CN110628810B - 一种提高植物光合效率的方法 - Google Patents
一种提高植物光合效率的方法 Download PDFInfo
- Publication number
- CN110628810B CN110628810B CN201910744555.XA CN201910744555A CN110628810B CN 110628810 B CN110628810 B CN 110628810B CN 201910744555 A CN201910744555 A CN 201910744555A CN 110628810 B CN110628810 B CN 110628810B
- Authority
- CN
- China
- Prior art keywords
- ala
- leu
- val
- ser
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8262—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
- C12N15/8269—Photosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/0106—2-Hydroxy-3-oxopropionate reductase (1.1.1.60)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/99—Oxidoreductases acting on the CH-OH group of donors (1.1) with other acceptors (1.1.99)
- C12Y101/99014—Glycolate dehydrogenase (1.1.99.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01047—Tartronate-semialdehyde synthase (4.1.1.47)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physiology (AREA)
- Virology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种提高植物光合效率的方法,所述方法为:抑制或敲除植物中胆汁酸钠协同转运蛋白基因,同时过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因。本发明创造性地发现抑制植物中BASS6基因的表达,结合在叶绿体中过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因,能显著减少光呼吸,提高植物的光合效率,提高植物生物量或产量,更重要的是这种转基因植物的耐旱性显著高于抑制PLGG1基因表达的植株,在干旱条件下生物量或产量比非转基因对照增加3%‑45%。
Description
(一)技术领域
本发明涉及一种提高植物光合效率的方法,通过转基因的方法来提高植物的光合效率、生物量或产量,改良植物种植资源。
(二)背景技术
人类数量的增加和生活水平的提高,需要消耗更多的粮食和饲料,这就要求在有限的土地上收获更多粮食。因此,培育新的高产植物品种非常重要。
植物整体的光合作用产物全部来源于酶催化CO2转化为有机碳化合物。1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)是卡尔文循环(Calvin-Benson(CB)cycle)中的羧化酶。由于RubisCO与CO2或O2都能反应,RubisCO与O2反应产生磷酸乙醇酸,进入光呼吸循环,光呼吸导致植物中固定的碳和氮的浪费。在全球范围内,这一过程每年将大约29GT的新鲜同化碳被重新释放到大气中(Anav A,etal.Spatiotemporal patterns of terrestrial grossprimary production:a review.Rev Geophys 2015,53:785-818.)。
为了减少光呼吸造成的损失,提高植物的光合效率,目前常用的方法是通过新的光呼吸支路来回收乙醇酸中的CO2,从而达到减少光呼吸提高光合效率的目的(Peterhansel C,Blume C,Offermann S.Photorespiratory bypasses:how can theywork?[J].Journal of Experimental Botany,2013,64(3):709-715.)。
乙醇酸脱氢酶(glycolate dehydrogenase,GDH)可以将乙醇酸转换成乙醛酸。目前用于植物转基因研究和应用的乙醇酸脱氢酶主要是来源于低等植物绿藻(Chlamydomonas reinhardtii)或者大肠杆菌。绿藻中的乙醇酸脱氢酶由一个基因编码,而大杆菌中的乙醇酸脱氢酶分别由3个基因编码的D、E、F三个亚基构成。有报到通过在土豆中过表达D、E、F三个亚基的编码基因的融合基因后,植株中的DEFp融合蛋白表达量增加,葡萄糖、果糖和蔗糖等糖分成倍增加,生物量也显著增加(Nolke G,Houdelet M,Kreuzaler F,et al.The expression of a recombinant glycolate dehydrogenase polyprotein inpotato(Solanum tuberosum)plastids strongly enhances photosynthesis and tuberyield[J].Plant Biotechnology Journal,2014,12(6):734-742.)。但是大肠杆菌来源和绿藻来源的乙醇酸脱氢酶在功能和活性方面都有显著差异,所以在转基因植物中的表现也有很大的差异。
乙醛酸羧化酶(GCL,glyoxylate carboxylyase)能催化乙醛酸转换成酒石半醛(tartronic semialdehyde,TS),这种酶最早是从大肠杆菌中克隆出来的(Chang YY,WangAY,Cronan Jr JE.1993.Molecular cloning,DNAsequencing,and biochemical analysesof Escherichia coli glyoxylatecarboligase.An enzyme of the acetohydroxy acidsynthase-pyruvateoxidase family.Journal of Biological Chemistry 268,3911–3919.)。酒石半醛还原酶(tartronic semialdehydereductase,TSR)可以把酒石半醛还原成甘油酸。
胆汁酸钠协同转运蛋白(Bile Acid Sodium Symporter,BASS)和质体乙醇酸/甘油酸转运子1(plastidal glycolate/glyceratetranslocator 1,PLGG1)是光呼吸中,把叶绿体中的乙醇酸转运到过氧化物酶体的关键蛋白质(South P F,Walker B J,Cavanagh AP,et al.Bile Acid Sodium Symporter BASS6Can Transport Glycolate and IsInvolved in Photorespiratory Metabolism in Arabidopsis thaliana[J].The PlantCell,2017:tpc.00775.2016.)。BASS和PLGG1基因都有转运乙醇酸的功能,但是PLGG1同时还具有转运乙醇酸和甘油酸的功能。之前的研究表明在烟草叶绿体中过表达GDH和MS基因,同时抑制PLGG1基因的表达,可以显著提高烟草的生物量(PF South,AP Cavanagh,HW Liu,etal.Synthetic glycolate metabolism pathways stimulate crop growth andproductivity in the field,Science,2019:363(6422):eaat9077.)。
耐旱是植物非常重要的特性。植物具有一定的耐旱性有利于其抵抗干旱逆境,适应不同地理环境。在水资源日益紧张的情况下,培育耐旱能力强的作物新品种非常重要。
但是我们研究发现,在叶绿体中过表达GDH和MS基因,同时抑制PLGG1基因的表达的植物与对照相比,耐旱性显著降低。相比之下,在叶绿体中过表达GDH和MS基因,同时抑制BASS6基因的表达的植物的耐旱性显著高于抑制PLGG1基因的表达的植物。
(三)发明内容
本发明目的是提供一种保持或提高植物耐旱性,且减少植物光呼吸,提高植物光合效率,提高植物生物量或产量的方法,为了实现上述技术目的,本发明的技术手段是抑制或敲除植物中BASS基因的表达,并在叶绿体中过表达GDH、GCL和TSR基因。
本发明采用的技术方案是:
本发明提供一种提高植物光合效率的方法,所述方法为:抑制或敲除植物中胆汁酸钠协同转运蛋白(BASS)基因,同时过表达乙醇酸脱氢酶(GDH)基因、乙醛酸羧化酶(GCL)基因和酒石半醛还原酶(TSR)基因。
进一步,所述胆汁酸钠协同转运蛋白的编码基因来源于植物(表1),其氨基酸序列如SEQ ID NO.1,SEQ ID NO.2或SEQ ID NO.3之一所示。当所述植物为水稻时,所述BASS6基因的氨基酸序列如SEQ ID NO.1所示;当所述植物为大豆时,所述BASS6基因的氨基酸序列如SEQ ID NO.2和SEQ ID NO.3所示。
进一步,抑制植物中胆汁酸钠协同转运蛋白基因的方法为RNA干扰法,具体是向植物中导入形成靶向胆汁酸钠协同转运蛋白基因发夹结构的双链RNA核苷酸序列。优选当植物为水稻时,导入靶向水稻OsBASS基因形成发夹结构的OsBASS-RNAi序列,核苷酸序列分别为SEQ ID NO.4;当所述植物为大豆时,导入靶向大豆GmBASS基因形成发夹结构的GmBASS-RNAi序列,核苷酸序列为SEQ ID NO.5所示。
进一步,所述乙醇酸脱氢酶(GDH)基因可以来源于原核生物或者真核生物,包括但不限于表2所示,优选核苷酸序列如SEQ ID NO.6(氨基酸序列为SEQ ID NO.7)。
进一步,所述乙醛酸羧化酶(GCL)基因可以来源于原核生物或者真核生物,优选GCL基因核苷酸序列如SEQ ID NO.8所示,氨基酸序列为SEQ ID NO.9所示。
进一步,所述酒石半醛还原酶(TSR)基因可以来源于原核生物或者真核生物(表2),优选TSR基因核苷酸序列如SEQ ID NO.10所示,氨基酸序列为SEQ ID NO.11所示。
表1:胆汁酸钠协同转运蛋白(BASS)基因
编号 | 来源物种 | NCBI Accession Number |
1 | Arabidopsisthaliana | <u>NP</u> 567671 |
2 | Zeamays | <u>NP</u> 001158917 |
3 | Sorghumbicolor | XP 021308938 |
4 | Oryzasativa | <u>XP</u>015612294 |
5 | Glycinemax | XP 003538535/XP 003517442 |
表2:不同物种来源的乙醇酸脱氢酶(GDH)基因
编号 | 来源物种 | NCBI Accession Number |
1 | Chlamydomonas reinhardtii | <u>XP 001695381.1</u> |
2 | Volvox carteri f.nagariensis | <u>XP002946459.1</u> |
3 | Gonium pectorale | <u>KXZ46746.1</u> |
4 | Chlamydomonas eustigma | <u>GAX77289.1</u> |
5 | Escherichia coli K-12 | <u>NP</u> 417453.1、YP 026191.1、YP 026190.1 |
本发明所述方法是构建T-DNA载体,导入植物中完成;所述T-DNA载体构建方法为:以含有耐草铵膦bar基因的pCambia1300双元载体为基础载体,再分别连入乙醇酸脱氢酶基因(GDH)表达框、乙醛酸羧化酶基因(GCL)表达框、酒石半醛还原酶基因(TSR)表达框和胆汁酸钠协同转运蛋白基因RNAi表达框;所述含有耐草铵膦bar基因的pCambia1300双元载体是将原来的抗潮霉素基因hptII替换为抗草铵膦基因bar。
本发明中BASS基因RNAi表达框,GDH基因过表达框、GCL基因过表达框和TSR基因过表达框可以通过分子聚合或者杂交聚合的方法实现。分子聚合是指将BASS基因抑制表达框、GDH、GCL和TSR基因的表达框构建在同一个载体的T-DNA上,通过转基因的方法将T-DNA转入的受体植物基因组中,从而使得目标植株中同时对BASS基因的表达进行抑制,且过表达GDH基因、GCL和TSR基因。杂交聚合是指分别获得包含BASS基因抑制表达框、GDH过表达框、GCL过表达框和TSR过表达框的植株,再用传统育种的方法,将分别含有一个或两个上述表达框的植株进行杂交,获得同时含有上述3个表达框的转基因植株。
本发明介导GDH、GCL和TSR基因在叶绿体中过表达的信号肽来源于植物RuBisCO小亚基(RbcS)或磷酸葡萄糖变位酶转运肽序列,优选叶绿体信号肽的氨基酸序列如SEQ IDNO.12或SEQ ID NO.13所示,叶绿体信号肽序列融合在GDH、GCL和TSR蛋白的N端。本发明介导GDH、GCL和TSR过表达的启动子可以来源于真核生物或者原核生物,也可以通过人工合成获得,可以是组成型启动子或者特异性启动子。所述的启动子包括包括p35S(NCBIACCESSION:MG719235 REGION:848-1628),玉米UBI启动子(NCBI ACCESSION:KR297238REGION:4879-6876)和水稻Actin1启动子(NCBI ACCESSION:AY452735 REGION:2428-3797)。
本发明终止子可以来源于真核生物或者原核生物,也可以通过人工合成获得,优选终止子为ter1(NCBI ACCESSION:KJ716235 REGION:3962-4158)和ter2(NCBIACCESSION:MG733984 REGION:2092-2314)。
本发明所述植物为C3植物,是指CO2同化的最初产物是光合碳循环中的三碳化合物3-磷酸甘油酸的植物,主要包括水稻和大豆。
本发明提供了一种通过提高植物光合效率来显著提高植物生物量或产量且保持或提高其耐旱性的方法,通过对植物BASS基因进行RNA干扰,并结合在植物的叶绿体中过表达乙醇酸脱氢酶基因(GDH)、乙醛酸羧化酶基因(GCL)和酒石半醛还原酶基因(TSR),在叶绿体中将乙醇酸转化为乙醛酸并进一步转化为酒石半醛,酒石半醛在酒石半醛还原酶的作用下变成甘油酸,从而达到减少光呼吸、提高光合效率和产量的目的。在水稻和大豆叶绿体中对BASS基因进行RNA干扰,并过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因,使得水稻产量增加3%-45%,大豆产量增加3%-45%,且耐旱性与非转基因对照相当,或者比对照更好。
与现有技术相比,本发明有益效果主要体现在:
本发明创造性地发现抑制植物中BASS6基因的表达,结合在叶绿体中过表达乙醇酸脱氢酶基因(GDH)、乙醛酸羧化酶基因(GCL)和酒石半醛还原酶基因(TSR),能显著减少光呼吸,提高植物的光合效率,提高植物生物量或产量,更重要的是这种转基因植物的耐旱性显著高于抑制PLGG1基因表达的植株,在干旱条件下生物量或产量比非转基因对照增加3%-45%。
(四)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1、载体的构建
本发明GDH基因可以来源原核生物,也可以来源于真核生物,本发明提供的GDH基因包括但不限于表2中所示的基因。为了构建转化载体,人工合成了大肠杆菌来源的GDH基因以及对应的终止子序列,包含叶绿体信号肽、GDH编码基因和终止子,核苷酸序列如SEQID NO.6所示,5‘端和3‘端分别设置有BamHI和KpnI位点。人工合成GCL基因,包含叶绿体信号肽、GCL编码基因和终止子,核苷酸序列如SEQ ID NO.8所示,5‘端和3‘端分别设置有BamHI和HindIII位点。人工合成TSR基因,包含叶绿体信号肽、TSR编码基因和终止子,核苷酸序列如SEQ ID NO.10所示,5‘端和3‘端分别设置有BamHI和EcoRI位点。
为了实现对BASS基因的表达抑制或敲除,本发明提供了植物自身的BASS基因;当所述植物为水稻时,所述BASS6基因的氨基酸序列如SEQ ID NO.1所示;当所述植物为大豆时,所述BASS6基因的氨基酸序列如SEQ ID NO.2和SEQ ID NO.3所示。为了构建BASS基因干扰表达框,分别人工合成靶向水稻OsBASS基因和大豆GmBASS基因的可以形成发夹结构的OsBASS-RNAi和GmBASS-RNAi序列,序列如SEQ ID NO.4和SEQ ID NO.5所示。作为对照分别合成了靶向水稻OsPGGL1基因和大豆GmPGGL1基因的可以形成发夹结构的Os PGGL1-RNAi和Gm PGGL1-RNAi序列,如SEQ ID NO.14和SEQ ID NO.15所示。上述序列的3’端都分别加有终止子ter1,最终构成OsBASS-RNAi-ter、GmBASS-RNAi-ter和Os PGGL1-RNAi-ter、Gm PGGL1-RNAi-ter。5‘端和3‘端分别设置有BglII和HindIII位点。
同时,人工合成玉米Ubi启动子序列、水稻Actin启动子和花椰菜花叶病毒(CaMV)的35S启动子序列。Ubi启动子5‘端和3‘端分别设置有EcoRI和BamHI位点,Actin启动子的5‘端和3‘端分别设置有EcoRI和BamHI位点,35S启动子5‘端和3‘端分别设置有KpnI和BamHI位点。同时合成一个5‘端和3‘端分别设置有HindIII和BamHI位点的Ubi启动子,用于介导RNAi序列的转录。
为了构建可以用于农杆菌方法转化植物所用的双元载体,用商业化的双元载体pCambia1300为基础,通过XhoI酶切位点把之前的hptII(hygromycin resistance)基因置换成耐草铵膦的bar基因(NCBI ACCESSIONp:MG719235 REGION:287-835),置换后的载体命名为pCambia1300-bar。
通过EcoRI和KpnI位点把Ubi启动子与GDH基因连入pCambia1300-bar载体中,获得过度载体pCambia1300-bar-GDH。再通过KpnI和HindIII位点把35S启动子和GCL基因连入过度载体pCambia1300-bar-GDH中,获得过度载体pCambia1300-bar-GDH-GCL。然后通过EcoRI对pCambia1300-bar-GDH-GCL进行单酶切,再与用EcoRI和BamHI酶切后的Actin启动子和用BamHI和EcoRI酶切的TSR基因连接,获得过度载体pCambia1300-bar-GDH-GCL-TSR。最后通过HindIII对pCambia1300-bar-GDH-GCL-TSR进行单酶切,再把用BglII和HindIII双酶切后的OsBASS-RNAi-ter或GmBASS-RNAi-ter和用BamHI和HindIII酶切后的Ubi启动子连接,构建成终载体,分别命名为pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)。
作为对照,用同样的方法构建含有抑制PGGL1基因表达框的载体,分别命名为pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)。
最后,通过电转的方法把T-DNA质粒转入农杆菌LB4404中,通过含有15μg/ml四环素和50μg/mL的卡那霉素的YEP固体培养基筛选出阳性克隆,并保菌,用于接下来的植物转化。
实施例2、水稻转化
转基因水稻的获得方法是采用现有技术(卢雄斌,龚祖埙(1998)生命科学10:125-131;刘凡等(2003)分子植物育种1:108-115)。选取成熟饱满的“秀水-134”种子去壳,诱导产生愈伤组织作为转化材料。取实施例1中构建好的分别含有pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)质粒的农杆菌划板。挑单菌落接种,准备转化用农杆菌。将待转化的愈伤组织放入OD为0.6左右的农杆菌菌液中(农杆菌菌液的制备:将农杆菌接种至培养基,培养至OD为0.6左右;培养基组成:3g/L K2HPO4、1g/L NaH2PO4、1g/L NH4Cl、0.3g/L MgSO4·7H2O、0.15g/L KCl、0.01g/L CaCl2、0.0025g/L FeSO4·7H2O、5g/L蔗糖、20mg/L乙酰丁香酮,溶剂为水,pH=5.8),让农杆菌结合到愈伤组织表面,然后把愈伤组织转移到共培养培养基(MS+2mg/L 2,4-D+30g/L葡萄糖+30g/L蔗糖+3g/L琼脂(sigma 7921)+20mg/L乙酰丁香酮)中,共培养2-3天。用无菌水冲洗转化后的愈伤,转移到筛选培养基(MS+2mg/L 2,4-D(2,4-二氯苯氧乙酸)+30g/L蔗糖+3g/L琼脂(sigma 7921)+20mg/L乙酰丁香酮+2mM草甘膦(Sigma))上,筛选培养两个月(中间继代一次)。把筛选后,生长活力良好的愈伤转移到预分化培养基(MS+0.1g/L肌醇+5mg/L ABA(脱落酸)+1mg/L NAA(萘乙酸)+5mg/L 6-BA(6-苄胺基腺嘌呤)+20g/L山梨醇+30g/L蔗糖+2.5g/L植物凝胶(gelrite))上培养20天左右,然后将预分化好的愈伤组织移到分化培养基上,每天14小时光照分化发芽。2-3周后,把抗性再生植株转移到生根培养基(1/2MS+0.2mg/L NAA+20g/L蔗糖+2.5g/L gelrite)上壮苗生根,最后将再生植株洗去琼脂移植于温室,选择产量高、种子大或者生物量高等能够提高水稻产量的转基因株系,培育新品种。分别获得含上述转化载体的转基因水稻植株。
实施例3.大豆转化
这里使用的获得转基因大豆的步骤来自于已有的技术(Deng et al.,1998,PlantPhysiology Communications 34:381-387;Ma et al.,2008,ScientiaAgriculturaSinica 41:661-668;Zhou et al.,2001,Journal of NortheastAgricultural University 32:313-319)。选取健康、饱满、成熟的“天隆1号”大豆,用80%乙醇消毒2分钟,再用无菌水清洗,然后放置在充满氯气(由50ml NaClO与2ml浓HCl反应生成)的干燥器中灭菌4-6个小时。灭菌后的大豆在超净工作台里被播撒到B5培养基中,25℃条件下培养5天,同时光密度在90-150μmol光子/m2·s水平。当子叶变绿并顶破种皮,无菌的豆芽就会长出。去掉了下胚轴的豆芽在长度上被切成五五开,使得两片外植体都具有子叶和上胚轴。在子叶和上胚轴的节点处切外植体大约7-8处,即可用作被侵染的目标组织。
分别取通过实施例1构建的含有载体pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)的单克隆农杆菌被分开培养待用。准备好的外植体浸没在农杆菌悬浮液(同实施例2方法制备)中共培养30分钟左右。然后,将侵染的组织上多余的细胞悬浮液用吸水纸吸收干净,再转移到1/10B5共培养培养基里25℃暗培养3-5天。
共培养的植物组织用B5液体培养基清洗,以除去多余的农杆菌,然后放置到B5固体培养基中25℃下培养5天,待其发芽。诱导发生的胚芽组织转移到含有0.1mM草甘膦的B5筛选培养基中,25℃光照培养4周,期间每两周更换一次培养基。筛选出来的胚芽组织再转移到固体培养基中,25℃培养,待其长成小苗。随后,将转基因植株苗转移到1/2B5培养基中进行生根诱导。最后,长成的小植株经清洗去除琼脂后栽种在温室中。
实施例4:转基因水稻的鉴定
通过实施例2分别获得了载体pCambia1300-bar-GDH-GCL-TSR-OsBASS-RNAi(GGTOsBi)和pCambia1300-bar-GDH-GCL-TSR-OsPGGL1-RNAi(GGTOsPi)的转基因水稻植株。上述转基因植株与非转基因对照相比生物量和产量都有所增加,并且,GGTOsBi植株在生物量或产量方面的增加幅度最大。为了进一步鉴定GGTOsBi转基因植株的表现变化,我们对上述转基因植株的生物量和种子产量进行了评估和比较,结果如表3所示。在正常条件下GGTOsBi转基因植株和GGTOsPi转基因植株的生物量或产量与非转基因对照相比都有显著增加,增幅达5%-45%;但是在干旱条件(表5)下,GGTOsBi转基因植株与对照相比生物量或产量仍然显著增加,而GGTOsPi转基因植株与非转基因对照相比生物量或产量没有显著增加。
表3生物量和产量对比
实施例5:转基因大豆的鉴定
通过实施例3分别获得了载体pCambia1300-bar-GDH-GCL-TSR-GmBASS-RNAi(GGTGmBi)和pCambia1300-bar-GDH-GCL-TSR-GmPGGL1-RNAi(GGTGmPi)的转基因大豆植株。上述转基因植株与非转基因对照相比生物量和产量都有所增加,并且转基因植株在生物量或产量方面的增加幅度最大。为了进一步鉴定转基因植株的表现变化,我们对上述转基因植株的生物量和种子产量进行了评估,结果如表4所示。在正常条件下GGTGmBi转基因植株和GGTGmPi转基因植株的生物量或产量与非转基因对照相比都有显著增加,增幅达5%-45%;但是在干旱条件(表5)下,GGTGmBi转基因植株与对照相比生物量或产量仍然显著增加,而GGTGmPi转基因植株与非转基因对照相比生物量或产量没有显著增加。
表4生物量、产量比较
表5、基于农田与作物干旱形态指标等级(GB/T 32136-2015)
序列表
<110> 浙江大学
<120> 一种提高植物光合效率的方法
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 401
<212> PRT
<213> 未知(Unknown)
<400> 1
Met Ala Pro Asn Ala Ala Val Leu Val Arg Pro His Ile Ala Gly Val
1 5 10 15
His His Leu Pro Thr Gly Arg Arg Leu Pro Arg Leu Ala Pro Pro Gln
20 25 30
Ala Val Ser Pro Pro Phe Ser Arg Gln Lys Gly Ser Val Val Ala Ala
35 40 45
Ser Gly Arg Val Trp Ala Ser Ala Ser Gly Ser Phe Glu Lys Asp Arg
50 55 60
Ile Gly Asp Asp Asp Val Leu Ala Ser Pro Gln Ile Val Glu Glu Ser
65 70 75 80
Lys Val Asp Leu Leu Lys Ile Leu Lys Ser Ala Asn Thr Ile Ile Pro
85 90 95
His Val Val Leu Gly Ser Thr Ile Leu Ala Leu Val Tyr Pro Pro Ser
100 105 110
Phe Thr Trp Phe Thr Thr Arg Tyr Tyr Ala Pro Ala Leu Gly Phe Leu
115 120 125
Met Phe Ala Val Gly Val Asn Ser Ser Val Lys Asp Phe Ile Glu Ala
130 135 140
Ile Gln Arg Pro Asp Ala Ile Ala Ala Gly Tyr Val Gly Gln Phe Ile
145 150 155 160
Ile Lys Pro Phe Leu Gly Phe Leu Phe Gly Thr Leu Ala Val Thr Ile
165 170 175
Phe Asn Leu Pro Thr Ala Leu Gly Ala Gly Ile Met Leu Val Ser Cys
180 185 190
Val Ser Gly Ala Gln Leu Ser Asn Tyr Ala Thr Phe Leu Thr Asp Pro
195 200 205
His Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala Thr
210 215 220
Ala Val Phe Val Thr Pro Thr Leu Ser Tyr Phe Leu Ile Gly Lys Lys
225 230 235 240
Leu Pro Val Asp Val Lys Gly Met Met Ser Ser Ile Val Gln Ile Val
245 250 255
Val Ala Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Tyr Leu Pro Arg
260 265 270
Leu Cys Ser Ala Ile Gln Pro Phe Leu Pro Pro Leu Ser Val Phe Val
275 280 285
Thr Ala Leu Cys Val Gly Ser Pro Leu Ala Ile Asn Ile Lys Ala Val
290 295 300
Leu Ser Pro Phe Gly Leu Ala Thr Val Leu Leu Leu Phe Ala Phe His
305 310 315 320
Thr Ser Ser Phe Ile Ala Gly Tyr His Leu Ala Gly Thr Trp Phe Arg
325 330 335
Glu Ser Ala Asp Val Lys Ala Leu Gln Arg Thr Val Ser Phe Glu Thr
340 345 350
Gly Met Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Arg Phe Phe
355 360 365
Pro Asp Pro Leu Val Gly Val Pro Pro Ala Ile Ser Val Val Leu Met
370 375 380
Ser Leu Met Gly Phe Ala Leu Val Met Val Trp Ser Lys Arg Thr Lys
385 390 395 400
Glu
<210> 2
<211> 408
<212> PRT
<213> 未知(Unknown)
<400> 2
Met Ile Ser Ser Gly Leu Lys Leu Lys His Phe Arg Asn Ile Asp Ser
1 5 10 15
Leu Phe His Phe Pro Lys Ser Lys Pro Pro Ile Leu Leu Pro Cys Cys
20 25 30
Pro Thr Ile Ser Ser Pro Cys Ser Ile Arg Phe Asn Ser His Phe Pro
35 40 45
Tyr Arg Ser Thr Lys Val Pro Leu Lys Cys Ala Pro Leu Pro Ser Ser
50 55 60
Asp Ser Leu Pro Pro Asp Leu Ser Asp Ala Pro Thr Gln Thr Glu Gln
65 70 75 80
Asn Ser Met Ser Ile Leu Glu Ile Leu Lys Gln Ser Asn Ser Tyr Leu
85 90 95
Pro His Val Leu Ile Ala Ser Ile Leu Leu Ala Leu Ile Tyr Pro Pro
100 105 110
Ser Leu Thr Trp Phe Thr Ser Arg Tyr Tyr Ala Pro Ala Leu Gly Phe
115 120 125
Leu Met Phe Ala Val Gly Val Asn Ser Asn Glu Asn Asp Phe Leu Glu
130 135 140
Ala Phe Lys Arg Pro Ala Glu Ile Val Thr Gly Tyr Phe Gly Gln Phe
145 150 155 160
Ala Val Lys Pro Leu Leu Gly Tyr Leu Phe Cys Met Ile Ala Val Thr
165 170 175
Val Leu Ser Leu Pro Thr Thr Val Gly Ala Gly Ile Val Leu Val Ala
180 185 190
Cys Val Ser Gly Ala Gln Leu Ser Ser Tyr Ala Thr Phe Leu Thr Asp
195 200 205
Pro Gln Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala
210 215 220
Ser Ala Val Phe Val Thr Pro Leu Leu Leu Leu Leu Leu Ile Gly Lys
225 230 235 240
Lys Leu Pro Ile Asp Val Arg Gly Met Val Tyr Ser Ile Thr Gln Ile
245 250 255
Val Val Val Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Phe Tyr Pro
260 265 270
Arg Ile Cys Asn Val Ile Arg Pro Phe Leu Pro Pro Leu Ser Val Leu
275 280 285
Val Ala Ser Ile Cys Ala Gly Ala Pro Leu Ala Phe Asn Val Glu Thr
290 295 300
Met Lys Ser Pro Leu Gly Val Val Ile Leu Leu Leu Val Val Ala Phe
305 310 315 320
His Leu Ser Ser Phe Ile Ala Gly Tyr Ile Leu Ser Gly Phe Val Phe
325 330 335
Arg Asp Ser Leu Asp Val Lys Ala Leu Gln Arg Thr Ile Ser Phe Glu
340 345 350
Thr Gly Leu Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Lys Phe
355 360 365
Phe Glu Asp Pro Lys Val Ala Ile Pro Pro Ala Ile Phe Thr Ser Ile
370 375 380
Met Ser Leu Met Gly Phe Val Leu Val Leu Ile Trp Thr Arg Arg Gly
385 390 395 400
Lys Arg Asp Ile Lys His Ser Ser
405
<210> 3
<211> 416
<212> PRT
<213> 未知(Unknown)
<400> 3
Met Ile Ser Ser Gly Leu Lys Pro Lys His Phe Asn Asn Val His Ser
1 5 10 15
Leu Phe Asn Leu Ser Lys Ser Gln Gln Pro Pro Asn Pro Ile Ile Val
20 25 30
Pro Cys Cys Arg Thr Asn Thr Asn Asn Asn Ile Ser Ser Pro Phe Ser
35 40 45
Ile Arg Phe Asn Ser Pro Phe Pro Tyr Arg Ser Pro Lys Ile Pro Leu
50 55 60
Lys Cys Ala Pro Leu His Ser Ser Asp Ser Leu Pro Pro Asp Pro Ser
65 70 75 80
Ser Ala Ser Thr Gln Met Glu Gln Asn Ser Met Ser Ile Leu Glu Ile
85 90 95
Leu Lys Gln Ser Asn Ser Tyr Leu Pro His Ala Leu Ile Ala Ser Ile
100 105 110
Leu Leu Ala Leu Ile Tyr Pro Arg Ser Leu Thr Trp Phe Thr Ser Arg
115 120 125
Phe Tyr Ala Pro Ala Leu Gly Phe Leu Met Phe Ala Val Gly Val Asn
130 135 140
Ser Asn Glu Asn Asp Phe Leu Glu Ala Phe Lys Arg Pro Ala Glu Ile
145 150 155 160
Val Thr Gly Tyr Phe Gly Gln Phe Ala Val Lys Pro Leu Leu Gly Tyr
165 170 175
Leu Phe Cys Met Ile Ala Val Thr Val Leu Gly Leu Pro Thr Thr Val
180 185 190
Gly Ala Gly Ile Val Leu Val Ala Cys Val Ser Gly Ala Gln Leu Ser
195 200 205
Ser Tyr Ala Thr Phe Leu Thr Asp Pro Gln Met Ala Pro Leu Ser Ile
210 215 220
Val Met Thr Ser Leu Ser Thr Ala Ser Ala Val Phe Val Thr Pro Leu
225 230 235 240
Leu Leu Leu Leu Leu Ile Gly Lys Lys Leu Pro Ile Asp Val Lys Gly
245 250 255
Met Val Tyr Asn Ile Thr Gln Ile Val Val Val Pro Ile Ala Ala Gly
260 265 270
Leu Leu Leu Asn Arg Phe Phe Pro Arg Ile Cys Asn Val Ile Arg Pro
275 280 285
Phe Leu Pro Pro Leu Ser Val Leu Val Ala Ser Ile Cys Ala Gly Ala
290 295 300
Pro Leu Ala Leu Asn Val Glu Thr Met Lys Ser Pro Leu Gly Val Ala
305 310 315 320
Ile Leu Leu Leu Val Val Ala Phe His Leu Ser Ser Phe Ile Ala Gly
325 330 335
Tyr Ile Leu Ser Gly Phe Val Phe Arg Asp Ser Leu Asp Val Lys Ala
340 345 350
Leu Gln Arg Thr Ile Ser Phe Glu Thr Gly Met Gln Ser Ser Leu Leu
355 360 365
Ala Leu Ala Leu Ala Asn Lys Phe Phe Glu Asp Pro Lys Val Ala Ile
370 375 380
Pro Pro Ala Ile Ser Thr Ser Ile Met Ser Leu Met Gly Phe Val Leu
385 390 395 400
Val Leu Ile Trp Thr Arg Arg Gly Lys Ser Glu Ile Lys Asn Ser Ser
405 410 415
<210> 4
<211> 856
<212> DNA
<213> 未知(Unknown)
<400> 4
gcttttgatg gaaagacaga catcataccg aatttataaa aggaaaagaa ataaattcaa 60
aactttacat tttttatgcc accaaccaaa ggtgaatcaa agatatgaac aagagtttct 120
taagactatt agcccccccc cccccccccc aacgacctcc aactccaatc ctccttaatc 180
gccaacccac acagctataa aaaggggata tttcagatcg gatcaagcag agcacctacg 240
ccgtgaaaac ggcggcgaga ccgcctgggg aggagccaga cggggcagtc gccggccggt 300
gggcagatgg tggacgccgg cgatgtgggg ccgcaccagg acggcggcgt tgggggccat 360
tcgagcgccg gcgaccgcga gggtgggtgg gttttggttt cagagtttca gagctgatga 420
cgcaacgcag cgaaagagac gattcagatt tcagtgagaa gttgggagtt tcgacaagga 480
acgaacaatc agtcgaatgg cccccaacgc cgccgtcctg gtgcggcccc acatcgccgg 540
cgtccaccat ctgcccaccg gccggcgact gccccgtctg gctcctcccc aggcggtctc 600
gccgccgttt tcacggcgta ggtgctctgc ttgatccgat ctgaaatatc ccctttttat 660
agctgtgtgg gttggcgatt aaggaggatt ggagttggag gtcgttgggg gggggggggg 720
ggggctaata gtcttaagaa actcttgttc atatctttga ttcacctttg gttggtggca 780
taaaaaatgt aaagttttga atttatttct tttcctttta taaattcggt atgatgtctg 840
tctttccatc aaaagt 856
<210> 5
<211> 771
<212> DNA
<213> 未知(Unknown)
<400> 5
aagaggccag cagaaattgt cactggttat tttggccagt ttgctgtgaa gcctcttctt 60
ggatatctgt tttgcatgat tgcagtaact gttttaggcc taccaacaac agtaggcgca 120
ggaattgtat tggtggcttg tgttagtggt gctcagcttt caagttatgc tactttcctg 180
actgatccac aaatggcacc tttaagcata gttatgacat cactgtccac tgcttctgca 240
gtttttgtca cgccactctt attactgttg ctcattggga agaaattgcc ttcatagtct 300
caacatttaa ggcaagtggc gctccggcac agatagatgc caccagtaca gatagcggag 360
gcaaaaatgg tcgaataaca ttacaaatac gaggaaagaa tcgatttaga agcaggccag 420
ctgcaatagg cacaaccaca atctgtgtaa tgttatacac cattcctttt acatctatag 480
gcaatttctt cccaatgagc aacagtaata agagtggcgt gacaaaaact gcagaagcag 540
tggacagtga tgtcataact atgcttaaag gtgccatttg tggatcagtc aggaaagtag 600
cataacttga aagctgagca ccactaacac aagccaccaa tacaattcct gcgcctactg 660
ttgttggtag gcctaaaaca gttactgcaa tcatgcaaaa cagatatcca agaagaggct 720
tcacagcaaa ctggccaaaa taaccagtga caatttctgc tggcctcttt a 771
<210> 6
<211> 3668
<212> DNA
<213> 未知(Unknown)
<400> 6
ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60
gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120
caacgtgtcc aacggcggcc gcatccgctg catgccgcgc ggccagggca agcgcctcgc 180
ccagctcctc ggcgcccagc tcaagcagta cgccgccgag gtgcgcggca tctccaccgc 240
cggcggcgcc tcccgcggcg gcgcccgcgg cccggcctcc ccgtcctccc tcgagcagca 300
gacccgccag gtggcccagg tggccgtgca gcagtccacc cagcaggccg tgaaggtggt 360
ggtgccggcc atcaaggtgg acctcgtggg cgccgtgtcc tccgtgtccg agtccgacaa 420
ggtggagccg ggcgtgttca agaacgtgga cggccaccgc ttcgaggacg gccgctacgc 480
cgccttcgtg gaggagatca ccaagttcat cccgaaggag cgccagtact ccgacccggt 540
gcgcaccttc gcctacggca ccgacgcctc cttctaccgc ctcaacccga agctcgtggt 600
gaaggtgcac aacgaggacg aggtgcgccg catcatgccg atcgccgagc gcctccaggt 660
gccgatcacc ttccgcgccg ccggcacctc cctctccggc caggccatca ccgactccgt 720
gctcatcaag ctctcccaca ccggcaagaa cttccgcaac ttcaccgtgc acggcgacgg 780
ctccgtgatc accgtggagc cgggcctcat cggcggcgag gtgaaccgca tcctcgccgc 840
ccaccagaag aagaacaagc tcccgatcca gtacaagatc ggcccggacc cgtcctccat 900
cgactcctgc atgatcggcg gcatcgtgtc caacaactcc tccggcatgt gctgcggcgt 960
gtcccagaac acctaccaca ccctcaagga catgcgcgtg gtgttcgtgg acggcaccgt 1020
gctcgacacc gccgacccga actcctgcac cgccttcatg aagtcccacc gctccctcgt 1080
ggacggcgtg gtgtccctcg cccgccgcgt gcaggccgac aaggagctca ccgccctcat 1140
ccgccgcaag ttcgccatca agtgcaccac cggctactcc ctcaacgccc tcgtggactt 1200
cccggtggac aacccgatcg agatcatcaa gcacctcatc atcggctccg agggcaccct 1260
cggcttcgtg tcccgcgcca cctacaacac cgtgccggag tggccgaaca aggcctccgc 1320
cttcatcgtg ttcccggacg tgcgcgccgc ctgcaccggc gcctccgtgc tccgcaacga 1380
gacctccgtg gacgccgtgg agctcttcga ccgcgcctcc ctccgcgagt gcgagaacaa 1440
cgaggacatg atgcgcctcg tgccggacat caagggctgc gacccgatgg ccgccgccct 1500
cctcatcgag tgccgcggcc aggacgaggc cgccctccag tcccgcatcg aggaggtggt 1560
gcgcgtgctc accgccgccg gcctcccgtt cggcgccaag gccgcccagc cgatggccat 1620
cgacgcctac ccgttccacc acgaccagaa gaacgccaag gtgttctggg acgtgcgccg 1680
cggcctcatc ccgatcgtgg gcgccgcccg cgagccgggc acctccatgc tcatcgagga 1740
cgtggcctgc ccggtggaca agctcgccga catgatgatc gacctcatcg acatgttcca 1800
gcgccacggc taccacgacg cctcctgctt cggccacgcc ctcgagggca acctccacct 1860
cgtgttctcc cagggcttcc gcaacaagga ggaggtgcag cgcttctccg acatgatgga 1920
ggagatgtgc cacctcgtgg ccaccaagca ctccggctcc ctcaagggcg agcacggcac 1980
cggccgcaac gtggccccgt tcgtggagat ggagtggggc aacaaggcct acgagctcat 2040
gtgggagctc aaggccctct tcgacccgtc ccacaccctc aacccgggcg tgatcctcaa 2100
ccgcgaccag gacgcccaca tcaagttcct caagccgtcc ccggccgcct ccccgatcgt 2160
gaaccgctgc atcgagtgcg gcttctgcga gtccaactgc ccgtcccgcg acatcaccct 2220
caccccgcgc cagcgcatct ccgtgtaccg cgagatgtac cgcctcaagc agctcggccc 2280
gggcgcctcc gaggaggaga agaagcagct cgccgccatg tcctcctcct acgcctacga 2340
cggcgagcag acctgcgccg ccgacggcat gtgccaggag aagtgcccgg tgaagatcaa 2400
caccggcgac ctcatcaagt ccatgcgcgc cgagcacatg aaggaggaga agaccgcctc 2460
cggcatggcc gactggctcg ccgccaactt cggcgtgatc aactccaacg tgccgcgctt 2520
cctcaacatc gtgaacgcca tgcactccgt ggtgggctcc gccccgctct ccgccatctc 2580
ccgcgccctc aacgccgcca ccaaccactt cgtgccggtg tggaacccgt acatgccgaa 2640
gggcgccgcc ccgctcaagg tgccggcccc gccggccccg gccgccgccg aggcctccgg 2700
catcccgcgc aaggtggtgt acatgccgtc ctgcgtgacc cgcatgatgg gcccggccgc 2760
ctccgacacc gagaccgccg ccgtgcacga gaaggtgatg tccctcttcg gcaaggccgg 2820
ctacgaggtg atcatcccgg agggcgtggc ctcccagtgc tgcggcatga tgttcaactc 2880
ccgcggcttc aaggacgccg ccgcctccaa gggcgccgag ctcgaggccg ccctcctcaa 2940
ggcctccgac aacggcaaga tcccgatcgt gatcgacacc tccccgtgcc tcgcccaggt 3000
gaagtcccaa atctccgagc cgtccctccg cttcgccctc tacgagccgg tggagttcat 3060
ccgccacttc ctcgtggaca agctcgagtg gaagaaggtg cgcgaccagg tggccatcca 3120
cgtgccgtgc tcctccaaga agatgggcat cgaggagtcc ttcgccaagc tcgccggcct 3180
ctgcgccaac gaggtggtgc cgtccggcat cccgtgctgc ggcatggccg gcgaccgcgg 3240
catgcgcttc ccggagctca ccggcgcctc cctccagcac ctcaacctcc cgaagacctg 3300
caaggacggc tactccacct cccgcacctg cgagatgtcc ctctccaacc acgccggcat 3360
caacttccgc ggcctcgtgt acctcgtgga cgaggccacc gccccgaaga agcaggccgc 3420
cgccgccaag accgcctaag tagatgccga ccggatctgt cgatcgacaa gctcgagttt 3480
ctccataata atgtgtgagt agttcccaga taagggaatt agggttccta tagggtttcg 3540
ctcatgtgtt gagcatataa gaaaccctta gtatgtattt gtatttgtaa aatacttcta 3600
tcaataaaat ttctaattcc taaaaccaaa atccagtact aaaatccaga tcccccgaat 3660
taaagctt 3668
<210> 7
<211> 1136
<212> PRT
<213> 未知(Unknown)
<400> 7
Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala
1 5 10 15
Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala
20 25 30
Phe Pro Ala Thr Arg Lys Ala Asn Gly Gly Pro Arg Gly Gln Gly Lys
35 40 45
Arg Leu Ala Gln Leu Leu Gly Ala Gln Leu Lys Gln Tyr Ala Ala Glu
50 55 60
Val Arg Gly Ile Ser Thr Ala Gly Gly Ala Ser Arg Gly Gly Ala Arg
65 70 75 80
Gly Pro Ala Ser Pro Ser Ser Leu Glu Gln Gln Thr Arg Gln Val Ala
85 90 95
Gln Val Ala Val Gln Gln Ser Thr Gln Gln Ala Val Lys Val Val Val
100 105 110
Pro Ala Ile Lys Val Asp Leu Val Gly Ala Val Ser Ser Val Ser Glu
115 120 125
Ser Asp Lys Val Glu Pro Gly Val Phe Lys Asn Val Asp Gly His Arg
130 135 140
Phe Glu Asp Gly Arg Tyr Ala Ala Phe Val Glu Glu Ile Thr Lys Phe
145 150 155 160
Ile Pro Lys Glu Arg Gln Tyr Ser Asp Pro Val Arg Thr Phe Ala Tyr
165 170 175
Gly Thr Asp Ala Ser Phe Tyr Arg Leu Asn Pro Lys Leu Val Val Lys
180 185 190
Val His Asn Glu Asp Glu Val Arg Arg Ile Met Pro Ile Ala Glu Arg
195 200 205
Leu Gln Val Pro Ile Thr Phe Arg Ala Ala Gly Thr Ser Leu Ser Gly
210 215 220
Gln Ala Ile Thr Asp Ser Val Leu Ile Lys Leu Ser His Thr Gly Lys
225 230 235 240
Asn Phe Arg Asn Phe Thr Val His Gly Asp Gly Ser Val Ile Thr Val
245 250 255
Glu Pro Gly Leu Ile Gly Gly Glu Val Asn Arg Ile Leu Ala Ala His
260 265 270
Gln Lys Lys Asn Lys Leu Pro Ile Gln Tyr Lys Ile Gly Pro Asp Pro
275 280 285
Ser Ser Ile Asp Ser Cys Met Ile Gly Gly Ile Val Ser Asn Asn Ser
290 295 300
Ser Gly Met Cys Cys Gly Val Ser Gln Asn Thr Tyr His Thr Leu Lys
305 310 315 320
Asp Met Arg Val Val Phe Val Asp Gly Thr Val Leu Asp Thr Ala Asp
325 330 335
Pro Asn Ser Cys Thr Ala Phe Met Lys Ser His Arg Ser Leu Val Asp
340 345 350
Gly Val Val Ser Leu Ala Arg Arg Val Gln Ala Asp Lys Glu Leu Thr
355 360 365
Ala Leu Ile Arg Arg Lys Phe Ala Ile Lys Cys Thr Thr Gly Tyr Ser
370 375 380
Leu Asn Ala Leu Val Asp Phe Pro Val Asp Asn Pro Ile Glu Ile Ile
385 390 395 400
Lys His Leu Ile Ile Gly Ser Glu Gly Thr Leu Gly Phe Val Ser Arg
405 410 415
Ala Thr Tyr Asn Thr Val Pro Glu Trp Pro Asn Lys Ala Ser Ala Phe
420 425 430
Ile Val Phe Pro Asp Val Arg Ala Ala Cys Thr Gly Ala Ser Val Leu
435 440 445
Arg Asn Glu Thr Ser Val Asp Ala Val Glu Leu Phe Asp Arg Ala Ser
450 455 460
Leu Arg Glu Cys Glu Asn Asn Glu Asp Met Met Arg Leu Val Pro Asp
465 470 475 480
Ile Lys Gly Cys Asp Pro Met Ala Ala Ala Leu Leu Ile Glu Cys Arg
485 490 495
Gly Gln Asp Glu Ala Ala Leu Gln Ser Arg Ile Glu Glu Val Val Arg
500 505 510
Val Leu Thr Ala Ala Gly Leu Pro Phe Gly Ala Lys Ala Ala Gln Pro
515 520 525
Met Ala Ile Asp Ala Tyr Pro Phe His His Asp Gln Lys Asn Ala Lys
530 535 540
Val Phe Trp Asp Val Arg Arg Gly Leu Ile Pro Ile Val Gly Ala Ala
545 550 555 560
Arg Glu Pro Gly Thr Ser Met Leu Ile Glu Asp Val Ala Cys Pro Val
565 570 575
Asp Lys Leu Ala Asp Met Met Ile Asp Leu Ile Asp Met Phe Gln Arg
580 585 590
His Gly Tyr His Asp Ala Ser Cys Phe Gly His Ala Leu Glu Gly Asn
595 600 605
Leu His Leu Val Phe Ser Gln Gly Phe Arg Asn Lys Glu Glu Val Gln
610 615 620
Arg Phe Ser Asp Met Met Glu Glu Met Cys His Leu Val Ala Thr Lys
625 630 635 640
His Ser Gly Ser Leu Lys Gly Glu His Gly Thr Gly Arg Asn Val Ala
645 650 655
Pro Phe Val Glu Met Glu Trp Gly Asn Lys Ala Tyr Glu Leu Met Trp
660 665 670
Glu Leu Lys Ala Leu Phe Asp Pro Ser His Thr Leu Asn Pro Gly Val
675 680 685
Ile Leu Asn Arg Asp Gln Asp Ala His Ile Lys Phe Leu Lys Pro Ser
690 695 700
Pro Ala Ala Ser Pro Ile Val Asn Arg Cys Ile Glu Cys Gly Phe Cys
705 710 715 720
Glu Ser Asn Cys Pro Ser Arg Asp Ile Thr Leu Thr Pro Arg Gln Arg
725 730 735
Ile Ser Val Tyr Arg Glu Met Tyr Arg Leu Lys Gln Leu Gly Pro Gly
740 745 750
Ala Ser Glu Glu Glu Lys Lys Gln Leu Ala Ala Met Ser Ser Ser Tyr
755 760 765
Ala Tyr Asp Gly Glu Gln Thr Cys Ala Ala Asp Gly Met Cys Gln Glu
770 775 780
Lys Cys Pro Val Lys Ile Asn Thr Gly Asp Leu Ile Lys Ser Met Arg
785 790 795 800
Ala Glu His Met Lys Glu Glu Lys Thr Ala Ser Gly Met Ala Asp Trp
805 810 815
Leu Ala Ala Asn Phe Gly Val Ile Asn Ser Asn Val Pro Arg Phe Leu
820 825 830
Asn Ile Val Asn Ala Met His Ser Val Val Gly Ser Ala Pro Leu Ser
835 840 845
Ala Ile Ser Arg Ala Leu Asn Ala Ala Thr Asn His Phe Val Pro Val
850 855 860
Trp Asn Pro Tyr Met Pro Lys Gly Ala Ala Pro Leu Lys Val Pro Ala
865 870 875 880
Pro Pro Ala Pro Ala Ala Ala Glu Ala Ser Gly Ile Pro Arg Lys Val
885 890 895
Val Tyr Met Pro Ser Cys Val Thr Arg Met Met Gly Pro Ala Ala Ser
900 905 910
Asp Thr Glu Thr Ala Ala Val His Glu Lys Val Met Ser Leu Phe Gly
915 920 925
Lys Ala Gly Tyr Glu Val Ile Ile Pro Glu Gly Val Ala Ser Gln Cys
930 935 940
Cys Gly Met Met Phe Asn Ser Arg Gly Phe Lys Asp Ala Ala Ala Ser
945 950 955 960
Lys Gly Ala Glu Leu Glu Ala Ala Leu Leu Lys Ala Ser Asp Asn Gly
965 970 975
Lys Ile Pro Ile Val Ile Asp Thr Ser Pro Cys Leu Ala Gln Val Lys
980 985 990
Ser Gln Ile Ser Glu Pro Ser Leu Arg Phe Ala Leu Tyr Glu Pro Val
995 1000 1005
Glu Phe Ile Arg His Phe Leu Val Asp Lys Leu Glu Trp Lys Lys Val
1010 1015 1020
Arg Asp Gln Val Ala Ile His Val Pro Cys Ser Ser Lys Lys Met Gly
1025 1030 1035 1040
Ile Glu Glu Ser Phe Ala Lys Leu Ala Gly Leu Cys Ala Asn Glu Val
1045 1050 1055
Val Pro Ser Gly Ile Pro Cys Cys Gly Met Ala Gly Asp Arg Gly Met
1060 1065 1070
Arg Phe Pro Glu Leu Thr Gly Ala Ser Leu Gln His Leu Asn Leu Pro
1075 1080 1085
Lys Thr Cys Lys Asp Gly Tyr Ser Thr Ser Arg Thr Cys Glu Met Ser
1090 1095 1100
Leu Ser Asn His Ala Gly Ile Asn Phe Arg Gly Leu Val Tyr Leu Val
1105 1110 1115 1120
Asp Glu Ala Thr Ala Pro Lys Lys Gln Ala Ala Ala Ala Lys Thr Ala
1125 1130 1135
<210> 8
<211> 2135
<212> DNA
<213> 未知(Unknown)
<400> 8
ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60
gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120
caacgtgtcc aacggcggcc gcatccgctg catggccaag atgcgcgccg tggacgccgc 180
catgtacgtg ctcgagaagg agggcatcac caccgccttc ggcgtgccgg gcgccgccat 240
caacccgttc tactccgcca tgcgcaagca cggcggcatc cgccacatcc tcgcccgcca 300
cgtggagggc gcctcccaca tggccgaggg ctacacccgc gccaccgccg gcaacatcgg 360
cgtgtgcctc ggcacctccg gcccggccgg caccgacatg atcaccgccc tctactccgc 420
ctccgccgac tccatcccga tcctctgcat caccggccag gccccgcgcg cccgcctcca 480
caaggaggac ttccaggccg tggacatcga ggccatcgcc aagccggtgt ccaagatggc 540
cgtgaccgtg cgcgaggccg ccctcgtgcc gcgcgtgctc cagcaggcct tccacctcat 600
gcgctccggc cgcccgggcc cggtgctcgt ggacctcccg ttcgacgtgc aggtggccga 660
gatcgagttc gacccggaca tgtacgagcc gctcccggtg tacaagccgg ccgcctcccg 720
catgcagatc gagaaggccg tggagatgct catccaggcc gagcgcccgg tgatcgtggc 780
cggcggcggc gtgatcaacg ccgacgccgc cgccctcctc cagcagttcg ccgagctcac 840
ctccgtgccg gtgatcccga ccctcatggg ctggggctgc atcccggacg accacgagct 900
catggccggc atggtgggcc tccagaccgc ccaccgctac ggcaacgcca ccctcctcgc 960
ctccgacatg gtgttcggca tcggcaaccg cttcgccaac cgccacaccg gctccgtgga 1020
gaagtacacc gagggccgca agatcgtgca catcgacatc gagccgaccc agatcggccg 1080
cgtgctctgc ccggacctcg gcatcgtgtc cgacgccaag gccgccctca ccctcctcgt 1140
ggaggtggcc caggagatgc agaaggccgg ccgcctcccg tgccgcaagg agtgggtggc 1200
cgactgccag cagcgcaagc gcaccctcct ccgcaagacc cacttcgaca acgtgccggt 1260
gaagccgcag cgcgtgtacg aggagatgaa caaggccttc ggccgcgacg tgtgctacgt 1320
gaccaccatc ggcctctccc agatcgccgc cgcccagatg ctccacgtgt tcaaggaccg 1380
ccactggatc aactgcggcc aggccggccc gctcggctgg accatcccgg ccgccctcgg 1440
cgtgtgcgcc gccgacccga agcgcaacgt ggtggccatc tccggcgact tcgacttcca 1500
gttcctcatc gaggagctcg ccgtgggcgc ccagttcaac atcccgtaca tccacgtgct 1560
cgtgaacaac gcctacctcg gcctcatccg ccagtcccag cgcgccttcg acatggacta 1620
ctgcgtgcag ctcgccttcg agaacatcaa ctcctccgag gtgaacggct acggcgtgga 1680
ccacgtgaag gtggccgagg gcctcggctg caaggccatc cgcgtgttca agccggagga 1740
catcgccccg gccttcgagc aggccaaggc cctcatggcc cagtaccgcg tgccggtggt 1800
ggtggaggtg atcctcgagc gcgtgaccaa catctccatg ggctccgagc tcgacaacgt 1860
gatggagttc gaggacatcg ccgacaacgc cgccgacgcc ccgaccgaga cctgcttcat 1920
gcactacgag taagagctct agatcgttct gcacaaagtg gagtagtcag tcatcgatca 1980
ggaaccagac accagacttt tattcataca gtgaagtgaa gtgaagtgca gtgcagtgag 2040
ttgctggttt ttgtacaact tagtatgtat ttgtatttgt aaaatacttc tatcaataaa 2100
atttctaatt cctaaaacca aaatccagga agctt 2135
<210> 9
<211> 593
<212> PRT
<213> 未知(Unknown)
<400> 9
Met Ala Lys Met Arg Ala Val Asp Ala Ala Met Tyr Val Leu Glu Lys
1 5 10 15
Glu Gly Ile Thr Thr Ala Phe Gly Val Pro Gly Ala Ala Ile Asn Pro
20 25 30
Phe Tyr Ser Ala Met Arg Lys His Gly Gly Ile Arg His Ile Leu Ala
35 40 45
Arg His Val Glu Gly Ala Ser His Met Ala Glu Gly Tyr Thr Arg Ala
50 55 60
Thr Ala Gly Asn Ile Gly Val Cys Leu Gly Thr Ser Gly Pro Ala Gly
65 70 75 80
Thr Asp Met Ile Thr Ala Leu Tyr Ser Ala Ser Ala Asp Ser Ile Pro
85 90 95
Ile Leu Cys Ile Thr Gly Gln Ala Pro Arg Ala Arg Leu His Lys Glu
100 105 110
Asp Phe Gln Ala Val Asp Ile Glu Ala Ile Ala Lys Pro Val Ser Lys
115 120 125
Met Ala Val Thr Val Arg Glu Ala Ala Leu Val Pro Arg Val Leu Gln
130 135 140
Gln Ala Phe His Leu Met Arg Ser Gly Arg Pro Gly Pro Val Leu Val
145 150 155 160
Asp Leu Pro Phe Asp Val Gln Val Ala Glu Ile Glu Phe Asp Pro Asp
165 170 175
Met Tyr Glu Pro Leu Pro Val Tyr Lys Pro Ala Ala Ser Arg Met Gln
180 185 190
Ile Glu Lys Ala Val Glu Met Leu Ile Gln Ala Glu Arg Pro Val Ile
195 200 205
Val Ala Gly Gly Gly Val Ile Asn Ala Asp Ala Ala Ala Leu Leu Gln
210 215 220
Gln Phe Ala Glu Leu Thr Ser Val Pro Val Ile Pro Thr Leu Met Gly
225 230 235 240
Trp Gly Cys Ile Pro Asp Asp His Glu Leu Met Ala Gly Met Val Gly
245 250 255
Leu Gln Thr Ala His Arg Tyr Gly Asn Ala Thr Leu Leu Ala Ser Asp
260 265 270
Met Val Phe Gly Ile Gly Asn Arg Phe Ala Asn Arg His Thr Gly Ser
275 280 285
Val Glu Lys Tyr Thr Glu Gly Arg Lys Ile Val His Ile Asp Ile Glu
290 295 300
Pro Thr Gln Ile Gly Arg Val Leu Cys Pro Asp Leu Gly Ile Val Ser
305 310 315 320
Asp Ala Lys Ala Ala Leu Thr Leu Leu Val Glu Val Ala Gln Glu Met
325 330 335
Gln Lys Ala Gly Arg Leu Pro Cys Arg Lys Glu Trp Val Ala Asp Cys
340 345 350
Gln Gln Arg Lys Arg Thr Leu Leu Arg Lys Thr His Phe Asp Asn Val
355 360 365
Pro Val Lys Pro Gln Arg Val Tyr Glu Glu Met Asn Lys Ala Phe Gly
370 375 380
Arg Asp Val Cys Tyr Val Thr Thr Ile Gly Leu Ser Gln Ile Ala Ala
385 390 395 400
Ala Gln Met Leu His Val Phe Lys Asp Arg His Trp Ile Asn Cys Gly
405 410 415
Gln Ala Gly Pro Leu Gly Trp Thr Ile Pro Ala Ala Leu Gly Val Cys
420 425 430
Ala Ala Asp Pro Lys Arg Asn Val Val Ala Ile Ser Gly Asp Phe Asp
435 440 445
Phe Gln Phe Leu Ile Glu Glu Leu Ala Val Gly Ala Gln Phe Asn Ile
450 455 460
Pro Tyr Ile His Val Leu Val Asn Asn Ala Tyr Leu Gly Leu Ile Arg
465 470 475 480
Gln Ser Gln Arg Ala Phe Asp Met Asp Tyr Cys Val Gln Leu Ala Phe
485 490 495
Glu Asn Ile Asn Ser Ser Glu Val Asn Gly Tyr Gly Val Asp His Val
500 505 510
Lys Val Ala Glu Gly Leu Gly Cys Lys Ala Ile Arg Val Phe Lys Pro
515 520 525
Glu Asp Ile Ala Pro Ala Phe Glu Gln Ala Lys Ala Leu Met Ala Gln
530 535 540
Tyr Arg Val Pro Val Val Val Glu Val Ile Leu Glu Arg Val Thr Asn
545 550 555 560
Ile Ser Met Gly Ser Glu Leu Asp Asn Val Met Glu Phe Glu Asp Ile
565 570 575
Ala Asp Asn Ala Ala Asp Ala Pro Thr Glu Thr Cys Phe Met His Tyr
580 585 590
Glu
<210> 10
<211> 1232
<212> DNA
<213> 未知(Unknown)
<400> 10
ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60
gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120
caacgtgtcc aacggcggcc gcatccgctg catgaagctc ggcttcatcg gcctcggcat 180
catgggcacc ccgatggcca tcaacctcgc ccgcgccggc caccagctcc acgtgaccac 240
catcggcccg gtggccgacg agctcctctc cctcggcgcc gtgaacgtgg acaccgcccg 300
ccaggtgacc gaggccgccg acatcatctt catcatggtg ccggacaccc cgcaggtgga 360
ggaggtgctc ttcggcgaga acggctgcac caaggcctcc ctcaagggca agaccatcgt 420
ggacatgtcc tccatctccc cgatcgagac caagcgcttc gcccgccagg tgaacgagct 480
cggcggcgac tacctcgacg ccccggtgtc cggcggcgag atcggcgccc gcgagggcac 540
cctctccatc atggtgggcg gcgacgaggc cgtgttcgag cgcgtgaagc cgctcttcga 600
gctcctcggc aagaacatca ccctcgtggg cggcaacggc gacggccaga cctgcaaggt 660
ggccaaccag atcatcgtgg ccctcaacat cgaggccgtg tccgaggccc tcctcttcgc 720
ctccaaggcc ggcgccgacc cggtgcgcgt gcgccaggcc ctcatgggcg gcttcgcctc 780
ctcccgcatc ctcgaggtgc acggcgagcg catgatcaag cgcaccttca acccgggctt 840
caagatcgcc ctccaccaga aggacctcaa cctcgccctc cagtccgcca aggccctcgc 900
cctcaacctc ccgaacaccg ccacctgcca ggagctcttc aacacctgcg ccgccaacgg 960
cggctcccag ctcgaccact ccgccctcgt gcaggccctc gagctcatgg ccaaccacaa 1020
gctcgcctaa gagctctaga tcgttctgca caaagtggag tagtcagtca tcgatcagga 1080
accagacacc agacttttat tcatacagtg aagtgaagtg aagtgcagtg cagtgagttg 1140
ctggtttttg tacaacttag tatgtatttg tatttgtaaa atacttctat caataaaatt 1200
tctaattcct aaaaccaaaa tccagggaat tc 1232
<210> 11
<211> 292
<212> PRT
<213> 未知(Unknown)
<400> 11
Met Lys Leu Gly Phe Ile Gly Leu Gly Ile Met Gly Thr Pro Met Ala
1 5 10 15
Ile Asn Leu Ala Arg Ala Gly His Gln Leu His Val Thr Thr Ile Gly
20 25 30
Pro Val Ala Asp Glu Leu Leu Ser Leu Gly Ala Val Asn Val Asp Thr
35 40 45
Ala Arg Gln Val Thr Glu Ala Ala Asp Ile Ile Phe Ile Met Val Pro
50 55 60
Asp Thr Pro Gln Val Glu Glu Val Leu Phe Gly Glu Asn Gly Cys Thr
65 70 75 80
Lys Ala Ser Leu Lys Gly Lys Thr Ile Val Asp Met Ser Ser Ile Ser
85 90 95
Pro Ile Glu Thr Lys Arg Phe Ala Arg Gln Val Asn Glu Leu Gly Gly
100 105 110
Asp Tyr Leu Asp Ala Pro Val Ser Gly Gly Glu Ile Gly Ala Arg Glu
115 120 125
Gly Thr Leu Ser Ile Met Val Gly Gly Asp Glu Ala Val Phe Glu Arg
130 135 140
Val Lys Pro Leu Phe Glu Leu Leu Gly Lys Asn Ile Thr Leu Val Gly
145 150 155 160
Gly Asn Gly Asp Gly Gln Thr Cys Lys Val Ala Asn Gln Ile Ile Val
165 170 175
Ala Leu Asn Ile Glu Ala Val Ser Glu Ala Leu Leu Phe Ala Ser Lys
180 185 190
Ala Gly Ala Asp Pro Val Arg Val Arg Gln Ala Leu Met Gly Gly Phe
195 200 205
Ala Ser Ser Arg Ile Leu Glu Val His Gly Glu Arg Met Ile Lys Arg
210 215 220
Thr Phe Asn Pro Gly Phe Lys Ile Ala Leu His Gln Lys Asp Leu Asn
225 230 235 240
Leu Ala Leu Gln Ser Ala Lys Ala Leu Ala Leu Asn Leu Pro Asn Thr
245 250 255
Ala Thr Cys Gln Glu Leu Phe Asn Thr Cys Ala Ala Asn Gly Gly Ser
260 265 270
Gln Leu Asp His Ser Ala Leu Val Gln Ala Leu Glu Leu Met Ala Asn
275 280 285
His Lys Leu Ala
290
<210> 12
<211> 47
<212> PRT
<213> 未知(Unknown)
<400> 12
Met Ala Pro Ser Val Met Ala Ser Ser Ala Thr Thr Val Ala Pro Phe
1 5 10 15
Gln Gly Leu Lys Ser Thr Ala Gly Met Pro Val Ala Arg Arg Ser Gly
20 25 30
Asn Ser Ser Phe Gly Asn Val Ser Asn Gly Gly Arg Ile Arg Cys
35 40 45
<210> 13
<211> 42
<212> PRT
<213> 未知(Unknown)
<400> 13
Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala
1 5 10 15
Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala
20 25 30
Phe Pro Ala Thr Arg Lys Ala Asn Gly Gly
35 40
<210> 14
<211> 838
<212> DNA
<213> 未知(Unknown)
<400> 14
cgatcggcag gtcatgcgaa atcgcgacga ggctgcgtgc attttgactg attgacgact 60
cacgctgggt aggcccgagg gagaggtggc gcccgcgcct cctcctcctc ctccggcggc 120
ggcggcggcg tggatcgggg cgatgaggcg gtggcgagga ttggcgggag ccatggagat 180
tgccgccgct tggcgggagg aggaggagga ggaggagggg ttgcgtcggc atcggcgggg 240
aggaagcgtg cggaggcggg gcggcgacgt ggcggtggcg gagggcgaaa ggcggcagcg 300
atggctgctg cgtagcgagg caatcatgca gggggaggat gatgatgagg tcgctgccat 360
ctcttctctt ctcttctctt cttctccttc tcctttggcc agcgagagag cagtggcagt 420
gacagtggat gagaagggag ctgggagcag tggcagaggc caggtggaag agaggagatg 480
gcagcgacct catcatcatc ctccccctgc atgattgcct cgctacgcag cagccatcgc 540
tgccgccttt cgccctccgc caccgccacg tcgccgcccc gcctccgcac gcttcctccc 600
cgccgatgcc gacgcaaccc ctcctcctcc tcctcctcct cccgccaagc ggcggcaatc 660
tccatggctc ccgccaatcc tcgccaccgc ctcatcgccc cgatccacgc cgccgccgcc 720
gccggaggag gaggaggagg cgcgggcgcc acctctccct cgggcctacc cagcgtgagt 780
cgtcaatcag tcaaaatgca cgcagcctcg tcgcgatttc gcatgacctg ccgatcgg 838
<210> 15
<211> 491
<212> DNA
<213> 未知(Unknown)
<400> 15
gccgtgacat aaatgacagt ctcagccaac aattgcaagc aaactttgtc taacagcagg 60
aatcgagcaa agaatggatc caaatatacc attcagagca taagcaatgg cacaaaatgg 120
gagagcctcg ggttccttgg cagacaaagc tgctgttcca agcccgtggg cactgaaaaa 180
taaaatttag gtcaagagag taagtaaata accatgcacg cacaaagaaa atgtcattca 240
actattattg catgtttggt atagattaat ttttgagaaa taatcactta ttttacagaa 300
actaatttta tttttcagtg cccacgggct tggaacagca gctttgtctg ccaaggaacc 360
cgaggctctc ccattttgtg ccattgctta tgctctgaat ggtatatttg gatccattct 420
ttgctcgatt cctgctgtta gacaaagttt gcttgcaatt gttggctgag actgtcattt 480
atgtcacggc c 491
Claims (10)
1.一种提高植物光合效率的方法,其特征在于所述方法为:抑制或敲除植物中胆汁酸钠协同转运蛋白基因,同时过表达乙醇酸脱氢酶基因、乙醛酸羧化酶基因和酒石半醛还原酶基因。
2.如权利要求1所述的方法,其特征在于所述胆汁酸钠协同转运蛋白的氨基酸序列如SEQ ID NO.1,SEQ ID NO.2或SEQ ID NO.3之一所示。
3.如权利要求1所述的方法,其特征在于抑制植物中胆汁酸钠协同转运蛋白基因的方法为:向植物中导入形成靶向胆汁酸钠协同转运蛋白基因发夹结构的双链RNA核苷酸序列。
4.如权利要求3所述的方法,其特征在于所述双链RNA核苷酸序列如SEQ ID NO.4和SEQID NO.5所示。
5.如权利要求1所述的方法,其特征在于所述乙醇脱氢酶基因的核苷酸序列如SEQ IDNO.6所示。
6.如权利要求1所述的方法,其特征在于所述乙醛酸羧化酶基因的核苷酸序列如SEQID NO.8所示。
7.如权利要求1所述的方法,其特征在于所述酒石半醛还原酶基因的核苷酸序列如SEQID NO.10所示。
8.如权利要求3所述的方法,其特征在于所述方法是构建T-DNA载体,导入植物中完成;所述T-DNA载体构建方法为:以含有耐草铵膦bar基因的pCambia1300双元载体为基础载体,再分别连入乙醇酸脱氢酶基因表达框、乙醛酸羧化酶基因表达框、酒石半醛还原酶基因表达框和胆汁酸钠协同转运蛋白基因RNAi表达框。
9.如权利要求8所述的方法,其特征在于用于表达框构建的启动子包括玉米Ubi启动子序列、水稻Actin启动子和花椰菜花叶病毒CaMV的35S启动子;终止子为终止子ter。
10.如权利要求8所述的方法,其特征在于所述植物为水稻或大豆。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910744555.XA CN110628810B (zh) | 2019-08-13 | 2019-08-13 | 一种提高植物光合效率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910744555.XA CN110628810B (zh) | 2019-08-13 | 2019-08-13 | 一种提高植物光合效率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110628810A CN110628810A (zh) | 2019-12-31 |
CN110628810B true CN110628810B (zh) | 2022-06-28 |
Family
ID=68970369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910744555.XA Active CN110628810B (zh) | 2019-08-13 | 2019-08-13 | 一种提高植物光合效率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110628810B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114574529B (zh) * | 2020-12-01 | 2024-08-20 | 天津国家合成生物技术创新中心有限公司 | 一种乙醇酸在酶的作用下生成目标产物的方法 |
US11926833B2 (en) | 2022-01-25 | 2024-03-12 | Living Carbon PBC | Compositions and methods for enhancing biomass productivity in plants |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082120A (ja) * | 2007-10-01 | 2009-04-23 | Tatsuhisa Mitoma | 光呼吸の低減と光合成の炭素固定率の増大方法 |
CN102016012A (zh) * | 2008-02-21 | 2011-04-13 | 科隆大学 | 通过提供在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞来改善植物的农业生物学特性的方法 |
CN102105591A (zh) * | 2008-08-01 | 2011-06-22 | 拜耳生物科学股份有限公司 | 提高水稻光合固碳的方法 |
CN107106873A (zh) * | 2015-01-09 | 2017-08-29 | 吉利德阿波罗公司 | 用于治疗非酒精性脂肪肝病的acc抑制剂组合治疗 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180258440A1 (en) * | 2017-03-07 | 2018-09-13 | The United States Of America, As Represented By The Secretary Of Agriculture | Plants With Increased Photorespiration Efficiency |
-
2019
- 2019-08-13 CN CN201910744555.XA patent/CN110628810B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009082120A (ja) * | 2007-10-01 | 2009-04-23 | Tatsuhisa Mitoma | 光呼吸の低減と光合成の炭素固定率の増大方法 |
CN102016012A (zh) * | 2008-02-21 | 2011-04-13 | 科隆大学 | 通过提供在其叶绿体中包含将乙醇酸转化为苹果酸的酶活性的植物细胞来改善植物的农业生物学特性的方法 |
CN102105591A (zh) * | 2008-08-01 | 2011-06-22 | 拜耳生物科学股份有限公司 | 提高水稻光合固碳的方法 |
CN107106873A (zh) * | 2015-01-09 | 2017-08-29 | 吉利德阿波罗公司 | 用于治疗非酒精性脂肪肝病的acc抑制剂组合治疗 |
Non-Patent Citations (5)
Title |
---|
Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana;Paul F. South等;《The Plant Cell》;20170430;第29卷;第808-823页 * |
Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana;Rashad Kebeish等;《Nature Biotechnology》;20070531;第25卷(第5期);第593-599页 * |
probable sodium/metabolite cotransporter BASS5, chloroplastic [Oryza sativa JaponicaGroup];Eukaryota等;《Gene Bank》;20180807;全文 * |
probable sodium/metabolite cotransporter BASS5, chloroplastic isoform X1 [Glycine max];Eukaryota等;《Gene Bank》;20180831;全文 * |
植物光呼吸途径及其支路研究进展;张树伟等;《山西农业大学学报》;20161231;第36卷(第12期);第885-889页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110628810A (zh) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110564760B (zh) | 一种提高光呼吸改良植物耐旱性的方法 | |
US9556422B2 (en) | Highly glyphosate-resistant mutated gene, method of modification and use thereof | |
CN103436547B (zh) | 一种具有草甘膦耐性的基因及其应用 | |
CN103421804B (zh) | Ghd7-1基因调控水稻产量、开花期及株高中的应用 | |
CN107746846A (zh) | 编码甘薯bZIP转录因子的IbABF4基因及应用 | |
WO2014069339A1 (ja) | 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法 | |
WO2012136129A1 (en) | Application of ossro1c gene in controlling rice drought resistance | |
CN110184293B (zh) | 一种通过提高光合效率增加植物生物量或产量的方法 | |
CN110628810B (zh) | 一种提高植物光合效率的方法 | |
CN102391369A (zh) | 耐逆性相关的14-3-3蛋白grf9及其应用 | |
CN106520782A (zh) | 一种与大豆光周期调控相关基因GmRAV1的应用 | |
CN108893481A (zh) | 番茄SlOAS7基因及其应用 | |
CN102250226A (zh) | 一种与水稻产量相关蛋白及其编码基因与应用 | |
CN102719449A (zh) | 苹果抗逆相关基因MdSIMYB1的克隆及其应用 | |
CN102978218A (zh) | 苹果抗逆相关基因MdSIMYB2的克隆及其应用 | |
US10072271B2 (en) | Methods for improving crop yield | |
CN112626111B (zh) | 一种除草剂抗性基因表达载体及其应用 | |
CN114214358B (zh) | 一种诱导型表达载体及其在培育哨兵作物上的应用 | |
CN117264964A (zh) | 小麦TaGSKB蛋白及其编码基因在调控植物耐逆性中的应用 | |
CN106350532A (zh) | 一种抗草甘膦融合基因、编码蛋白及其应用 | |
US5569833A (en) | Method for enhancing the earliness of a plant and/or lowering the content of nitrates stored in the plant | |
CN101781363B (zh) | 一种调控植物发育的蛋白及其编码基因和应用 | |
CN116589545B (zh) | Onac096基因在控制水稻抗旱性中的应用 | |
CN111574606A (zh) | 小麦抗病与抽穗调控基因TaCOK及其相关生物材料与应用 | |
CN106434744B (zh) | 一种赤霉素生物合成酶在提早植物成熟中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |