CN105175522B - Crowtoe AP2/ERF transcription factors and its encoding gene and application - Google Patents
Crowtoe AP2/ERF transcription factors and its encoding gene and application Download PDFInfo
- Publication number
- CN105175522B CN105175522B CN201510702449.7A CN201510702449A CN105175522B CN 105175522 B CN105175522 B CN 105175522B CN 201510702449 A CN201510702449 A CN 201510702449A CN 105175522 B CN105175522 B CN 105175522B
- Authority
- CN
- China
- Prior art keywords
- transcription factor
- gene
- stress
- lcap2
- erf107
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 90
- 241000215452 Lotus corniculatus Species 0.000 title claims description 7
- 230000009261 transgenic effect Effects 0.000 claims abstract description 52
- 230000014509 gene expression Effects 0.000 claims abstract description 30
- 108091062157 Cis-regulatory element Proteins 0.000 claims abstract description 6
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 241000196324 Embryophyta Species 0.000 claims description 99
- 230000035882 stress Effects 0.000 claims description 51
- 239000013604 expression vector Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 33
- 102000040430 polynucleotide Human genes 0.000 claims description 27
- 108091033319 polynucleotide Proteins 0.000 claims description 27
- 239000002157 polynucleotide Substances 0.000 claims description 27
- 150000001413 amino acids Chemical class 0.000 claims description 23
- 238000012216 screening Methods 0.000 claims description 8
- 238000003259 recombinant expression Methods 0.000 claims description 6
- 238000009395 breeding Methods 0.000 claims description 4
- 230000001488 breeding effect Effects 0.000 claims description 4
- 230000003938 response to stress Effects 0.000 claims description 4
- 208000035240 Disease Resistance Diseases 0.000 claims description 3
- 230000007123 defense Effects 0.000 claims description 3
- 230000008641 drought stress Effects 0.000 claims 1
- 102000004169 proteins and genes Human genes 0.000 abstract description 14
- 230000009466 transformation Effects 0.000 abstract description 13
- 238000002474 experimental method Methods 0.000 abstract description 11
- 230000015784 hyperosmotic salinity response Effects 0.000 abstract description 11
- 239000002773 nucleotide Substances 0.000 abstract description 9
- 125000003729 nucleotide group Chemical group 0.000 abstract description 9
- 230000004044 response Effects 0.000 abstract description 2
- 230000002180 anti-stress Effects 0.000 abstract 1
- 101100010911 Arabidopsis thaliana ERF107 gene Proteins 0.000 description 85
- 241000219194 Arabidopsis Species 0.000 description 54
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 34
- 108091023040 Transcription factor Proteins 0.000 description 28
- 102000040945 Transcription factor Human genes 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 102100028509 Transcription factor IIIA Human genes 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 21
- 239000013612 plasmid Substances 0.000 description 18
- 235000001014 amino acid Nutrition 0.000 description 17
- 239000011780 sodium chloride Substances 0.000 description 17
- 239000013598 vector Substances 0.000 description 16
- 239000002609 medium Substances 0.000 description 15
- 241000589158 Agrobacterium Species 0.000 description 14
- 125000000539 amino acid group Chemical group 0.000 description 14
- 238000010276 construction Methods 0.000 description 12
- 235000018102 proteins Nutrition 0.000 description 12
- 238000003757 reverse transcription PCR Methods 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 11
- 230000035784 germination Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 238000009396 hybridization Methods 0.000 description 10
- JLIDBLDQVAYHNE-YKALOCIXSA-N Abscisic acid Natural products OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 9
- 241000219195 Arabidopsis thaliana Species 0.000 description 9
- 238000011529 RT qPCR Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000004083 survival effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000005556 hormone Substances 0.000 description 7
- 229940088597 hormone Drugs 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- GEWDNTWNSAZUDX-UHFFFAOYSA-N Jasmonic Acid Methyl Ester Chemical compound CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 5
- 230000036579 abiotic stress Effects 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 238000010839 reverse transcription Methods 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- 101150001586 ERF107 gene Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 241001480167 Lotus japonicus Species 0.000 description 4
- 108091092724 Noncoding DNA Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000006870 ms-medium Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- -1 WRKY Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229940041514 candida albicans extract Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000004459 forage Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 108091061403 ERF family Proteins 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 108091092584 GDNA Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 108010068086 Polyubiquitin Proteins 0.000 description 2
- 102100037935 Polyubiquitin-C Human genes 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 238000010802 RNA extraction kit Methods 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 108010032090 ethylene-responsive element binding protein Proteins 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 206010071602 Genetic polymorphism Diseases 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 239000008049 TAE buffer Substances 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000000798 anti-retroviral effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000004790 biotic stress Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 235000019629 palatability Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了百脉根AP2/ERF转录因子及其编码基因和应用,属于AP2/ERF转录因子及应用领域。本发明首先公开了从百脉根中分离的AP2/ERF转录因子基因,其核苷酸序列为SEQ ID NO.1所示,所编码蛋白的氨基酸序列为SEQ ID NO.2所示。本发明还公开了能够与顺式作用元件结合而启动抗逆应答基因表达的AP2/ERF转录因子结构域,其氨基酸序列为SEQ ID NO.3所示。功能转化实验证明,在植物中过表达AP2/ERF转录因子基因能够显著提高转基因植株的耐盐性,说明其所编码蛋白具有AP2/ERF转录因子的功能。本发明AP2/ERF转录因子基因在提高植物对逆境胁迫的抗性中有重要应用前景。
The invention discloses japonicus japonicus AP2/ERF transcription factor, its coding gene and application, and belongs to the field of AP2/ERF transcription factor and application. The present invention first discloses the AP2/ERF transcription factor gene isolated from japonicus japonicus, its nucleotide sequence is shown in SEQ ID NO.1, and the amino acid sequence of the encoded protein is shown in SEQ ID NO.2. The invention also discloses an AP2/ERF transcription factor domain capable of combining with cis-acting elements to initiate the expression of anti-stress response genes, the amino acid sequence of which is shown in SEQ ID NO.3. Functional transformation experiments proved that overexpressing the AP2/ERF transcription factor gene in plants can significantly improve the salt tolerance of transgenic plants, indicating that the encoded protein has the function of AP2/ERF transcription factor. The AP2/ERF transcription factor gene of the invention has an important application prospect in improving the resistance of plants to adversity stress.
Description
技术领域technical field
本发明涉及转录因子,尤其涉及一种从百脉根(Lotus corniculatus L.)中分离的与抗逆相关的AP2/ERF转录因子,本发明还涉及所述转录因子在提高植物抗逆境胁迫中的应用,属于AP2/ERF转录因子及其应用领域。The present invention relates to transcription factors, in particular to an AP2/ERF transcription factor related to stress resistance isolated from Lotus corniculatus L., and the present invention also relates to the role of said transcription factors in improving plant resistance to adversity stress The application belongs to the field of AP2/ERF transcription factor and its application.
背景技术Background technique
土壤盐碱化和次生盐碱化问题在世界范围内广泛存在,特别是干旱、半干旱地区更为严重。土壤干旱、盐碱化严重阻碍了农作物的生长,降低了农作物的产量,已经成为制约世界灌溉农业可持续发展和影响生态环境的重要因素。The problems of soil salinization and secondary salinization are widespread in the world, especially in arid and semi-arid areas. Soil drought and salinization seriously hinder the growth of crops and reduce the yield of crops, which have become important factors restricting the sustainable development of irrigated agriculture in the world and affecting the ecological environment.
百脉根(Lotus corniculatus L.)是世界范围内广泛种植的多年生优良豆科牧草,具有营养丰富、耐贫瘠、耐酸碱、耐牧和饲用安全、适口性好等优点。其不仅是建设生态农业的优质草种,还是用于土壤改良的重要作物,在用作地被植物、保持水土、改良人工草场、防止土壤荒漠化等方面具有独特作用。Lotus corniculatus L. is an excellent perennial leguminous forage widely planted in the world. It has the advantages of rich nutrition, tolerance to barrenness, acid and alkali resistance, grazing resistance, safe feeding and good palatability. It is not only a high-quality grass species for the construction of ecological agriculture, but also an important crop for soil improvement. It plays a unique role in being used as ground cover plants, maintaining water and soil, improving artificial pastures, and preventing soil desertification.
植物抗逆性是受多基因控制的复杂数量性状,单个基因表达的增强并不能从根本上改良植物对多种不良环境的抵抗能力,而转录因子(Transcriptional Factors,TFs)是能够与真核生物基因启动子区域中顺式作用元件特异性结合,从而激活或抑制下游基因在特定时间和空间转录与表达的一类DNA结合蛋白,是目前抗逆研究最多、应用最广的一类基因。Plant stress resistance is a complex quantitative trait controlled by multiple genes. The enhancement of the expression of a single gene cannot fundamentally improve the resistance of plants to various adverse environments. Transcription factors (Transcriptional Factors, TFs) can interact with eukaryotic A type of DNA-binding protein that specifically binds to cis-acting elements in the gene promoter region, thereby activating or inhibiting the transcription and expression of downstream genes at a specific time and space.
植物逆境抗性相关转录因子可以分:AP2/ERF、bZIP、WRKY、MYB、NAC五大类。其中AP2/ERF转录因子是植物特有的一大类超基因家族,具有非常保守的DNA结合域,特异性的与ERE、GCC-box等顺式元件结合,调控胁迫应答基因表达,是参与植物生长发育、生物/非生物胁迫应答基因表达及信号转导的重要转录调控因子。AP2/ERF超家族分为AP2、DREB、ERF、RAV和Soloist共5个亚家族,目前已有大量文献报道了DREB和ERF亚家族基因的功能与分子机制研究,但是有关单独亚家族(Soloist)文献报道还很少。因此,从优良豆科牧草百脉根中分离、鉴定AP2/ERF转录因子并分析其抗逆功能,对于农牧业生产、生态环境建设、土壤改良等方面均具有重要意义。Plant stress resistance-related transcription factors can be divided into five categories: AP2/ERF, bZIP, WRKY, MYB, and NAC. Among them, AP2/ERF transcription factor is a large supergene family unique to plants, with a very conserved DNA binding domain, which specifically binds to cis-elements such as ERE and GCC-box, regulates the expression of stress-responsive genes, and is involved in plant growth. Important transcriptional regulator of development, biotic/abiotic stress-responsive gene expression, and signal transduction. The AP2/ERF superfamily is divided into five subfamilies: AP2, DREB, ERF, RAV, and Soloist. At present, a large number of literatures have reported the research on the function and molecular mechanism of the DREB and ERF subfamily genes, but the individual subfamily (Soloist) There are few literature reports. Therefore, it is of great significance to isolate and identify AP2/ERF transcription factors from fine leguminous forage lotus japonicus and analyze their stress resistance functions for agricultural production, ecological environment construction, and soil improvement.
发明内容Contents of the invention
本发明所要解决的技术问题是提供从百脉根(Lotus corniculatus L.)中分离的AP2/ERF转录因子及其编码基因;The technical problem to be solved by the present invention is to provide the AP2/ERF transcription factor and its coding gene isolated from Lotus corniculatus L.;
本发明所要解决的另一个技术问题是提供含有上述编码基因的重组植物表达载体及含有该表达载体的宿主细胞;Another technical problem to be solved by the present invention is to provide a recombinant plant expression vector containing the above coding gene and a host cell containing the expression vector;
本发明所要解决的第三个技术问题是将所述AP2/ERF转录因子及其编码基因应用于提高植物对逆境胁迫的抗性。The third technical problem to be solved by the present invention is to apply the AP2/ERF transcription factor and its coding gene to improve the resistance of plants to adversity stress.
为解决上述技术问题,本发明所采取的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
本发明首先公开了从百脉根(Lotus corniculatus L.)中分离的AP2/ERF转录因子编码基因(命名为:LcAP2/ERF107),其多核苷酸为(a)、(b)、(c)、(d)或(e)所示:The present invention first discloses the AP2/ERF transcription factor encoding gene (named: LcAP2/ERF107) isolated from Lotus corniculatus L., and its polynucleotides are (a), (b), (c) , (d) or (e):
(a)、SEQ ID NO.1所示的多核苷酸;或(a), the polynucleotide shown in SEQ ID NO.1; or
(b)、编码SEQ ID NO.2所示氨基酸的多核苷酸;或(b), a polynucleotide encoding the amino acid shown in SEQ ID NO.2; or
(c)、与SEQ ID NO.1的互补序列在严谨杂交条件能够进行杂交的多核苷酸,该多核苷酸所编码蛋白质仍具有AP2/ERF转录因子功能;或(c), a polynucleotide that can hybridize to the complementary sequence of SEQ ID NO.1 under stringent hybridization conditions, and the protein encoded by the polynucleotide still has the function of AP2/ERF transcription factor; or
(d)、与SEQ ID NO.1所示的多核苷酸至少有90%或以上同源性的多核苷酸;或(d), a polynucleotide having at least 90% or more homology with the polynucleotide shown in SEQ ID NO.1; or
(e)、在SEQ ID NO.1所示的多核苷酸的基础上进行一个或多个碱基的缺失、取代或插入的多核苷酸变体,且该多核苷酸变体所编码的蛋白仍具有AP2/ERF转录因子的功能或活性。(e) A polynucleotide variant in which one or more bases are deleted, substituted or inserted on the basis of the polynucleotide shown in SEQ ID NO.1, and the protein encoded by the polynucleotide variant Still have the function or activity of AP2/ERF transcription factor.
本发明上述LcAP2/ERF107转录因子编码基因编码的AP2/ERF转录因子,其氨基酸为(a)或(b)所示:The AP2/ERF transcription factor encoded by the above-mentioned LcAP2/ERF107 transcription factor encoding gene of the present invention, its amino acid is shown in (a) or (b):
(a)、SEQ ID NO.2所示的氨基酸;(a), the amino acid shown in SEQ ID NO.2;
(b)、将SEQ ID NO.2所示的氨基酸通过一个或多个氨基酸残基的替换、缺失或/和插入而衍生得到的仍具有AP2/ERF转录因子功能或活性的蛋白变体。(b) A protein variant still having AP2/ERF transcription factor function or activity derived from the amino acid shown in SEQ ID NO.2 by substitution, deletion or/and insertion of one or more amino acid residues.
其中,SEQ ID NO.2的氨基端第108至159位氨基酸残基序列为AP2/ERF结合域的编码序列(SEQ ID NO.3所示),该结合域第14位(第121位)氨基酸为丙氨酸(A),第19位(第126位)氨基酸为天冬氨酸(D),此类结构域能够与GCC box顺式作用元件结合而启动抗病防卫基因或抗逆应答基因的表达。Wherein, the sequence of the 108th to 159th amino acid residues at the amino terminal of SEQ ID NO.2 is the coding sequence of the AP2/ERF binding domain (shown in SEQ ID NO.3), and the 14th (121st) amino acid of the binding domain It is alanine (A), and the 19th (126th) amino acid is aspartic acid (D). This type of domain can combine with GCC box cis-acting elements to activate disease resistance defense genes or stress response genes expression.
本发明所述的蛋白变体可由遗传多态性或人为操作产生,这些操作方法通常为本领域所了解。例如,可通过DNA的突变来制备AP2/ERF转录因子的氨基酸序列变体或片段,其中用于诱变或改变多核苷酸的方法为本领域所习知。其中,保守的取代是将一种氨基酸残基替换成具有相似性质的另一种氨基酸。The protein variants described in the present invention can be produced by genetic polymorphism or human manipulation, and these manipulation methods are generally understood in the art. For example, amino acid sequence variants or fragments of AP2/ERF transcription factors can be prepared by DNA mutation, wherein methods for mutagenizing or altering polynucleotides are well known in the art. Among them, a conservative substitution is to replace one amino acid residue with another amino acid with similar properties.
本发明所述的LcAP2/ERF107转录因子编码基因包括天然存在的序列和变体两种形式。“变体”意指基本相似的序列,对于多核苷酸,变体包含天然多核苷酸中一个或多个位点处一个或多个核苷酸的缺失、插入或/和替换。对于多核苷酸,保守的变体包括由于遗传密码的简并性而不改变编码的氨基酸序列的那些变体。诸如此类天然存在的变体可通过现有的分子生物学技术来鉴定。变体多核苷酸还包括合成来源的多核苷酸,例如采用定点诱变所得到的仍编码SEQ ID NO.2所示的氨基酸的多核苷酸变体,或者是通过重组的方法(例如DNA改组)。本领域技术人员可通过以下分子生物技术手段来筛选或评价变体多核苷酸所编码蛋白的功能或活性:DNA结合活性、蛋白之间的相互作用,瞬时研究中基因表达的激活情况或转基因植物中表达的效应等。The LcAP2/ERF107 transcription factor coding gene of the present invention includes two forms of naturally occurring sequences and variants. "Variants" means substantially similar sequences, and with respect to polynucleotides, variants comprise deletions, insertions, and/or substitutions of one or more nucleotides at one or more sites in the native polynucleotide. With respect to polynucleotides, conservative variants include those that do not alter the encoded amino acid sequence due to the degeneracy of the genetic code. Naturally occurring variants such as these can be identified by available molecular biology techniques. Variant polynucleotides also include polynucleotides of synthetic origin, such as polynucleotide variants obtained by site-directed mutagenesis that still encode amino acids shown in SEQ ID NO.2, or by recombinant methods (such as DNA shuffling ). Those skilled in the art can screen or evaluate the function or activity of the protein encoded by the variant polynucleotide through the following molecular biological techniques: DNA binding activity, interaction between proteins, activation of gene expression in transient studies or transgenic plants The effect expressed in etc.
本发明将SEQ ID NO.2所示的氨基酸(LcAP2/ERF107转录因子)与拟南芥、水稻的同源AP2/ERF的氨基酸序列进行多序列比对,构建进化树,结果表明LcAP2/ERF107与拟南芥单独亚家族(Soloist)的At4g13040同源关系最近。因此,LcAP2/ERF107是单独亚家族的新基因。In the present invention, the amino acid (LcAP2/ERF107 transcription factor) shown in SEQ ID NO.2 is compared with the homologous AP2/ERF amino acid sequence of Arabidopsis thaliana and rice, and a phylogenetic tree is constructed. The results show that LcAP2/ERF107 and The homology relationship of At4g13040 of the Arabidopsis separate subfamily (Soloist) is the closest. Thus, LcAP2/ERF107 is a novel gene of a separate subfamily.
本发明还公开了含有所述LcAP2/ERF107转录因子编码基因的重组表达载体以及含有所述重组表达载体的重组宿主细胞;其中,所述重组表达载体是重组植物表达载体。The invention also discloses a recombinant expression vector containing the gene encoding the LcAP2/ERF107 transcription factor and a recombinant host cell containing the recombinant expression vector; wherein, the recombinant expression vector is a recombinant plant expression vector.
将所述LcAP2/ERF107转录因子编码基因可操作的与表达调控元件相连接,得到可以在植物中表达该编码基因的重组植物表达载体;该重组植物表达载体可以由5′端非编码区,SEQ ID NO.1所示的核苷酸和3′非编码区组成;其中,所述的5′端非编码区可以包括启动子序列、增强子序列或/和翻译增强序列;所述的启动子可以是组成性启动子、诱导型启动子、组织或器官特异性启动子;所述的3′非编码区可以包含终止子序列、mRNA切割序列等。合适的终止子序列可取自根癌农杆菌的Ti-质粒,例如章鱼碱合成酶和胭脂碱合成酶终止区。The LcAP2/ERF107 transcription factor coding gene is operably connected to the expression control element to obtain a recombinant plant expression vector that can express the coding gene in plants; the recombinant plant expression vector can be composed of a 5' non-coding region, SEQ The nucleotide and 3' non-coding region shown in ID NO.1; wherein, the 5' non-coding region may include a promoter sequence, an enhancer sequence or/and a translation enhancing sequence; the promoter It can be a constitutive promoter, an inducible promoter, a tissue or organ-specific promoter; the 3' non-coding region can include a terminator sequence, an mRNA cleavage sequence, and the like. Suitable terminator sequences can be taken from the Ti-plasmid of Agrobacterium tumefaciens, such as the octopine synthase and nopaline synthase termination regions.
另外,本领域技术人员可以将SEQ ID NO.1所示的核苷酸进行优化以增强在植物中的表达效率。例如,可采用目标植物的偏爱密码子进行优化来合成多核苷酸以增强在目标植物中的表达效率。In addition, those skilled in the art can optimize the nucleotide shown in SEQ ID NO.1 to enhance the expression efficiency in plants. For example, polynucleotides can be synthesized using codon-biased codons of the target plant for optimization to enhance expression efficiency in the target plant.
所述重组植物表达载体还可含有用于选择转化细胞的选择性标记基因,用于选择经转化的细胞或组织。标记基因包括:编码抗生素抗性的基因以及赋予除草化合物抗性的基因等。此外,所述的标记基因还包括表型标记,例如β-半乳糖苷酶和荧光蛋白等。The recombinant plant expression vector may also contain a selectable marker gene for selection of transformed cells for selection of transformed cells or tissues. Marker genes include: genes encoding antibiotic resistance, genes conferring resistance to herbicidal compounds, and the like. In addition, the marker genes also include phenotypic markers, such as β-galactosidase and fluorescent protein.
本发明还涉及将所述的LcAP2/ERF107转录因子编码基因引入到植物中以提高植物对逆境胁迫的抗性。The present invention also relates to introducing the gene encoding the LcAP2/ERF107 transcription factor into plants to improve the resistance of plants to adversity stress.
本发明公开了一种提高植物对逆境胁迫抗性的方法,包括以下步骤:(1)构建含有从百脉根中分离的LcAP2/ERF107转录因子编码基因的重组植物表达载体;(2)将所构建的重组植物表达载体转化到植物或植物细胞中;(3)培育筛选得到对逆境胁迫抗性提高的转基因植物。The invention discloses a method for improving the resistance of plants to adversity stress, which comprises the following steps: (1) constructing a recombinant plant expression vector containing the gene encoding the LcAP2/ERF107 transcription factor isolated from Lotus japonicus; (2) converting the The constructed recombinant plant expression vector is transformed into plants or plant cells; (3) breeding and screening to obtain transgenic plants with improved resistance to adversity stress.
本发明还公开了一种培育耐逆境胁迫的转基因植物新品种的方法,包括以下步骤:(1)构建含有从百脉根中分离的LcAP2/ERF107转录因子编码基因的重组植物表达载体;(2)将所构建的重组植物表达载体转化到植物或植物细胞中;(3)培育筛选得到对逆境胁迫抗性提高的转基因植物新品种。The present invention also discloses a method for cultivating a new variety of transgenic plant resistant to adversity stress, comprising the following steps: (1) constructing a recombinant plant expression vector containing a gene encoding the LcAP2/ERF107 transcription factor isolated from Lotus japonicus; (2) ) Transforming the constructed recombinant plant expression vector into plants or plant cells; (3) Cultivating and screening new transgenic plant varieties with improved resistance to stress.
其中,所述的逆境胁迫包括:高盐、干旱或低温。Wherein, the adversity stress includes: high salinity, drought or low temperature.
转化方案以及将所述多核苷酸或多肽引入植物的方案可视用于转化的植物(单子叶植物或双子叶植物)或植物细胞的类型而变化。将所述多核苷酸或多肽引入植物细胞的合适方法包括:显微注射、电穿孔、农杆菌介导的转化、直接基因转移以及高速弹道轰击等。在特定的实施方案中,可利用多种瞬时转化法将本发明的LcAP2/ERF107转录因子编码基因提供给植物。在其它实施方案中,本发明的LcAP2/ERF107转录因子编码基因可通过将植物与病毒或病毒核酸接触来引入到植物中,通常,这样的方法涉及将本发明的LcAP2/ERF107转录因子编码基因构建体引入病毒DNA或RNA分子中。Transformation protocols and protocols for introducing the polynucleotide or polypeptide into a plant may vary depending on the type of plant (monocot or dicot) or plant cell used for transformation. Suitable methods for introducing the polynucleotide or polypeptide into plant cells include: microinjection, electroporation, Agrobacterium-mediated transformation, direct gene transfer, and high-speed ballistic bombardment. In specific embodiments, the gene encoding the LcAP2/ERF107 transcription factor of the invention can be provided to plants using various transient transformation methods. In other embodiments, the gene encoding the LcAP2/ERF107 transcription factor of the present invention can be introduced into the plant by contacting the plant with a virus or viral nucleic acid. Usually, such a method involves constructing the gene encoding the LcAP2/ERF107 transcription factor of the present invention. body into the viral DNA or RNA molecule.
利用常规方法可使已转化的细胞再生稳定转化植株(McCormick et al.PlantCell Reports.1986.5:81-84)。本发明可用于转化任何植物种类,包括但不限于:单子叶植物或双子叶植物。更优选的,所述的目标植物包括农作物、蔬菜或观赏植物、果树等,例如,可以是玉米、水稻、高粱、小麦、大豆、马铃薯、大麦、番茄、菜豆、花生或甘蔗等。Transformed cells can be regenerated into stably transformed plants using conventional methods (McCormick et al. Plant Cell Reports. 1986.5:81-84). The present invention can be used to transform any plant species, including but not limited to: monocots or dicots. More preferably, the target plants include crops, vegetables or ornamental plants, fruit trees, etc., for example, may be corn, rice, sorghum, wheat, soybean, potato, barley, tomato, bean, peanut or sugarcane.
为了分析本发明从百脉根(Lotus corniculatus L.)中分离的LcAP2/ERF107转录因子的功能,本发明首先构建了含有LcAP2/ERF107转录因子编码基因(核苷酸为SEQ IDNO.1所示)的重组植物高效表达载体,利用农杆菌介导法将其转化到拟南芥中,通过潮霉素抗性筛选、PCR及RT-PCR鉴定获得阳性植株。通过测定转基因拟南芥在盐胁迫下的发芽率、存活率以及转基因拟南芥在盐胁迫条件下的生理生化指标表明,转基因LcAP2/ERF107拟南芥种子在高盐胁迫下的发芽率极显著的高于野生型;在高盐持续胁迫下,转基因拟南芥幼苗的存活率显著高于野生型,说明转录因子LcAP2/ERF107显著提高了转基因植株的耐盐性。生理生化指标测定表明,转基因LcAP2/ERF107拟南芥是通过提高相对含水量和降低细胞膜的损伤程度提高耐盐性的。因此,转录因子LcAP2/ERF107是百脉根AP2/ERF家族中优良的耐盐调控因子。In order to analyze the function of the LcAP2/ERF107 transcription factor isolated from Lotus corniculatus L. in the present invention, the present invention first constructs a gene encoding the transcription factor containing LcAP2/ERF107 (the nucleotide is shown in SEQ ID NO.1) The high-efficiency expression vector of recombinant plants was transformed into Arabidopsis thaliana by Agrobacterium-mediated method, and positive plants were obtained through hygromycin resistance screening, PCR and RT-PCR identification. The germination rate and survival rate of transgenic Arabidopsis under salt stress and the physiological and biochemical indicators of transgenic Arabidopsis under salt stress showed that the germination rate of transgenic LcAP2/ERF107 Arabidopsis seeds was extremely significant under high salt stress Under continuous high-salt stress, the survival rate of transgenic Arabidopsis seedlings was significantly higher than that of wild-type, indicating that the transcription factor LcAP2/ERF107 significantly improved the salt tolerance of transgenic plants. The measurement of physiological and biochemical indicators showed that transgenic LcAP2/ERF107 Arabidopsis improved salt tolerance by increasing relative water content and reducing cell membrane damage. Therefore, the transcription factor LcAP2/ERF107 is an excellent regulator of salt tolerance in the AP2/ERF family of japonicus japonicus.
功能转化实验证明,在植物中过表达LcAP2/ERF107转录因子编码基因能够有效提高或改善植物对包括高盐、干旱、低温等逆境胁迫的抗性,在提高植物抗逆反应中起着重要作用,说明LcAP2/ERF107基因所编码的蛋白具有AP2/ERF转录因子的功能。Functional transformation experiments have proved that overexpressing the LcAP2/ERF107 transcription factor encoding gene in plants can effectively increase or improve plant resistance to stresses including high salinity, drought, low temperature, etc., and play an important role in improving plant stress resistance. The protein encoded by LcAP2/ERF107 gene has the function of AP2/ERF transcription factor.
本发明技术方案与现有技术相比,具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
本发明从百脉根中分离、鉴定了一个单独亚家族基因LcAP2/ERF107,对其进行抗逆功能分析表明,该基因显著提高了转基因拟南芥的耐盐性,是百脉根中优良的抗逆转录因子,为百脉根或其他豆科牧草抗逆分子改良与育种提供基因资源与技术支持,对于农牧业生产、生态环境建设以及土壤改良等具有重要意义。The present invention isolates and identifies a single subfamily gene LcAP2/ERF107 from japonicus japonicus, and its stress resistance function analysis shows that this gene significantly improves the salt tolerance of transgenic Arabidopsis thaliana, and is an excellent gene in japonicus japonicus Anti-retroviral factors provide genetic resources and technical support for stress-resistant molecular improvement and breeding of japonicus or other leguminous forages, and are of great significance for agricultural and animal husbandry production, ecological environment construction, and soil improvement.
本发明所涉及到的术语定义Definition of terms involved in the present invention
除非另外定义,否则本文所用的所有技术及科学术语都具有与本发明所属领域的普通技术人员通常所了解相同的含义。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
术语“转录因子”意指能够与真核生物基因启动子区域中顺式作用元件特异性结合,从而激活或抑制下游基因在特定时间和空间转录与表达的一类DNA结合蛋白。The term "transcription factor" refers to a class of DNA-binding proteins that can specifically bind to cis-acting elements in the promoter region of eukaryotic genes, thereby activating or inhibiting the transcription and expression of downstream genes at a specific time and space.
术语“多核苷酸”或“核苷酸”意指单股或双股形式的脱氧核糖核苷酸、脱氧核糖核苷、核糖核苷或核糖核苷酸及其聚合物。除非特定限制,否则所述术语涵盖含有天然核苷酸的已知类似物的核酸,所述类似物具有类似于参考核酸的结合特性并以类似于天然产生的核苷酸的方式进行代谢。除非另外特定限制,否则所述术语也意指寡核苷酸类似物,其包括PNA(肽核酸)、在反义技术中所用的DNA类似物(硫代磷酸酯、磷酰胺酸酯等)。除非另外指定,否则特定核酸序列也隐含地涵盖其保守修饰的变异体(包括(但不限于)简并密码子取代)和互补序列以及明确指定的序列。特定而言,可通过产生其中一个或一个以上所选(或所有)密码子的第3位经混合碱基和/或脱氧肌苷残基取代的序列来实现简并密码子取代(Batzer等人,Nucleic Acid Res.19:5081(1991);Ohtsuka等人,J.Biol.Chem.260:2605-2608(1985);和Cassol等人,(1992);Rossolini等人,Mol Cell.Probes 8:91-98(1994))。The term "polynucleotide" or "nucleotide" means deoxyribonucleotides, deoxyribonucleosides, ribonucleosides or ribonucleotides and polymers thereof in single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids that contain known analogs of natural nucleotides that have binding properties similar to the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless specifically limited otherwise, the term also means oligonucleotide analogs, including PNA (peptide nucleic acid), DNA analogs used in antisense technology (phosphorothioate, phosphoramidate, etc.). Unless otherwise specified, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (including, but not limited to, degenerate codon substitutions) and complementary sequences as well as the explicitly designated sequences. In particular, degenerate codon substitutions can be achieved by generating sequences in which one or more selected (or all) codons are substituted at position 3 with mixed bases and/or deoxyinosine residues (Batzer et al. , Nucleic Acid Res.19:5081 (1991); Ohtsuka et al., J.Biol.Chem.260:2605-2608 (1985); and Cassol et al., (1992); Rossolini et al., Mol Cell.Probes 8: 91-98 (1994)).
术语“多肽”、“肽”和“蛋白”在本文中互换使用以意指氨基酸残基的聚合物。即,针对多肽的描述同样适用于描述肽和描述蛋白,且反之亦然。所述术语适用于天然产生氨基酸聚合物以及其中一个或一个以上氨基酸残基为非天然编码氨基酸的氨基酸聚合物。如本文中所使用,所述术语涵盖任何长度的氨基酸链,其包括全长蛋白(即抗原),其中氨基酸残基经由共价肽键连接。The terms "polypeptide", "peptide" and "protein" are used interchangeably herein to mean a polymer of amino acid residues. That is, descriptions for polypeptides apply equally to descriptions of peptides and descriptions of proteins, and vice versa. The term applies to naturally occurring amino acid polymers as well as amino acid polymers in which one or more amino acid residues is a non-naturally encoded amino acid. As used herein, the term encompasses amino acid chains of any length, including full-length proteins (ie, antigens), wherein the amino acid residues are linked via covalent peptide bonds.
述语“严谨杂交条件”意指在所属领域中已知的低离子强度和高温的条件。通常,在严谨条件下,探针与其靶序列杂交的可检测程度比与其它序列杂交的可检测程度更高(例如超过本底至少2倍)。严谨杂交条件是序列依赖性的,在不同的环境条件下将会不同,较长的序列在较高温度下特异性杂交。通过控制杂交的严谨性或洗涤条件可鉴定与探针100%互补的靶序列。对于核酸杂交的详尽指导可参考有关文献(Tijssen,Techniques inBiochemistry and Molecular Biology-Hybridization with Nucleic Probes,"Overview of principles of hybridization and the strategy of nucleic acidassays.1993)。更具体的,所述严谨条件通常被选择为低于特异序列在规定离子强度pH下的热熔点(Tm)约5-10℃。Tm为在平衡状态下50%与目标互补的探针杂交到目标序列时所处的温度(在指定离子强度、pH和核酸浓度下)(因为目标序列过量存在,所以在Tm下在平衡状态下50%的探针被占据)。严谨条件可为以下条件:其中在pH 7.0到8.3下盐浓度低于约1.0M钠离子浓度,通常为约0.01到1.0M钠离子浓度(或其它盐),并且温度对于短探针(包括(但不限于)10到50个核苷酸)而言为至少约30℃,而对于长探针(包括(但不限于)大于50个核苷酸)而言为至少约60℃。严谨条件也可通过加入诸如甲酰胺的去稳定剂来实现。对于选择性或特异性杂交而言,正信号可为至少两倍的背景杂交,视情况为10倍背景杂交。例示性严谨杂交条件可如下:50%甲酰胺,5×SSC和1%SDS,在42℃下培养;或5×SSC,1%SDS,在65℃下培养,在0.2×SSC中洗涤和在65℃下于0.1%SDS中洗涤。所述洗涤可进行5、15、30、60、120分钟或更长时间。The term "stringent hybridization conditions" means conditions of low ionic strength and high temperature known in the art. Generally, under stringent conditions, a probe will hybridize to its target sequence to a detectably greater extent (eg, at least 2-fold over background) than to other sequences. Stringent hybridization conditions are sequence-dependent and will be different under different environmental conditions, with longer sequences hybridizing specifically at higher temperatures. Target sequences that are 100% complementary to the probe can be identified by controlling the stringency of hybridization or wash conditions. For the detailed guidance of nucleic acid hybridization, reference can be made to related literature (Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes,"Overview of principles of hybridization and the strategy of nucleic acid assays.1993). More specifically, the stringent conditions are usually defined by It is selected to be about 5-10°C below the thermal melting point (Tm) of the specific sequence at a defined ionic strength pH. The Tm is the temperature at which 50% of the probes complementary to the target hybridize to the target sequence in equilibrium (at a given ionic strength, pH, and nucleic acid concentration) (50% of the probe is occupied at Tm at equilibrium because the target sequence is present in excess). Stringent conditions can be those in which the salt concentration is low at pH 7.0 to 8.3 At about 1.0M sodium ion concentration, usually about 0.01 to 1.0M sodium ion concentration (or other salt), and the temperature is at least about 30°C, and at least about 60°C for long probes (including, but not limited to, greater than 50 nucleotides). Stringent conditions can also be achieved by adding destabilizing agents such as formamide. For selectivity or For specific hybridization, a positive signal may be at least two times background hybridization, optionally 10 times background hybridization. Exemplary stringent hybridization conditions may be as follows: 50% formamide, 5×SSC and 1% SDS at 42° C. Incubate; or 5×SSC, 1% SDS, incubate at 65°C, wash in 0.2×SSC and wash in 0.1% SDS at 65°C. The washes can be performed for 5, 15, 30, 60, 120 minutes or longer.
本发明中所述的“多个”通常意味着2-8个,优选为2-4个,这取决于AP2/ERF转录因子三维结构中氨基酸残基的位置或氨基酸的种类;所述的“替换”是指分别用不同的氨基酸残基取代一个或多个氨基酸残基;所述的“缺失”是指氨基酸残基数量的减少,也即是分别缺少其中的一个或多个氨基酸残基;所述的“插入”是指氨基酸残基序列的改变,相对天然分子而言,所述改变导致添加一个或多个氨基酸残基。The "multiple" in the present invention usually means 2-8, preferably 2-4, depending on the position of the amino acid residue or the type of amino acid in the three-dimensional structure of the AP2/ERF transcription factor; the " "Replacement" refers to the replacement of one or more amino acid residues with different amino acid residues; the "deletion" refers to the reduction of the number of amino acid residues, that is, the lack of one or more amino acid residues; The "insertion" refers to the change of amino acid residue sequence, relative to the natural molecule, the change results in the addition of one or more amino acid residues.
术语“重组宿主细胞株”或“宿主细胞”意指包含本发明多核苷酸的细胞,而不管使用何种方法进行插入以产生重组宿主细胞,例如直接摄取、转导、f配对或所属领域中已知的其它方法。外源性多核苷酸可保持为例如质粒的非整合载体或者可整合入宿主基因组中。宿主细胞可为原核细胞或真核细胞,宿主细胞还可为单子叶或双子叶植物细胞。The term "recombinant host cell strain" or "host cell" means a cell comprising a polynucleotide of the invention, regardless of the method used for insertion to produce a recombinant host cell, such as direct uptake, transduction, pairing, or in the art. other known methods. Exogenous polynucleotides may remain as non-integrating vectors such as plasmids or may integrate into the host genome. The host cell can be a prokaryotic cell or a eukaryotic cell, and the host cell can also be a monocotyledonous or dicotyledonous plant cell.
术语“可操作的连接”指两个或更多个元件之间功能性的连接,可操作的连接的元件可为邻接或非邻接的。The term "operably linked" refers to a functional linkage between two or more elements, which may be contiguous or non-contiguous.
术语“转化”指将异源性DNA序列引入到宿主细胞或有机体的方法。The term "transformation" refers to a method of introducing a heterologous DNA sequence into a host cell or organism.
术语“表达”指内源性基因或转基因在植物细胞中的转录和/或翻译。The term "expression" refers to the transcription and/or translation of an endogenous or transgene in a plant cell.
术语“编码序列”指转录成RNA的核酸序列。The term "coding sequence" refers to a nucleic acid sequence transcribed into RNA.
术语“重组植物表达载体”意指一种或多种用于实现植物转化的DNA载体;本领域中这些载体常被称为二元载体。二元载体连同具有辅助质粒的载体是大多常用于土壤杆菌介导转化的。二元载体通常包括:T-DNA转移所需要的顺式作用序列、经工程化处理以便能够在植物细胞中表达的选择标记物,待转录的异源性DNA序列等。The term "recombinant plant expression vector" means one or more DNA vectors used to achieve plant transformation; these vectors are often referred to as binary vectors in the art. Binary vectors together with vectors with helper plasmids are the most commonly used for Agrobacterium-mediated transformation. Binary vectors usually include: cis-acting sequences required for T-DNA transfer, selectable markers engineered to be expressed in plant cells, heterologous DNA sequences to be transcribed, etc.
附图说明Description of drawings
图1为LcAP2/ERF107CDS全长序列的扩增结果;Figure 1 is the amplification result of the full-length sequence of LcAP2/ERF107CDS;
图2为转录因子LcAP2/ERF107结构保守域分析;Figure 2 is an analysis of the conserved domain of the transcription factor LcAP2/ERF107 structure;
图3为转录因子LcAP2/ERF107的系统进化分析;Figure 3 is the phylogenetic analysis of the transcription factor LcAP2/ERF107;
图4为LcAP2/ERF107的组织表达分析;Figure 4 is the tissue expression analysis of LcAP2/ERF107;
图5为LcAP2/ERF107在不同胁迫条件下的表达模式分析;Figure 5 is the expression pattern analysis of LcAP2/ERF107 under different stress conditions;
图6为植物表达载体pH7WG2D-LcAP2/ERF107构建流程图;其中,A:入门载体构建;B:植物过表达载体构建;Figure 6 is a flow chart of the construction of the plant expression vector pH7WG2D-LcAP2/ERF107; wherein, A: construction of the entry vector; B: construction of the plant overexpression vector;
图7为重组质粒pH7WG2D-LcAP2/ERF107的PCR鉴定结果;Fig. 7 is the PCR identification result of recombinant plasmid pH7WG2D-LcAP2/ERF107;
图8为含有表达载体pH7WG2D-LcAP2/ERF107的农杆菌GV3101的菌落PCR;Figure 8 is the colony PCR of Agrobacterium GV3101 containing the expression vector pH7WG2D-LcAP2/ERF107;
图9为转LcAP2/ERF107基因拟南芥的DNA水平的PCR检测结果;Fig. 9 is the PCR detection result of the DNA level of Arabidopsis transgenic LcAP2/ERF107;
图10为转LcAP2/ERF107基因拟南芥的RNA水平的PCR检测;其中,L8、L13、L15为转基因LcAP2/ERF107拟南芥的不同株系;Figure 10 is the PCR detection of the RNA level of the transgenic LcAP2/ERF107 Arabidopsis; wherein, L8, L13, and L15 are different strains of the transgenic LcAP2/ERF107 Arabidopsis;
图11为盐胁迫下转基因LcAP2/ERF107拟南芥种子发芽率;其中,CK为野生型拟南芥;L8、L13、L15为转基因LcAP2/ERF107拟南芥的不同株系;Figure 11 shows the germination rate of transgenic LcAP2/ERF107 Arabidopsis seeds under salt stress; wherein, CK is wild-type Arabidopsis; L8, L13, and L15 are different lines of transgenic LcAP2/ERF107 Arabidopsis;
图12为盐胁迫对转基因LcAP2/ERF107拟南芥幼苗存活率的影响;其中,WT为野生型拟南芥;L8、L13、L15为转基因LcAP2/ERF107拟南芥的不同株系;Figure 12 is the effect of salt stress on the survival rate of transgenic LcAP2/ERF107 Arabidopsis seedlings; wherein, WT is wild-type Arabidopsis; L8, L13, and L15 are different lines of transgenic LcAP2/ERF107 Arabidopsis;
图13为盐胁迫对转基因LcAP2/ERF107拟南芥生理指标的影响;其中,A:相对含水量;B:相对电导率;WT为野生型拟南芥;L8、L13、L15为转基因LcAP2/ERF107拟南芥的不同株系。Figure 13 shows the effect of salt stress on the physiological indicators of transgenic LcAP2/ERF107 Arabidopsis; where, A: relative water content; B: relative electrical conductivity; WT is wild type Arabidopsis; L8, L13, L15 are transgenic LcAP2/ERF107 Different strains of Arabidopsis.
具体实施方式Detailed ways
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但是应理解所述实施例仅是范例性的,不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改或替换均落入本发明的保护范围。The present invention will be further described below in conjunction with specific embodiments, and the advantages and characteristics of the present invention will become clearer along with the description. However, it should be understood that the described embodiments are only exemplary and do not constitute any limitation to the scope of the present invention. Those skilled in the art should understand that the details and forms of the technical solution of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications or replacements all fall within the protection scope of the present invention.
实施例1百脉根LcAP2/ERF107转录因子编码基因的分离、鉴定与克隆Example 1 Isolation, Identification and Cloning of the Gene Encoding the LcAP2/ERF107 Transcription Factor in Lotus japonicus
1材料与方法1 Materials and methods
1.1材料1.1 Materials
1.1.1植物材料培养及胁迫处理1.1.1 Plant material cultivation and stress treatment
以百脉根‘Leo’为材料,选成熟饱满、无病虫害的种子,用2%NaClO浸泡15-20min,无菌水冲洗3次,晾干,把消过毒的种子置于B5培养基上,光照培养箱中培养30天,用150mM的氯化钠处理0h、3h、12h、24h,采集叶片立即液氮速冻,保存于-80℃冰箱中备用。Use japonicus 'Leo' as the material, select mature and plump seeds that are free from diseases and insect pests, soak them in 2% NaClO for 15-20 minutes, wash them with sterile water for 3 times, dry them, and put the sterilized seeds on the B5 medium , cultured in a light incubator for 30 days, treated with 150mM sodium chloride for 0h, 3h, 12h, and 24h, collected leaves were immediately frozen in liquid nitrogen, and stored in a -80°C refrigerator for later use.
组织表达特异性分析:取大田百脉根的根、茎、叶、花、种子,液氮速冻,-80℃保存待用。Analysis of tissue expression specificity: The roots, stems, leaves, flowers, and seeds of J. japonicus were taken, quick-frozen in liquid nitrogen, and stored at -80°C until use.
激素处理百脉根,将培养30d的幼苗移栽至含有100μM的ABA、ACC、MeJA、SA的MS培养基中,处理0h、3h、12h、24h,取嫩叶,液氮速冻,-80℃保存待用。Hormone-treated japonicus japonicus, the seedlings cultivated for 30 days were transplanted into MS medium containing 100 μM ABA, ACC, MeJA, SA, treated for 0 h, 3 h, 12 h, 24 h, young leaves were taken, liquid nitrogen quick-frozen, -80 °C Save for later use.
1.1.2菌株与质粒1.1.2 Strains and plasmids
大肠杆菌(Escherichia coli):DH5α本发明人实验室保存;Escherichia coli (Escherichia coli): DH5α preserved in the inventor's laboratory;
pEASY-T-Simple克隆载体购自全式金生物公司。The pEASY-T-Simple cloning vector was purchased from Quanshijin Biological Company.
1.1.3溶液1.1.3 Solutions
(1)TE(10mM Tris-HCl,pH 8.0;1mM EDTA,pH 8.0)的配制:(1) Preparation of TE (10mM Tris-HCl, pH 8.0; 1mM EDTA, pH 8.0):
1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,超纯水至100ml。1M Tris-HCl (pH 8.0) 1ml, 0.5M EDTA (pH 8.0) 0.2ml, ultrapure water to 100ml.
(2)50×TAE缓冲液:242g Tris碱,57.1ml冰醋酸,100ml 0.05mol/L EDTA(pH8.0)(2) 50×TAE buffer: 242g Tris base, 57.1ml glacial acetic acid, 100ml 0.05mol/L EDTA (pH8.0)
(3)1.0M Tris-HCl缓冲液(1L):800ml去离子水中溶解121.1g Tris碱,充分溶解后,加入浓HCL 40ml,用去离子水定容至1L。(3) 1.0M Tris-HCl buffer (1L): Dissolve 121.1g Tris base in 800ml of deionized water. After fully dissolved, add 40ml of concentrated HCl, and dilute to 1L with deionized water.
1.1.4培养基1.1.4 Medium
(1)LB液体培养基(1L,pH 7.4):(1) LB liquid medium (1L, pH 7.4):
蛋白胨10.0g,酵母提取物5.0g,NaCl 10.0g。如是固体培养基,添加琼脂粉15.0-20.0g。Peptone 10.0g, yeast extract 5.0g, NaCl 10.0g. If it is a solid medium, add 15.0-20.0g of agar powder.
(2)B5培养基(pH 5.8):B5干粉4.43g,蔗糖20g,溶于800mL去离子水中,调pH值至5.8-6.0,定容至1L,固体培养基中加入15g琼脂粉或2.5g植物凝胶,121℃高温高压灭菌15min。如果配制含有抗生素或激素培养基,将灭完菌的B5培养基冷却到60℃左右,再加入相应的试剂到所需浓度。(2) B5 medium (pH 5.8): B5 dry powder 4.43g, sucrose 20g, dissolved in 800mL deionized water, adjust the pH value to 5.8-6.0, dilute to 1L, add 15g agar powder or 2.5g Vegetable gel, sterilized under high temperature and high pressure at 121°C for 15 minutes. If preparing a medium containing antibiotics or hormones, cool the sterilized B5 medium to about 60°C, and then add the corresponding reagent to the required concentration.
1.2实验方法1.2 Experimental method
1.2.1百脉根总RNA的提取1.2.1 Extraction of Radix japonicus total RNA
参照天根生化公司的多糖多酚植物总RNA提取试剂盒说明书(目录号:DP441)。Refer to the instruction manual of the polysaccharide polyphenol plant total RNA extraction kit (catalogue number: DP441) of Tiangen Biochemical Company.
1.2.2第一链cDNA的合成1.2.2 Synthesis of first-strand cDNA
参照北京全式金生物技术有限公司的反转录试剂盒(gDNA Removal and cDNA Synthesis SuperMix)说明书。Refer to the reverse transcription kit of Beijing Quanshijin Biotechnology Co., Ltd. ( gDNA Removal and cDNA Synthesis SuperMix) instructions.
1.2.3 LcAP2/ERF107转录因子cDNA的克隆1.2.3 Cloning of cDNA of LcAP2/ERF107 transcription factor
(1)引物的设计与合成(1) Design and synthesis of primers
克隆LcAP2/ERF107CDS全长的引物序列见表1。The primer sequences for cloning the full-length LcAP2/ERF107CDS are listed in Table 1.
表1 克隆LcAP2/ERF107CDS全长的引物序列Table 1 The sequence of primers for cloning the full length of LcAP2/ERF107CDS
(2)RT-PCR(2) RT-PCR
以用150mM NaCl处理12h、24h的叶片为材料提取总RNA,以反转录的cDNA为模板进行RT-PCR,PCR条件为:94℃5min;94℃30sec,55℃30sec,72℃1min,30个循环;72℃10min;4℃保存。Total RNA was extracted from leaves treated with 150mM NaCl for 12h and 24h, and RT-PCR was performed using the reverse-transcribed cDNA as a template. The PCR conditions were: 94°C for 5min; cycle; 72°C for 10 min; 4°C for storage.
(3)PCR产物的回收(3) Recovery of PCR products
采用北京全式金生物技术有限公司的Easypure PCR Purification kit回收目的片段,按照试剂盒说明书的方法进行操作。The target fragment was recovered using the Easypure PCR Purification kit of Beijing Quanshijin Biotechnology Co., Ltd., and the operation was performed according to the kit instructions.
(4)目的片段与克隆载体的连接(4) Ligation of target fragment and cloning vector
将回收的PCR产物连接至pEASY-T-Simple载体上,连接反应体系如表2,25℃连接10min。The recovered PCR product was ligated to the pEASY-T-Simple vector, the ligation reaction system was shown in Table 2, and ligated at 25°C for 10 min.
表2 连接反应体系Table 2 Ligation reaction system
(5)大肠杆菌感受态的制备(5) Preparation of Escherichia coli competent
参照文献“One-step preparation of competent Escherichia coli:transformation and storage of bacterial cells in the same solution”(Chung etal.,1989)中所写的具体方法进行。Refer to the specific method written in the document "One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution" (Chung et al., 1989).
(6)大肠杆菌的转化(热激法)(6) Transformation of Escherichia coli (heat shock method)
参照《分子克隆实验指南》(第三版,J.萨姆布鲁克)一书中所列的具体方法进行。Carry out with reference to the specific method listed in the book "Molecular Cloning Experiment Guide" (Third Edition, J. Sambrook).
(7)菌落PCR鉴定(7) Colony PCR identification
以含有Kan的LB平板上挑取的白色单菌落,进行菌落培养并PCR验证,采用通用引物M13,扩增条件为:94℃3min,(94℃45sec,55℃45sec,72℃1min)30个循环,72℃10min。反应结束后,用1.5%的琼脂糖凝胶电泳对PCR产物进行鉴定,并将筛选得到阳性克隆送中国农业科学院作物科学研究所重大工程开放实验室测序部测序。Use the white single colony picked on the LB plate containing Kan, carry out colony culture and PCR verification, use the universal primer M13, the amplification conditions are: 94°C for 3min, (94°C for 45sec, 55°C for 45sec, 72°C for 1min) 30 colonies Cycle, 72°C for 10min. After the reaction, the PCR products were identified by 1.5% agarose gel electrophoresis, and the positive clones obtained by screening were sent to the Sequencing Department of the Major Engineering Open Laboratory of the Institute of Crop Science, Chinese Academy of Agricultural Sciences for sequencing.
1.2.4基因LcAP2/ERF107在不同胁迫条件下的表达模式分析1.2.4 Analysis of the expression pattern of the gene LcAP2/ERF107 under different stress conditions
采用RT-PCR方法分析基因LcAP2/ERF107在根、茎、叶、花和种子中的组织表达特异性。The tissue expression specificity of gene LcAP2/ERF107 in roots, stems, leaves, flowers and seeds was analyzed by RT-PCR.
取大田百脉根的根、茎、叶、花、种子,液氮速冻,-80℃保存待用,提取总RNA的具体步骤参照天根生化公司的多糖多酚植物总RNA提取试剂盒说明书(离心柱型,目录号:DP441),采用琼脂糖凝胶电泳和紫外分光光度计(Biodropsis BD-2000)检测提取的RNA质量和纯度。cDNA的合成参照北京全式金生物技术有限公司的反转录试剂盒(gDNA Removal and cDNA Synthesis SuperMix)说明书。以cDNA为模板,引物为基因LcERFs特异引物,进行RT-PCR,PCR产物用2%的琼脂糖胶电泳,RT-PCR产物为139bp的泛素蛋白基因polyubiquitin(AW720576)作为对照。Take the roots, stems, leaves, flowers, and seeds of japonicus japonicus, freeze them quickly in liquid nitrogen, and store them at -80°C for later use. For the specific steps of extracting total RNA, refer to the instructions of the polysaccharide and polyphenol plant total RNA extraction kit from Tiangen Biochemical Company ( Spin column type, catalog number: DP441), using agarose gel electrophoresis and ultraviolet spectrophotometer (Biodropsis BD-2000) to detect the quality and purity of the extracted RNA. cDNA was synthesized with reference to the reverse transcription kit of Beijing Quanshijin Biotechnology Co., Ltd. ( gDNA Removal and cDNA Synthesis SuperMix) instructions. Using cDNA as a template and primers as specific primers for gene LcERFs, RT-PCR was carried out, and the PCR product was electrophoresed on 2% agarose gel. The RT-PCR product was the ubiquitin protein gene polyubiquitin (AW720576) of 139 bp as a control.
表3 RT-PCR或qPCR的特异引物序列Table 3 Specific primer sequences for RT-PCR or qPCR
采用qRT-PCR方法分析基因LcAP2/ERF107受激素(ABA、ACC、MeJA、SA)和非生物胁迫(NaCl)诱导不同时间的表达量变化情况。The qRT-PCR method was used to analyze the expression changes of the gene LcAP2/ERF107 induced by hormones (ABA, ACC, MeJA, SA) and abiotic stress (NaCl) at different times.
用100μM ABA、ACC、JA、SA,150mM NaCl分别处理30日龄的百脉根幼苗0h、3h、12h和24h,取嫩叶,液氮速冻,按照上述方法提取总RNA,反转录第一条链cDNA,采用qRT-PCR分析盐胁迫应答基因的相对表达量,百脉根泛素蛋白基因polyubiquitin(AW720576)作为内参基因。qRT-PCR的反应体系,参考北京全式金生物技术有限公司的定量PCR试剂盒(Green qPCR SuperMix,货号:AQ131),具体见表4和5。在进行qRT-PCR时,每个样品重复三次实验,三个技术重复,采用2-ΔΔCT方法(Livak and Schmittgen,2001)计算基因的相对表达量。The 30-day-old japonicus japonicus seedlings were treated with 100 μM ABA, ACC, JA, SA, and 150 mM NaCl for 0 h, 3 h, 12 h, and 24 h, respectively, and the young leaves were taken and frozen in liquid nitrogen. Total RNA was extracted according to the above method, and the first reverse transcription was performed. qRT-PCR was used to analyze the relative expression of salt stress response genes, and the ubiquitin gene polyubiquitin (AW720576) was used as an internal reference gene. For the reaction system of qRT-PCR, refer to the quantitative PCR kit ( Green qPCR SuperMix, Cat. No.: AQ131), see Table 4 and 5 for details. When performing qRT-PCR, the experiment was repeated three times for each sample, and three technical replicates were performed, and the relative expression of genes was calculated using the 2 -ΔΔCT method (Livak and Schmittgen, 2001).
表4 qRT-PCR反应体系Table 4 qRT-PCR reaction system
表5 qRT-PCR扩增程序Table 5 qRT-PCR amplification program
2实验结果与分析2 Experimental results and analysis
2.1 LcAP2/ERF107基因的克隆及其生物信息学分析2.1 Cloning of LcAP2/ERF107 gene and its bioinformatics analysis
本发明以用150mM NaCl处理24h的30日龄的百脉根幼苗为材料,提取叶片总RNA并反转录为cDNA,采用表1的基因全长引物,RT-PCR扩增出了LcAP2/ERF107基因完整的ORF序列(SEQ ID NO.1所示),结果见图1,并提交Genbank,获得登录号:KC357712。基因LcAP2/ERF107的开放阅读框为699bp,编码232个氨基酸(SEQ ID NO.2所示)。采用SMART软件分析转录因子LcAP2/ERF107的保守结构域,第108至159位氨基酸残基序列为AP2/ERF结合域的编码序列(SEQ ID NO.3所示),结果见图2,该结合域第14位氨基酸为丙氨酸(A),第19位氨基酸为天冬氨酸(D),此类结构域能够与GCC box顺式作用元件结合而启动抗病防卫基因或抗逆应答基因的表达。The present invention uses 30-day-old japonicus seedlings treated with 150mM NaCl for 24 hours as material, extracts total RNA from leaves and reverse-transcribes it into cDNA, and uses the full-length primers in Table 1 to amplify LcAP2/ERF107 by RT-PCR The complete ORF sequence of the gene (shown in SEQ ID NO.1), the result is shown in Figure 1, and submitted to Genbank to obtain the accession number: KC357712. The open reading frame of the gene LcAP2/ERF107 is 699bp, encoding 232 amino acids (shown in SEQ ID NO.2). Using SMART software to analyze the conserved domain of transcription factor LcAP2/ERF107, the 108th to 159th amino acid residue sequence is the coding sequence of the AP2/ERF binding domain (shown in SEQ ID NO.3), the results are shown in Figure 2, the binding domain The 14th amino acid is alanine (A), and the 19th amino acid is aspartic acid (D). This type of domain can combine with the GCC box cis-acting element to activate the disease resistance defense gene or stress response gene. Express.
通过ExPASy Compute pI/Mw tool软件预测蛋白LcAP2/ERF107等电点为9.62,分子量为24.8kDa;采用SignalP 4.1软件分析信号肽,结果显示:LcAP2/ERF107蛋白没有信号肽,属于非分泌性蛋白;ProtScale软件分析疏水性、TMHMM软件分析跨膜结构,结果表明:LcAP2/ERF107蛋白是亲水蛋白,且没有跨膜结构。采用Motif scan软件分析,结果表明,14-18和68-77是丝氨酸(ser)富集区域,162-167是酸性氨基酸富集区,其可能在转录激活中发挥重要作用。The isoelectric point of protein LcAP2/ERF107 is predicted to be 9.62 and the molecular weight is 24.8kDa by ExPASy Compute pI/Mw tool software; the signal peptide is analyzed by SignalP 4.1 software, and the results show that: LcAP2/ERF107 protein has no signal peptide and is a non-secreted protein; ProtScale Software analysis of hydrophobicity, TMHMM software analysis of transmembrane structure, the results showed that: LcAP2/ERF107 protein is a hydrophilic protein, and no transmembrane structure. Using Motif scan software analysis, the results showed that 14-18 and 68-77 are serine (ser)-rich regions, and 162-167 is an acidic amino acid-rich region, which may play an important role in transcriptional activation.
采用ClustalX2软件将LcAP2/ERF107与拟南芥、水稻的同源AP2/ERF的氨基酸序列进行多序列比对,用MEGA5.0构建进化树,见图3,LcAP2/ERF107与拟南芥单独亚家族(Soloist)的At4g13040同源关系最近,因此LcAP2/ERF107是单独亚家族的新基因。ClustalX2 software was used to perform multiple sequence alignments of the amino acid sequences of LcAP2/ERF107 and the homologous AP2/ERF of Arabidopsis thaliana and rice, and a phylogenetic tree was constructed with MEGA5.0, as shown in Figure 3, LcAP2/ERF107 and the separate subfamily of Arabidopsis thaliana (Soloist) At4g13040 has the closest homology, so LcAP2/ERF107 is a novel gene of a separate subfamily.
2.2基因LcAP2/ERF107在不同胁迫条件下的表达模式分析2.2 Analysis of the expression pattern of gene LcAP2/ERF107 under different stress conditions
采用RT-PCR方法分析了基因LcAP2/ERF107在根、茎、叶、花和种子中的组织表达特异性,如图4所示,该基因在根、茎、叶、花、种子组织中都表达。The tissue expression specificity of gene LcAP2/ERF107 in roots, stems, leaves, flowers and seeds was analyzed by RT-PCR method, as shown in Figure 4, the gene is expressed in roots, stems, leaves, flowers and seed tissues .
采用qRT-PCR方法分析了基因LcAP2/ERF107受激素(ABA、ACC、MeJA、SA)和非生物胁迫(NaCl)诱导不同时间的表达量变化情况,结果见图5。基因LcAP2/ERF107受NaCl处理3h和24h,表达量上调2倍左右,说明受NaCl持续诱导表达;ABA、ACC、JA和SA诱导3h,表达量变化不显著,诱导24h,表达量显著上调,说明LcAP2/ERF107受四大激素ABA、ACC、JA和SA后期诱导表达,因此,基因LcAP2/ERF107受ABA、ACC、JA、SA、NaCl诱导表达。由此看出,LcAP2/ERF107对盐非生物胁迫和脱落酸、乙烯、茉莉酸、水杨酸等激素处理都有不同程度的应答,说明它可能参与了多种非生物胁迫及信号转导途径。The qRT-PCR method was used to analyze the expression changes of the gene LcAP2/ERF107 induced by hormones (ABA, ACC, MeJA, SA) and abiotic stress (NaCl) at different times, and the results are shown in Figure 5. The gene LcAP2/ERF107 was treated with NaCl for 3h and 24h, and the expression level was up-regulated by about 2 times, indicating that the expression level was continuously induced by NaCl; ABA, ACC, JA and SA induced 3h, the expression level did not change significantly, and after induction for 24h, the expression level was significantly up-regulated, indicating that The expression of LcAP2/ERF107 is induced by the four major hormones ABA, ACC, JA and SA in the late stage. Therefore, the expression of gene LcAP2/ERF107 is induced by ABA, ACC, JA, SA and NaCl. It can be seen that LcAP2/ERF107 has different responses to salt abiotic stress and hormone treatments such as abscisic acid, ethylene, jasmonic acid, and salicylic acid, indicating that it may be involved in various abiotic stresses and signal transduction pathways .
实施例2含有LcAP2/ERF107基因的植物表达载体的构建及其在拟南芥中的耐盐功能验证Example 2 Construction of a plant expression vector containing the LcAP2/ERF107 gene and its salt-tolerance functional verification in Arabidopsis
1材料与方法1 Materials and methods
1.1材料1.1 Materials
1.1.1植物材料1.1.1 Plant material
拟南芥(Arabidopsis thaliana)哥伦比亚Columbia(Col-0)生态型:本发明人实验室保存。Arabidopsis thaliana Columbia (Col-0) ecotype: preserved in the inventor's laboratory.
1.1.2菌种及载体1.1.2 Strain and carrier
根癌农杆菌菌株GV3101,本发明人实验室保存;gateway入门载体pDNOR201、表达载体pH7WG2D购自invitrogen公司。Agrobacterium tumefaciens strain GV3101 was preserved in the inventor's laboratory; gateway entry vector pDNOR201 and expression vector pH7WG2D were purchased from Invitrogen.
1.1.3培养基1.1.3 Medium
(1)YEB培养基(1L)(1) YEB medium (1L)
蛋白胨5g,酵母提取物1g,蔗糖5g,MgSO4·7H2O 0.5g,去离子水定容至1L,若是固体培养基,加入15g琼脂粉,121℃高温高压灭菌15min。Peptone 5g, yeast extract 1g, sucrose 5g, MgSO 4 ·7H 2 O 0.5g, deionized water to 1L, if it is a solid medium, add 15g agar powder, sterilize at 121℃ for 15min.
(2)LB培养基(1L)(2) LB medium (1L)
胰蛋白胨10g,氯化钠10g,酵母提取物5g,去离子水定容至1L,若是固体培养基,加入15g琼脂粉,121℃高温高压灭菌15min。Tryptone 10g, sodium chloride 10g, yeast extract 5g, deionized water to 1L, if it is a solid medium, add 15g agar powder, sterilize under high temperature and high pressure at 121°C for 15min.
(3)MS培养基(3) MS medium
MS干粉4.43g,蔗糖20g,溶于800mL去离子水中,调pH值至5.8-6.0,定容至1L,固体培养基中加入15g琼脂粉或2.5g植物凝胶,121℃高温高压灭菌15min。如果配制含有抗生素或激素培养基,将灭完菌的MS培养基冷却到60℃左右,再加入相应的试剂到所需浓度。MS dry powder 4.43g, sucrose 20g, dissolved in 800mL deionized water, adjust the pH value to 5.8-6.0, dilute to 1L, add 15g agar powder or 2.5g plant gel to the solid medium, sterilize under high temperature and high pressure at 121℃ for 15min . If the medium containing antibiotics or hormones is prepared, cool the sterilized MS medium to about 60°C, and then add the corresponding reagent to the required concentration.
1.2实验方法1.2 Experimental method
1.2.1引物设计与合成1.2.1 Primer design and synthesis
设计合成含有attb位点的引物,序列见表6。The primers containing the attb site were designed and synthesized, and the sequences are shown in Table 6.
表6 构建植物表达载体所用引物Table 6 Primers used to construct plant expression vectors
1.2.2植物表达载体的构建1.2.2 Construction of plant expression vectors
(1)植物高效表达载体pH7WG2D-LcAP2/ERF107的构建(1) Construction of plant high-efficiency expression vector pH7WG2D-LcAP2/ERF107
利用引物LcAP2/ERF107-attb(F)和LcAP2/ERF107-attb(R)从实施例1连接有基因LcAP2/ERF107的CDS全长的pEASY-T载体上扩增出含有attb位点的完整开放阅读框(SEQ IDNO.1所示)。扩增产物和入门载体pDNOR201经BP反应,将pDNOR201载体上的CCDB基因替换为LcAP2/ERF107基因,构建含有目的基因LcAP2/ERF107的入门载体,转化大肠杆菌DH5α,PCR扩增筛选重组质粒,并测序鉴定。将经测序正确的入门载体pDNOR201-LcAP2/ERF107与表达载体pH7WG2D进行LR反应,将表达载体上的CCDB基因替换为目的基因LcAP2/ERF107,构建植物表达载体pH7WG2D-LcAP2/ERF107,转化大肠杆菌DH5α,PCR扩增鉴定重组质粒。Using primers LcAP2/ERF107-attb(F) and LcAP2/ERF107-attb(R) to amplify the complete open reading containing attb site from the full-length pEASY-T vector connected with the CDS of the gene LcAP2/ERF107 in Example 1 Box (shown in SEQ ID NO.1). The amplified product and the entry vector pDNOR201 were subjected to BP reaction, and the CCDB gene on the pDNOR201 vector was replaced with the LcAP2/ERF107 gene, and the entry vector containing the target gene LcAP2/ERF107 was constructed, transformed into Escherichia coli DH5α, and the recombinant plasmid was screened by PCR amplification and sequenced Identification. The correctly sequenced entry vector pDNOR201-LcAP2/ERF107 was subjected to LR reaction with the expression vector pH7WG2D, and the CCDB gene on the expression vector was replaced with the target gene LcAP2/ERF107 to construct a plant expression vector pH7WG2D-LcAP2/ERF107, which was transformed into Escherichia coli DH5α, PCR amplification identified recombinant plasmids.
(2)重组质粒的小量提取(2) Mini-extraction of recombinant plasmids
质粒提取方法参照百泰克质粒小量制备试剂盒所列的具体方法。For the plasmid extraction method, refer to the specific method listed in the Biotech Plasmid Miniprep Kit.
1.2.3农杆菌转化及培养1.2.3 Agrobacterium transformation and cultivation
(1)农杆菌GV3101感受态细胞的制备,采用TSS法,具体方法同大肠杆菌感受态制备。转化方法采用热激法,具体步骤参见精编分子生物学实验指南(奥斯伯)。(1) Agrobacterium GV3101 competent cells were prepared by TSS method, and the specific method was the same as that of Escherichia coli competent cells. The heat shock method was used for the transformation method, and for specific steps, refer to the finely edited Molecular Biology Experiment Guide (Osper).
(2)含有重组质粒的农杆菌的PCR鉴定(2) PCR identification of Agrobacterium containing recombinant plasmid
分别挑取28℃培养1-2d的YEB(含50mg/L Spe,50mg/L Rif)转化平板上的单菌落,以未转化的农杆菌作阴性对照,以植物表达载体质粒pH7WG2D-LcAP2/ERF107为阳性对照,进行菌落PCR鉴定。Pick a single colony on the transformation plate of YEB (containing 50mg/L Spe, 50mg/L Rif) cultured at 28°C for 1-2 days, use untransformed Agrobacterium as a negative control, and use the plant expression vector plasmid pH7WG2D-LcAP2/ERF107 As a positive control, colony PCR identification was carried out.
1.2.4拟南芥的遗传转化1.2.4 Genetic transformation of Arabidopsis
侵染花序法转化拟南芥。Arabidopsis was transformed by inflorescence infection.
将含有植物表达载体pH7WG2D-LcAP2/ERF107的农杆菌培养至OD600为0.8-2.0,5500rpm离心10-15min,弃上清,菌体沉淀用MS渗透液重悬,调整OD600为0.8-1.2,侵染拟南芥用。Cultivate the Agrobacterium containing the plant expression vector pH7WG2D-LcAP2/ERF107 to an OD600 of 0.8-2.0, centrifuge at 5500rpm for 10-15min, discard the supernatant, resuspend the bacterial cell pellet with MS permeate, adjust the OD600 to 0.8-1.2, for infecting Arabidopsis.
4周左右的拟南芥抽薹后,从基部剪掉主茎,促使侧茎生长约一周,花蕾饱满且处于露白期时,采用蘸花法(Clough and Bent,1998)转化拟南芥,花序在上述渗透液中浸泡15sec-45sec,倾斜放置,暗培养2-3d后,正常培养一周,再重复侵染拟南芥一次,四周后收获成熟的种子。After about 4 weeks of Arabidopsis bolting, the main stem was cut off from the base to promote the growth of side stems for about a week. When the flower buds were full and in the dew-white stage, the Arabidopsis was transformed by dipping flowers (Clough and Bent, 1998). Soak in the above-mentioned permeate for 15sec-45sec, place it at an angle, culture in dark for 2-3 days, culture normally for one week, and infect Arabidopsis thaliana again once, and harvest mature seeds four weeks later.
1.2.5转基因LcAP2/ERF107拟南芥的筛选与鉴定1.2.5 Screening and identification of transgenic LcAP2/ERF107 Arabidopsis
(1)转LcAP2/ERF107基因拟南芥的抗性筛选(1) Resistance screening of LcAP2/ERF107 transgenic Arabidopsis
将收获的T0代种子,无菌操作铺在含有25mg/L潮霉素的MS平板上,长出T1代转基因阳性植株,正常培养,收获单株种子;选取50粒种子T1代种子铺在潮霉素抗性平板上,长出T2代转基因阳性植株,选择阳性植株与阴性植株的分离比为3:1的株系,正常培养,收获单株种子;选取50粒T2代种子铺在潮霉素抗性平板上,鉴定T3代的纯合度,收获纯合株系T3代种子、保存,用于后续的功能分析。Spread the harvested T 0 generation seeds aseptically on MS plates containing 25 mg/L hygromycin to grow T 1 generation transgene-positive plants, cultivate them normally, and harvest individual seeds; select 50 seeds of T 1 generation seeds Spread on a hygromycin-resistant plate, grow T2 generation transgenic positive plants, select a line with a segregation ratio of 3:1 between positive plants and negative plants, cultivate normally, and harvest a single seed; select 50 T2 generation The seeds were spread on the hygromycin-resistant plate, the homozygosity of the T 3 generation was identified, and the seeds of the T 3 generation of the homozygous line were harvested and preserved for subsequent functional analysis.
(2)PCR鉴定阳性植株(2) PCR identified positive plants
利用CTAB法小量提取转基因拟南芥抗性苗基因组DNA,通过PCR检测进一步筛选阳性植株。若扩增出了目标片段,而阴性对照中没有扩增出片段,即初步证明目的基因整合到拟南芥基因组中。A small amount of genomic DNA was extracted from transgenic Arabidopsis resistant seedlings by CTAB method, and positive plants were further screened by PCR detection. If the target fragment is amplified, but no fragment is amplified in the negative control, it is preliminarily proved that the target gene is integrated into the Arabidopsis genome.
(3)RT-PCR进一步鉴定阳性植株(3) Further identification of positive plants by RT-PCR
对DNA水平检测为阳性的拟南芥植株,利用TRIzol试剂提取总RNA,反转录获得cDNA作为模板,RT-PCR检测筛选阳性转化苗。For the Arabidopsis plants that were positive in the DNA level detection, the total RNA was extracted with TRIzol reagent, the cDNA obtained by reverse transcription was used as a template, and the positive transformed seedlings were screened by RT-PCR detection.
1.2.6转基因拟南芥的耐盐功能分析1.2.6 Salt tolerance function analysis of transgenic Arabidopsis
(1)转基因拟南芥种子在盐胁迫下的发芽率(1) Germination rate of transgenic Arabidopsis seeds under salt stress
转基因拟南芥种子在盐胁迫下的发芽率实验:将野生型和转基因型拟南芥种子经消毒后,分别种在0mM、100mM、150mM、200mM的NaCl的MS平板上,春化1-3d,光照培养箱培养7-15d,每天观察、统计发芽率。Experiment of germination rate of transgenic Arabidopsis seeds under salt stress: After sterilizing wild-type and transgenic Arabidopsis seeds, they were planted on MS plates with 0mM, 100mM, 150mM, and 200mM NaCl respectively, and vernalized for 1-3 days , Cultivate in a light incubator for 7-15 days, observe and count the germination rate every day.
(2)转基因拟南芥幼苗在盐胁迫下的存活率(2) Survival rate of transgenic Arabidopsis seedlings under salt stress
幼苗的耐盐实验:将野生型和转基因型拟南芥种子经消毒后,种在MS平板上,春化1-3d,光照培养箱培养7d,选取大小生长一致的幼苗移栽至土盆,再培养2周后,用含有300mM的NaCl水溶液浇灌,每隔3-4d浇灌,7-15d后观察,取样,统计存活率,进行生理指标检测。Salt tolerance test of seedlings: After sterilizing wild-type and transgenic Arabidopsis seeds, they were planted on MS plates, vernalized for 1-3 days, and cultured in a light incubator for 7 days. After further culturing for 2 weeks, water with 300 mM NaCl aqueous solution every 3-4 days, observe after 7-15 days, take samples, count the survival rate, and perform physiological index detection.
(3)转基因拟南芥在盐胁迫条件下的生理生化指标测定(3) Determination of physiological and biochemical indicators of transgenic Arabidopsis under salt stress conditions
相对含水量的测定:Determination of relative moisture content:
对NaCl胁迫处理后的转基因和野生型拟南芥,用蒸馏水冲洗干净,吸水纸吸干表面水分。每个处理取3棵单株,并迅速测其鲜重,之后放入120℃烘箱中烘烤30min,80℃烘烤24h至恒重,称量其干重。对上述测得的干、鲜重,采用公式:相对含水量(占鲜重%)=(鲜重-干重)/鲜重进行含水量的计算。The transgenic and wild-type Arabidopsis thaliana after NaCl stress treatment were rinsed with distilled water, and the surface moisture was blotted with absorbent paper. Take 3 individual plants for each treatment, measure their fresh weight quickly, put them into an oven at 120°C for 30 minutes, bake at 80°C for 24 hours until constant weight, and weigh their dry weight. For the dry and fresh weights measured above, the formula: relative water content (accounting for fresh weight %)=(fresh weight-dry weight)/fresh weight is used to calculate the water content.
相对电导率分析:Relative Conductivity Analysis:
称取经胁迫处理的拟南芥叶片0.2g于10ml EP管中,加入5ml去离子水,自然浸泡1h,之后测定电导率J1并记录,然后放入沸水浴中煮沸10min,冷却至室温测电导率J2并记录。Weigh 0.2g of the stress-treated Arabidopsis leaves into a 10ml EP tube, add 5ml of deionized water, soak naturally for 1h, then measure and record the conductivity J1, then put it in a boiling water bath and boil for 10min, cool to room temperature and measure the conductivity J2 and record.
相对电导率的计算公式:相对电导率=(J1-J0)/(J2-J0)×100%Calculation formula of relative conductivity: relative conductivity=(J1-J0)/(J2-J0)×100%
(注:J0表示去离子水的电导率值)。(Note: J0 represents the conductivity value of deionized water).
2实验结果2 Experimental results
2.1植物表达载体的构建2.1 Construction of plant expression vectors
2.1.1植物表达载体pH7WG2D-LcAP2/ERF107的构建流程2.1.1 Construction process of plant expression vector pH7WG2D-LcAP2/ERF107
植物表达载体pH7WG2D-LcAP2/ERF107的构建流程见图6。The construction process of the plant expression vector pH7WG2D-LcAP2/ERF107 is shown in FIG. 6 .
2.1.2重组质粒的PCR鉴定2.1.2 PCR identification of recombinant plasmids
在重组质粒的转化LB(Spe+)平板上,分别挑取10个白色单菌落,进行菌落PCR鉴定,结果有1个阳性克隆,提取阳性克隆的质粒,用基因LcAP2/ERF107的上、下游引物(表1)和35S上游引物(35S-F:5'-GACGCACAATCCCACTATCC-3')和目的基因的下游引物(LcAP2/ERF107-R)进行PCR鉴定,结果见图7,都扩增出了目的条带,说明植物表达载体构建正确。On the transformed LB (Spe+) plate of the recombinant plasmid, pick 10 white single colonies respectively, carry out colony PCR identification, the result has 1 positive clone, extract the plasmid of the positive clone, use the upstream and downstream primers of the gene LcAP2/ERF107 ( Table 1) and 35S upstream primer (35S-F: 5'-GACGCACAATCCCACTATCC-3') and the downstream primer of the target gene (LcAP2/ERF107-R) for PCR identification, the results are shown in Figure 7, and the target band was amplified , indicating that the plant expression vector was constructed correctly.
2.2含有表达载体的农杆菌鉴定2.2 Identification of Agrobacterium containing expression vector
将重组质粒pH7GW2D-LcAP2/ERF107转化农杆菌GV3101,以转化后的农杆菌的菌液为模板,未转化的农杆菌作阴性对照,质粒做阳性对照,进行菌液PCR鉴定。结果可见图8,10个单菌落都是阳性克隆,说明该重组质粒已成功转入农杆菌中。The recombinant plasmid pH7GW2D-LcAP2/ERF107 was transformed into Agrobacterium GV3101, and the transformed Agrobacterium was used as a template, and the untransformed Agrobacterium was used as a negative control, and the plasmid was used as a positive control, and PCR identification of the bacterial solution was carried out. The results can be seen in Figure 8, 10 single colonies are all positive clones, indicating that the recombinant plasmid has been successfully transferred into Agrobacterium.
2.3转基因LcAP2/ERF107拟南芥阳性苗的鉴定2.3 Identification of transgenic LcAP2/ERF107 Arabidopsis positive seedlings
2.3.1 DNA水平的PCR检测2.3.1 PCR detection at the DNA level
选取潮霉素抗性苗,剪取其叶片,采用CTAB法提取其DNA,以拟南芥基因组DNA为模板,以35S-F和LcAP2/ERF107-R为引物,采用PCR技术,对潮霉素抗性苗进行DNA水平的检测。结果见图9,共检测出了22株阳性苗,这表明基因LcAP2/ERF107已经整合到拟南芥基因组中。Hygromycin-resistant seedlings were selected, their leaves were cut, and their DNA was extracted by CTAB method. Arabidopsis genomic DNA was used as a template, 35S-F and LcAP2/ERF107-R were used as primers, and PCR technology was used to detect hygromycin. The resistant seedlings were tested at the DNA level. The results are shown in Fig. 9. A total of 22 positive seedlings were detected, which indicated that the gene LcAP2/ERF107 had been integrated into the Arabidopsis genome.
2.3.2 RNA水平的PCR检测2.3.2 PCR detection of RNA level
随机选取DNA水平鉴定的3株阳性拟南芥植株叶片为材料,提取总RNA,以反转录获得的cDNA为模板,RT-PCR对阳性苗作进一步的检测。结果见图10,3株都为阳性,这说明基因LcAP2/ERF107能够在拟南芥中进行正常转录表达从而发挥正常的调控功能。The leaves of 3 positive Arabidopsis plants identified at the DNA level were randomly selected as materials, the total RNA was extracted, and the cDNA obtained by reverse transcription was used as a template, and the positive seedlings were further detected by RT-PCR. The results are shown in Fig. 10, and all three strains were positive, which indicated that the gene LcAP2/ERF107 could perform normal transcription and expression in Arabidopsis thaliana to exert normal regulatory functions.
2.4转基因拟南芥种子在盐胁迫下发芽率实验2.4 Germination rate experiment of transgenic Arabidopsis seeds under salt stress
将野生型和转基因LcAP2/ERF107拟南芥种子分别铺在含有0、100、150和200mMNaCl的MS平板上,培养10d,结果见图11,转基因LcAP2/ERF107拟南芥种子在150mM NaCl的MS培养基中,发芽率为80%,极显著地比野生型45%的发芽率高,并且在200mM NaCl的MS培养基中,结果也极显著,转基因种子萌发率为50%,而野生型的发芽率骤降至5%,说明转基因LcAP2/ERF107拟南芥种子显著提高了对高盐的抗性。Spread the wild-type and transgenic LcAP2/ERF107 Arabidopsis seeds on MS plates containing 0, 100, 150 and 200 mM NaCl respectively, and culture them for 10 days. In the medium, the germination rate was 80%, which was significantly higher than the germination rate of the wild type 45%, and in the MS medium of 200mM NaCl, the result was also very significant, the germination rate of the transgenic seeds was 50%, while the germination rate of the wild type The rate dropped sharply to 5%, indicating that the transgenic LcAP2/ERF107 Arabidopsis seeds significantly improved the resistance to high salt.
2.5转基因拟南芥幼苗在盐胁迫下存活率实验2.5 Survival rate experiment of transgenic Arabidopsis seedlings under salt stress
三周龄的拟南芥幼苗,用300mM NaCl浇透,每隔一周浇一次盐水,共浇3次,周期21d,在此过程中时常注意观察表型,统计存活率。由图12看出,高盐胁迫处理21d时,野生型和转基因LcAP2/ERF107拟南芥的表型差异显著,95%的野生型拟南芥叶片干枯、植株死亡,而95%的转基因拟南芥叶片仍是绿色,植株存活率为95%。可见,在高盐持续胁迫下,转基因拟南芥具有极显著的耐盐表型,说明转录因子LcAP2/ERF107显著提高了转基因植株的耐盐性,因此,转录因子LcAP2/ERF107是百脉根AP2/ERF家族中优良的耐盐调控因子。Three-week-old Arabidopsis seedlings were irrigated thoroughly with 300mM NaCl, and then watered with salt water every other week for a total of 3 times, with a period of 21 days. During this process, the phenotype was often observed and the survival rate was counted. It can be seen from Fig. 12 that the phenotypes of wild-type and transgenic LcAP2/ERF107 Arabidopsis were significantly different when high-salt stress was treated for 21 days. 95% of wild-type Arabidopsis had dry leaves and plants died, while 95% of transgenic Arabidopsis Mustard leaves were still green and the plant survival rate was 95%. It can be seen that under continuous high-salt stress, the transgenic Arabidopsis has a very significant salt-tolerant phenotype, indicating that the transcription factor LcAP2/ERF107 significantly improves the salt-tolerance of transgenic plants. Therefore, the transcription factor LcAP2/ERF107 is an Excellent regulator of salt tolerance in the /ERF family.
2.6转基因拟南芥在盐胁迫条件下的生理生化指标测定2.6 Determination of physiological and biochemical indicators of transgenic Arabidopsis under salt stress conditions
在逆境胁迫下,植物体内会发生一系列复杂的生理生化变化,来适应或抵御外界环境造成的伤害,因此,本实验测量了盐处理、未处理的野生型和转基因LcAP2/ERF107拟南芥中的抗逆生理指标,相对含水量和电导率,由图13A看出,在正常条件下,转基因LcAP2/ERF107拟南芥和野生型的相对含水量无显著差别,在高盐胁迫下,野生型相对含水量降低至70%,而转基因的相对含水量保持在85%,极显著地比野生型的含水量高,这与表型结果也一致;由图13B看出,在正常条件下,转基因LcAP2/ERF107和野生型的电导率在20%左右,在高盐胁迫下,野生型电导率升至90%,转基因的电导率为45%,极显著地比野生型低。说明转基因LcAP2/ERF107拟南芥是通过提高相对含水量和降低细胞膜的损伤程度提高耐盐性的。Under adversity stress, a series of complex physiological and biochemical changes will occur in plants to adapt to or resist the damage caused by the external environment. Therefore, this experiment measured the effects of salt-treated, untreated wild-type and transgenic LcAP2/ERF107 Arabidopsis. The physiological indicators of stress resistance, relative water content and electrical conductivity, can be seen from Figure 13A. Under normal conditions, the relative water content of the transgenic LcAP2/ERF107 Arabidopsis and the wild type has no significant difference. Under high-salt stress, the wild type The relative water content decreased to 70%, while the relative water content of the transgene remained at 85%, which was significantly higher than that of the wild type, which was also consistent with the phenotypic results; it can be seen from Figure 13B that under normal conditions, the transgenic The electrical conductivity of LcAP2/ERF107 and wild type is about 20%, under high salt stress, the electrical conductivity of wild type rises to 90%, and the electrical conductivity of transgenic is 45%, which is significantly lower than that of wild type. It shows that transgenic LcAP2/ERF107 Arabidopsis improves salt tolerance by increasing relative water content and reducing cell membrane damage.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510702449.7A CN105175522B (en) | 2015-10-26 | 2015-10-26 | Crowtoe AP2/ERF transcription factors and its encoding gene and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510702449.7A CN105175522B (en) | 2015-10-26 | 2015-10-26 | Crowtoe AP2/ERF transcription factors and its encoding gene and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105175522A CN105175522A (en) | 2015-12-23 |
CN105175522B true CN105175522B (en) | 2018-09-18 |
Family
ID=54898027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510702449.7A Expired - Fee Related CN105175522B (en) | 2015-10-26 | 2015-10-26 | Crowtoe AP2/ERF transcription factors and its encoding gene and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105175522B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105671058B (en) * | 2016-03-24 | 2018-09-21 | 江苏省农业科学院 | The gene of coding sweet potato ERF transcription and application |
CN106148355B (en) * | 2016-06-30 | 2019-08-06 | 中国人民解放军第二军医大学 | Application of the IiAP2/ERF049 gene in Isatis indigo in regulating the synthesis of lignans |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104293802A (en) * | 2013-09-23 | 2015-01-21 | 中国农业科学院生物技术研究所 | Lotus japonicus ERF transcription factors as well as encoding gent, expression vector and application thereof |
CN104313033A (en) * | 2013-09-23 | 2015-01-28 | 中国农业科学院生物技术研究所 | Lotis corniculatus L. stress resistance related transcription factor and coding gene and application thereof |
-
2015
- 2015-10-26 CN CN201510702449.7A patent/CN105175522B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104293802A (en) * | 2013-09-23 | 2015-01-21 | 中国农业科学院生物技术研究所 | Lotus japonicus ERF transcription factors as well as encoding gent, expression vector and application thereof |
CN104313033A (en) * | 2013-09-23 | 2015-01-28 | 中国农业科学院生物技术研究所 | Lotis corniculatus L. stress resistance related transcription factor and coding gene and application thereof |
Non-Patent Citations (3)
Title |
---|
植物AP2/ERF 类转录因子研究进展;张计育等;《遗传》;20120615;第835-847页 * |
登录号:BT148311.1;Krishnakumar V等;《GeneBank》;20120525;第1-1098位 * |
药用植物转录因子AP2/ERF 研究与展望;季爱加等;《科学通报》;20150324;第60卷(第14期);第1272-1284页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105175522A (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105254726B (en) | ERF class transcription factor relevant to plant stress-resistance and its encoding gene and application | |
CN103408648B (en) | Application of paddy rice BG1 proteins and encoding genes of paddy rice BG1 proteins to adjusting growth and development of plants | |
US20160160230A1 (en) | Transgenic maize | |
US20160068860A1 (en) | Transgenic plants | |
Tang et al. | Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco | |
CN102234318B (en) | Plant stress tolerance related protein TaTPRPK1, encoding gene thereof, and application thereof | |
CN107746846A (en) | The IbABF4 genes of coding sweet potato bZIP transcription factors and application | |
CN105039280A (en) | LRR-RLK (leucine-rich repeats-receptor-like kinase) in arabidopsis thaliana and application thereof | |
CN110713526A (en) | Wheat stress resistant protein TaBZR2D and its encoding gene and application | |
CN104313033B (en) | Lotis corniculatus L. stress resistance related transcription factor and coding gene and application thereof | |
CN104164440B (en) | Plant stress reactive MYC (myelocytomatosis protein) transcription factors as well as coding genes and application thereof | |
CN106397556B (en) | Plant drought resistance related protein ZmNAC111 and its coding gene and application | |
CN105175522B (en) | Crowtoe AP2/ERF transcription factors and its encoding gene and application | |
CN110627887B (en) | Application of SlTLFP8 protein and related biomaterials in regulating tomato drought resistance | |
CN106854238B (en) | Plant adversity resistance related protein TabZIP14 and its encoding gene and application | |
CN104178497B (en) | Cotton-derived MYC transcription factors, their coding genes and their application in regulating plant stress resistance | |
CN104178498B (en) | Cotton GhMYC1 transcription factor and its coding gene and application | |
CN111606986A (en) | A Drought and Salt Tolerance-Related Protein and Its Related Biological Materials and Applications | |
CN103320448B (en) | Lilium regle bZIP transcription factor LrbZIP1 and application | |
CN114591409B (en) | Application of TaDTG6 Protein in Improving Plant Drought Resistance | |
CN104945492A (en) | Plant stress tolerance associated protein TaAREB3 as well as encoding gene and application thereof | |
CN111808180B (en) | Plant drought-resistant heterosis related protein TaNF-YB3, and coding gene and application thereof | |
CN104844699B (en) | Soybean GmNEK1 albumen and its encoding gene and application | |
CN102971427A (en) | Plants having enhanced yield-related traits and method for making same | |
CN108103075B (en) | A switchgrass gene PvC3H29 delaying plant senescence and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180918 Termination date: 20191026 |