CN201711018018 A CN 201711018018A CN 107746846 A CN107746846 A CN 107746846A
Authority
CN
China
Prior art keywords
ibabf4
plant
sweet potato
genes
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711018018.4A
Other languages
Chinese (zh)
Other versions
CN107746846B (en
Inventor
边小峰
禹阳
贾赵东
马佩勇
郭小丁
谢芝
谢一芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yanjiang Agricultural Science Research Institute
Original Assignee
Jiangsu Yanjiang Agricultural Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yanjiang Agricultural Science Research Institute filed Critical Jiangsu Yanjiang Agricultural Science Research Institute
Priority to CN201711018018.4A priority Critical patent/CN107746846B/en
Publication of CN107746846A publication Critical patent/CN107746846A/en
Application granted granted Critical
Publication of CN107746846B publication Critical patent/CN107746846B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a kind of coded sequence of positive regulation flowering of plant sweet potato ABF4 genes and its application.The wherein IbABF4 genes of coding sweet potato bZIP transcription factors, it is the nucleotide sequence shown in SEQ ID NO.1.The protein of IbABF4 gene codes is the amino acid sequence shown in SEQ ID No.2.The present invention isolates the global cDNA of coding bZIP transcription factors from sweet potato, is connected on plant expression vector, converts plant using Agrobacterium infestation method, obtains transfer-gen plant, transfer-gen plant is bloomed in advance.This gene can apply to genetic modification of plants.

Description

编码甘薯bZIP转录因子的IbABF4基因及应用IbABF4 gene encoding sweet potato bZIP transcription factor and its application

技术领域technical field

本发明属于基因工程领域,具体涉及一种编码甘薯bZIP转录因子的IbABF4基因、该基因编码的蛋白质以及含有该基因的重组载体及基因的抗逆应用。The invention belongs to the field of genetic engineering, and specifically relates to an IbABF4 gene encoding a sweet potato bZIP transcription factor, a protein encoded by the gene, a recombinant vector containing the gene, and an anti-stress application of the gene.

背景技术Background technique

开花的发生决定了高等植物具备繁殖和遗传的能力,对植物个体和子代发育具有重要的意义。植物的花期调控是由多条途径参与调控的,综合不断更新的开花分子遗传结果,将植物响应各种内源和外源信号启动开花的途径归纳为:经典的光周期途径、春化途径、自主途径、赤霉素途径和较新的年龄途径共5条。在农业生产过程中,作物的开花和和产量、适应区域有着密不可分的关系,如水稻、小麦、玉米、马铃薯等。The occurrence of flowering determines that higher plants have the ability to reproduce and inherit, which is of great significance to the development of individual plants and offspring. The flowering regulation of plants is regulated by multiple pathways. Based on the constantly updated flowering molecular genetic results, the pathways for plants to initiate flowering in response to various endogenous and exogenous signals are summarized as: the classic photoperiod pathway, vernalization pathway, There are 5 autonomous pathways, gibberellin pathways and newer age pathways. In the process of agricultural production, the flowering of crops has an inseparable relationship with yield and adaptation area, such as rice, wheat, corn, potato and so on.

转录因子在调控植物开花途径中其重要作用,bZIP家族基因是调节植物开花一类重要的转录因子。其中,ABF是一类可以与ABRE结合的bZIP转录因子,该类基因的碱性区域的氨基酸序列非常保守,还含有特别的MKIK和QAY/Q基序。该类基因主要参与植物的抗非生物胁迫途径(旱、冷、盐和氧化胁迫等)和ABA信号转导,然而与植物开花相关的报道却不多。Transcription factors play an important role in the regulation of plant flowering pathways, and bZIP family genes are an important class of transcription factors that regulate plant flowering. Among them, ABF is a type of bZIP transcription factor that can bind to ABRE. The amino acid sequence of the basic region of this type of gene is very conservative, and it also contains special MKIK and QAY/Q motifs. These genes are mainly involved in plant abiotic stress resistance pathways (drought, cold, salt and oxidative stress, etc.) and ABA signal transduction, but there are few reports related to plant flowering.

甘薯不仅是重要的粮食作物,而且还是重要的经济作物和能源作物。甘薯广泛种植在世界上的100多个国家,我国是世界上的最大生产国,甘薯生产约占世界甘薯的80%。与其他粮食作物相比,甘薯相对较为耐旱,但品种间差异较大,世界上相当比例的甘薯种植在干旱的环境下,而世界干旱、半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中居首位。甘薯全基因组约4G,含有丰富的基因资源,在甘薯中分离克隆ABF类转录因子,研究其功能特性,能为作物遗传改良提供基因资源。Sweet potato is not only an important food crop, but also an important economic crop and energy crop. Sweet potatoes are widely planted in more than 100 countries in the world. my country is the largest producer in the world, and the production of sweet potatoes accounts for about 80% of the world's sweet potatoes. Compared with other food crops, sweet potatoes are relatively drought-tolerant, but there are large differences among varieties. A considerable proportion of sweet potatoes in the world are planted in arid environments, and the world's arid and semi-arid areas account for more than one-third of the land area. , the impact of drought on plants ranks first among many natural adversity factors. The whole genome of sweet potato is about 4G, which contains rich gene resources. Isolating and cloning ABF transcription factors in sweet potato and studying their functional characteristics can provide genetic resources for crop genetic improvement.

发明内容Contents of the invention

本发明的目的在于提供一种编码甘薯bZIP转录因子的IbABF4基因。The object of the present invention is to provide an IbABF4 gene encoding sweet potato bZIP transcription factor.

本发明的第二个目的是提供一种该基因编码的蛋白质。The second object of the present invention is to provide a protein encoded by the gene.

本发明的第三个目的是提供一种含有该基因的表达载体。The third object of the present invention is to provide an expression vector containing the gene.

本发明的第四个目的是提供一种含有该表达载体的宿主细胞。The fourth object of the present invention is to provide a host cell containing the expression vector.

本发明的最后一个目的在于提供该基因的用途。The last object of the present invention is to provide the use of this gene.

本发明的技术方案概述如下:Technical scheme of the present invention is summarized as follows:

一种编码甘薯bZIP转录因子的IbABF4基因,它是SEQ ID NO.1所示的核苷酸序列。所述的核苷酸序列由1263个碱基组成。An IbABF4 gene encoding sweet potato bZIP transcription factor, which is the nucleotide sequence shown in SEQ ID NO.1. The nucleotide sequence is composed of 1263 bases.

上述基因编码的蛋白质,它是SEQ ID No.2所示的氨基酸序列。所述的序列由420个氨基酸残基组成。The protein encoded by the above gene has the amino acid sequence shown in SEQ ID No.2. The described sequence consists of 420 amino acid residues.

一种含有上述基因的表达载体pCAMBIA1305-IbABF4,它含有SEQ ID NO.1所示的核苷酸序列。An expression vector pCAMBIA1305-IbABF4 containing the above gene, which contains the nucleotide sequence shown in SEQ ID NO.1.

一种含有上述表达载体的农杆菌宿主细胞EHA105:pCAMBIA1305-2×35s-IbABF4。An Agrobacterium host cell EHA105 containing the above expression vector: pCAMBIA1305-2×35s-IbABF4.

上述表达载体或农杆菌宿主细胞在转化植物获得转基因植株中的应用,尤其是在制备转基因拟南芥中的应用。The application of the above-mentioned expression vectors or Agrobacterium host cells in transforming plants to obtain transgenic plants, especially in the preparation of transgenic Arabidopsis thaliana.

本发明的优点:Advantages of the present invention:

本发明从甘薯中分离出编码bZIP转录因子基因的完整cDNA,连接到植物表达载体上,利用农杆菌侵染法转化植物,获得的转基因植株,结果表明IbABF4基因能够促进植物的开花。The present invention isolates the complete cDNA encoding the bZIP transcription factor gene from sweet potato, connects it to the plant expression vector, uses the Agrobacterium infection method to transform the plant, and obtains the transgenic plant. The result shows that the IbABF4 gene can promote the flowering of the plant.

附图说明Description of drawings

图1.IbABF4氨基酸序列的系统进化树分析结果;Figure 1. Phylogenetic tree analysis results of IbABF4 amino acid sequence;

图2.pCAMBIA1305-2×35s-IbABF4载体示意图;Figure 2. Schematic diagram of pCAMBIA1305-2×35s-IbABF4 vector;

图3.未转化的南芥株系和转IbABF4基因植株根系比较。Fig. 3. Comparison of root systems of untransformed A. thaliana lines and transgenic IbABF4 plants.

具体实施方式Detailed ways

下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但下述实施例中所涉及的具体实验方法如无特殊说明,均为常规方法或按照制造厂商说明书建议的条件实施。The present invention will be further described below in conjunction with specific embodiments, and the advantages and characteristics of the present invention will become clearer along with the description. However, unless otherwise specified, the specific experimental methods involved in the following examples are all conventional methods or implemented according to the conditions suggested by the manufacturer's instructions.

实施例1Example 1

甘薯中bZIP转录因子IbABF4基因序列获得,具体如下:The sequence of the bZIP transcription factor IbABF4 gene in sweet potato was obtained, as follows:

利用OMEGA RNA试剂盒,从100mg的新鲜的甘薯叶片中提取总RNA,利用反转录试剂盒(Bioteke)合成cDNA。Total RNA was extracted from 100 mg of fresh sweet potato leaves using the OMEGA RNA kit, and cDNA was synthesized using a reverse transcription kit (Bioteke).

具体反应体系如下:Concrete reaction system is as follows:

在PCR仪上按以下条件进行反转录反应:1、50℃,45min;2、70℃,10min;之后冰上冷却。The reverse transcription reaction was carried out on the PCR instrument according to the following conditions: 1. 50° C., 45 min; 2. 70° C., 10 min; and then cooled on ice.

将提取的总RNA送华大基因(Beijing Genomic Institute,BGI),通过高通量测序获得甘薯转录组数据库,并通过De novo拼接获得甘薯Unigene数据库,其中CL3260与NR数据库比对后发现该基因可能参与ABA途径。将CL3260通过OFR FINDER(http://www.ncbi.nlm.nih.gov/projects/gorf/)在线软件预测基因完成的ORF,并利用PrimerPremier 5设计扩增完整ORF引物:The extracted total RNA was sent to Beijing Genomic Institute (BGI), and the sweet potato transcriptome database was obtained through high-throughput sequencing, and the sweet potato Unigene database was obtained through De novo splicing. After comparing CL3260 with the NR database, it was found that the gene might be Participate in the ABA pathway. CL3260 was used to predict the complete ORF of the gene by OFR FINDER (http://www.ncbi.nlm.nih.gov/projects/gorf/) online software, and PrimerPremier 5 was used to design and amplify the complete ORF primer:

IbABF4(F):5′ATGATGGGGTCATACTTGGA 3′IbABF4(F): 5'ATGATGGGGTCATACTTGGA 3'

IbABF4(R):5′TTACCAAGGCCCAGTAAGCG 3′IbABF4(R): 5'TTACCAAGGCCCAGTAAGCG 3'

利用TAKARA公司Primerstar GXL DNA聚合酶进行扩增,具体步骤如下:Use Primerstar GXL DNA polymerase from TAKARA company to amplify, the specific steps are as follows:

反应条件如下:94℃,4min;98℃,10Sec;55℃,15Sec;68℃,1.5min;72℃,10min;30个循环。使用OMEGA DNA纯化试剂盒将PCR产物纯化,纯化后的PCR产物与pEASY-Blunt载体连接(本过程使用TransGEN的pEASY-Blunt Vector Cloning Kit试剂盒),反应体系如下:IbABF4基因的cDNA片段4u1,pEASY-Blunt载体1μL。反应条件:20-30℃,30min。连接产物转化E-Coli.DH5α感受态,涂布在含有40u125mg/ml的X-Gal、16ul 50mg/ml的IPTG、100mg/mL Amp的LB琼脂平板培养基上培养,形成单菌落。挑选白色菌落,使用菌落PCR法确认pEASY-Blunt载体中插入片段的长度大小,与预期一致。送南京金斯瑞生物科技公司测序获得基因序列SEQ ID NO.1。The reaction conditions are as follows: 94°C, 4min; 98°C, 10Sec; 55°C, 15Sec; 68°C, 1.5min; 72°C, 10min; 30 cycles. OMEGA DNA purification kit was used to purify the PCR product, and the purified PCR product was connected to the pEASY-Blunt vector (transGEN’s pEASY-Blunt Vector Cloning Kit was used in this process). The reaction system was as follows: cDNA fragment 4u1 of IbABF4 gene, pEASY -Blunt vehicle 1 μL. Reaction conditions: 20-30°C, 30min. The ligation product was transformed into E-Coli.DH5α competent, spread on LB agar plate medium containing 40u125mg/ml X-Gal, 16ul 50mg/ml IPTG, 100mg/mL Amp and cultured to form a single colony. Pick white colonies, and use the colony PCR method to confirm the length of the insert in the pEASY-Blunt vector, which is consistent with the expectation. Sent to Nanjing GenScript Biotechnology Company for sequencing to obtain the gene sequence SEQ ID NO.1.

实施例2Example 2

IbABF4蛋白序列同源分析,具体如下:IbABF4 protein sequence homology analysis, specifically as follows:

测序获得IbABF4基因序列为1263bp,编码421个氨基酸如SEQ ID NO.2所示,将翻译获得蛋白序列与NCBI蛋白数据进行比对(http://blast.ncbi.nlm.nih.gov/Blast.cgi),获得了与IbABF4蛋白序列相似的植物种属同源基因。在多重比较分析的基础上,建立了各同源植物种属基因的系统进化树,详见图1。包括牵牛花(Ipomoea nil),烟草(Nicotiana tabacum),土豆(Solauum tuberosum),蕃茄(Solanum lycopersicum),辣椒(Capsicum annuum),龙葵(Solanum nigrum),亚洲棉(Gossypium arboretum),水稻(Oryzasativa),核桃(Juglans regia),拟南芥(Arabidopsis thaliana)。利用MEGA 5.1软件进行系统进化树的构建,得到IbABF4亲缘关系与拟南芥和葡萄亲缘关系较近(如图1)。The IbABF4 gene sequence obtained by sequencing is 1263bp, encoding 421 amino acids as shown in SEQ ID NO.2, and the translated protein sequence is compared with the NCBI protein data (http://blast.ncbi.nlm.nih.gov/Blast. cgi), the plant species homologous gene similar to the IbABF4 protein sequence was obtained. On the basis of multiple comparison analysis, a phylogenetic tree of the genes of each homologous plant species was established, as shown in Figure 1 for details. Includes morning glory (Ipomoea nil), tobacco (Nicotiana tabacum), potato (Solauum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), nightshade (Solanum nigrum), Asian cotton (Gossypium arboretum), rice (Oryzasativa ), walnut (Juglans regia), Arabidopsis thaliana (Arabidopsis thaliana). The phylogenetic tree was constructed using MEGA 5.1 software, and the genetic relationship of IbABF4 was closer to that of Arabidopsis thaliana and grapevine (as shown in Figure 1).

实施例3Example 3

双元植物表达载体pCAMBIA1305-2×35s-IbABF4的构建,具体如下:The construction of the binary plant expression vector pCAMBIA1305-2×35s-IbABF4 is as follows:

pCAMBIA1305-2×35s-IbABF4载体示意图如图2所示,首先以pEASY-Blunt-IbABF4质粒为模板,采用引物The schematic diagram of the pCAMBIA1305-2×35s-IbABF4 vector is shown in Figure 2. First, the pEASY-Blunt-IbABF4 plasmid was used as a template and primers were used

IbABF4-PstI(F):5′aaCTGCAG ATGGCTGCCACTATTGAT3′IbABF4-PstI(F): 5'aa CTGCAG ATGGCTGCCACTATTGAT3'

IbABF4-BamHI(R):5′ccGGATCCTTATGACCCGCCCGAACCTG 3′IbABF4-BamHI(R): 5'cc GGATCC TTATGACCCGCCCGAACCTG 3'

在IbABF4前后分别引入酶切位点PstI和BamHI,其反应体系和条件如实施例1中所述。然后PCR产物和pCAMBIA1305空载体质粒分别用BamHI和PstI双酶切,将二者的酶切产物连接,连接体系如下:Restriction sites PstI and BamHI were respectively introduced before and after IbABF4, and the reaction system and conditions were as described in Example 1. Then the PCR product and the pCAMBIA1305 empty vector plasmid were double digested with BamHI and PstI respectively, and the digested products of the two were ligated. The ligation system was as follows:

连接产物转化E-Coli.DH5α,涂布于含100mg/ml浓度卡纳霉素抗性的LB平板上。37℃培养,12h后挑取单菌落进行菌落PCR验证,将菌落PCR验证阳性的菌,摇菌提取质粒,酶切鉴定得到目的条带,最后送华大基因测序公司测序,结果表明载体pCAMBIA1305-2×35s-IbABF4构建正确。The ligation product was transformed into E-Coli.DH5α, and spread on LB plates containing kanamycin resistance at a concentration of 100 mg/ml. Cultivate at 37°C, pick a single colony after 12 hours for colony PCR verification, shake the bacteria that are positive in the colony PCR verification, extract the plasmid, digest and identify the target band, and finally send it to Huada Gene Sequencing Company for sequencing. The results show that the vector pCAMBIA1305- 2×35s-IbABF4 was constructed correctly.

实施例4Example 4

用于植物转基因的农杆菌菌种EHA105:pCAMBIA1305-2×35s-IbABF4的构建,具体如下:The construction of Agrobacterium strain EHA105 for plant transgenesis: pCAMBIA1305-2×35s-IbABF4 is as follows:

本发明使用的农杆菌菌株为EHA105。采用的是液氮冻融法将构建好的表达载体转入农杆菌。具体过程为:1)冰浴融化EHA105感受态细胞,加入至少100ng回收纯化的表达载体质粒,轻轻混匀,冰浴20~30min;2)液氮速冻5min,37℃热击5min,迅速置于冰上1~2min;3)加入800μL无抗生素的LB培养基,28℃,200rpm复苏3.5h;4)4000rpm离心3min,吸掉培养基;5)混匀剩余菌液,涂抹于添加100mg/ml卡纳霉素和100mg/ml利福平的固体LB培基上;6)28℃倒置培养30~48h;7)PCR检测阳性克隆,4℃保存备用。The Agrobacterium strain used in the present invention is EHA105. The constructed expression vector was transformed into Agrobacterium by liquid nitrogen freeze-thaw method. The specific process is as follows: 1) Thaw EHA105 competent cells in an ice bath, add at least 100ng of recovered and purified expression vector plasmids, mix gently, and ice bath for 20-30 minutes; 2) Liquid nitrogen quick freezing for 5 minutes, heat shock at 37°C for 5 minutes, and quickly place Place on ice for 1-2 minutes; 3) Add 800 μL of antibiotic-free LB medium, recover at 28°C, 200 rpm for 3.5 hours; 4) Centrifuge at 4000 rpm for 3 minutes, and suck off the medium; ml kanamycin and 100mg/ml rifampicin on solid LB medium; 6) Inverted culture at 28°C for 30-48h; 7) PCR positive clones were stored at 4°C for later use.

实施例5Example 5

IbABF4转化Col野生型拟南芥,具体如下:IbABF4 transforms Col wild-type Arabidopsis as follows:

将实施例4中阳性克隆接种到50ml YEP(含100μg/ml Rif、100μg/ml Kan)液体培养基中,28℃180rpm继续培养至OD600=0.8。4000rpm离心10min,弃培养基,收集菌体。用拟南芥渗入缓冲液将菌体稀释OD600=0.6,制备成拟南芥侵染液。当拟南芥抽苔4-5cm时即可准备侵染,侵染的前3d去除其顶生花序,以利用腋生花序的生长。待长出腋生花序后,其下部的花开始授粉时即可进行转化。转化前大量浇水,并将已授粉的花蕾及荚果摘除。共配制50ml拟南芥侵染液(5%蔗糖,0.05%SilwetL-77),倒入培养皿,将拟南芥的花序浸入其中30s,注意莲座叶不要沾染到菌液。取出植株,横放在托盘中,暗处理24h。之后直立放置方盘正常光照培养。待果荚成熟时收获T0代种子。Inoculate the positive clone in Example 4 into 50ml YEP (containing 100μg/ml Rif, 100μg/ml Kan) liquid medium, and continue to cultivate at 180rpm at 28°C until OD600=0.8. Centrifuge at 4000rpm for 10min, discard the medium, and collect the bacteria. The Arabidopsis thaliana infiltration buffer was used to dilute the cells with OD600=0.6 to prepare the Arabidopsis thaliana infection solution. When Arabidopsis thaliana bolts 4-5cm, it can prepare for infestation, and remove its terminal inflorescence 3 days before infestation to take advantage of the growth of axillary inflorescences. After the axillary inflorescence grows, the transformation can be carried out when the flowers in the lower part begin to pollinate. Water abundantly before transformation, and remove pollinated flower buds and pods. A total of 50ml of Arabidopsis infection solution (5% sucrose, 0.05% SilwetL-77) was prepared, poured into a petri dish, and the inflorescence of Arabidopsis was immersed in it for 30 seconds, and the rosette leaves should not be contaminated with the bacterial solution. Take out the plants, place them horizontally in a tray, and treat them in the dark for 24 hours. Afterwards, the square plate was placed upright and cultivated under normal light. The T0 generation seeds were harvested when the fruit pods matured.

将T0代种子播种前在4℃冰箱春化3d,0.5%NaClO表面消毒后,播种于1/2MS固体培养基上(大量元素、微量元素减半,含20mg/L潮霉素)培养。7~14d后挑选转化体,具有潮霉素抗性的转化植株体能在含有潮霉素培养基上生长,根明显伸长,而非转化体渐渐黄化死亡。待植株长出4-5片叶子时,提取叶片DNA进行PCR鉴定,引物及PCR程序同实施例1中的IbABF4基因中间片断的克隆。1%琼脂糖凝胶电泳检测PCR产物。过PCR扩增能够得到目的片断的为拟南芥阳性转化体,将其继续培养待果荚成熟收获T1代种子。将PCR鉴定为阳性的植株所收获的T1代种子继续播种,同样经过潮霉素抗性筛选,统计其性状分离比。经卡方检验符合孟德尔遗传定律中3∶1分离比。将部分抗性苗移植入土壤中,收获T2代纯合的转基因种子。The T0 generation seeds were vernalized in a refrigerator at 4°C for 3 days before sowing, and after surface disinfection with 0.5% NaClO, they were sown on 1/2 MS solid medium (macroelements and trace elements were halved, containing 20mg/L hygromycin) for cultivation. After 7-14 days, the transformants were selected, and the transformed plants with hygromycin resistance could grow on the medium containing hygromycin, and the roots elongated obviously, while the non-transformants gradually yellowed and died. When the plant grows 4-5 leaves, extract leaf DNA and carry out PCR identification, and the primers and PCR program are the same as the cloning of the IbABF4 gene intermediate fragment in Example 1. The PCR products were detected by 1% agarose gel electrophoresis. The positive transformant of Arabidopsis thaliana that can obtain the target fragment through PCR amplification is continued to be cultivated until the fruit pods mature to harvest T1 generation seeds. The T1 generation seeds harvested from the plants identified as positive by PCR continued to be sown, and were also screened for resistance to hygromycin, and the segregation ratio of the traits was counted. The chi-square test conformed to the 3:1 segregation ratio in Mendelian law of inheritance. Part of the resistant seedlings were transplanted into the soil, and T2 generation homozygous transgenic seeds were harvested.

对转IbABF4基因拟南芥的表型进行鉴定Phenotype Identification of IbABF4 Transgenic Arabidopsis

取IbABF4过表达拟南芥株系(OV-1,OV-2)和为转化的野生型(WT)植株点播于1/2MS培养基上生长,观察表型(图3)在拟南芥中过表达IbABF4可以正向调控植株的开花时间。Get IbABF4 overexpression Arabidopsis lines (OV-1, OV-2) and grow on 1/2MS medium for the transformed wild-type (WT) plants, observe the phenotype (Figure 3) in Arabidopsis Overexpression of IbABF4 can positively regulate the flowering time of plants.

序列表 sequence listing

<110> 江苏省农业科学院<110> Jiangsu Academy of Agricultural Sciences

<120> 编码甘薯bZIP转录因子的IbABF4基因及应用<120> IbABF4 Gene Encoding Sweet Potato bZIP Transcription Factor and Its Application

<130> 2017<130> 2017

<160> 2<160> 2

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1263<211> 1263

<212> DNA<212>DNA

<213> Ipomoea batatas<213> Ipomoea batatas

<400> 1<400> 1

atgatggggt catacttgga cttcaagaac tttgtggaga caccacagcc agaaggtaat 60atgatggggt catacttgga cttcaagaac tttgtggaga caccacagcc agaaggtaat 60

ggagggaagc cagccagtct tttccctttg gctcgacaat cttcgatata ctccttgaca 120ggagggaagc cagccagtct tttccctttg gctcgacaat cttcgatata ctccttgaca 120

tttgatgagc tccagacaac atttagcgga cttgggaagg atttcgggtc tatgaatatg 180tttgatgagc tccagacaac atttagcgga cttgggaagg atttcgggtc tatgaatatg 180

gaggatctgt tgaagagcat ttggactgcc gaggaatctc aacccttcca ggcatgttgt 240gaggatctgt tgaagagcat ttggactgcc gaggaatctc aacccttcca ggcatgttgt 240

gttggtgcag gagataatgg tagtgtccct ggtgggaact tgcagagaca aggctctcta 300gttggtgcag gagataatgg tagtgtccct ggtgggaact tgcagagaca aggctctcta 300

acgctgccca ggacgctcag tcagaaaact gtggatgaag tgtggaaaga ctttcagaaa 360acgctgccca ggacgctcag tcagaaaact gtggatgaag tgtggaaaga ctttcagaaa 360

gacactggtg ccaccaaaga ttgtggctat ggtggatcaa gctttggcca aagacaatct 420gacactggtg ccaccaaaga ttgtggctat ggtggatcaa gctttggcca aagacaatct 420

actttggggg aaatgacatt ggaggagttt ttgttcaaag caggggttgt aagggaagaa 480actttggggg aaatgacatt ggaggagttt ttgttcaaag caggggttgt aagggaagaa 480

atggttccaa atagtgttgg atttggcagc agtgtgactc agctgaatag tatgggattt 540atggttccaa atagtgttgg attggcagc agtgtgactc agctgaatag tatgggattt 540

caagaaatca cagataataa cagtgctgcc attcctggtg catcatctaa ttcaatgctt 600caagaaatca cagataataa cagtgctgcc attcctggtg catcatctaa ttcaatgctt 600

agtgcaggag ccaccagatc tacccagcaa caacctttgc agcatcatca acagcttcag 660agtgcaggag ccaccagatc taccccagcaa caacctttgc agcatcatca acagcttcag 660

cttcaccaac cactttttcc taagcagaca accttgacct ttgcctctcc aatgcaatta 720cttcaccaac cactttttcc taagcagaca accttgacct ttgcctctcc aatgcaatta 720

caaaacaatg ctcagcaggc taggtcagga gcaaggcgtc ctgctcttgg aatgccaagt 780caaaacaatg ctcagcaggc taggtcagga gcaaggcgtc ctgctcttgg aatgccaagt 780

cctccacata acactaatca agttcaggga gaacttatcc aaggcagtgc gaatagcatg 840cctccacata acactaatca agttcaggga gaacttatcc aaggcagtgc gaatagcatg 840

gcaggattac gccaaaatgg ggctgcagga ggaggaggag gaggatcccc tggaattcca 900gcaggattac gccaaaatgg ggctgcagga ggaggaggag gaggatcccc tggaattcca 900

ttgtcttcag atgtggctct taatagtaat ctgggcatgt catccctatc cccttcgcct 960ttgtcttcag atgtggctct taatagtaat ctgggcatgt catccctatc cccttcgcct 960

tatgcattta acgaaggcgg gagagggagg agagcatgta actctataga aaaggtggtg 1020tatgcattta acgaaggcgg gagagggagg agagcatgta actctataga aaaggtggtg 1020

gagcggaggc gtaggagaat gattaagaac agagagtctg ctgcaagatc acgagccagg 1080gagcggaggc gtaggagaat gattaagaac agagagtctg ctgcaagatc acgagccagg 1080

aagcaggcct ataccataga gttggaagcg gaagtagaaa agcttaaaga aatcaaccaa 1140aagcaggcct ataccataga gttggaagcg gaagtagaaa agcttaaaga aatcaaccaa 1140

gaattgatga aaaaacaggc tgaatttctg gagaagcgga aaaatcagat gagggagaaa 1200gaattgatga aaaaacaggc tgaatttctg gagaagcgga aaaatcagat gagggagaaa 1200

atgtttgtgc catgggaaag taaaccaaga tgcttgaaga ggacgcttac tgggccttgg 1260atgtttgtgc catgggaaag taaaccaaga tgcttgaaga ggacgcttac tgggccttgg 1260

taa 1263taa 1263

<210> 2<210> 2

<211> 420<211> 420

<212> PRT<212> PRT

<213> Ipomoea batatas<213> Ipomoea batatas

<400> 2<400> 2

Met Met Gly Ser Tyr Leu Asp Phe Lys Asn Phe Val Glu Thr Pro GlnMet Met Gly Ser Tyr Leu Asp Phe Lys Asn Phe Val Glu Thr Pro Gln

1 5 10 151 5 10 15

Pro Glu Gly Asn Gly Gly Lys Pro Ala Ser Leu Phe Pro Leu Ala ArgPro Glu Gly Asn Gly Gly Lys Pro Ala Ser Leu Phe Pro Leu Ala Arg

20 25 30 20 25 30

Gln Ser Ser Ile Tyr Ser Leu Thr Phe Asp Glu Leu Gln Thr Thr PheGln Ser Ser Ile Tyr Ser Leu Thr Phe Asp Glu Leu Gln Thr Thr Phe

35 40 45 35 40 45

Ser Gly Leu Gly Lys Asp Phe Gly Ser Met Asn Met Glu Asp Leu LeuSer Gly Leu Gly Lys Asp Phe Gly Ser Met Asn Met Glu Asp Leu Leu

50 55 60 50 55 60

Lys Ser Ile Trp Thr Ala Glu Glu Ser Gln Pro Phe Gln Ala Cys CysLys Ser Ile Trp Thr Ala Glu Glu Ser Gln Pro Phe Gln Ala Cys Cys

65 70 75 8065 70 75 80

Val Gly Ala Gly Asp Asn Gly Ser Val Pro Gly Gly Asn Leu Gln ArgVal Gly Ala Gly Asp Asn Gly Ser Val Pro Gly Gly Asn Leu Gln Arg

85 90 95 85 90 95

Gln Gly Ser Leu Thr Leu Pro Arg Thr Leu Ser Gln Lys Thr Val AspGln Gly Ser Leu Thr Leu Pro Arg Thr Leu Ser Gln Lys Thr Val Asp

100 105 110 100 105 110

Glu Val Trp Lys Asp Phe Gln Lys Asp Thr Gly Ala Thr Lys Asp CysGlu Val Trp Lys Asp Phe Gln Lys Asp Thr Gly Ala Thr Lys Asp Cys

115 120 125 115 120 125

Gly Tyr Gly Gly Ser Ser Phe Gly Gln Arg Gln Ser Thr Leu Gly GluGly Tyr Gly Gly Ser Ser Phe Gly Gln Arg Gln Ser Thr Leu Gly Glu

130 135 140 130 135 140

Met Thr Leu Glu Glu Phe Leu Phe Lys Ala Gly Val Val Arg Glu GluMet Thr Leu Glu Glu Phe Leu Phe Lys Ala Gly Val Val Val Arg Glu Glu

145 150 155 160145 150 155 160

Met Val Pro Asn Ser Val Gly Phe Gly Ser Ser Val Thr Gln Leu AsnMet Val Pro Asn Ser Val Gly Phe Gly Ser Ser Val Thr Gln Leu Asn

165 170 175 165 170 175

Ser Met Gly Phe Gln Glu Ile Thr Asp Asn Asn Ser Ala Ala Ile ProSer Met Gly Phe Gln Glu Ile Thr Asp Asn Asn Ser Ala Ala Ile Pro

180 185 190 180 185 190

Gly Ala Ser Ser Asn Ser Met Leu Ser Ala Gly Ala Thr Arg Ser ThrGly Ala Ser Ser Asn Ser Met Leu Ser Ala Gly Ala Thr Arg Ser Thr

195 200 205 195 200 205

Gln Gln Gln Pro Leu Gln His His Gln Gln Leu Gln Leu His Gln ProGln Gln Gln Pro Leu Gln His His Gln Gln Leu Gln Leu His Gln Pro

210 215 220 210 215 220

Leu Phe Pro Lys Gln Thr Thr Leu Thr Phe Ala Ser Pro Met Gln LeuLeu Phe Pro Lys Gln Thr Thr Leu Thr Phe Ala Ser Pro Met Gln Leu

225 230 235 240225 230 235 240

Gln Asn Asn Ala Gln Gln Ala Arg Ser Gly Ala Arg Arg Pro Ala LeuGln Asn Asn Ala Gln Gln Ala Arg Ser Gly Ala Arg Arg Pro Ala Leu

245 250 255 245 250 255

Gly Met Pro Ser Pro Pro His Asn Thr Asn Gln Val Gln Gly Glu LeuGly Met Pro Ser Pro Pro His Asn Thr Asn Gln Val Gln Gly Glu Leu

260 265 270 260 265 270

Ile Gln Gly Ser Ala Asn Ser Met Ala Gly Leu Arg Gln Asn Gly AlaIle Gln Gly Ser Ala Asn Ser Met Ala Gly Leu Arg Gln Asn Gly Ala

275 280 285 275 280 285

Ala Gly Gly Gly Gly Gly Gly Ser Pro Gly Ile Pro Leu Ser Ser AspAla Gly Gly Gly Gly Gly Gly Ser Pro Gly Ile Pro Leu Ser Ser Ser Asp

290 295 300 290 295 300

Val Ala Leu Asn Ser Asn Leu Gly Met Ser Ser Leu Ser Pro Ser ProVal Ala Leu Asn Ser Asn Leu Gly Met Ser Ser Leu Ser Pro Ser Pro

305 310 315 320305 310 315 320

Tyr Ala Phe Asn Glu Gly Gly Arg Gly Arg Arg Ala Cys Asn Ser IleTyr Ala Phe Asn Glu Gly Gly Arg Gly Arg Arg Ala Cys Asn Ser Ile

325 330 335 325 330 335

Glu Lys Val Val Glu Arg Arg Arg Arg Arg Met Ile Lys Asn Arg GluGlu Lys Val Val Glu Arg Arg Arg Arg Arg Arg Met Ile Lys Asn Arg Glu

340 345 350 340 345 350

Ser Ala Ala Arg Ser Arg Ala Arg Lys Gln Ala Tyr Thr Ile Glu LeuSer Ala Ala Arg Ser Arg Ala Arg Lys Gln Ala Tyr Thr Ile Glu Leu

355 360 365 355 360 365

Glu Ala Glu Val Glu Lys Leu Lys Glu Ile Asn Gln Glu Leu Met LysGlu Ala Glu Val Glu Lys Leu Lys Glu Ile Asn Gln Glu Leu Met Lys

370 375 380 370 375 380

Lys Gln Ala Glu Phe Leu Glu Lys Arg Lys Asn Gln Met Arg Glu LysLys Gln Ala Glu Phe Leu Glu Lys Arg Lys Asn Gln Met Arg Glu Lys

385 390 395 400385 390 395 400

Met Phe Val Pro Trp Glu Ser Lys Pro Arg Cys Leu Lys Arg Thr LeuMet Phe Val Pro Trp Glu Ser Lys Pro Arg Cys Leu Lys Arg Thr Leu

405 410 415 405 410 415

Thr Gly Pro TrpThr Gly Pro Trp

420 420

Claims (6)

1. a kind of IbABF4 genes of coding sweet potato bZIP transcription factors, it is characterised in that it is the core shown in SEQ ID NO.1 Nucleotide sequence;The IbABF4 genes have the function of positive regulation flowering of plant.
2. the protein of IbABF4 gene codes described in claim 1, it is characterised in that it is the ammonia shown in SEQ ID No.2 Base acid sequence.
A kind of 3. expression vector pCAMBIA1305-2 × 35s-IbABF4 containing gene described in claim 1.
A kind of 4. Agrobacterium host cell EHA105 containing expression vector described in claim 3:pCAMBIA1305-2×35s- IbABF4。
5. Agrobacterium host cell described in the expression vector or claim 4 described in claim 3 obtains in conversion plant turns base Because of the application in plant.
6. application according to claim 5, it is characterised in that described plant is arabidopsis.
CN201711018018.4A 2017-10-26 2017-10-26 IbABF4 gene for coding sweet potato bZIP transcription factor and application thereof Active CN107746846B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711018018.4A CN107746846B (en) 2017-10-26 2017-10-26 IbABF4 gene for coding sweet potato bZIP transcription factor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711018018.4A CN107746846B (en) 2017-10-26 2017-10-26 IbABF4 gene for coding sweet potato bZIP transcription factor and application thereof

Publications (2)

Publication Number Publication Date
CN107746846A true CN107746846A (en) 2018-03-02
CN107746846B CN107746846B (en) 2020-03-27

Family

ID=61254241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711018018.4A Active CN107746846B (en) 2017-10-26 2017-10-26 IbABF4 gene for coding sweet potato bZIP transcription factor and application thereof

Country Status (1)

Country Link
CN (1) CN107746846B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819633A (en) * 2018-08-09 2020-02-21 南京农业大学 Sequence of a carrot ABA response element binding protein gene DcABF3 and its application
CN113913438A (en) * 2021-10-12 2022-01-11 中国农业科学院茶叶研究所 Application of plant BIAF gene
CN114134157A (en) * 2021-12-03 2022-03-04 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Application of IbSAP15 gene in regulation and control of leaf type and flower type of sweet potato
CN114213514A (en) * 2021-11-23 2022-03-22 广东省科学院南繁种业研究所 Upstream regulatory factor IbSCF and application thereof in regulation and control of IbMYB1 expression of purple sweet potato
CN114316005A (en) * 2021-11-23 2022-04-12 广东省科学院南繁种业研究所 Upstream regulation factor IbWRKY1 and application thereof in regulation of IbMYB1 expression of purple sweet potato
CN115160423A (en) * 2022-05-09 2022-10-11 中国农业大学 Root and leaf development-related protein IbbZIP11 of sweet potato and its encoding gene and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051354A (en) * 2008-11-07 2010-05-17 대한민국(농촌진흥청장) Method for controlling flowering time of plant by using n-terminus-deleted mutant of bzip transcription factor
CN102947445A (en) * 2010-03-17 2013-02-27 国立大学法人奈良先端科学技术大学院大学 Florigen-activating complex
WO2014031675A2 (en) * 2012-08-22 2014-02-27 Pioneer Hi-Bred International, Inc. Down-regulation of bzip transcription factor genes for improved plant performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051354A (en) * 2008-11-07 2010-05-17 대한민국(농촌진흥청장) Method for controlling flowering time of plant by using n-terminus-deleted mutant of bzip transcription factor
CN102947445A (en) * 2010-03-17 2013-02-27 国立大学法人奈良先端科学技术大学院大学 Florigen-activating complex
WO2014031675A2 (en) * 2012-08-22 2014-02-27 Pioneer Hi-Bred International, Inc. Down-regulation of bzip transcription factor genes for improved plant performance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENBANK: "XM_019309731.1", 《GENBANK》 *
林秀琴等: "干旱胁迫下橡胶树叶片差异表达蛋白的鉴定与功能解析", 《热带作物学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110819633A (en) * 2018-08-09 2020-02-21 南京农业大学 Sequence of a carrot ABA response element binding protein gene DcABF3 and its application
CN113913438A (en) * 2021-10-12 2022-01-11 中国农业科学院茶叶研究所 Application of plant BIAF gene
CN113913438B (en) * 2021-10-12 2023-11-14 中国农业科学院茶叶研究所 Application of plant BIAF genes
CN114213514A (en) * 2021-11-23 2022-03-22 广东省科学院南繁种业研究所 Upstream regulatory factor IbSCF and application thereof in regulation and control of IbMYB1 expression of purple sweet potato
CN114316005A (en) * 2021-11-23 2022-04-12 广东省科学院南繁种业研究所 Upstream regulation factor IbWRKY1 and application thereof in regulation of IbMYB1 expression of purple sweet potato
CN114213514B (en) * 2021-11-23 2022-10-25 广东省科学院南繁种业研究所 Upstream regulatory factor IbSCF and application thereof in regulation and control of IbMYB1 expression of purple sweet potato
CN114134157A (en) * 2021-12-03 2022-03-04 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Application of IbSAP15 gene in regulation and control of leaf type and flower type of sweet potato
WO2023098481A1 (en) * 2021-12-03 2023-06-08 江苏徐淮地区徐州农业科学研究所(江苏徐州甘薯研究中心) Application of sweet potato ibsap15 gene in regulation and control of sweet potato leaf type and flower type
CN115160423A (en) * 2022-05-09 2022-10-11 中国农业大学 Root and leaf development-related protein IbbZIP11 of sweet potato and its encoding gene and application

Also Published As

Publication number Publication date
CN107746846B (en) 2020-03-27

Similar Documents

Publication Publication Date Title
US9809827B2 (en) Transgenic maize
CN107746846B (en) IbABF4 gene for coding sweet potato bZIP transcription factor and application thereof
CN110904071B (en) Application of RAF49 protein and encoding gene thereof in regulation and control of plant drought resistance
CN105254726B (en) ERF class transcription factor relevant to plant stress-resistance and its encoding gene and application
CN106222182B (en) The IbERF5 genes of coding sweet potato ERF transcription and application
CN101747419A (en) Protein related to salt tolerance, coding gene thereof and application thereof
EP2997038A2 (en) Transgenic plants comprising a mutant pyrabactin like (pyl4) regulatory component of an aba receptor
CN110628808A (en) Arabidopsis AtTCP5 Gene and Its Application in Regulating Plant Height
CN110128516B (en) Barley moisture-resistant regulatory gene HvERF2.11, protein and application thereof in breeding
CN102943080B (en) Corn ZmCIPK12 gene and applications thereof
CN104862320B (en) A kind of IbERF4 gene encoding sweet potato ERF transcription factor and its application
CN107299103A (en) The IpASR gene of A. pachyrhiza and its encoded protein and its application
CN101386646A (en) A kind of plant stress resistance protein and its coding gene and application
CN102719449A (en) Clone of apple resistance-related gene MdSIMYB1 and application thereof
CN107653249A (en) A kind of barley Calmodulin gene HvCAM1 and its salt tolerant application
CN105671058B (en) The gene of coding sweet potato ERF transcription and application
CN102120763B (en) Rice OsNAC coding sequence and its application
CN116589545B (en) Application of ONAC096 gene in controlling drought resistance of rice
CN104862319B (en) Control arabidopsis gene AtTIE1 and its application of plant branching
CN105039279A (en) Protein kinase in arabidopsis thaliana, coding gene and application of coding gene
CN105175522B (en) Crowtoe AP2/ERF transcription factors and its encoding gene and application
KR100990333B1 (en) NHK gene derived from barley, a method for enhancing the flame resistance of plants using the same, and a transgenic plant having improved salt resistance using the method
CN111073905B (en) Application of soybean mitogen-activated protein kinase GmMMK1 coding gene
CN114606243A (en) IbTCP11 gene for coding sweet potato TCP transcription factor and application thereof
CN102924582A (en) Plant-adversity-resistance related protein TaNAC67 as well as coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant