CN114591409B - Application of TaDTG6 Protein in Improving Plant Drought Resistance - Google Patents
Application of TaDTG6 Protein in Improving Plant Drought Resistance Download PDFInfo
- Publication number
- CN114591409B CN114591409B CN202210213905.1A CN202210213905A CN114591409B CN 114591409 B CN114591409 B CN 114591409B CN 202210213905 A CN202210213905 A CN 202210213905A CN 114591409 B CN114591409 B CN 114591409B
- Authority
- CN
- China
- Prior art keywords
- tadtg6
- plants
- protein
- wheat
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 127
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 56
- 241000196324 Embryophyta Species 0.000 claims abstract description 147
- 241000209140 Triticum Species 0.000 claims description 89
- 235000021307 Triticum Nutrition 0.000 claims description 89
- 239000013598 vector Substances 0.000 claims description 41
- 241000589158 Agrobacterium Species 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 39
- 239000013604 expression vector Substances 0.000 claims description 21
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 18
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 9
- 230000001131 transforming effect Effects 0.000 claims description 7
- 239000013612 plasmid Substances 0.000 claims description 6
- 238000012364 cultivation method Methods 0.000 claims description 4
- 238000009395 breeding Methods 0.000 claims description 3
- 230000001488 breeding effect Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 238000003776 cleavage reaction Methods 0.000 claims 1
- 230000007017 scission Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 8
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 241000219194 Arabidopsis Species 0.000 description 30
- 108020004414 DNA Proteins 0.000 description 23
- 230000009261 transgenic effect Effects 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 18
- 230000004083 survival effect Effects 0.000 description 18
- 238000011282 treatment Methods 0.000 description 13
- 230000001105 regulatory effect Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- 239000002609 medium Substances 0.000 description 10
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 229930027917 kanamycin Natural products 0.000 description 9
- 229960000318 kanamycin Drugs 0.000 description 9
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 9
- 229930182823 kanamycin A Natural products 0.000 description 9
- 235000015097 nutrients Nutrition 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000012010 growth Effects 0.000 description 8
- 238000003306 harvesting Methods 0.000 description 8
- 238000011529 RT qPCR Methods 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 230000008641 drought stress Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000011426 transformation method Methods 0.000 description 7
- 230000024346 drought recovery Effects 0.000 description 6
- 238000012163 sequencing technique Methods 0.000 description 6
- 108700019146 Transgenes Proteins 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 238000003259 recombinant expression Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000006870 ms-medium Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 239000005561 Glufosinate Substances 0.000 description 2
- 241000209510 Liliopsida Species 0.000 description 2
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108090000848 Ubiquitin Proteins 0.000 description 2
- 102000044159 Ubiquitin Human genes 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 241001233957 eudicotyledons Species 0.000 description 2
- 230000035784 germination Effects 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000003761 preservation solution Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000012882 rooting medium Substances 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 230000004960 subcellular localization Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 108090000104 Actin-related protein 3 Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- MPLOSMWGDNJSEV-WHFBIAKZSA-N Ala-Gly-Asp Chemical compound [H]N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O MPLOSMWGDNJSEV-WHFBIAKZSA-N 0.000 description 1
- NZGRHTKZFSVPAN-BIIVOSGPSA-N Ala-Ser-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N NZGRHTKZFSVPAN-BIIVOSGPSA-N 0.000 description 1
- LSMDIAAALJJLRO-XQXXSGGOSA-N Ala-Thr-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O LSMDIAAALJJLRO-XQXXSGGOSA-N 0.000 description 1
- KLKARCOHVHLAJP-UWJYBYFXSA-N Ala-Tyr-Cys Chemical compound C[C@H](N)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](CS)C(O)=O KLKARCOHVHLAJP-UWJYBYFXSA-N 0.000 description 1
- YFWTXMRJJDNTLM-LSJOCFKGSA-N Arg-Ala-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N YFWTXMRJJDNTLM-LSJOCFKGSA-N 0.000 description 1
- DCGLNNVKIZXQOJ-FXQIFTODSA-N Arg-Asn-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N DCGLNNVKIZXQOJ-FXQIFTODSA-N 0.000 description 1
- PNQWAUXQDBIJDY-GUBZILKMSA-N Arg-Glu-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O PNQWAUXQDBIJDY-GUBZILKMSA-N 0.000 description 1
- CYXCAHZVPFREJD-LURJTMIESA-N Arg-Gly-Gly Chemical compound NC(=N)NCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O CYXCAHZVPFREJD-LURJTMIESA-N 0.000 description 1
- UPKMBGAAEZGHOC-RWMBFGLXSA-N Arg-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O UPKMBGAAEZGHOC-RWMBFGLXSA-N 0.000 description 1
- LVMUGODRNHFGRA-AVGNSLFASA-N Arg-Leu-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O LVMUGODRNHFGRA-AVGNSLFASA-N 0.000 description 1
- UZSQXCMNUPKLCC-FJXKBIBVSA-N Arg-Thr-Gly Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O UZSQXCMNUPKLCC-FJXKBIBVSA-N 0.000 description 1
- RYQSYXFGFOTJDJ-RHYQMDGZSA-N Arg-Thr-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O RYQSYXFGFOTJDJ-RHYQMDGZSA-N 0.000 description 1
- DDBMKOCQWNFDBH-RHYQMDGZSA-N Arg-Thr-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O DDBMKOCQWNFDBH-RHYQMDGZSA-N 0.000 description 1
- SUMJNGAMIQSNGX-TUAOUCFPSA-N Arg-Val-Pro Chemical compound CC(C)[C@H](NC(=O)[C@@H](N)CCCNC(N)=N)C(=O)N1CCC[C@@H]1C(O)=O SUMJNGAMIQSNGX-TUAOUCFPSA-N 0.000 description 1
- 102000008682 Argonaute Proteins Human genes 0.000 description 1
- 108010088141 Argonaute Proteins Proteins 0.000 description 1
- LEFKSBYHUGUWLP-ACZMJKKPSA-N Asn-Ala-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LEFKSBYHUGUWLP-ACZMJKKPSA-N 0.000 description 1
- VILLWIDTHYPSLC-PEFMBERDSA-N Asp-Glu-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O VILLWIDTHYPSLC-PEFMBERDSA-N 0.000 description 1
- QCVXMEHGFUMKCO-YUMQZZPRSA-N Asp-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC(O)=O QCVXMEHGFUMKCO-YUMQZZPRSA-N 0.000 description 1
- XWKBWZXGNXTDKY-ZKWXMUAHSA-N Asp-Val-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC(O)=O XWKBWZXGNXTDKY-ZKWXMUAHSA-N 0.000 description 1
- WAEDSQFVZJUHLI-BYULHYEWSA-N Asp-Val-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O WAEDSQFVZJUHLI-BYULHYEWSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- JDUKCSSHWNIQQZ-IHRRRGAJSA-N Glu-Phe-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O JDUKCSSHWNIQQZ-IHRRRGAJSA-N 0.000 description 1
- PABFFPWEJMEVEC-JGVFFNPUSA-N Gly-Gln-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCC(=O)N)NC(=O)CN)C(=O)O PABFFPWEJMEVEC-JGVFFNPUSA-N 0.000 description 1
- PDAWDNVHMUKWJR-ZETCQYMHSA-N Gly-Gly-His Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC1=CNC=N1 PDAWDNVHMUKWJR-ZETCQYMHSA-N 0.000 description 1
- YHYDTTUSJXGTQK-UWVGGRQHSA-N Gly-Met-Leu Chemical compound CSCC[C@H](NC(=O)CN)C(=O)N[C@@H](CC(C)C)C(O)=O YHYDTTUSJXGTQK-UWVGGRQHSA-N 0.000 description 1
- SOEGEPHNZOISMT-BYPYZUCNSA-N Gly-Ser-Gly Chemical compound NCC(=O)N[C@@H](CO)C(=O)NCC(O)=O SOEGEPHNZOISMT-BYPYZUCNSA-N 0.000 description 1
- FOKISINOENBSDM-WLTAIBSBSA-N Gly-Thr-Tyr Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O FOKISINOENBSDM-WLTAIBSBSA-N 0.000 description 1
- GJHWILMUOANXTG-WPRPVWTQSA-N Gly-Val-Arg Chemical compound [H]NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O GJHWILMUOANXTG-WPRPVWTQSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- HASRFYOMVPJRPU-SRVKXCTJSA-N Leu-Arg-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(O)=O)C(O)=O HASRFYOMVPJRPU-SRVKXCTJSA-N 0.000 description 1
- FPFOYSCDUWTZBF-IHPCNDPISA-N Leu-Trp-Leu Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H]([NH3+])CC(C)C)C(=O)N[C@@H](CC(C)C)C([O-])=O)=CNC2=C1 FPFOYSCDUWTZBF-IHPCNDPISA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- WTZUSCUIVPVCRH-SRVKXCTJSA-N Lys-Gln-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N WTZUSCUIVPVCRH-SRVKXCTJSA-N 0.000 description 1
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 1
- YRAWWKUTNBILNT-FXQIFTODSA-N Met-Ala-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O YRAWWKUTNBILNT-FXQIFTODSA-N 0.000 description 1
- MUYQDMBLDFEVRJ-LSJOCFKGSA-N Met-Ala-His Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 MUYQDMBLDFEVRJ-LSJOCFKGSA-N 0.000 description 1
- RZJOHSFAEZBWLK-CIUDSAMLSA-N Met-Gln-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N RZJOHSFAEZBWLK-CIUDSAMLSA-N 0.000 description 1
- KQBJYJXPZBNEIK-DCAQKATOSA-N Met-Glu-Arg Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCNC(N)=N KQBJYJXPZBNEIK-DCAQKATOSA-N 0.000 description 1
- ZBLSZPYQQRIHQU-RCWTZXSCSA-N Met-Thr-Val Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O ZBLSZPYQQRIHQU-RCWTZXSCSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- 101150005851 NOS gene Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000207746 Nicotiana benthamiana Species 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- ZPPVJIJMIKTERM-YUMQZZPRSA-N Pro-Gln-Gly Chemical compound OC(=O)CNC(=O)[C@H](CCC(=O)N)NC(=O)[C@@H]1CCCN1 ZPPVJIJMIKTERM-YUMQZZPRSA-N 0.000 description 1
- DMKWYMWNEKIPFC-IUCAKERBSA-N Pro-Gly-Arg Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O DMKWYMWNEKIPFC-IUCAKERBSA-N 0.000 description 1
- VWXGFAIZUQBBBG-UWVGGRQHSA-N Pro-His-Gly Chemical compound C([C@@H](C(=O)NCC(=O)[O-])NC(=O)[C@H]1[NH2+]CCC1)C1=CN=CN1 VWXGFAIZUQBBBG-UWVGGRQHSA-N 0.000 description 1
- JUJCUYWRJMFJJF-AVGNSLFASA-N Pro-Lys-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H]1CCCN1 JUJCUYWRJMFJJF-AVGNSLFASA-N 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- BRKHVZNDAOMAHX-BIIVOSGPSA-N Ser-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N BRKHVZNDAOMAHX-BIIVOSGPSA-N 0.000 description 1
- FCRMLGJMPXCAHD-FXQIFTODSA-N Ser-Arg-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O FCRMLGJMPXCAHD-FXQIFTODSA-N 0.000 description 1
- ADJDNJCSPNFFPI-FXQIFTODSA-N Ser-Pro-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO ADJDNJCSPNFFPI-FXQIFTODSA-N 0.000 description 1
- XGQKSRGHEZNWIS-IHRRRGAJSA-N Ser-Pro-Tyr Chemical compound N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O XGQKSRGHEZNWIS-IHRRRGAJSA-N 0.000 description 1
- SRSPTFBENMJHMR-WHFBIAKZSA-N Ser-Ser-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SRSPTFBENMJHMR-WHFBIAKZSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- FQPQPTHMHZKGFM-XQXXSGGOSA-N Thr-Ala-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O FQPQPTHMHZKGFM-XQXXSGGOSA-N 0.000 description 1
- WYLAVUAWOUVUCA-XVSYOHENSA-N Thr-Phe-Asp Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O WYLAVUAWOUVUCA-XVSYOHENSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- BSCBBPKDVOZICB-KKUMJFAQSA-N Tyr-Leu-Asp Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O BSCBBPKDVOZICB-KKUMJFAQSA-N 0.000 description 1
- DAOREBHZAKCOEN-ULQDDVLXSA-N Tyr-Leu-Met Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(O)=O DAOREBHZAKCOEN-ULQDDVLXSA-N 0.000 description 1
- UMSZZGTXGKHTFJ-SRVKXCTJSA-N Tyr-Ser-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 UMSZZGTXGKHTFJ-SRVKXCTJSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- UEOOXDLMQZBPFR-ZKWXMUAHSA-N Val-Ala-Asn Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N UEOOXDLMQZBPFR-ZKWXMUAHSA-N 0.000 description 1
- KKHRWGYHBZORMQ-NHCYSSNCSA-N Val-Arg-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KKHRWGYHBZORMQ-NHCYSSNCSA-N 0.000 description 1
- ISERLACIZUGCDX-ZKWXMUAHSA-N Val-Asp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)C)N ISERLACIZUGCDX-ZKWXMUAHSA-N 0.000 description 1
- KOPBYUSPXBQIHD-NRPADANISA-N Val-Cys-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KOPBYUSPXBQIHD-NRPADANISA-N 0.000 description 1
- ROLGIBMFNMZANA-GVXVVHGQSA-N Val-Glu-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](C(C)C)N ROLGIBMFNMZANA-GVXVVHGQSA-N 0.000 description 1
- XBJKAZATRJBDCU-GUBZILKMSA-N Val-Pro-Ala Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O XBJKAZATRJBDCU-GUBZILKMSA-N 0.000 description 1
- RLVTVHSDKHBFQP-ULQDDVLXSA-N Val-Tyr-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=C(O)C=C1 RLVTVHSDKHBFQP-ULQDDVLXSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000036579 abiotic stress Effects 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 108010052670 arginyl-glutamyl-glutamic acid Proteins 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 108010077245 asparaginyl-proline Proteins 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 108010009297 diglycyl-histidine Proteins 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010026364 glycyl-glycyl-leucine Proteins 0.000 description 1
- 108010089804 glycyl-threonine Proteins 0.000 description 1
- 108010087823 glycyltyrosine Proteins 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 101150029559 hph gene Proteins 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 108010017391 lysylvaline Proteins 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 230000005080 plant death Effects 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108010053725 prolylvaline Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 108010015385 valyl-prolyl-proline Proteins 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明属于植物基因工程技术领域,具体涉及TaDTG6蛋白在提高植物抗旱性中的应用。The invention belongs to the technical field of plant genetic engineering, and in particular relates to the application of TaDTG6 protein in improving plant drought resistance.
背景技术Background technique
植物在复杂多变的环境中生长发育,常受到逆境胁迫,其中干旱是影响和限制植物生长发育的主要逆境因子,甚至会导致植物死亡,严重影响农业生产。因此,培育抗旱作物品种一直是农业科学技术研究的主要目标之一。Plants grow and develop in a complex and changeable environment, and are often subjected to adversity stress, among which drought is the main stress factor that affects and limits plant growth and development, and even causes plant death, seriously affecting agricultural production. Therefore, cultivating drought-resistant crop varieties has always been one of the main goals of agricultural science and technology research.
小麦(Triticum aestivum L.)是全世界人民最主要的碳水化合物和蛋白质来源。据测算,到2050年时全球小麦的产量至少还需要增长60%才能够满足那时全球人口的需要。因此,迫切需要寻找有效的育种手段来提高小麦产量。尽管全球小麦种植面积和产量取得了突飞猛进的增长,但是干旱、高温、高盐等非生物逆境严重影响小麦产量。在诸多环境胁迫因素中,干旱对农业生产的威胁是最严重的一个世界性问题。研究表明,作物耐旱性遗传改良的关键是优良耐旱基因的克隆和利用。因此,对小麦进行抗旱基因挖掘对培育抗旱小麦品种并提高小麦产量具有重要意义。Wheat (Triticum aestivum L.) is the most important carbohydrate and protein source for people all over the world. It is estimated that by 2050, the global wheat output will need to increase by at least 60% to meet the needs of the global population at that time. Therefore, it is urgent to find effective breeding methods to increase wheat yield. Although the global wheat planting area and yield have increased by leaps and bounds, abiotic stresses such as drought, high temperature, and high salinity have seriously affected wheat yield. Among many environmental stress factors, the threat of drought to agricultural production is the most serious worldwide problem. Studies have shown that the key to genetic improvement of crop drought tolerance is the cloning and utilization of excellent drought tolerance genes. Therefore, mining drought-resistant genes in wheat is of great significance for breeding drought-resistant wheat varieties and improving wheat yield.
发明内容Contents of the invention
本发明的目的在于提供TaDTG6蛋白在提高植物抗旱性中的应用,通过提高TaDTG6蛋白在植物中的表达量可以提高植物的抗旱性。The purpose of the present invention is to provide the application of TaDTG6 protein in improving the drought resistance of plants, and the drought resistance of plants can be improved by increasing the expression level of TaDTG6 protein in plants.
本发明提供了TaDTG6蛋白在提高植物抗旱性中的应用;The invention provides the application of TaDTG6 protein in improving the drought resistance of plants;
所述TaDTG6蛋白的氨基酸序列如SEQ ID No.1所示。The amino acid sequence of the TaDTG6 protein is shown in SEQ ID No.1.
优选的,编码所述TaDTG6蛋白的基因的核苷酸序列如SEQ ID No.2所示。Preferably, the nucleotide sequence of the gene encoding the TaDTG6 protein is shown in SEQ ID No.2.
优选的,所述植物包括单子叶植物和/或双子叶植物。Preferably, the plants include monocots and/or dicots.
优选的,所述单子叶植物包括小麦,所述双子叶植物包括拟南芥。Preferably, the monocot includes wheat, and the dicot includes Arabidopsis.
本发明提供了一种在植物中过表达外源TaDTG6蛋白的方法,所述方法包括:将编码TaDTG6蛋白的基因与表达载体连接,依次转化农杆菌和转化植物;所述TaDTG6蛋白的氨基酸序列如SEQ ID No.1所示。The present invention provides a method for overexpressing exogenous TaDTG6 protein in plants, the method comprising: connecting the gene encoding TaDTG6 protein with an expression vector, transforming Agrobacterium and transforming plants in sequence; the amino acid sequence of the TaDTG6 protein is as follows: Shown in SEQ ID No.1.
优选的,所述表达载体包括双元农杆菌载体或用于植物微弹轰击的载体。Preferably, the expression vector includes a binary Agrobacterium vector or a vector used for plant microprojectile bombardment.
优选的,所述表达载体包括pGKX、pROKII、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pCAMBIA3301、pWMB006、pWMB0010、pBI121、pCAMBIA1391-Xa和pCAMBIA1391-Xb中的任意一种。Preferably, the expression vector includes any one of pGKX, pROKII, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pCAMBIA3301, pWMB006, pWMB0010, pBI121, pCAMBIA1391-Xa and pCAMBIA1391-Xb.
优选的,将所述基因连接到所述pGKX的BamHI和XhoI酶切位点间;Preferably, the gene is connected between the BamHI and XhoI restriction sites of the pGKX;
将所述基因连接到所述pCAMBIA3301的HindIII和EcoRI酶切位点间。The gene was connected between the HindIII and EcoRI restriction sites of pCAMBIA3301.
优选的,所述农杆菌包括根癌农杆菌EHA105或含pSoup质粒的根癌农杆菌菌株GV3101。Preferably, the Agrobacterium includes Agrobacterium tumefaciens EHA105 or Agrobacterium tumefaciens strain GV3101 containing pSoup plasmid.
本发明提供了一种抗旱性植物的培育方法,采用上述技术方案所述的方法将编码所述TaDTG6蛋白的基因在目的植株中过表达,得到所述抗旱性植物。The present invention provides a method for cultivating drought-resistant plants. The gene encoding the TaDTG6 protein is overexpressed in the target plant by the method described in the above-mentioned technical solution to obtain the drought-resistant plants.
有益效果:Beneficial effect:
本发明提供了TaDTG6蛋白在提高植物抗旱性中的应用,通过将所述TaDTG6蛋白的编码基因在植物中过表达,提高植物中TaDTG6蛋白的含量和活性,显著提高植物的抗旱性。因而,TaDTG6蛋白在提高植物的抗旱性的研究中具有重要意义,可用于培育抗旱植物品种。The invention provides the application of TaDTG6 protein in improving the drought resistance of plants. By overexpressing the coding gene of the TaDTG6 protein in plants, the content and activity of TaDTG6 protein in plants are increased, and the drought resistance of plants is significantly improved. Therefore, the TaDTG6 protein is of great significance in the study of improving the drought resistance of plants, and can be used to breed drought-resistant plant varieties.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following will briefly introduce the drawings required in the embodiments.
图1为实施例1中TaDTG6基因在干旱胁迫下的表达模式;Fig. 1 is the expression pattern of TaDTG6 gene under drought stress in
图2为实施例2中TaDTG6蛋白的转录激活活性分析;Fig. 2 is the transcription activation activity analysis of TaDTG6 protein in
图3为实施例3中TaDTG6-GFP融合蛋白的亚细胞定位;Fig. 3 is the subcellular localization of TaDTG6-GFP fusion protein in
图4为实施例4中T3代转基因拟南芥植株的RT-PCR产物的电泳结果;Fig. 4 is the electrophoresis result of the RT-PCR product of T3 generation transgenic Arabidopsis plant in
图5为实施例4中T3代转基因拟南芥植株经干旱处理并复水6天后的表型;Fig. 5 is the phenotype of T3 generation transgenic Arabidopsis plants in Example 4 after drought treatment and rehydration for 6 days;
图6为实施例4中T3代转基因拟南芥植株经干旱处理并复水6天后的存活率统计结果;Fig. 6 is the statistical result of the survival rate of T3 generation transgenic Arabidopsis plants in Example 4 after drought treatment and rehydration for 6 days;
图7为实施例5中T3代沉默小麦株系的qPT-PCR结果;Fig. 7 is the qPT-PCR result of T3 generation silent wheat line in
图8为实施例5中T3代沉默小麦株系经干旱处理并复水3天后的表型;Fig. 8 is the phenotype of T3 generation silenced wheat lines in Example 5 after drought treatment and rehydration for 3 days;
图9为实施例5中T3代沉默小麦株系经干旱处理并复水3天后的存活率统计结果;Fig. 9 is the statistical result of the survival rate of T3 generation silent wheat lines in Example 5 after drought treatment and rehydration for 3 days;
图10为实施例6中T3代过表达小麦株系的qPT-PCR结果;Fig. 10 is the qPT-PCR result of T3 generation overexpression wheat line in
图11为实施例6中T3代过表达小麦株系经干旱处理并复水3天后的表型;Fig. 11 is the phenotype of the overexpressed wheat line of the T3 generation in Example 6 after drought treatment and rehydration for 3 days;
图12为实施例6中T3代过表达小麦株系经干旱处理并复水3天后的存活率统计结果;Fig. 12 is the statistical result of the survival rate of the T3 generation overexpressed wheat lines in Example 6 after drought treatment and rehydration for 3 days;
图13为实施例6中过表达小麦正常生长条件下上调表达基因GO分析;Figure 13 is the GO analysis of up-regulated expression genes under normal growth conditions of overexpressed wheat in Example 6;
图14为实施例6中过表达小麦正常生长条件下下调表达基因GO分析;Figure 14 is the GO analysis of down-regulated expression genes under normal growth conditions of overexpressed wheat in Example 6;
图15为实施例6中过表达小麦干旱胁迫条件下上调表达基因GO分析;Fig. 15 is the GO analysis of the up-regulated expression gene under the drought stress condition of overexpressing wheat in
图16为实施例6中过表达小麦干旱胁迫条件下下调表达基因GO分析。Fig. 16 is the GO analysis of down-regulated expression genes under the drought stress condition of overexpressed wheat in Example 6.
具体实施方式Detailed ways
本发明提供了一种TaDTG6蛋白在提高植物抗旱性中的应用;所述TaDTG6蛋白的氨基酸序列如SEQ ID No.1所示。The invention provides an application of TaDTG6 protein in improving plant drought resistance; the amino acid sequence of the TaDTG6 protein is shown in SEQ ID No.1.
本发明编码所述TaDTG6蛋白的基因的核苷酸序列优选如SEQ ID No.2所示。本发明所述植物优选包括单子叶植物和/或双子叶植物,所述单子叶植物优选包括小麦;所述双子叶植物优选包括拟南芥。实施例中仅以小麦作为单子叶植物的代表,以拟南芥作为双子叶植物的代表进行说明,但是不能仅将其认定为本发明的全部保护范围。本发明通过提高植物中编码TaDTG6蛋白的TaDTG6基因的表达量,或提高植物中TaDTG6蛋白的含量或活性达到提高植物抗旱性的技术效果。The nucleotide sequence of the gene encoding the TaDTG6 protein in the present invention is preferably shown in SEQ ID No.2. The plants of the present invention preferably include monocotyledonous plants and/or dicotyledonous plants, and the monocotyledonous plants preferably include wheat; the dicotyledonous plants preferably include Arabidopsis thaliana. In the embodiment, wheat is only used as a representative of monocotyledonous plants, and Arabidopsis is used as a representative of dicotyledonous plants for illustration, but it cannot be regarded as the entire protection scope of the present invention. The invention achieves the technical effect of improving plant drought resistance by increasing the expression level of TaDTG6 gene encoding TaDTG6 protein in plants, or increasing the content or activity of TaDTG6 protein in plants.
本发明还提供了一种在植物中过表达外源TaDTG6蛋白的方法,所述方法包括:将编码所述TaDTG6蛋白的基因与表达载体连接,依次转化农杆菌和转化植物。本发明所述植物优选包括双子叶植物和/或单子叶植物,所述单子叶植物与双子叶植物优选与上述相同,在此不再赘述。The present invention also provides a method for overexpressing exogenous TaDTG6 protein in plants, the method comprising: connecting the gene encoding the TaDTG6 protein with an expression vector, transforming Agrobacterium and transforming plants in sequence. The plants described in the present invention preferably include dicotyledonous plants and/or monocotyledonous plants, and the monocotyledonous plants and dicotyledonous plants are preferably the same as above, which will not be repeated here.
本发明将编码所述TaDTG6蛋白的基因与表达载体连接,得到重组表达载体。本发明所述表达载体优选依据植物类型选择,进一步优选包括双元农杆菌载体或用于植物微弹轰击的载体,更优选包括pGKX、pROKII、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pCAMBIA3301、pWMB006、pWMB0010、pBI121、pCAMBIA1391-Xa和pCAMBIA1391-Xb中的任意一种。当所述植物为拟南芥时,所述表达载体优选为pGKX,当所述植物为小麦时,所述表达载体优选为pCAMBIA3301。本发明优选将所述基因连接到所述pGKX的BamHI和XhoI酶切位点间;将所述基因连接到所述pCAMBIA3301的HindIII和EcoRI酶切位点间。本发明对所述基因与表达载体的连接方式没有特殊限定,采用本领域常规操作方式即可。本发明如无特殊限定,对相关表达载体的来源没有特殊要求。The invention connects the gene encoding the TaDTG6 protein with the expression vector to obtain the recombinant expression vector. The expression vector of the present invention is preferably selected according to the type of plant, and further preferably includes a binary Agrobacterium vector or a vector for plant microprojectile bombardment, more preferably includes pGKX, pROKII, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pCAMBIA3301, pWMB006 , pWMB0010, pBI121, pCAMBIA1391-Xa and pCAMBIA1391-Xb. When the plant is Arabidopsis, the expression vector is preferably pGKX, and when the plant is wheat, the expression vector is preferably pCAMBIA3301. In the present invention, the gene is preferably connected between the BamHI and XhoI restriction sites of pGKX; the gene is connected between the HindIII and EcoRI restriction sites of pCAMBIA3301. In the present invention, there is no special limitation on the connection method between the gene and the expression vector, and conventional operations in the field can be adopted. If there is no special limitation in the present invention, there is no special requirement on the source of the relevant expression vector.
本发明所述表达载体优选还包含外源基因的3’端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。本发明所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3’端,如:农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂合成酶Nos基因)或植物基因(如大豆贮存蛋白基因),3’端转录的非翻译区均具有类似功能。本发明在构建所述重组表达载体时,在其转录起始核苷酸前优选可加上任何一种增强型启动子,如花椰菜花叶病毒(CAMV)35S启动子、玉米的泛素启动子(Ubiquitin)、组成型启动子或组织特异表达启动子。本发明所述增强型启动子优选单独使用或与其它的植物启动子结合使用。本发明在构建所述重组表达载体时,优选还可使用增强子,所述增强子优选包括翻译增强子或转录增强子。本发明所述增强子的增强子区域优选为ATG起始密码子或邻接区域起始密码子。本发明所述增强子区域必需与编码序列的阅读框相同,以保证整个序列的正确翻译。本发明所述增强子的翻译控制信号和起始密码子来源优选为天然的或合成的。本发明所述增强子的翻译起始区域优选来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,本发明优选还包括对所用重组表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶、发光化合物的基因、抗生素的标记基因、抗化学试剂标记基因或提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。本发明所述发光化合物的基因优选为GUS基因或荧光素酶基因;所述抗生素的标记基因优选为赋予对卡那霉素和相关抗生素抗性的nptII基因、赋予对除草剂膦丝菌素抗性的bar基因、赋予对抗生素潮霉素抗性的hph基因、赋予对methatrexate抗性的dhfr基因或赋予对草甘磷抗性的EPSPS基因;所述抗化学试剂标记基因优选为抗除莠剂基因。The expression vector of the present invention preferably also includes the 3' untranslated region of the foreign gene, that is, includes the polyadenylic acid signal and any other DNA fragments involved in mRNA processing or gene expression. The polyadenylic acid signal of the present invention can guide polyadenylic acid to be added to the 3' end of the mRNA precursor, such as: Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopain synthase Nos gene) or plant gene ( Such as soybean storage protein gene), the untranslated region transcribed at the 3' end has similar functions. In the present invention, when constructing the recombinant expression vector, any enhanced promoter, such as the cauliflower mosaic virus (CAMV) 35S promoter, the ubiquitin promoter of corn, can preferably be added before its transcription start nucleotide (Ubiquitin), constitutive promoter or tissue-specific expression promoter. The enhanced promoter of the present invention is preferably used alone or in combination with other plant promoters. In the present invention, when constructing the recombinant expression vector, an enhancer is preferably used, and the enhancer preferably includes a translation enhancer or a transcription enhancer. The enhancer region of the enhancer in the present invention is preferably the ATG initiation codon or the initiation codon of the adjacent region. The enhancer region of the present invention must be in the same reading frame as the coding sequence to ensure correct translation of the entire sequence. The sources of translational control signals and initiation codons of the enhancers of the present invention are preferably natural or synthetic. The translation initiation region of the enhancer of the present invention is preferably from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the present invention preferably also includes processing the recombinant expression vector used, such as adding enzymes that can express in plants, genes that encode color-changing compounds, luminescent compounds, and markers for antibiotics gene, chemical resistance marker gene, or mannose-6-phosphate isomerase gene that provides the ability to metabolize mannose. The gene of the luminescent compound of the present invention is preferably the GUS gene or the luciferase gene; the marker gene of the antibiotic is preferably the nptII gene that confers resistance to kanamycin and related antibiotics, and the gene that confers resistance to the herbicide phosphinothricin. The bar gene that confers resistance to the antibiotic hygromycin, the hph gene that confers resistance to the antibiotic hygromycin, the dhfr gene that confers resistance to methrexate, or the EPSPS gene that confers resistance to glyphosate; the chemical resistance marker gene is preferably herbicide resistance Gene.
得到所述重组表达载体,本发明优选将所述重组载体转化到农杆菌中,得到重组农杆菌。本发明所述农杆菌的类型优选依据植物种类进行选择,优选包括根癌农杆菌EHA105或含pSoup质粒的根癌农杆菌菌株GV3101,如当所述植物为拟南芥时,所述农杆菌优选为含pSoup质粒的根癌农杆菌菌株GV3101,当所述植物为小麦时,所述农杆菌优选为EHA105。本发明对所述重组载体的转化方式没有具体限定,采用本领域常规转化方式即可。To obtain the recombinant expression vector, the present invention preferably transforms the recombinant vector into Agrobacterium to obtain the recombinant Agrobacterium. The type of Agrobacterium described in the present invention is preferably selected according to the plant species, preferably including Agrobacterium tumefaciens EHA105 or Agrobacterium tumefaciens strain GV3101 containing pSoup plasmid, such as when the plant is Arabidopsis, the Agrobacterium preferably It is Agrobacterium tumefaciens strain GV3101 containing pSoup plasmid, and when the plant is wheat, the Agrobacterium is preferably EHA105. In the present invention, the transformation method of the recombinant vector is not specifically limited, and conventional transformation methods in the art can be used.
得到所述重组农杆菌后,本发明将所述重组农杆菌转化到植物中,即完成所述过表达过程。本发明将所述重组农杆菌转化到植物中的方法优选包括花芽浸泡法或农杆菌介导的基因转化法。本发明对所述方法的具体操作过程没有特殊限定,采用本领域常规操作即可。After obtaining the recombinant Agrobacterium, the present invention transforms the recombinant Agrobacterium into plants, that is, completes the overexpression process. The method of the present invention for transforming the recombinant Agrobacterium into plants preferably includes a flower bud soaking method or an Agrobacterium-mediated gene transformation method. The present invention has no special limitation on the specific operation process of the method, and conventional operations in the field can be used.
本发明还提供了一种抗旱性植物的培育方法,采用上述技术方案所述的方法将编码所述TaDTG6蛋白的基因在目的植株中过表达,得到所述抗旱性植物。本发明所述培育方法与所述在植物中过表达外源TaDTG6蛋白的方法中的具体操作过程相同,在此不再赘述。The present invention also provides a method for cultivating drought-resistant plants. The gene encoding the TaDTG6 protein is overexpressed in the target plant by using the method described in the above technical solution to obtain the drought-resistant plants. The cultivation method of the present invention is the same as the specific operation process in the method of overexpressing exogenous TaDTG6 protein in plants, and will not be repeated here.
为了进一步说明本发明,下面结合附图和实施例对本发明提供的技术方案进行详细地描述,但不能将它们理解为对本发明保护范围的限定。In order to further illustrate the present invention, the technical solutions provided by the present invention will be described in detail below in conjunction with the accompanying drawings and examples, but they should not be construed as limiting the protection scope of the present invention.
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
下述实施例中的生物材料信息如下:The biological material information in the following examples is as follows:
载体pGKX:记载在如下文献中:Qin F,Sakuma Y,Tran LS,Maruyama K,KidokoroS,et al.(2008)Arabidopsis DREB2A-interacting proteins function as RINGE3ligases and negatively regulate plant drought stress-responsive geneexpression.Plant Cell 20:1693-1707.公众可从西北农林科技大学获得;Vector pGKX: described in the following documents: Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, et al. (2008) Arabidopsis DREB2A-interacting proteins function as RINGE3ligases and negatively regulate plant drought stress-responsive geneexpression.Plant Cell 20 :1693-1707. Publicly available from Northwest A&F University;
载体pCAMBIA3301:记载在如下文献:Regulatory changes in TaSNAC8-6Aareassociated with drought tolerance in wheat seedlings.Plant Biotechnol J 2019.公众可从西北农林科技大学获得。Vector pCAMBIA3301: described in the following literature: Regulatory changes in TaSNAC8-6Aareassociated with drought tolerance in wheat seedlings. Plant Biotechnol J 2019. Publicly available from Northwest Agriculture and Forestry University.
载体pTF486:记载在如下文献:ABA-induced sugar transporterTaSTP6promotes wheat susceptibility to stripe rust.PlantPhysiol.2019,181(3):1328-1343,公众可从西北农林科技大学获得;Vector pTF486: recorded in the following literature: ABA-induced sugar transporterTaSTP6promotes wheat susceptibility to stripe rust.PlantPhysiol.2019,181(3):1328-1343, available to the public from Northwest Agriculture and Forestry University;
根癌农杆菌GV3101+pSoup菌株:记载在如下文献中:Scholthof HB,Alvarado VY,Vega-Arreguin JC,Ciomperlik J,Odokonyero D,et al.(2011)Identification of anARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana.Plant Physiol156:1548-1555,公众可从西北农林科技大学获得;Agrobacterium tumefaciens GV3101+pSoup strain: described in the following documents: Scholthof HB, Alvarado VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D, et al. (2011) Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana.Plant Physiol 156:1548-1555, publicly available from Northwest A&F University;
根癌农杆菌EHA105菌株:记载在如下文献:Regulatory changes in TaSNAC8-6Aare associated with drought tolerance in wheat seedlings.Plant Biotechnol J2019.,公众可从西北农林科技大学获得;Agrobacterium tumefaciens EHA105 strain: recorded in the following literature: Regulatory changes in TaSNAC8-6Aare associated with drought tolerance in wheat seedlings.Plant Biotechnol J2019. The public can obtain from Northwest Agriculture and Forestry University;
哥伦比亚生态型拟南芥(Arabidopsis thaliana(Columbia ecotype))(col-0;以下简称为野生型拟南芥):记载在如下文献:Yamaguchi-Shinozaki K,Shinozaki K(1994)Anovel cis-acting element in an Arabidopsis gene is involved in responsivenessto drought,low-temperature,orhigh-salt stress.Plant Cell 6:251-264.公众可从西北农林科技大学获得;Arabidopsis thaliana (Columbia ecotype) (col-0; hereinafter referred to as wild-type Arabidopsis): recorded in the following literature: Yamaguchi-Shinozaki K, Shinozaki K (1994) Anovel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251-264. Publicly available from Northwest Agriculture and Forestry University;
小麦品种中国春(Chinese Spring):记载在如下文献:Regulatory changes inTaSNAC8-6A are associated with drought tolerance in wheat seedlings.PlantBiotechnol J 2019.公众可从西北农林科技大学获得;Wheat variety Chinese Spring (Chinese Spring): documented in the following literature: Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings. PlantBiotechnol J 2019. Publicly available from Northwest Agriculture and Forestry University;
小麦品种Fielder:记载在如下文献:Regulatory changes in TaSNAC8-6A areassociated with drought tolerance in wheat seedlings.Plant Biotechnol J 2019.公众可从西北农林科技大学获得。Wheat variety Fielder: documented in the following literature: Regulatory changes in TaSNAC8-6A areas associated with drought tolerance in wheat seedlings. Plant Biotechnol J 2019. Publicly available from Northwest A&F University.
实施例1 TaDTG6蛋白及其编码基因的获得Example 1 The acquisition of TaDTG6 protein and its coding gene
一、蛋白TaDTG6及其编码基因的克隆1. Cloning of protein TaDTG6 and its coding gene
取小麦栽培种Chinese Spring种子,25℃下催芽三天后,将出芽的种子转移到营养土或营养液中培养两周,取全株于液氮中速冻、研磨,提取总RNA,进行反转录,获得cDNA,以该cDNA为模板,SEQ ID No.3:5’-ATGGAGCGGGCGTACTGCG-3’和SEQ ID No.4:5’-TCAGGTGCGCGCCATCAGTA-3’为引物进行PCR扩增,将扩增产物进行琼脂糖凝胶电泳,分离纯化642bp的DNA片段进行测序,结果表明,该DNA片段的序列如SEQ ID No.2所示的第1-642位所示。Take the seeds of wheat cultivar Chinese Spring, accelerate germination at 25°C for three days, transfer the germinated seeds to nutrient soil or nutrient solution for two weeks, take the whole plant, freeze it in liquid nitrogen, grind it, extract total RNA, and perform reverse transcription , to obtain cDNA, using the cDNA as a template, SEQ ID No.3: 5'-ATGGAGCGGGCGTACTGCG-3' and SEQ ID No.4: 5'-TCAGGTGCGCGCCATCAGTA-3' as primers for PCR amplification, the amplified product was agar Glycogel electrophoresis, separation and purification of a 642bp DNA fragment and sequencing, the results show that the sequence of the DNA fragment is as shown in the 1-642 positions shown in SEQ ID No.2.
SEQ ID No.2为小麦栽培种Chinese Spring中编码SEQ ID No.1所示蛋白TaDTG6的全长编码序列,将编码TaDTG6蛋白的基因命名为基因TaDTG6。SEQ ID No.2 is the full-length coding sequence encoding the protein TaDTG6 shown in SEQ ID No.1 in the wheat cultivar Chinese Spring, and the gene encoding the TaDTG6 protein is named gene TaDTG6.
二、TaDTG6基因在干旱胁迫下的表达分析2. Expression analysis of TaDTG6 gene under drought stress
取小麦栽培种Chinese Spring种子,25℃下催芽三天后,将出芽的种子转移到营养土或营养液中培养两周,然后进行以下处理:干旱胁迫采取台面干燥处理的方法,将三叶期的幼苗放置在台面上(温度为20℃;湿度为50%),分别取处理0,1,3,6,12,24,48小时的幼苗于液氮中速冻。将上述样品分别进行研磨,提取总RNA,进行反转录,获得cDNA,以该cDNA为模板,SEQ ID No.5:5’-CGCAAACTCTCCTTACTACCTCA-3’和SEQ ID No.6:5’-ATCCACGTCGATGAGCATGC-3’为引物(扩增TaDTG6基因)进行实时荧光定量PCR(qRT-PCR),分析TaDTG6基因的表达模式。Take Chinese Spring seeds of wheat cultivar, after three days of accelerating germination at 25°C, transfer the germinated seeds to nutrient soil or nutrient solution for two weeks, and then carry out the following treatments: the drought stress adopts the method of table top drying treatment, and the three-leaf stage The seedlings are placed on the table (temperature is 20° C.; humidity is 50%), and the seedlings treated for 0, 1, 3, 6, 12, 24, and 48 hours are respectively taken and quick-frozen in liquid nitrogen. Grind the above samples respectively, extract total RNA, perform reverse transcription, and obtain cDNA, using the cDNA as a template, SEQ ID No.5: 5'-CGCAAACTCTCCTTACTACCTCA-3' and SEQ ID No.6: 5'-ATCCACGTCGATGAGCATGC- 3' is a primer (amplification of TaDTG6 gene) for real-time fluorescent quantitative PCR (qRT-PCR) to analyze the expression pattern of TaDTG6 gene.
结果如图1所示,TaDTG6基因在小麦幼苗中受干旱胁迫诱导的过程中,表达量显著升高,为上调表达。The results are shown in FIG. 1 , the expression level of TaDTG6 gene was significantly increased during the induction process of wheat seedlings by drought stress, which was an up-regulated expression.
实施例2 TaDTG6蛋白的转录激活活性分析Example 2 Analysis of the transcription activation activity of TaDTG6 protein
以Chinese Spring(CS)的cDNA为模板,SEQ ID No.3:5’-ATGGAGCGGGCGTACTGCG-3’和SEQ ID No.4:5’-TCAGGTGCGCGCCATCAGTA-3’为引物进行PCR扩增,得到642bp PCR产物。Using the cDNA of Chinese Spring (CS) as a template, SEQ ID No. 3: 5'-ATGGAGCGGGCGTACTGCG-3' and SEQ ID No. 4: 5'-TCAGGTGCGCGCCATCAGTA-3' were used as primers for PCR amplification to obtain a 642bp PCR product.
经过测序,该PCR产物具有SEQ ID No.2所示的第1-642片段,其为TaDTG6基因。After sequencing, the PCR product has the 1-642th fragment shown in SEQ ID No.2, which is the TaDTG6 gene.
将上述PCR产物克隆并连接入酵母表达载体pGBKT7(Clontech,630489)中,得到重组载体(表达TaDTG6蛋白),再将重组载体转化酵母菌株AH109(上海斯信生物科技有限公司,addgene 0278;含有报告基因HIS3和ADE2),以转化空载体pGBKT7为对照,分别获得重组酵母菌株TaDTG6及pGBKT7-Control。将AH109重组酵母菌株涂到营养缺陷型培养基的板上,通过菌斑生长情况分析TaDTG6蛋白的转录激活活性。The above PCR product was cloned and ligated into the yeast expression vector pGBKT7 (Clontech, 630489) to obtain a recombinant vector (expressing TaDTG6 protein), and then the recombinant vector was transformed into yeast strain AH109 (Shanghai Sixin Biotechnology Co., Ltd., addgene 0278; containing report genes HIS3 and ADE2), and the transformed empty vector pGBKT7 was used as a control to obtain recombinant yeast strains TaDTG6 and pGBKT7-Control, respectively. The AH109 recombinant yeast strain was spread on the plate of auxotrophic medium, and the transcription activation activity of TaDTG6 protein was analyzed by plaque growth.
结果如图2所示,重组酵母菌株TaDTG6能在SD/-Trp(单缺)培养基的板上生长。在SD/-T-H(两缺)、SD/-T-H-A(三缺)营养缺陷型培养基的板上,含有pGBKT7-Control质粒的酵母菌株(pGBKT7-Control)不能正常生长,而重组酵母菌株TaDTG6均能够正常生长。The results are shown in Figure 2, the recombinant yeast strain TaDTG6 can grow on the plate of SD/-Trp (single deficiency) medium. On SD/-T-H (two deficiencies), SD/-T-H-A (three deficiencies) auxotrophic medium plates, the yeast strain (pGBKT7-Control) containing the pGBKT7-Control plasmid could not grow normally, while the recombinant yeast strain TaDTG6 could not grow normally. able to grow normally.
上述结果表明:TaDTG6蛋白具有转录激活活性,可以作为转录激活剂。The above results show that: TaDTG6 protein has transcriptional activation activity and can act as a transcriptional activator.
实施例3 TaDTG6-GFP融合蛋白的亚细胞定位Example 3 Subcellular localization of TaDTG6-GFP fusion protein
以Chinese Spring(CS)的cDNA为模板,SEQ ID No.7:5’-ATGGAGCGGGCGTACTGCG-3’和SEQ ID No.8:5’-GGTGCGCGCCATCAGTAGTT-3’为引物进行PCR扩增,将目的基因克隆并连接入表达载体pTF486中,转化小麦(Chinese Spring)原生质体,以转化空载体pTF486为对照,分别在激光共聚焦显微镜下观察。Using the cDNA of Chinese Spring (CS) as a template, SEQ ID No.7: 5'-ATGGAGCGGGCGTACTGCG-3' and SEQ ID No.8: 5'-GGTGCGCGCCATCAGTAGTT-3' as primers for PCR amplification, the target gene was cloned and Ligated into the expression vector pTF486, transformed into wheat (Chinese Spring) protoplasts, and the transformed empty vector pTF486 was used as a control, respectively observed under a confocal laser microscope.
结果如图3所示,转化空载体pTF486的原生质体中绿色荧光分布在整个细胞中,而转化TaDTG6-GFP融合蛋白载体的原生质体中绿色荧光仅分布在细胞核中,表明:TaDTG6是一个核定位蛋白。The results are shown in Figure 3. The green fluorescence in the protoplasts transformed with the empty vector pTF486 is distributed throughout the cell, while the green fluorescence in the protoplasts transformed with the TaDTG6-GFP fusion protein vector is only distributed in the nucleus, indicating that TaDTG6 is a nuclear localization protein.
实施例4过表达基因TaDTG6提高拟南芥抗旱性Example 4 Overexpression of gene TaDTG6 improves drought resistance of Arabidopsis
1、重组载体的构建1. Construction of recombinant vector
将SEQ ID No.2的第1-642位所示的DNA片段克隆到载体pGKX的NotI和Xho I酶切位点间(位于35S启动子下游),并经测序证实,获得重组载体pGZ,该重组载体表达SEQ IDNo.1所示的TaDTG6蛋白。The DNA fragment shown in the 1-642 position of SEQ ID No.2 is cloned into the NotI and XhoI restriction sites of the vector pGKX (located downstream of the 35S promoter), and confirmed by sequencing to obtain the recombinant vector pGZ, the The recombinant vector expresses the TaDTG6 protein shown in SEQ ID No.1.
2、重组根癌农杆菌的获得2. Acquisition of recombinant Agrobacterium tumefaciens
将重组载体pGZ转化根癌农杆菌GV3101+pSoup菌株,获得含有重组载体pGZ的重组农杆菌X;Transform the recombinant vector pGZ into the Agrobacterium tumefaciens GV3101+pSoup strain to obtain recombinant Agrobacterium X containing the recombinant vector pGZ;
将空载体pGKX转化根癌农杆菌GV3101+pSoup菌株,获得含有空载体pGKX的重组农杆菌Y。The empty vector pGKX was transformed into the Agrobacterium tumefaciens GV3101+pSoup strain to obtain the recombinant Agrobacterium Y containing the empty vector pGKX.
3、转基因拟南芥的获得3. Obtaining transgenic Arabidopsis
将重组农杆菌X用花芽浸泡法转化野生型拟南芥,收获T1代种子;将T1代种子用含有30mg/L卡那霉素的MS培养基筛选并将抗性苗种植收种,获得T2代种子;将T2代种子用含有30mg/L卡那霉素的MS培养基筛选,挑选卡那霉素抗性分离比符合3:1的卡那霉素抗性苗种植,同时随机选取培养皿的抗性幼苗按照步骤4的方法进行RT-PCR检测,确定过表达TaDTG6的拟南芥株系、收种,获得T3代单拷贝过表达TaDTG6的拟南芥种子,将T3代种子用含有30mg/L卡那霉素的MS培养基筛选得到不再产生卡那霉素抗性分离的T3代纯合转基因TaDTG6的拟南芥株系3个,分别命名为TL1、TL2和TL3。The recombinant Agrobacterium X was transformed into wild-type Arabidopsis thaliana by flower bud soaking method, and the T1 generation seeds were harvested; the T1 generation seeds were screened with MS medium containing 30mg/L kanamycin, and the resistant seedlings were planted and harvested to obtain T2 generation seeds; the T2 generation seeds are screened with MS medium containing 30mg/L kanamycin, and the kanamycin resistance segregation ratio is selected to meet the 3:1 kanamycin resistant seedlings for planting, and the petri dish is randomly selected The resistant seedlings were detected by RT-PCR according to the method in
将重组农杆菌Y用花芽浸泡法转化野生型拟南芥,按照上述方法筛选,获得T3代不再产生卡那霉素抗性分离的T3代纯合转空载体的拟南芥株系3个,分别命名为Y1、Y2和Y3(表型实验中统称Y)。The recombinant Agrobacterium Y was transformed into wild-type Arabidopsis thaliana by the flower bud soaking method, and was screened according to the above method to obtain 3 T3 homozygous Arabidopsis strains transformed into empty vectors that no longer produce kanamycin resistance in the T3 generation , respectively named Y1, Y2 and Y3 (collectively referred to as Y in phenotype experiments).
T1代表示转化当代所结的种子及由它所长成的植株;T2代表示T1代自交产生的种子及由它所长成的植株;T3代表示T2代自交产生的种子及由它所长成的植株。The T1 generation represents the seeds produced by the transformation generation and the plants grown from it; the T2 generation represents the seeds produced by the selfing of the T1 generation and the plants grown by it; the T3 generation represents the seeds produced by the selfing of the T2 generation and the plants grown by it grown plants.
上述花芽浸泡法的具体步骤如下:The concrete steps of above-mentioned flower bud soaking method are as follows:
取重组农杆菌X或Y接种于含有50mg/L卡那霉素和5mg/L四环素的LB液体培养基中,于28℃振荡培养至OD600为0.8,25℃、5000转/分钟离心2分钟,除去上清液,用重悬溶液(溶剂为水,溶质蔗糖和silwet77的浓度分别为50g/L、0.02%(体积百分含量)重悬菌体,获得侵染液。用移液器将侵染液点在花蕾及生长点,用薄膜覆盖,保湿2天后,置于正常条件下生长,收获种子。Take the recombinant Agrobacterium X or Y and inoculate it in LB liquid medium containing 50 mg/L kanamycin and 5 mg/L tetracycline, culture it with shaking at 28°C until the OD600 is 0.8, centrifuge at 25°C, 5000 rpm for 2 minutes, Remove the supernatant, and resuspend the bacterium with a resuspension solution (the solvent is water, the concentrations of the solute sucrose and silwet77 are 50g/L and 0.02% (volume percentage) respectively) to obtain the infection solution. Spot the dye solution on the flower buds and growth points, cover them with a film, keep them moisturized for 2 days, grow under normal conditions, and harvest the seeds.
4、RT-PCR检测转基因拟南芥4. RT-PCR detection of transgenic Arabidopsis
取步骤3获得的T3代纯合转基因TaDTG6的拟南芥株系(TL1~TL3),T3代纯合转空载体的拟南芥株系(Y)植株,及野生型拟南芥(CK),用TRIZOL(Biotopped)法分离出总RNA,紧接着用DNAseⅠ(Takara)法消除基因组的污染,然后用Nanodrop1000(Thermo Scientificproduct,USA)测定浓度,统一取5μg跑0.8%琼脂糖胶。取1μg总RNA,用重组M-MLV反转录酶,以1μg Oligo(dT)23(Promega)为引物,进行cDNAs的合成,用特异引物F1和R1对基因TaDTG6的cDNA进行PCR扩增,以拟南芥中的基因Actin2为内参,引物为FC1和RC1。将PCR扩增产物进行琼脂糖凝胶电泳,结果如图4所示。Take the T3 generation homozygous TaDTG6 transgenic Arabidopsis lines (TL1-TL3), the T3 generation homozygous transgenic Arabidopsis lines (Y) plants obtained in
上述引物的序列如下:和The sequences of the above primers are as follows: and
F1:5’-ATGGAGCGGGCGTACTGCG-3’(SEQ ID No.9);F1: 5'-ATGGAGCGGGCGTACTGCG-3' (SEQ ID No.9);
R1:5’-TCAGGTGCGCGCCATCAGTA-3’(SEQ ID No.10);R1: 5'-TCAGGTGCGCGCCATCAGTA-3' (SEQ ID No. 10);
FC1:5’-GGTAACATTGTGCTCAGTGGTGG-3’(SEQ ID No.11);FC1: 5'-GGTAACATTGTGCTCAGTGGTGG-3' (SEQ ID No. 11);
RC1:5’-GCATCAATTCGATCACTCAGAG-3’(SEQ ID No.12)。RC1: 5'-GCATCAATTCGATCACTCAGAG-3' (SEQ ID No. 12).
图4的结果表明,野生型拟南芥CK植株中不表达目的基因TaDTG6;而转基因TaDTG6的拟南芥株系TL1~TL3中目的基因TaDTG6的表达量都很高。The results in Fig. 4 show that the target gene TaDTG6 is not expressed in the wild-type Arabidopsis CK plants; while the expression levels of the target gene TaDTG6 in the transgenic Arabidopsis lines TL1-TL3 are very high.
5、转基因拟南芥的抗旱性表型分析5. Phenotype analysis of drought resistance of transgenic Arabidopsis
取野生型拟南芥(CK)、T3代纯合转基因TaDTG6的拟南芥株系(TL1,TL2,TL3)和T3代纯合转空载体的拟南芥株系苗龄7天的植株,转移到装有150g营养土的钵中,正常条件下生长32天后,进行干旱处理(即停止浇水),14天后,表型差异明显即野生型CK株系莲座叶严重干枯而TL1,TL2,TL3株系莲座叶严重萎蔫时复水。复水6天后统计各株系植株的存活率(将表现为能正常生长和收种的植株定义为存活植株,将表现为严重受旱害且不能正常生长和收种的植株定义为死亡植株;存活率为各株系中存活植株数目占总植株数的百分比)。实验设4次重复,每次重复各株系的植株数不少于16株,取平均值进行统计分析。Take wild-type Arabidopsis (CK), Arabidopsis thaliana lines (TL1, TL2, TL3) homozygous transgene TaDTG6 of the T3 generation, and Arabidopsis lines of the T3 generation homozygous transgenic empty vector 7-day-old plants, Transfer to the bowl that 150g nutrient soil is housed, after growing under normal conditions for 32 days, carry out drought treatment (i.e. stop watering), after 14 days, the difference of phenotype is obvious that wild-type CK strain rosette leaves are severely dry and TL1, TL2, When the rosette leaves of TL3 strain were severely wilted, rewater. After 6 days of rehydration, the survival rate of each strain plant was counted (the plants that showed normal growth and harvest were defined as surviving plants, and the plants that showed severe drought damage and could not grow normally and harvest were defined as dead plants; The survival rate is the percentage of the number of surviving plants in the total number of plants in each line). The experiment was repeated 4 times, and the number of plants in each line was not less than 16 in each repetition, and the average value was taken for statistical analysis.
表型观察结果如图5,可以看出,与CK相比,T3代纯合转基因TaDTG6的拟南芥株系复水后植株存活率高。The phenotype observation results are shown in Figure 5. It can be seen that compared with CK, the Arabidopsis lines of the T3 generation homozygous transgene TaDTG6 have a higher plant survival rate after rehydration.
统计存活率,结果如图6所示,T3代纯合转基因TaDTG6的拟南芥株系复水后植株存活率为86%~92%,显著高于CK。The survival rate was counted, and the results are shown in Figure 6. After rehydration, the plant survival rate of the Arabidopsis line of the T3 homozygous transgene TaDTG6 was 86%-92%, which was significantly higher than that of CK.
T3代纯合转空载体的拟南芥株系和野生型拟南芥(CK)结果无显著差异。There was no significant difference in the results between T3 homozygous transgenic Arabidopsis lines and wild-type Arabidopsis (CK).
上述结果表明,与野生型拟南芥或CK相比,T3代纯合转基因TaDTG6的拟南芥抗旱型提高。The above results indicated that compared with wild-type Arabidopsis or CK, Arabidopsis homozygous transgene TaDTG6 in the T3 generation had improved drought resistance.
实施例4的结果表明,蛋白TaDTG6及其编码基因具有调控植物抗旱性的功能,在植物中过表达蛋白TaDTG6的编码基因,可以提高植物的抗旱性。The results of Example 4 show that the protein TaDTG6 and its encoding gene have the function of regulating the drought resistance of plants, and overexpressing the encoding gene of protein TaDTG6 in plants can improve the drought resistance of plants.
实施例5沉默TaDTG6基因降低小麦抗旱性Example 5 Silence of TaDTG6 gene reduces drought resistance of wheat
1、重组载体的构建1. Construction of recombinant vector
将SEQ ID No.2的第220-517位所示的DNA片段用引物SEQ ID No.13:5'-AAGCAGAGGCTATGGCTCGGCA-3'和SEQ ID No.14:5'-TGAGGTAGTAAGGAGAGTTTGCG-3'扩增后克隆到pWMB006的BamHI和XhoI酶切位点间(位于Ubi启动子下游),并经测序证实,获得重组载体pWMB006-GZ,该重组载体表达SEQ ID No.1所示的TaDTG6蛋白。The DNA fragment shown in the 220-517 position of SEQ ID No.2 was cloned after amplification with primers SEQ ID No.13: 5'-AAGCAGAGGCTATGGCTCGGCA-3' and SEQ ID No.14: 5'-TGAGGTAGTAAGGAGAGTTTGCG-3' Between the BamHI and XhoI restriction sites of pWMB006 (located downstream of the Ubi promoter), and confirmed by sequencing, the recombinant vector pWMB006-GZ was obtained, and the recombinant vector expressed the TaDTG6 protein shown in SEQ ID No.1.
2、重组根癌农杆菌的获得2. Acquisition of recombinant Agrobacterium tumefaciens
将重组载体pWMB006-GZ转化根癌农杆菌EHA105菌株,获得含有重组载体pWMB006-GZ的重组农杆菌Y。The recombinant vector pWMB006-GZ was transformed into Agrobacterium tumefaciens EHA105 strain to obtain recombinant Agrobacterium Y containing the recombinant vector pWMB006-GZ.
将空载体pWMB006转化根癌农杆菌EHA105菌株,获得含有空载体pWMB006的重组农杆菌CK。The empty vector pWMB006 was transformed into the Agrobacterium tumefaciens EHA105 strain to obtain the recombinant Agrobacterium CK containing the empty vector pWMB006.
3、转基因小麦的获得3. Obtaining genetically modified wheat
将重组农杆菌Y用农杆菌介导的基因转化法转化小麦品种Fielder(以下也称为野生型小麦),得到T0代植株,并种植于温室(16h-光照/8h-黑暗);T0代植株经PCR鉴定后获得阳性植株,自交后获得T1代种子;T1代植株再经PCR鉴定后获得阳性植株,自交后获得T2代种子,同时随机选取阳性苗和阴性苗按照步骤4的方法进行qRT-PCR检测,确定过表达TaDTG6的表达量。T2代植株再经PCR鉴定后获得阳性植株,自交后获得T3代种子。The recombinant Agrobacterium Y was transformed into the wheat variety Fielder (hereinafter also referred to as wild-type wheat) by the Agrobacterium-mediated gene transformation method, and the T0 generation plants were obtained, and planted in the greenhouse (16h-light/8h-dark); the T0 generation plants Positive plants were obtained after PCR identification, and T1 generation seeds were obtained after selfing; positive plants were obtained after T1 generation plants were identified by PCR, T2 generation seeds were obtained after selfing, and positive seedlings and negative seedlings were randomly selected according to the method of
将重组农杆菌CK按照上述方法转化到小麦品种Fielder(以下也称为野生型小麦),直到得到T3代转pWMB006小麦株系。The recombinant Agrobacterium CK was transformed into the wheat variety Fielder (hereinafter also referred to as wild-type wheat) according to the above method until the T3 transgenic pWMB006 wheat strain was obtained.
T0代表示转化当代所长成的植株;T1代表示T0代自交产生的种子及由它所长成的植株;T2代表示T1代自交产生的种子及由它所长成的植株。T3代表示T2代自交产生的种子及由它所长成的植株。The T0 generation represents the plants grown from the transformed generation; the T1 generation represents the seeds produced by the selfing of the T0 generation and the plants grown from it; the T2 generation represents the seeds produced by the selfing of the T1 generation and the plants grown from it. The T3 generation represents the seeds produced by selfing of the T2 generation and the plants grown from it.
上述农杆菌介导的基因转化法的具体步骤如下:The specific steps of the above-mentioned Agrobacterium-mediated gene transformation method are as follows:
重组农杆菌Y接种于含有25mg/L壮观霉素的YEB液体培养基中,于28℃振荡培养至OD600为0.5。取小麦幼胚放置于装满保存液的2mL离心管,46℃热处理3min,4℃、2000转/分钟离心10分钟。将准备好的重组农杆菌加入处理好的幼胚,22℃黑暗培养3天,转移到新的培养基上28℃黑暗培养7-10天。通过不同浓度草胺膦筛选,最后转移到分化培养基上,分化后转移到生根培养基上培养,一定大小后移入营养土中。Recombinant Agrobacterium Y was inoculated in YEB liquid medium containing 25 mg/L spectinomycin, and cultured with shaking at 28°C until OD600 was 0.5. Place the young wheat embryos in a 2mL centrifuge tube filled with preservation solution, heat-treat at 46°C for 3 minutes, and centrifuge at 4°C at 2000 rpm for 10 minutes. The prepared recombinant Agrobacterium was added to the treated immature embryos, cultured in the dark at 22°C for 3 days, then transferred to a new medium and cultured in the dark at 28°C for 7-10 days. Screened through different concentrations of glufosinate, and finally transferred to the differentiation medium, and then transferred to the rooting medium for cultivation after differentiation, and then moved into the nutrient soil after a certain size.
4、qRT-PCR检测转基因小麦4. qRT-PCR detection of transgenic wheat
取步骤3获得的野生型小麦、T3代转pWMB006小麦株系、T3代转pWMB006-GZ小麦株系(RI1、RI2、RI3),用TRIZOL(Biotopped)法分离出总RNA,紧接着用DNAseⅠ(Takara)法消除基因组的污染,然后用Nanodrop1000(Thermo Scientific product,USA)测定浓度,统一取5微克跑0.8%琼脂糖胶。取1微克总RNA,用重组M-MLV反转录酶,以1微克Oligo(dT)23(Promega)为引物,进行cDNAs的合成,用特异引物F2和R2对基因TaDTG6的cDNA进行qRT-PCR定量,以小麦的基因TaActin1为内参,结果如图7所示。Take the wild-type wheat obtained in
上述引物的序列如下:The sequences of the above primers are as follows:
F2:5’-CGCAAACTCTCCTTACTACCTCA-3’(SEQ ID No.15);F2: 5'-CGCAAACTCTCCTTACTACCTCA-3' (SEQ ID No. 15);
R2:5’-ATCCACGTCGATGAGCATGC-3’(SEQ ID No.16);R2: 5'-ATCCACGTCGATGAGCATGC-3' (SEQ ID No. 16);
FC2:5’-AAATCTGGCATCACACTTTCTAC-3’(SEQ ID No.17);FC2: 5'-AAATCTGGCATCACACTTTCTAC-3' (SEQ ID No. 17);
RC2:5’-GTCTCAAACATAATCTGGGTCATC-3’(SEQ ID No.18)。RC2: 5'-GTCTCAAACATAATCTGGGTCATC-3' (SEQ ID No. 18).
图7的结果表明,T3代转pWMB006-GZ小麦株系RI1-RI3中目的基因TaDTG6的表达量显著低于野生型WT。The results in Fig. 7 show that the expression level of the target gene TaDTG6 in the T3-transferred pWMB006-GZ wheat line RI1-RI3 is significantly lower than that in the wild-type WT.
5、转基因小麦的抗旱性表型分析5. Phenotypic analysis of drought resistance of transgenic wheat
取T3代转TaDTG6小麦株系(RI1、RI2、RI3)、野生型小麦(WT)植株和T3代转pWMB006小麦株系,转移到装有250g营养土的钵中,正常条件下生长21天后,进行干旱处理(即停止浇水),20-30天后,表型差异明显即RI1、RI2、RI3株系叶片明显干枯而WT植株叶片严重萎蔫时复水。复水3天后统计各株系植株的存活率(将表现为能正常生长和收种的植株定义为存活植株,将表现为严重受旱害且不能正常生长和收种的植株定义为死亡植株;存活率为各株系中存活植株数目占总植株数的百分比)。实验设3次重复,每次重复各株系的植株数不少于45株,取平均值进行统计分析。Take the T3 generation-transferred TaDTG6 wheat lines (RI1, RI2, RI3), wild-type wheat (WT) plants, and the T3 generation-transferred pWMB006 wheat line, and transfer them to a pot containing 250 g of nutrient soil. After growing for 21 days under normal conditions, After 20-30 days of drought treatment (that is, stop watering), the phenotype difference is obvious, that is, the leaves of RI1, RI2, and RI3 strains are obviously dry, and the leaves of WT plants are severely wilted. After 3 days of rehydration, the survival rate of each strain plant was counted (the plants that showed normal growth and harvest were defined as surviving plants, and the plants that showed severe drought damage and could not grow normally and harvest were defined as dead plants; The survival rate is the percentage of the number of surviving plants in the total number of plants in each line). The experiment was repeated 3 times, and the number of plants of each line was not less than 45 in each repetition, and the average value was taken for statistical analysis.
结果如图8所示,可以看出,T3代转pWMB006-GZ小麦株系复水后的存活率低于野生型小麦。The results are shown in Figure 8. It can be seen that the survival rate of the T3 transgenic pWMB006-GZ wheat line after rehydration is lower than that of the wild-type wheat.
复水3天后统计各株系植株的存活率结果如图9所示,可以看出,T3代转pWMB006-GZ小麦株系复水后的存活率为25%~32%,显著低于野生型小麦。Three days after rehydration, the survival rate of each strain was counted as shown in Figure 9. It can be seen that the survival rate of the T3 generation pWMB006-GZ wheat line after rehydration was 25% to 32%, which was significantly lower than that of the wild type wheat.
T3代转pWMB006小麦株系和野生型小麦结果无显著差异。There was no significant difference in the results of T3 transgenic pWMB006 wheat line and wild-type wheat.
实施例6过表达基因TaDTG6提高小麦抗旱性Example 6 Overexpression of gene TaDTG6 improves drought resistance of wheat
1、重组载体的构建1. Construction of recombinant vector
将SEQ ID No.2的第1-642位所示的DNA片段克隆到pCAMBIA3301的HindIII和EcoRI酶切位点间(位于Ubi启动子下游),并经测序证实,获得重组载体pCAMBIA3301-GZ,该重组载体表达SEQ ID No.1所示的TaDTG6蛋白。The DNA fragment shown in the 1-642 position of SEQ ID No.2 is cloned between HindIII and the EcoRI restriction site of pCAMBIA3301 (be positioned at Ubi promotor downstream), and through sequencing confirmation, obtain recombinant vector pCAMBIA3301-GZ, the The recombinant vector expresses the TaDTG6 protein shown in SEQ ID No.1.
2、重组根癌农杆菌的获得2. Acquisition of recombinant Agrobacterium tumefaciens
将重组载体pCAMBIA3301-GZ转化根癌农杆菌EHA105菌株,获得含有重组载体pCAMBIA3301-GZ的重组农杆菌Y。The recombinant vector pCAMBIA3301-GZ was transformed into Agrobacterium tumefaciens EHA105 strain to obtain recombinant Agrobacterium Y containing the recombinant vector pCAMBIA3301-GZ.
将空载体pCAMBIA3301转化根癌农杆菌EHA105菌株,获得含有空载体pCAMBIA3301的重组农杆菌CK。The empty vector pCAMBIA3301 was transformed into the Agrobacterium tumefaciens EHA105 strain to obtain the recombinant Agrobacterium CK containing the empty vector pCAMBIA3301.
3、转基因小麦的获得3. Obtaining genetically modified wheat
将重组农杆菌Y用农杆菌介导的基因转化法转化小麦品种Fielder(以下也称为野生型小麦),得到T0代植株,并种植于温室(16h-光照/8h-黑暗);T0代植株经PCR鉴定后获得阳性植株,自交后获得T1代种子;T1代植株再经PCR鉴定后获得阳性植株,自交后获得T2代种子,同时随机选取阳性苗和阴性苗按照步骤4的方法进行qRT-PCR检测,确定过表达TaDTG6的表达量。T2代植株再经PCR鉴定后获得阳性植株,自交后获得T3代种子。The recombinant Agrobacterium Y was transformed into the wheat variety Fielder (hereinafter also referred to as wild-type wheat) by the Agrobacterium-mediated gene transformation method, and the T0 generation plants were obtained, and planted in the greenhouse (16h-light/8h-dark); the T0 generation plants Positive plants were obtained after PCR identification, and T1 generation seeds were obtained after selfing; positive plants were obtained after T1 generation plants were identified by PCR, T2 generation seeds were obtained after selfing, and positive seedlings and negative seedlings were randomly selected according to the method of
将重组农杆菌CK按照上述方法转化到小麦品种Fielder(以下也称为野生型小麦),直到得到T3代转pCAMBIA3301小麦株系。The recombinant Agrobacterium CK was transformed into the wheat variety Fielder (hereinafter also referred to as wild-type wheat) according to the above method until the T3 transgenic pCAMBIA3301 wheat strain was obtained.
T0代表示转化当代所长成的植株;T1代表示T0代自交产生的种子及由它所长成的植株;T2代表示T1代自交产生的种子及由它所长成的植株。T3代表示T2代自交产生的种子及由它所长成的植株。The T0 generation represents the plants grown from the transformed generation; the T1 generation represents the seeds produced by the selfing of the T0 generation and the plants grown from it; the T2 generation represents the seeds produced by the selfing of the T1 generation and the plants grown from it. The T3 generation represents the seeds produced by selfing of the T2 generation and the plants grown from it.
上述农杆菌介导的基因转化法的具体步骤如下:The specific steps of the above-mentioned Agrobacterium-mediated gene transformation method are as follows:
重组农杆菌Y接种于含有25mg/L壮观霉素的YEB液体培养基中,于28℃振荡培养至OD600为0.5。取小麦幼胚放置于装满保存液的2mL离心管,46℃热处理3min,4℃、2000转/分钟离心10分钟。将准备好的重组农杆菌加入处理好的幼胚,22℃黑暗培养3天,转移到新的培养基上28℃黑暗培养7-10天。通过不同浓度草胺膦筛选,最后转移到分化培养基上,分化后转移到生根培养基上培养,一定大小后移入营养土中。Recombinant Agrobacterium Y was inoculated in YEB liquid medium containing 25 mg/L spectinomycin, and cultured with shaking at 28°C until OD600 was 0.5. Place the young wheat embryos in a 2mL centrifuge tube filled with preservation solution, heat-treat at 46°C for 3 minutes, and centrifuge at 4°C at 2000 rpm for 10 minutes. The prepared recombinant Agrobacterium was added to the treated immature embryos, cultured in the dark at 22°C for 3 days, then transferred to a new medium and cultured in the dark at 28°C for 7-10 days. Screened through different concentrations of glufosinate, and finally transferred to the differentiation medium, and then transferred to the rooting medium for cultivation after differentiation, and then moved into the nutrient soil after a certain size.
4、qRT-PCR检测转基因小麦4. qRT-PCR detection of transgenic wheat
取步骤3获得的野生型小麦、T3代转pCAMBIA3301小麦株系、T3代转TaDTG6小麦株系(OE1-OE3),用TRIZOL(Biotopped)法分离出总RNA,紧接着用DNAseⅠ(Takara)法消除基因组的污染,然后用Nanodrop1000(Thermo Scientific product,USA)测定浓度,统一取5微克跑0.8%琼脂糖胶。取1微克总RNA,用重组M-MLV反转录酶,以1微克Oligo(dT)23(Promega)为引物,进行cDNAs的合成,用特异引物F2和R2对基因TaDTG6的cDNA进行qRT-PCR定量,以小麦的基因TaActin1为内参,结果如图10所示。Take the wild-type wheat obtained in
上述引物的序列如下:The sequences of the above primers are as follows:
F2:5’-CGCAAACTCTCCTTACTACCTCA-3’(SEQ ID No.15);F2: 5'-CGCAAACTCTCCTTACTACCTCA-3' (SEQ ID No. 15);
R2:5’-ATCCACGTCGATGAGCATGC-3’(SEQ ID No.16);R2: 5'-ATCCACGTCGATGAGCATGC-3' (SEQ ID No. 16);
FC2:5’-AAATCTGGCATCACACTTTCTAC-3’(SEQ ID No.17);FC2: 5'-AAATCTGGCATCACACTTTCTAC-3' (SEQ ID No. 17);
RC2:5’-GTCTCAAACATAATCTGGGTCATC-3’(SEQ ID No.18)。RC2: 5'-GTCTCAAACATAATCTGGGTCATC-3' (SEQ ID No. 18).
图10的结果表明,T3代转TaDTG6小麦株系OE1-OE3中目的基因TaDTG6的表达量显著高于野生型WT。The results in Figure 10 show that the expression level of the target gene TaDTG6 in the T3-transferred TaDTG6 wheat line OE1-OE3 is significantly higher than that of the wild-type WT.
5、转基因小麦的抗旱性表型分析5. Phenotypic analysis of drought resistance of transgenic wheat
取T3代转TaDTG6小麦株系(OE1、OE2、OE3)、野生型小麦(WT)植株和T3代转pCAMBIA3301小麦株系,转移到装有250g营养土的钵中,正常条件下生长21天后,进行干旱处理(即停止浇水),20-30天后,表型差异明显即WT植株叶片明显干枯而OE1、OE2、OE3株系叶片严重萎蔫时复水。复水3天后统计各株系植株的存活率(将表现为能正常生长和收种的植株定义为存活植株,将表现为严重受旱害且不能正常生长和收种的植株定义为死亡植株;存活率为各株系中存活植株数目占总植株数的百分比)。实验设3次重复,每次重复各株系的植株数不少于45株,取平均值进行统计分析。Take the T3 generation of TaDTG6 wheat lines (OE1, OE2, OE3), wild-type wheat (WT) plants and T3 generation of pCAMBIA3301 wheat lines, and transfer them to a pot containing 250g of nutrient soil. After growing for 21 days under normal conditions, After 20-30 days of drought treatment (that is, stop watering), the phenotype difference is obvious, that is, the leaves of the WT plants are obviously dry and the leaves of the OE1, OE2, and OE3 lines are severely wilted. After 3 days of rehydration, the survival rate of each strain plant was counted (the plants that showed normal growth and harvest were defined as surviving plants, and the plants that showed severe drought damage and could not grow normally and harvest were defined as dead plants; The survival rate is the percentage of the number of surviving plants in the total number of plants in each line). The experiment was repeated 3 times, and the number of plants of each line was not less than 45 in each repetition, and the average value was taken for statistical analysis.
结果如图11所示,可以看出,T3代转TaDTG6小麦株系复水后的存活率高于野生型小麦。The results are shown in Figure 11. It can be seen that the survival rate of T3-transferred TaDTG6 wheat lines after rehydration is higher than that of wild-type wheat.
复水3天后统计各株系植株的存活率结果如图12所示,可以看出,T3代转TaDTG6小麦株系复水后的存活率为77%~85%,显著高于野生型小麦。Three days after rehydration, the survival rate of each line was counted as shown in Figure 12. It can be seen that the survival rate of T3-transferred TaDTG6 wheat lines after rehydration was 77%-85%, which was significantly higher than that of wild-type wheat.
T3代转pCAMBIA3301小麦株系和野生型小麦结果无显著差异。There was no significant difference in the results of T3 transgenic pCAMBIA3301 wheat line and wild-type wheat.
6、转基因小麦RNA-seq分析6. Transgenic wheat RNA-seq analysis
取T3代转TaDTG6小麦株系(OE1、OE2)及野生型(WT)小麦苗龄8天的植株,进行PEG胁迫0h和6h处理,每个株系至少3棵苗,用TRIZOL(Biotopped)法分离出总RNA,然后用Nanodrop1000(Thermo Scientific product,USA)测定浓度,合格后送北京博奥生物技术有限公司进行转录组测序并进行数据分析。Take the 8-day-old plants of the T3 generation-transferred TaDTG6 wheat lines (OE1, OE2) and wild-type (WT) wheat seedlings, and carry out PEG stress treatment for 0 h and 6 h. At least 3 seedlings for each line, use the TRIZOL (Biotopped) method The total RNA was isolated, and then the concentration was measured by Nanodrop1000 (Thermo Scientific product, USA). After passing the test, it was sent to Beijing Boao Biotechnology Co., Ltd. for transcriptome sequencing and data analysis.
结果如图13-图16所示。The results are shown in Figures 13-16.
图13-图16的结果表明,正常生长及干旱处理下的T3代转TaDTG6小麦株系中,涉及到水分胁迫应答,ABA胁迫应答等生物学途径的基因普遍上调表达。The results in Fig. 13-Fig. 16 show that in the T3-transferred TaDTG6 wheat lines under normal growth and drought treatment, genes involved in biological pathways such as water stress response and ABA stress response are generally up-regulated.
实施例5和实施例6的结果表明,TaDTG6蛋白及其编码基因具有调控植物抗旱性的功能,在植物中过表达蛋白TaDTG6的编码基因,可以提高植物的抗旱性。The results of Examples 5 and 6 show that the TaDTG6 protein and its coding gene have the function of regulating the drought resistance of plants, and the overexpression of the TaDTG6 protein coding gene in plants can improve the drought resistance of plants.
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。Although the foregoing embodiment has described the present invention in detail, it is only a part of the embodiments of the present invention, rather than all embodiments, and people can also obtain other embodiments according to the present embodiment without inventive step, these embodiments All belong to the protection scope of the present invention.
序列表sequence listing
<110> 西北农林科技大学<110> Northwest A&F University
<120> TaDTG6蛋白在提高植物抗旱性中的应用<120> Application of TaDTG6 Protein in Improving Plant Drought Resistance
<160> 18<160> 18
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 213<211> 213
<212> PRT<212> PRT
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
Met Glu Arg Ala Tyr Cys Gly Ser Gly Tyr Ser Ser Ser Gly Thr LysMet Glu Arg Ala Tyr Cys Gly Ser Gly Tyr Ser Ser Ser Ser Gly Thr Lys
1 5 10 151 5 10 15
Ser Pro Ala Ala Gly Asp Arg Glu Glu Gly Thr Tyr Met Thr Val SerSer Pro Ala Ala Gly Asp Arg Glu Glu Gly Thr Tyr Met Thr Val Ser
20 25 30 20 25 30
Ser Ala Pro Pro Lys Arg Arg Thr Gly Arg Thr Lys Val Arg Glu ThrSer Ala Pro Pro Lys Arg Arg Thr Gly Arg Thr Lys Val Arg Glu Thr
35 40 45 35 40 45
Arg His Pro Val Tyr Lys Gly Val Arg Ser Arg Asn Pro Gly Arg TrpArg His Pro Val Tyr Lys Gly Val Arg Ser Arg Asn Pro Gly Arg Trp
50 55 60 50 55 60
Val Cys Glu Leu Arg Glu Pro His Gly Lys Gln Arg Leu Trp Leu GlyVal Cys Glu Leu Arg Glu Pro His Gly Lys Gln Arg Leu Trp Leu Gly
65 70 75 8065 70 75 80
Thr Phe Asp Thr Ala Glu Met Ala Ala Arg Ala His Asp Val Ala AlaThr Phe Asp Thr Ala Glu Met Ala Ala Arg Ala His Asp Val Ala Ala
85 90 95 85 90 95
Leu Ala Leu Arg Gly Arg Ala Ala Cys Leu Asn Phe Ala Asp Ser ProLeu Ala Leu Arg Gly Arg Ala Ala Cys Leu Asn Phe Ala Asp Ser Pro
100 105 110 100 105 110
Arg Thr Leu Arg Val Pro Pro Gln Gly Gly Gly His Asp Glu Ile ArgArg Thr Leu Arg Val Pro Pro Gln Gly Gly Gly His Asp Glu Ile Arg
115 120 125 115 120 125
Arg Ala Ala Val Glu Ala Ala Glu Leu Phe Arg Pro Ala Pro Gly GlnArg Ala Ala Val Glu Ala Ala Glu Leu Phe Arg Pro Ala Pro Gly Gln
130 135 140 130 135 140
Arg Asn Ala Ala Thr Glu Val Pro Ala Ala Ser Pro Val Asp Ala GlyArg Asn Ala Ala Thr Glu Val Pro Ala Ala Ser Pro Val Asp Ala Gly
145 150 155 160145 150 155 160
Asn Ala Glu Leu Val Ala Asn Ser Pro Tyr Tyr Leu Met Asp Gly LeuAsn Ala Glu Leu Val Ala Asn Ser Pro Tyr Tyr Leu Met Asp Gly Leu
165 170 175 165 170 175
Glu Phe Glu Met Gln Ser Tyr Leu Asp Met Ala His Gly Met Leu IleGlu Phe Glu Met Gln Ser Tyr Leu Asp Met Ala His Gly Met Leu Ile
180 185 190 180 185 190
Asp Val Asp Arg Gly Gly Leu Arg Leu Arg Gly Gln Pro Val Glu LeuAsp Val Asp Arg Gly Gly Leu Arg Leu Arg Gly Gln Pro Val Glu Leu
195 200 205 195 200 205
Leu Met Ala Arg ThrLeu Met Ala Arg Thr
210 210
<210> 2<210> 2
<211> 642<211>642
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
atggagcggg cgtactgcgg cagcggctac tcgtcgtcgg gaacgaagtc tccggcggcc 60atggagcggg cgtactgcgg cagcggctac tcgtcgtcgg gaacgaagtc tccggcggcc 60
ggcgaccggg aggagggcac gtacatgacg gtgtcgtcgg cgccgcccaa gcggcggacg 120ggcgaccgggg aggagggcac gtacatgacg gtgtcgtcgg cgccgcccaa gcggcggacg 120
gggaggacca aggtcaggga gacgaggcac ccggtgtaca agggggtgcg cagcaggaac 180gggaggacca aggtcaggga gacgaggcac ccggtgtaca agggggtgcg cagcaggaac 180
cccggccggt gggtctgcga gctgcgcgag ccgcacggga agcagaggct atggctcggc 240cccggccggt gggtctgcga gctgcgcgag ccgcacggga agcagaggct atggctcggc 240
accttcgaca ccgccgagat ggcggctcgc gcgcacgacg tcgccgccct cgcgctccgc 300accttcgaca ccgccgagat ggcggctcgc gcgcacgacg tcgccgccct cgcgctccgc 300
ggccgcgccg cgtgcctcaa cttcgccgac tcgccgcgca cgctgcgggt gccgccgcag 360ggccgcgccg cgtgcctcaa cttcgccgac tcgccgcgca cgctgcgggt gccgccgcag 360
gggggcggcc acgacgagat acgccgggcc gcggtcgagg cggctgaact gttccgcccg 420gggggcggcc acgacgagat acgccgggcc gcggtcgagg cggctgaact gttccgcccg 420
gcgcctgggc agcggaatgc agctaccgag gtgccggctg cttcgccggt agacgcgggg 480gcgcctgggc agcggaatgc agctaccgag gtgccggctg cttcgccggt agacgcgggg 480
aacgcggagc tcgtcgcaaa ctctccttac tacctcatgg atggattgga attcgaaatg 540aacgcggagc tcgtcgcaaa ctctccttac tacctcatgg atggattgga attcgaaatg 540
cagagctacc ttgacatggc gcacggcatg ctcatcgacg tggatcgagg aggactacga 600cagagctacc ttgacatggc gcacggcatg ctcatcgacg tggatcgagg aggactacga 600
ctgcgaggtc agcctgtgga actactgatg gcgcgcacct ga 642ctgcgaggtc agcctgtgga actactgatg gcgcgcacct ga 642
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
atggagcggg cgtactgcg 19atggagcggg cgtactgcg 19
<210> 4<210> 4
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
tcaggtgcgc gccatcagta 20
<210> 5<210> 5
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
cgcaaactct ccttactacc tca 23cgcaaactct cctactacc tca 23
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
atccacgtcg atgagcatgc 20
<210> 7<210> 7
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
atggagcggg cgtactgcg 19atggagcggg cgtactgcg 19
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ggtgcgcgcc atcagtagtt 20
<210> 9<210> 9
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
atggagcggg cgtactgcg 19atggagcggg cgtactgcg 19
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
tcaggtgcgc gccatcagta 20
<210> 11<210> 11
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
ggtaacattg tgctcagtgg tgg 23ggtaacattg tgctcagtgg tgg 23
<210> 12<210> 12
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
gcatcaattc gatcactcag ag 22gcatcaattc gatcactcag ag 22
<210> 13<210> 13
<211> 22<211> 22
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 13<400> 13
aagcagaggc tatggctcgg ca 22aagcagaggc tatggctcgg ca 22
<210> 14<210> 14
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 14<400> 14
tgaggtagta aggagagttt gcg 23tgaggtagta aggagagttt gcg 23
<210> 15<210> 15
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 15<400> 15
cgcaaactct ccttactacc tca 23cgcaaactct cctactacc tca 23
<210> 16<210> 16
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 16<400> 16
atccacgtcg atgagcatgc 20
<210> 17<210> 17
<211> 23<211> 23
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 17<400> 17
aaatctggca tcacactttc tac 23aaatctggca tcacactttc tac 23
<210> 18<210> 18
<211> 24<211> 24
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 18<400> 18
gtctcaaaca taatctgggt catc 24gtctcaaaca taatctgggt catc 24
Claims (6)
- Application of TaDTG6 protein in improving drought resistance of plants;the amino acid sequence of the TaDTG6 protein is shown as SEQ ID No. 1;the plant is wheat and/or Arabidopsis thaliana.
- 2. A cultivation method of drought-resistant plants is characterized in that a method of over-expressing exogenous TaDTG6 protein in plants is adopted to over-express a gene encoding the TaDTG6 protein in target plants to obtain the drought-resistant plants;the method for over-expressing exogenous TaDTG6 protein in plants comprises the following steps: connecting a gene encoding TaDTG6 protein with an expression vector, and sequentially transforming agrobacterium and transforming plants; the amino acid sequence of the TaDTG6 protein is shown as SEQ ID No. 1;the plant is wheat and/or Arabidopsis thaliana.
- 3. A method of growing according to claim 2, wherein the expression vector comprises a binary agrobacterium vector or a vector for plant microprojectile bombardment.
- 4. A method of breeding according to claim 3, wherein the expression vector comprises pGKX or pCAMBIA3301.
- 5. The cultivation method as claimed in claim 4, wherein said gene is ligated between BamHI and XhoI cleavage sites of pGKX;alternatively, the gene was ligated between HindIII and EcoRI sites of pCAMBIA3301.
- 6. The cultivation method as claimed in claim 2, wherein said Agrobacterium comprises Agrobacterium tumefaciens EHA105 or Agrobacterium tumefaciens strain GV3101 containing pSoup plasmid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210213905.1A CN114591409B (en) | 2022-03-07 | 2022-03-07 | Application of TaDTG6 Protein in Improving Plant Drought Resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210213905.1A CN114591409B (en) | 2022-03-07 | 2022-03-07 | Application of TaDTG6 Protein in Improving Plant Drought Resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114591409A CN114591409A (en) | 2022-06-07 |
CN114591409B true CN114591409B (en) | 2023-06-06 |
Family
ID=81807291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210213905.1A Active CN114591409B (en) | 2022-03-07 | 2022-03-07 | Application of TaDTG6 Protein in Improving Plant Drought Resistance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114591409B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115786361B (en) * | 2022-09-02 | 2024-05-10 | 青岛农业大学 | New application of wheat TaCBF14B gene |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104292317B (en) * | 2013-07-18 | 2017-02-22 | 中国科学院植物研究所 | Drought resistant correlative protein of plant and coding gene and application thereof |
CN111718914B (en) * | 2019-03-04 | 2022-04-05 | 中国农业大学 | Application of protein ZmTIP1 in regulating plant drought resistance |
CN111153975B (en) * | 2020-01-16 | 2022-03-22 | 西北农林科技大学 | Plant drought-resistant related protein TaNAC15, and coding gene and application thereof |
CN113801212B (en) * | 2021-09-14 | 2023-06-13 | 西北农林科技大学 | Protein TaPYL1 and encoding gene and application thereof |
-
2022
- 2022-03-07 CN CN202210213905.1A patent/CN114591409B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN114591409A (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9809827B2 (en) | Transgenic maize | |
CN107383179B (en) | A protein GsSLAH3 related to plant stress tolerance and its coding gene and application | |
CN110713526B (en) | Wheat stress-resistant protein TaBZR2D and coding gene and application thereof | |
CN111218470B (en) | Method for regulating and controlling stress resistance of plants | |
CN103492573A (en) | Plants having enhanced yield-related traits and producing methods thereof | |
CN114276429B (en) | Breeding method of TaLRK-R transgenic wheat with resistance to sheath blight and stem rot and related biological materials | |
CN113563442B (en) | Drought resistance-related protein IbSPB1 and its encoding genes and applications | |
CN111153975B (en) | Plant drought-resistant related protein TaNAC15, and coding gene and application thereof | |
CN103929947A (en) | Plants having enhanced yield-related traits and methods for producing the same | |
CN110938617B (en) | Lilium regale LrPAL-1 gene and application thereof | |
CN103819549B (en) | A kind of rice protein and encoding gene application in regulation and control plant drought resistance thereof | |
CN106397556B (en) | Plant drought resistance related protein ZmNAC111 and its coding gene and application | |
US20090210969A1 (en) | Antiporter gene from porteresia coarctata for conferring stress tolerance | |
CN114591409B (en) | Application of TaDTG6 Protein in Improving Plant Drought Resistance | |
CN104945492B (en) | Plant stress tolerance correlative protein TaAREB3 and its encoding gene and application | |
CA2866169C (en) | Environmental stress-resistant plant with high seed productivity and method for producing the same | |
CN106854238A (en) | Plant adversity resistance related protein TabZIP14 and its encoding gene and application | |
CN105175522B (en) | Crowtoe AP2/ERF transcription factors and its encoding gene and application | |
CN102971427A (en) | Plants having enhanced yield-related traits and method for making same | |
CN113773374B (en) | Transcription factor ZmbZIPa6 and coding gene and application thereof | |
CN112048490B (en) | Cotton silk/threonine protein phosphatase GhTPOPP 6 and coding gene and application thereof | |
CN111285927B (en) | Plant stress tolerance related protein SiWRKY78 and its encoding gene and application | |
CN111205355B (en) | Plant stress tolerance-related protein SiWRKY76 and its encoding gene and application | |
CN118755760A (en) | Protein IbPIF8 related to sweet potato stress resistance and its application | |
CN118048386A (en) | Application of OsMAK7 gene and its encoded protein in improving salt tolerance of rice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |