[go: up one dir, main page]

WO2014069339A1 - 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法 - Google Patents

植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法 Download PDF

Info

Publication number
WO2014069339A1
WO2014069339A1 PCT/JP2013/078889 JP2013078889W WO2014069339A1 WO 2014069339 A1 WO2014069339 A1 WO 2014069339A1 JP 2013078889 W JP2013078889 W JP 2013078889W WO 2014069339 A1 WO2014069339 A1 WO 2014069339A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
nucleic acid
gene
amino acid
Prior art date
Application number
PCT/JP2013/078889
Other languages
English (en)
French (fr)
Inventor
正和 柏原
小森 俊之
敏彦 小鞠
雅彦 前川
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN201380057268.2A priority Critical patent/CN104903444B/zh
Priority to MX2015005511A priority patent/MX362095B/es
Priority to BR112015006718A priority patent/BR112015006718A8/pt
Priority to CA2886908A priority patent/CA2886908A1/en
Priority to US14/434,149 priority patent/US10100327B2/en
Publication of WO2014069339A1 publication Critical patent/WO2014069339A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to a nucleic acid that imparts high yield to a plant, particularly a nucleic acid containing a promoter of a pseudo response regulator derived from wild rice oryzae longistaminata and / or a coding region of a pseudo response regulator. Furthermore, the present invention relates to a method for producing a transformed plant having an increased yield using the nucleic acid, and a method for increasing the yield of the plant.
  • the wild rice species O. longistaminata native to Africa has the same A genome as the cultivated species O. sativa L., but has a larger biomass than the cultivated species. It is known to show.
  • the present inventor has cultivated the BC7F6 line “No. 645” exhibiting vigorous growth in the process of introducing the long fertility of Oriza longistaminata into the rice cultivar “Shiokari”. Then, using map-based cloning, the region that imparts vigorous growth has been successfully narrowed down to about 180 kb of the 7th end of chromosome 7. Then, a base sequence was determined for about 82 kb in this region, and a transformant produced based on the nucleotide sequence was investigated, but a transformant exhibiting vigorous growth could not be obtained (Non-patent Document 3). .
  • Plant clock-related genes Plant clock-related genes have been studied in Arabidopsis using CIRCADIAN CLOCK ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY), and TIMING OF CABEX has been discovered. And the mechanism underlying the plant circadian clock has been found to be a feedback loop of these gene expressions.
  • the TOC1 gene is known as one of pseudo response regulators (PRR).
  • PRR pseudo response regulators
  • Non-patent Document 4 Matsushita et al. 2000.
  • Non-Patent Document 6 Murakami et al. 2006).
  • Non-Patent Document 7 Murakami M et al. 2005.
  • Patent Document 1 a construct in which a promoter constitutively expressed in rice (GOS2 promoter) is linked to rice to a PRR2 structural gene derived from tomato is introduced into rice, a case where the yield of rice is increased (Patent Document 1), There is a known example (Patent Document 2) in which when a construct in which a constitutive promoter (RICEACTIN promoter) is linked to a PRR5 gene derived from Arabidopsis thaliana is introduced into rice, the number of stems of rice increases and the height increases.
  • RICEACTIN promoter constitutive promoter
  • the subject of this invention is providing the nucleic acid which can provide a high yield property to a plant. It is a further object of the present invention to provide transformed plants with increased yields and methods for increasing plant yields using such nucleic acids.
  • the present inventors examined the region imparting growth vigor that sits on the 7th end of chromosome 7 of Oriza longistaminata using map-based cloning, and the 7th end of chromosome 7 was about 180 kb. Narrowing to was done. The nucleotide sequence of 82 kb in this region was determined, but there were large deletions of 1 kbp or more at 5 positions, and an insertion of about 3 kbp was also present at the terminal side. Therefore, although it was narrowed down to about 180 kb, it was difficult to narrow down further due to this difference.
  • the present inventors examined and designed seven constructs for this 82 kb region, taking into consideration the position of the full length cDNA of “Nippon Hare”. As a result, it was revealed that the PRR7 gene homologue that sits in the approximately 82 kb region is a causative gene that imparts high yield. Furthermore, the present inventors have surprisingly found that the high yield of Oriza longistaminata is not conferred only by the coding region of the gene, but the promoter region of oriza longistaminata contributes greatly. .
  • the present invention is a nucleic acid containing the base sequence of the promoter of the pseudo-response regulator gene of Oriza longistaminata, and the promoter and the structural gene of the pseudo-response regulator are operably linked. Nucleic acid is provided. Such nucleic acids can confer high yield on plants.
  • the present invention is preferably carried out in the manner described below, but is not limited thereto.
  • [Aspect 1] (1) It has at least 90% identity with the nucleotide sequence represented by 34845-35044 of SEQ ID NO: 1, or (2) the nucleotide sequence represented by 34845-35044 of SEQ ID NO: 1, and promotes transcription of plant genes.
  • a base sequence showing activity to A nucleic acid comprising [Aspect 2] (1) It has at least 90% identity with the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1, or (2) the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1, and promotes transcription of plant genes.
  • a base sequence showing activity to A nucleic acid comprising [Aspect 4] A nucleic acid derived from Oriza longistaminata, comprising at least the base sequence represented by 34845-35044 of SEQ ID NO: 1, and exhibiting an activity of promoting transcription of a plant gene.
  • a nucleic acid according to aspect 4 comprising a nucleic acid fragment consisting of the base sequence represented by 33045-35044 of SEQ ID NO: 1.
  • a nucleic acid according to Aspect 4 or Aspect 5 comprising a nucleic acid fragment consisting of the base sequence represented by 26779-35044 of SEQ ID NO: 1.
  • nucleic acid according to any one of aspects 1 to 6, and (2) a nucleic acid encoding a protein defined by the following (a) to (c); (A) having an amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence having at least 80% identity with the amino acid sequence represented by SEQ ID NO: 5, (B) the amino acid sequence of the pseudo-receiver domain of the plant pseudo-response regulator protein or an amino acid sequence having at least 90% identity thereto, and the amino acid sequence of the CCT motif of the plant pseudo-response regulator protein or at least 90% identical thereto An amino acid sequence having sex, and (C) having an activity of suppressing transcription of LHY (Late Elongated Hypocotyl) gene and CCA1 (Circadian Clock-Associated 1) gene, Nucleic acids that are bound so that their functions are possible.
  • LHY Late Elongated Hypocotyl
  • CCA1 Circadian Clock-Associated 1
  • Aspect 8 The nucleic acid according to aspect 7, which enables an increase in plant yield.
  • a vector comprising the nucleic acid according to any one of aspects 1 to 8.
  • a transformed plant comprising the nucleic acid according to aspect 7 or aspect 8.
  • a transformed plant according to aspect 10 wherein the plant is a monocotyledonous plant.
  • Aspect 12 The transformed plant according to aspect 11, wherein the plant is rice or corn.
  • Aspect 14 14.
  • a method for increasing the yield of a plant comprising introducing the nucleic acid according to aspect 7 or 8 into a plant.
  • a DNA marker for selecting a plant having an increased yield comprising 15 to 2000 bases of the base sequence represented by 26779-35044 of SEQ ID NO: 1 and / or the base sequence represented by 35825-46721 of SEQ ID NO: 1.
  • Aspect 18] A method for detecting a DNA marker according to Aspect 17 in a plant and determining that the plant is high yielding when the DNA marker is detected.
  • nucleic acid comprising: a nucleotide sequence represented by 34845-35044 of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity with the nucleotide sequence represented by 34845-35044 of SEQ ID NO: 1; A method for promoting transcriptional activity.
  • a nucleic acid comprising at least 90% identity to the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1 or the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1; A method for promoting transcriptional activity.
  • a method for increasing the yield of a plant which comprises introducing the nucleic acids of the following (1) and (2), which have functions linked to each other as possible, into the plant.
  • a nucleic acid comprising a base sequence defined by the following (a) or (b): (a) a base sequence represented by 26779-35044 of SEQ ID NO: 1, or a fragment comprising a part of the base sequence, (B) a base sequence having an activity to promote transcription of a plant gene, or (b) a base sequence having at least 90% identity with the base sequence represented by (a) above and exhibiting an activity to promote transcription of a plant gene Array, (2) Nucleic acid encoding a protein defined by the following (c) to (e) (c) At least 80% identity with the amino acid sequence shown by SEQ ID NO: 3 or the amino acid sequence shown by SEQ ID NO: 5 Having an amino acid sequence; (D) the amino acid sequence of the pseudo-receiver domain of the plant pseudo-response regulator
  • nucleic acid comprising a base sequence defined by the following (a) or (b); (A) a base sequence represented by SEQ ID NO: 19, or (b) a base sequence having at least 80% identity with the base sequence represented by SEQ ID NO: 19 and exhibiting an activity of promoting transcription of a plant gene;
  • a nucleic acid comprising: (2) a nucleic acid encoding a protein defined by (c) to (e) below; (C) having an amino acid sequence having at least 80% identity with the amino acid sequence represented by SEQ ID NO: 17 or the amino acid sequence represented by SEQ ID NO: Y; (D) the amino acid sequence of the pseudo-receiver domain of the plant pseudo-response regulator protein or an amino acid sequence having at least 90% identity thereto, and the amino acid sequence of the CCT motif of the plant pseudo-response regulator protein or at least 90% identical thereto An amino acid sequence having sex, and (E) It has an activity to suppress transcription of LHY (Late Elongated Hypocot
  • a high yield can be imparted to a plant by introducing into the plant a construct in which the promoter of the present invention and a structural gene of PRR7 are operably linked.
  • FIG. 1 is a diagram showing the genotype of the chromosome partial introduction line “No. 645” of the wild rice species Oriza longistaminata.
  • the region filled in in FIG. 1 is a chromosome portion derived from Oriza longistaminata.
  • FIG. 2 is a diagram showing the genotypes of 7 individuals in which recombination occurred at the end of chromosome 7 and the most terminal was fixed in the “No. 645” type or “Shiokari” type.
  • FIG. 3 is a physical map around a vigorous growth gene. The relationship between the 4 fosmid clones and the 7 constructs (Fr1 to Fr7) prepared in Example 2 is shown in this figure.
  • FIG. 4 is a photograph showing the head of a transformant (Fr4-4) in which the Fr4 fragment was introduced into the rice cultivar “Shiokari”.
  • the left of FIG. 4 shows a gene-deficient individual having no Fr4 fragment, and the right shows a gene-carrying individual having an Fr4 fragment.
  • FIG. 5 shows a panicle of a transformant introduced with a construct containing the coding region of the PRR gene derived from Oriza longistaminata controlled by the ubiquitin promoter (left), and a construct containing only the control selection marker gene. It is a figure which shows the head (right) of a transformant. The left side is not crushed, so it remains green, and the right side is crushed, so the heel is yellowed.
  • FIG. 6 is a diagram showing an alignment of amino acid sequences encoded by the translation regions of isolated PRR7 genes derived from Nipponbare, Oriza longistaminata, sorghum, and Arabidopsis thaliana.
  • the Pseudo-receiver domain (red brackets) and the CCT motif (blue brackets) are described in Takata et al. , (2010) BMC Evolutionary Biology 10: 126.
  • FIG. 7 shows the identity% and similarity% of the amino acid sequences encoded by the translated regions of the isolated PRR7 gene derived from Nipponbare, Oriza longistaminata, sorghum, and Arabidopsis thaliana It is a figure which shows the value of.
  • Gene analysis software Genetyx registered trademark
  • Genetyx registered trademark
  • Execute Protein vs Protein Global Homology with the default settings (set Unit size to compare to 2) using 11.0.4 (Genetics Co., Ltd.), and the identity (%) and similarity (similarity) )%.
  • FIG. 8 is a diagram illustrating a strategy for producing (1) a construct containing a PRR gene derived from Oriza longistaminata and (2) a construct containing a PRR gene derived from Nipponbare.
  • FIG. 9A shows that the PCR product of the PRR gene derived from Oriza longistaminata is cleaved by HpyCH4V.
  • FIG. 9B shows the use of the replacement lines “No. 240” and “Nippon Hare” and F1 of “No. 240” in which the PRR gene of “Nippon Hare” and Oriza Longistaminata were introduced into “Shikari” by crossing. The result of having analyzed the expression of the PRR gene by PCR is shown.
  • FIG. 10 shows T1 line No.
  • FIG. 11 shows the transformation of T1 strain No. 1 of maize transformant into which a construct containing the PRR promoter of Oriza longistaminata and the PRR gene of oriza longistaminata was introduced. It is a photograph of 11 ears.
  • R represents a hygromycin-resistant gene-deficient individual
  • S represents a hygromycin-sensitive gene-bearing individual.
  • FIG. 12 is a diagram showing the structure of a GUS gene expression vector used in an experiment for evaluating the effect of the PRR promoter of Oriza longistaminata on the transcription activity of the GUS gene.
  • FIG. 13 evaluated the promotion of transcriptional activity of the GUS gene in rice transformed with a ligation construct of a 200-base (P200) or 2000-base (P2000) nucleic acid of the PRR promoter region of Oriza longistaminata and the GUS gene coding region. It is a photograph of RT-PCR analysis. G represents genomic DNA,-represents no reverse transcription reaction, + represents a reverse transcription reaction, and P represents plasmid DNA.
  • FIG. 14 is a graph showing the relative expression level of the PRR gene of Oriza longistaminata at 0 hours and 6 hours after the start of the light period.
  • Promoter of PRR7 gene derived from Oriza longistaminata As shown in the following examples, the present inventors are involved in high yield from the fosmid library of Oriza longistaminata (Orisa -Four fosmid clones (Fos1, Fos2, Fos10, Fos12) located at the end of chromosome 7 (of Longistaminata) were selected, and the nucleotide sequence of the contig was decoded by primer walking. The obtained base sequence is shown in SEQ ID NO: 1.
  • the promoter of the PRR7 gene derived from the wild rice oryzae longistaminata is a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 of 34845-35044, preferably It is a nucleic acid comprising the base sequence represented by 33045-35044 of SEQ ID NO: 1, and more preferably a nucleic acid comprising the base sequence represented by 26779-35044 of SEQ ID NO: 1.
  • promoter means a nucleic acid having a function of activating transcription of a structural gene of any plant located immediately below.
  • the “promoter” in the present specification is interpreted in a broad sense, and is not limited to a narrow sense such as a core promoter region having a function of binding a transcription factor and leading to accurate transcription initiation.
  • the promoter of the present invention is not limited to the coding region of the PRR gene, but has the effect of promoting the transcriptional activity of any structural gene in various plants. That is, the present invention includes a nucleic acid in which the promoter of the present invention is operably linked to any structural gene of a plant. This nucleic acid is preferably not a naturally occurring genomic fragment.
  • the action of promoting the transcriptional activity of a structural gene includes a mode in which the activity is regulated or controlled by promoting the transcriptional activity of the structural gene induced by stimulation such as light.
  • the promoter is induced by light stimulation to promote the transcriptional activity of the structural gene. In the light period when light is present, the promoter promotes the transcriptional activity of the structural gene, but in other periods the promoter is structural. This means that it does not promote the transcriptional activity of the gene.
  • the promoter of the present invention is a nucleic acid comprising the base sequence represented by 34845-35044 of SEQ ID NO: 1, preferably a nucleic acid comprising the base sequence represented by 33045-35044 of SEQ ID NO: 1, more preferably SEQ ID NO: 1. Is a nucleic acid comprising the base sequence represented by 26779-35044.
  • the promoters of the present invention are not limited to those nucleic acids, but also include those having a certain sequence identity with those nucleic acids and fragments of those nucleic acids, as described below. State.
  • High yielding can be imparted to a plant by operably linking the promoter to the PRR7 gene and introducing the promoter into the plant. That is, the promoter of the present invention is preferably capable of increasing the yield of a plant when operably linked to a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 3.
  • PRR7 protein in the present specification is described in the following (2) “Nucleic acid in which the promoter of the present invention and the structural gene of PRR are bound so as to function”.
  • “high yield” means the total weight of the plant, the above-ground weight, the yield, the stem diameter, the number of stems, the culm length, the leaf area, the number of leaves, the number of ears, the number of ears, the ear length, the whole ear It means that a part or a plurality of weights or seed yields are increased, preferably that total head weight and / or seed yields are increased, and more preferably that the seed seed yield is increased. It means being. Seed seed yield is a very important trait in rice and corn crops. As an index of increase, for example, it can be evaluated by comparing with a control plant (parent plant, non-transformant, etc.). In the present specification, “high yield” and “growing vigor” represent the same meaning.
  • the sequence corresponding to 2679-35044 is the promoter region of the PRR7 gene of Oriza longistaminata
  • the sequence corresponding to 35825-46721 is the coding region of the PRR7 gene of oriza longistaminata 46722
  • the sequence corresponding to -49157 is the terminator region of the PRR7 gene of Oriza longistaminata.
  • the base sequence represented by 34845-35044 of SEQ ID NO: 1 corresponds to 200 bases upstream of the transcription start point
  • the base sequence represented by 33045-35044 of SEQ ID NO: 1 is upstream of the transcription start point. It corresponds to the region 2000 bases.
  • the base sequence of the promoter of the present invention is not limited to that shown by SEQ ID NO: 1 34845-35044, shown by SEQ ID NO: 1 33045-35044, or shown by SEQ ID NO: 1 26779-35044, A nucleotide sequence having at least 80%, 85%, 90%, 95%, 97%, 99%, or 99.5% identity with these nucleotide sequences and exhibiting an activity of promoting transcription of a plant coding region
  • the nucleic acid containing is also contained.
  • the promoter of the present invention is a base sequence derived from Oriza longistaminata, comprising at least the base sequence represented by 34845-35044 of SEQ ID NO: 1, and having an activity of promoting transcription of a plant gene.
  • Such a nucleic acid preferably contains a nucleic acid fragment consisting of the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1, and contains a nucleic acid fragment consisting of the nucleotide sequence represented by 26779-35044 of SEQ ID NO: 1. Further preferred.
  • the nucleic acid fragment means a nucleic acid that is a part of a base sequence whose range is defined by the specific base number described above in SEQ ID NO: 1. Specifically, but not limited to, a shorter sequence obtained from 26779-35044 of SEQ ID NO: 1, that is, a sequence corresponding to 6000 bases upstream of the transcription start point, a sequence corresponding to 5000 bases, and 4000 bases
  • the corresponding sequence includes a sequence corresponding to 3000 bases, a sequence corresponding to 2000 bases, or 1000 bases.
  • the percent identity between two nucleic acid sequences can be determined by visual inspection and mathematical calculation, or more preferably, this comparison is made by comparing the sequence information using a computer program.
  • a typical, preferred computer program is the Wisconsin package, version 10.0 program “GAP” of the Genetics Computer Group (GCG; Madison, Wis.) (Devereux, et al., 1984, Nucl. Acids Res. ., 12: 387).
  • GAP Genetics Computer Group
  • two amino acid sequences can be compared, and a nucleic acid sequence and an amino acid sequence can be compared.
  • GAP GCG run of an unary comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and Schwartz and As described by Dayhoff, “Atlas of Polypeptide Sequence and Structure” National Biomedical Research Foundation, pages 353-358, 1979, Gribskov and Burgess, Nucl. Acids Res. , 14: 6745, 1986; or other comparable comparison matrix; (2) 30 penalties for each gap of amino acids and one additional penalty for each symbol in each gap; or Includes 50 penalties for each gap and an additional 3 penalties for each symbol in each gap; (3) no penalty to end gaps; and (4) no maximum penalty for long gaps.
  • sequence comparison programs used by those skilled in the art include, for example, the US National Library of Medicine website: http: // www. ncbi. nlm. nih. gov / blast / bl2seq / bls.
  • the BLASTN program available for use by html, version 2.2.7, or the UW-BLAST 2.0 algorithm can be used. Standard default parameter settings for UW-BLAST 2.0 can be found at the following Internet site: http: // blast. Wustl. It is described in edu.
  • the BLAST algorithm uses a BLOSUM62 amino acid scoring matrix and the selection parameters that can be used are: (A) Segments of query sequences with low compositional complexity (Woughton and Federhen SEG program (Computers and Chemistry, 1993); Woton and Federhen, 1996 “Analysis of compositionally weighted regions in sequenced data bases”, 71: 66.
  • a segment consisting of short-cycle internal repeats Including a filter to mask (determined by the XNU program of Claverie and States (Computers and Chemistry, 1993)), and (B) a threshold of statistical significance to report a fit to the database sequence; Or according to a statistical model of E-score (Karlin and Altschul, 1990), the expected probability of a match simply found by chance; if the statistical significance difference due to a match is greater than the E-score threshold, this fit Is not reported); the preferred E-score threshold value is 0.5 or, in order of increasing preference, 0.25, 0.1, 0.05, 0.01, 0.001,. 0001, 1e-5, 1e-10, 1e-15, 1e-20, 1e-2 A 1e-30,1e-40,1e-50,1e-75 or 1e-100,.
  • the variant of the promoter of the present invention is also represented by the nucleotide sequence represented by SEQ ID NO: 1 34845-35044, preferably the nucleotide sequence represented by SEQ ID NO: 1 33045-35044, more preferably represented by SEQ ID NO: 1 26779-35044. It may be a nucleic acid comprising a base sequence that hybridizes under stringent conditions to a complementary strand of the base sequence, and may be a nucleic acid having promoter activity.
  • under stringent conditions means to hybridize under moderately or highly stringent conditions.
  • moderately stringent conditions can be easily determined by those skilled in the art having general techniques based on, for example, the length of the DNA.
  • Basic conditions are shown in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd edition, Chapter 6, Cold Spring Harbor Laboratory Press, 2001, for example, 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (PH 8.0) pre-wash solution, about 50% formamide at about 42 ° C., 2 ⁇ to 6 ⁇ SSC, preferably 5 ⁇ to 6 ⁇ SSC, 0.5% SDS (or about 42 ° C.
  • hybridization solutions such as Stark solution in 50% formamide
  • Other similar hybridization solutions such as Stark solution in 50% formamide
  • cleaning conditions Preferably, moderately stringent conditions include hybridization conditions (and washing conditions) of about 50 ° C., 6 ⁇ SSC, 0.5% SDS.
  • High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA.
  • these conditions include hybridization at higher temperatures and / or lower salt concentrations than moderately stringent conditions (eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC) and / or washing, for example hybridization as described above Defined with conditions and washing at approximately 65 ° C. to 68 ° C., 0.2 ⁇ to 0.1 ⁇ SSC, 0.1% SDS.
  • moderately stringent conditions eg, containing about 0.5% SDS, about 65 ° C., 6 ⁇ SSC to 0. 2 ⁇ SSC, preferably 6 ⁇ SSC, more preferably 2 ⁇ SSC, more preferably 0.2 ⁇ SSC, or even 0.1 ⁇ SSC
  • moderately stringent conditions
  • SSC 1 ⁇ SSC is 0.15 M NaCl and 15 mM sodium citrate
  • SSPE 1 ⁇ SSPE is 0.15 M NaCl, 10 mM NaH 2 PO 4 , and 1. 25 mM EDTA, pH 7.4
  • washing is performed for 15 minutes to 1 hour after hybridization is completed.
  • hybridization kit that does not use a radioactive substance for the probe can be used.
  • hybridization using an ECL direct labeling & detection system can be mentioned.
  • ECL direct labeling & detection system manufactured by Amersham
  • For stringent hybridization for example, 5% (w / v) Blocking reagent and 0.5M NaCl are added to the hybridization buffer in the kit, and the reaction is performed at 42 ° C. for 4 hours.
  • a condition is that 20% is performed twice at 55 ° C. for 20 minutes in 4% SDS, 0.5 ⁇ SSC, and once at room temperature for 5 minutes in 2 ⁇ SSC.
  • nucleic acid in which the promoter of the present invention and the PRR7 structural gene are operably linked The nucleic acid comprising the promoter of the present invention and a base sequence encoding a plant PRR7 protein (ie, PRR7 structural gene) , And are nucleic acids bound so as to function.
  • the promoter of the present invention referred to here is the one described in the section of “Promoter of PRR7 gene derived from Oriza longistaminata” in (1) above.
  • a large number of plants can be obtained by introducing a nucleic acid in which the promoter of the present invention consisting of the nucleotide sequence represented by 26779-35044 of SEQ ID NO: 1 and the structural gene of PRR7 are bound so as to function. It is actually shown that it became a yield.
  • a person skilled in the art can easily select a base or a sequence corresponding to 1000 bases as a promoter and use this to give a plant high yield from the knowledge disclosed in the present specification. It is a matter that can be. That is, a person skilled in the art operably links such a sequence to a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 3 based on the description in the present specification, and confirms the yield of the plant into which the sequence is introduced.
  • the nucleic acid capable of imparting high yield to a plant is induced by the promoter of the present invention having the activity of regulating or controlling the activity of the gene by being induced by stimulation such as light and promoting the transcription activity of the structural gene. It is preferable to bind the PRR7 structural gene.
  • the expression “coupled so that the function is possible” means that the promoter nucleic acid of the present invention and the nucleic acid of the PRR7 structural gene have the function of the promoter activity that the promoter promotes the transcriptional activity of the structural gene. It means that they are combined in such a way that they can operate.
  • PRR7 protein means a protein that satisfies the following conditions.
  • the PRR7 protein in this specification is the amino acid sequence shown by SEQ ID NO: 3 or the amino acid shown by SEQ ID NO: 5 A protein having a sequence.
  • the PRR7 protein derived from Oriza longistaminata consists of 740 amino acids shown in SEQ ID NO: 3, and is encoded by a nucleic acid having the base sequence shown in SEQ ID NO: 2.
  • the PRR7 protein derived from Nipponbare consists of 742 amino acids shown in SEQ ID NO: 5 in the sequence listing, and is encoded by a nucleic acid having the base sequence shown in SEQ ID NO: 4.
  • the PRR7 protein in the present specification is not limited to the one containing the amino acid sequence represented by SEQ ID NO: 3 or SEQ ID NO: 5, but at least 65%, 70% with the amino acid sequence represented by SEQ ID NO: 3 or SEQ ID NO: 5. It contains proteins having amino acid sequences with 75%, 80%, 85%, 90%, 95%, 97%, or 99% identity.
  • the PRR7 protein in the present specification contains a protein having an amino acid sequence having at least 90%, 95%, 97%, or 99% similarity with the amino acid sequence represented by SEQ ID NO: 3 or SEQ ID NO: 5. is there.
  • amino acid sequence similarity% means the degree of similarity between proteins in consideration of amino acid differences. That is, when conservative substitution of an amino acid described later is performed, a value obtained by considering it as a similar amino acid is the similarity%.
  • the PRR7 protein in the present specification is a protein containing a PR domain and a CCT motif.
  • PRR proteins are associated with plant circadian clocks and are known to exist universally in plants.
  • PRR proteins contain a highly conserved pseudo-receiver (PR) domain and a CCT motif.
  • PR domain is a common motif of PRR proteins and is known to have protein interaction ability.
  • the CCT motif is rich in basicity and is considered to be involved in binding between proteins.
  • the PRR7 protein is one of the PRR proteins and includes a PR domain and a CCT motif.
  • the PR domain corresponds to amino acid numbers 62 to 176 in the amino acid sequence of SEQ ID NO: 3, and corresponds to amino acid numbers 62 to 176 in the amino acid sequence of SEQ ID NO: 5.
  • the CCT motif corresponds to amino acid numbers 676 to 722 in the amino acid sequence of SEQ ID NO: 3, and corresponds to amino acid numbers 678 to 724 in the amino acid sequence of SEQ ID NO: 5. Therefore, in this specification, the PR domain means an amino acid sequence corresponding to amino acid numbers 62 to 176 of the amino acid sequence of SEQ ID NO: 3. Further, in the present specification, the CCT motif means an amino acid sequence corresponding to the amino acid sequence from amino acid numbers 676 to 722 of the amino acid sequence of SEQ ID NO: 3.
  • amino acid sequences of the PR domain and the CCT motif of the PRR7 protein are not limited to those described above, and those amino acid sequences and at least 80%, 85%, 90%, 95%, 97%, or Also includes those with 99% identity.
  • the glutamic acid (Glu) having amino acid number 68 may be aspartic acid (Asp) having amino acid number 68 in SEQ ID NO: 5.
  • isoleucine (Ile) of amino acid number 62 of SEQ ID NO: 3 leucine (Leu) of 65, 96 glutamine ( Gln), 131 asparagine (Asn), 137 asparagine (Asn), 150 glycine (Gly), and 168 isoleucine (Ile) amino acid residues may also be conserved without substitution.
  • glutamine (Gln) of amino acid number 677 of SEQ ID NO: 3 asparagine (Asn) of amino acid number 695, glycine (Gly) of 697
  • the amino acid residues of 707 arginine (Arg) and 722 glutamine (Gln) may also be conserved without substitution.
  • the glutamine (Gln) of amino acid number 677 may be arginine (Arg) of amino acid number 679 of SEQ ID NO: 5.
  • amino acid residues of glutamine (Gln) of amino acid number 689 of SEQ ID NO: 3 and glutamic acid (Glu) of 693 are not substituted. It may be preserved.
  • amino acid sequence having the identity with the PR domain in the present specification maintains the PR domain conserved amino acid, and the amino acid sequence other than the PR domain conserved amino acid in the amino acid sequence of the PR domain may be modified.
  • amino acid sequence having the same identity as the CCT motif in the present specification maintains the CCT motif conserved amino acid, and the amino acid sequence other than the CCT motif conserved amino acid in the amino acid sequence of the CCT motif may be modified.
  • amino acid modifications may be amino acid deletions, substitutions, insertions and / or additions.
  • An amino acid substitution may also be a conservative substitution, which is the replacement of a particular amino acid residue with a residue having similar physicochemical characteristics.
  • conservative substitutions include substitutions between aliphatic group-containing amino acid residues such as substitutions between Ile, Val, Leu or Ala, Lys and Arg, Glu and Asp, Gln and Asn Substitution between polar residues such as substitution is included.
  • PRR7 protein is a protein having an activity of suppressing transcription of the LHY (Late Elongated Hypocotyl) gene and the CCA1 (Circadian Clock-Associated 1) gene.
  • the yield of plants can also be increased by introducing into the plant a nucleic acid in which the promoter of PRR7 derived from Oriza longistaminata is linked to the PRR7 structural gene derived from Nipponbare in a functional manner. That is, it was possible to give the plant high yield. Therefore, it is considered that the promoter of PRR7 derived from Oriza longistaminata of the present invention plays an important role in obtaining the effects of the present invention.
  • the present invention provides at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99 with the amino acid sequence represented by SEQ ID NO: 3 or the amino acid sequence represented by SEQ ID NO: 5.
  • a nucleic acid encoding a protein having an amino acid sequence having% identity and having an activity to increase plant yield when operably linked to the promoter of the PRR7 gene derived from Oriza longistaminata A nucleic acid operably linked to the promoter of the PRR7 gene derived from staminata. By introducing this nucleic acid into a plant, it is possible to give the plant high yield.
  • such a nucleic acid encodes a protein containing a PR domain and a CCT motif and / or encodes a protein having an activity of suppressing transcription of the LHY gene and the CCA1 gene. May be.
  • This nucleic acid can be used as the nucleic acid for the present invention described in (3) to (6) below.
  • a vector comprising a promoter of the present invention, or a nucleic acid in which the promoter of the present invention and a structural gene of PRR7 are operably linked.
  • the present invention is a vector comprising the promoter of the present invention alone, or the present invention And a nucleic acid comprising a base sequence encoding the PRR7 protein (a PRR7 structural gene) in such a manner that the nucleic acid is operably linked.
  • Such vectors are useful for conferring high yield on plants.
  • the present invention provides a plant with high yield of a vector comprising a nucleic acid in which the promoter of the present invention and a nucleic acid containing a base sequence encoding a PRR7 protein (a PRR7 structural gene) are operably linked. Use for granting.
  • a vector can be easily prepared by ligating a desired gene to a recombination vector available in the art by a conventional method.
  • a plant transformation vector is particularly useful when the nucleic acid of the present invention is used to impart high yield to plants.
  • the vector used in the present invention is not particularly limited as long as it can be used to achieve the target effect of the present invention in plant cells.
  • pBI vectors include pBI121, pBI101, pBI101.2, pBI101.3, pBI221, and the like.
  • a binary vector such as a pBI vector is preferable in that the target DNA can be introduced into a plant via Agrobacterium.
  • pBluescript vectors examples include pBluescript SK (+), pBluescript SK (-), pBluescript II KS (+), pBluescript II KS (-), pBluescript + K (S) Etc.
  • pUC vectors examples include pUC19 and pUC119. The pBluescript vector and the pUC vector are preferable in that DNA can be directly introduced into a plant.
  • binary vectors such as pGreen series (www.pgreen.ac.uk) and pCAMBIA series (www.cambia.org), pSB11 (Komari et al, 1996, Plant J, 10: 165-174), pSB200 (Komori) et al, 2004, Plant J, 37: 315-325) and the like can also be preferably used.
  • the vector preferably includes a transcription terminator sequence including a polyadenylation site necessary for the stabilization of the transcript.
  • a transcription terminator sequence including a polyadenylation site necessary for the stabilization of the transcript.
  • One skilled in the art can appropriately select a transcription terminator sequence.
  • the transcription terminator sequence is not particularly limited as long as it has a function as a transcription termination site, and may be a known one.
  • the transcription termination region of the nopaline synthase gene Nos terminator
  • the transcription termination region of the cauliflower mosaic virus 35S CaMV35S terminator
  • the above-described recombinant expression vector by arranging the transcription terminator sequence at an appropriate position, it is possible to prevent the occurrence of a phenomenon of unnecessarily synthesizing a long transcript after being introduced into a plant cell.
  • the recombinant expression vector may further contain other DNA segments.
  • the other DNA segment is not particularly limited, and examples thereof include a transformant selection marker, an enhancer, and a base sequence for improving translation efficiency.
  • the recombinant expression vector may further have a T-DNA region.
  • the T-DNA region can increase the efficiency of gene transfer particularly when Agrobacterium is used to introduce the recombinant expression vector into a plant body.
  • a drug resistance gene can be used as a transformant selection marker.
  • drug resistance genes include, for example, drug resistance genes for hygromycin, bleomycin, kanamycin, gentamicin, chloramphenicol, etc. (neomycin phosphotransferase that is resistant to the antibiotics kanamycin or gentamicin. Gene, hygromycin phosphotransferase gene, which is resistant to hygromycin).
  • a phosphinothricin acetyltransferase gene resistant to the herbicide phosphinothricin can be used. Thereby, the transformed plant body can be easily selected by selecting the plant body that grows in the medium containing the antibiotic or the herbicide.
  • Examples of the base sequence for improving the translation efficiency include an omega sequence derived from tobacco mosaic virus. By placing this omega sequence in the untranslated region (5′UTR) of the promoter, the translation efficiency of the fusion gene can be increased.
  • examples of the enhancer include an enhancer region including an upstream sequence in the CaMV35S promoter.
  • the recombinant expression vector can contain various DNA segments depending on the purpose.
  • the method for constructing the recombinant expression vector is not particularly limited, and the promoter of the present invention, the PRR7 structural gene, the terminator sequence, and the above-mentioned other DNAs as necessary may be used as appropriate mother vectors. What is necessary is just to introduce a segment so that it may become a predetermined order.
  • the purified gene DNA is cleaved with an appropriate restriction enzyme and inserted into an appropriate vector DNA restriction enzyme site or a multicloning site according to a conventional method. Are used (eg, Molecular Cloning, 5.61-5.63).
  • the present invention has functions of the promoter of the present invention and a nucleic acid (PRR7 structural gene) containing a base sequence encoding the PRR7 protein.
  • a transformed plant into which a nucleic acid that is conjugated as possible is introduced into the plant.
  • the nucleic acid is usually inserted into an appropriate vector and introduced into a plant cell to be transformed. That is, the present invention provides a plant cell (transformed plant) that retains the above-described nucleic acid or recombinant expression vector.
  • the plant cells include various forms of plant cells, such as suspension culture cells, protoplasts, and cells in plants.
  • the transformant according to the present invention includes not only plant cells, but also whole plants, plant organs (for example, roots, stems, leaves, petals, seeds, fruits, mature embryos, immature embryos, ovules, ovaries, Shoot apex, cocoon, pollen, etc.), plant tissue (eg, epidermis, sieve, soft tissue, xylem, vascular bundle, etc.), slices, callus, shoot primordia, multi-bud, hairy root and cultured root Etc. are included.
  • plant organs for example, roots, stems, leaves, petals, seeds, fruits, mature embryos, immature embryos, ovules, ovaries, Shoot apex, cocoon, pollen, etc.
  • plant tissue eg, epidermis, sieve, soft tissue, xylem, vascular bundle, etc.
  • slices callus, shoot primordia, multi-bud, hairy root and cultured root Etc.
  • the gene is incorporated into an appropriate vector, for example, polyethylene glycol method, Agrobacterium method, liposome method, cationic liposome method, calcium phosphate precipitation method, electric pulse perforation method ( (Electroporation) (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publisher. John Wiley & Sons. Section 9.1-9.9, Lipofection method (GIBCO-BRL Induction) Examples thereof include a method of introduction into a living body by a method known to those skilled in the art such as a particle gun method.
  • the Agrobacterium method can be preferably used.
  • the gene of the present invention When the gene of the present invention is introduced into a plant body, the gene can be directly introduced into a plant cell using a microinjection method, an electroporation method, a polyethylene glycol method, or the like. It can also be incorporated into a plant cell indirectly via a virus or bacterium capable of infecting the plant as a vector. Examples of such viruses include cauliflower mosaic virus, tobacco mosaic virus, gemini virus, and the like as typical viruses, and examples of bacteria include Agrobacterium. When introducing a gene into a plant by the Agrobacterium method, a commercially available plasmid can be used.
  • the present invention includes not only plant cells into which the nucleic acid or vector has been directly introduced, but also plants in which plant cells are grown, plants that are progeny, offspring or clones of the plant, and propagation materials (eg, seeds). , Fruit, cuttings, tubers, tuberous roots, strains, callus, protoplasts, etc.). Regeneration of plant bodies from transformed plant cells can be performed by methods known to those skilled in the art depending on the type of plant cells. The above technique has already been established and widely used in the technical field of the present invention, and the above method can be suitably used in the present invention.
  • the method of regenerating a transformed plant cell by redifferentiating the transformed plant cell differs depending on the type of plant cell.
  • the method of Fujimura et al. (Plant Tissue Culture Lett. 2:74 (1995)) is used.
  • corn include the method of Shillito et al. (Bio / Technology 7: 581 (1989)) and the method of Gorden-Kamm et al. (Plant Cell 2: 603 (1990)).
  • the presence of the introduced foreign gene in the transformed plant that has been regenerated and cultivated by the above method is confirmed by a known PCR method or Southern hybridization method, or by analyzing the DNA base sequence in the plant body. can do.
  • the extraction of DNA from the transformed plant body is carried out by the known J.P. It can be carried out according to the method of Sambrook et al. (Molecular Cloning, 2nd edition, Cold Spring Harbor Laboratory Press, 1989).
  • an amplification reaction is performed using the DNA extracted from the regenerated plant body as a template as described above.
  • an amplification reaction can be carried out in a reaction mixture in which a synthesized oligonucleotide having a base sequence appropriately selected according to the base sequence of the gene of the present invention or a modified gene is used as a primer, and these are mixed.
  • DNA denaturation, annealing, and extension reactions are repeated several tens of times to obtain an amplification product of a DNA fragment containing the base sequence of the gene of the present invention.
  • the reaction solution containing the amplified product is subjected to, for example, agarose electrophoresis, it is possible to confirm that the amplified DNA fragments are fractionated and that the DNA fragments correspond to the gene of the present invention.
  • the present invention includes a plant cell into which the gene or recombinant expression vector of the present invention has been introduced, a plant containing the cell, a progeny and clone of the plant, and a propagation material for the plant, its progeny and clone. included.
  • a progeny plant such as “T0 generation” which is a regenerated generation that has undergone transformation treatment, or “T1 generation” which is a self-propagating seed of a plant of T0 generation, or crossed with them as one parent. Includes hybrid plants and progeny plants.
  • the transformed plant produced in this way is expected to have an advantageous property of high yield compared to normal plants.
  • the plant used as a subject to be transformed in the present invention is not particularly limited, and various transformed plants having high yield can be produced by the method of the present invention.
  • the plant to be transformed is an angiosperm, preferably a monocotyledonous plant, more preferably rice, corn, or sorghum, and most preferably rice and corn.
  • the plant transformed in the preferable aspect of this invention is a short-day plant.
  • transgenic corn was prepared in which the promoter of the present invention and the PRR structural gene derived from Oriza longistaminata were introduced.
  • the present invention provides a nucleic acid (PRR7) comprising the promoter sequence of the present invention and a base sequence encoding PRR7 protein.
  • PRR7 a nucleic acid
  • This is a method for producing a transformed plant having an increased yield, which comprises the step of introducing into a plant a nucleic acid to which a structural gene) is operably linked. More specifically, a nucleic acid in which the promoter sequence of the present invention and a nucleic acid encoding a PRR7 protein (a PRR7 structural gene) are operably linked is prepared, and the nucleic acid is introduced into a plant cell.
  • a transformed plant having an increased yield By regenerating a plant from the plant cell into which the nucleic acid has been introduced, a transformed plant having an increased yield can be produced.
  • plant materials for introducing nucleic acids include plant tissues such as roots, stems, leaves, seeds, mature embryos, immature embryos, ovules, ovary, shoot tips, cocoons, pollens, etc., cells, callus, it Plant cells such as protoplasts from which cell walls have been removed by enzymatic treatment, and mature or immature embryos can be preferably used.
  • the method for producing the transformed plant of the present invention is not particularly limited, and various plant transformation methods generally used in this technical field can be used. For example, the transformation method described in (4) above can be used as appropriate.
  • the plant to be transformed is an angiosperm, preferably a monocotyledonous plant, more preferably rice, corn, or sorghum, and most preferably rice and corn.
  • the plant transformed in the preferable aspect of this invention is a short-day plant.
  • a nucleic acid (a PRR7 structural gene) comprising the promoter sequence of the present invention and a base sequence encoding PRR7 protein is operably linked.
  • a method for increasing the yield of a plant characterized by introducing a nucleic acid into the plant. By introducing the nucleic acid described in (2) above into a plant, the yield of the plant can be increased.
  • the PRR7 protein used in this method satisfies the definition of the PRR7 protein defined in (2) above.
  • amino acid sequence having sex including a PR domain and a CCT motif, and having an activity of suppressing transcription of the LHY gene and the CCA1 gene.
  • the amino acid sequence having the identity with the PR domain maintains the PR domain conserved amino acid, and in the amino acid sequence of the PR domain, amino acids other than the PR domain conserved amino acid may be modified.
  • the amino acid sequence having identity with the CCT motif maintains the CCT motif conserved amino acid, and the amino acid sequence other than the CCT motif conserved amino acid in the amino acid sequence of the CCT motif may be modified.
  • the promoter that binds to the base sequence encoding the PRR7 protein so that the function is possible is preferably the base sequence represented by 34845-35044 of SEQ ID NO: 1, the base sequence represented by 33045-35044 of SEQ ID NO: 1, or SEQ ID NO: 1 is a nucleic acid having a base sequence represented by 26779-35044.
  • the promoter used in this method is not limited to those nucleic acids, but a part of the base sequence represented by 34845-35044 of SEQ ID NO: 1, a part of the base sequence represented by 33045-35044 of SEQ ID NO: 1, or the sequence It also includes a nucleic acid comprising a fragment consisting of a part of the nucleotide sequence represented by No.
  • the promoter used in this method is a base sequence represented by SEQ ID NO: 1 34845-35044, a base sequence represented by SEQ ID NO: 1 33045-35044, or a base sequence represented by SEQ ID NO: 1 26779-35044 and 80 %, 85%, 90%, 95%, 97%, 99%, or 99.5% identity, and contains a nucleic acid containing a base sequence exhibiting an activity of promoting transcription of a plant gene.
  • the promoter used in this method is a base sequence derived from Oriza longistaminata, which contains at least the base sequence represented by 34845-35044 of SEQ ID NO: 1, and exhibits the activity of promoting the transcription of plant genes. Includes nucleic acids.
  • the whole or partial sequence of the promoter of the present invention and / or the PRR7 structural gene derived from Oriza longistaminata is a plant It is useful as a high yielding DNA marker.
  • the sequence of the promoter of the present invention or the sequence of the PRR7 structural gene derived from Oriza longistaminata is detected in a plant, the plant is expected to exhibit a high-yield trait like Oriza longistaminata.
  • a base sequence derived from the promoter of the present invention is more preferable.
  • the DNA marker of the present invention used for such a purpose preferably contains 15 to 2000 bases of the base sequence shown by 26779-35044 of SEQ ID NO: 1 and / or the base sequence shown by 35825-46721 of SEQ ID NO: 1. More preferably, it contains 20 to 500 bases of the base sequence represented by SEQ ID NO: 1 26779-35044 and / or the base sequence represented by SEQ ID NO: 1 35825-46721. More preferably, it comprises 30 to 100 bases of the base sequence represented by 26779-35044 of SEQ ID NO: 1 and / or the base sequence represented by 35825-46721 of SEQ ID NO: 1.
  • the high-yield DNA markers of the present invention are not limited thereto.
  • the base sequence of the promoter of the present invention or the base sequence of the PRR structural gene of Oriza longistaminata is compared with the base sequence of the corresponding part of Nipponbare, and there is a difference between the two.
  • the Oriza Longistaminata partial sequence corresponding to the region can be selected as the DNA marker described above.
  • the DNA marker of the present invention When the DNA marker of the present invention is detected in a plant and the DNA marker is present, it can be determined that the plant is high yielding. For example, when selecting high-yielding rice varieties for plants obtained by crossing Nipponbare and Oriza Longistaminata, there is a difference between Oriza Longistaminata and Nipponbare as described above.
  • the partial sequence of Oriza longistaminata corresponding to the region can be used as a DNA marker.
  • the DNA marker detection means of the present invention is not particularly limited, and various methods known in the art such as PCR, RFLP, or base sequence decoding can be used. Furthermore, the detection of the DNA marker of the present invention can be carried out at any stage of plant growth obtained by crossing. It is preferable in the present invention to detect a DNA marker at the stage of a young plant for a plant obtained by crossing, thereby determining whether the plant is high-yield before growing the crossed plant. Can do.
  • the present invention provides a method for promoting plant gene transcriptional activity using the promoter of the present invention. That is, the present invention uses a nucleic acid comprising a base sequence represented by 34845-35044 of SEQ ID NO: 1 or a base sequence having at least 90% identity to the base sequence represented by 34845-35044 of SEQ ID NO: 1, This is a method for promoting the transcriptional activity of plant genes.
  • the present invention uses a nucleic acid comprising a base sequence represented by 33045-35044 of SEQ ID NO: 1 or a base sequence having at least 90% identity with the base sequence represented by 33045-35044 of SEQ ID NO: 1, This is a method for promoting the transcriptional activity of plant genes.
  • the present invention also relates to a nucleic acid sequence derived from Oriza longistaminata, comprising at least the nucleotide sequence represented by 34845-35044 of SEQ ID NO: 1 and having a nucleic acid activity that promotes transcription of plant genes. This is a method for promoting the transcriptional activity of plant genes.
  • Such a nucleic acid preferably contains a nucleic acid fragment consisting of the nucleotide sequence represented by 33045-35044 of SEQ ID NO: 1, and contains a nucleic acid fragment consisting of the nucleotide sequence represented by 26779-35044 of SEQ ID NO: 1. Further preferred. In the following examples, it has been actually confirmed that nucleic acids containing the nucleotide sequences corresponding to 34845-35044 of SEQ ID NO: 1 and 33045-35044 of SEQ ID NO: 1 have the activity of promoting transcription of the GUS gene.
  • the present invention provides a PRR7 protein derived from oriza longistaminata and a nucleic acid encoding the same.
  • the PRR7 protein derived from Oriza longistaminata consists of the amino acid shown in SEQ ID NO: 3 and is encoded by the nucleic acid having the base sequence shown in SEQ ID NO: 2. Therefore, the present invention is a protein having the amino acid sequence represented by SEQ ID NO: 3 and a nucleic acid encoding the protein. Furthermore, the present invention is a nucleic acid having the base sequence represented by SEQ ID NO: 2.
  • the PRR7 protein derived from Nipponbare was introduced into the same promoter.
  • the results showed that the effect of imparting high yield was greater compared to the case where a construct in which the encoding gene was bound was introduced. That is, when expressed operably linked to the PRR7 promoter derived from Oriza longistaminata, the nucleic acid encoding the PRR7 protein derived from oriza longistaminata is the nucleic acid encoding the PRR7 protein derived from other plants.
  • the present invention provides high yield to a plant of a nucleic acid encoding the protein having the amino acid sequence represented by SEQ ID NO: 3.
  • a method for increasing the yield of a plant characterized by introducing a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 3 into the plant, and a protein having the amino acid sequence represented by SEQ ID NO: 3
  • a method for producing a transformed plant with an increased yield characterized by introducing a nucleic acid encoding into the plant.
  • the present invention further relates to a nucleic acid in which a sorghum-derived PRR7 promoter and a sorghum PRR7 structural gene are linked so as to be capable of functioning. It is.
  • the SRR-derived PRR7 promoter is a nucleic acid comprising a base sequence represented by 9049 base sequences represented by SEQ ID NO: 19.
  • the base sequence of the PRR7 promoter derived from sorghum in the present specification is not limited to that shown in SEQ ID NO: 19, and at least 80%, 85%, 90%, 95%, 97%, 99%, or 99 It also contains a nucleic acid having a 5% identity and containing a base sequence that exhibits activity to promote transcription of the plant coding region.
  • the PRR7 protein derived from sorghum consists of 765 amino acids shown in SEQ ID NO: 17, and is encoded by a nucleic acid having the base sequence shown in SEQ ID NO: 16.
  • the PRR7 protein derived from sorghum in the present specification is not limited thereto, and is at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85 and the amino acid sequence represented by SEQ ID NO: 17. %, 90%, 95%, 97%, or a protein having an amino acid sequence having a similarity of 99%.
  • the sorghum-derived PRR7 protein in the present specification contains a PR domain and a CCT motif, as described in connection with the PRR7 protein derived from Oriza longistaminata in (2) above, and contains the LHY gene and It has the activity of suppressing transcription of the CCA1 gene.
  • the PR domain of the SRR-derived PRR7 protein corresponds to amino acid numbers 80 to 194 in the amino acid sequence of SEQ ID NO: 17, and the CCT motif corresponds to amino acid numbers 709 to 752.
  • the amino acid sequences of the PR domain and the CCT motif of the PRR7 protein derived from sorghum are not limited to the PR domain and the CCT motif described above, and at least 70%, 75%, and 80% of those amino acid sequences. , 85%, 90%, 95%, 97%, or 99% identity.
  • Example 1 Production of a high-yield cultivated rice line and identification of a high-yield gene region possessed by rice wild-type Oryza longistaminata
  • Rice wild-type Oryza longistaminata (O. longistaminata) native to Africa is Although it has the same A genome as O. sativa L., which is a cultivated species, it is known to exhibit a larger biomass than the cultivated species.
  • marker CH15377-1 is about 180 kb away from the right end of FIG. 2 of pack clone P0627E10, the high yielding gene region possessed by Oriza Longistaminata can be narrowed down to the end of chromosome 7 at about 180 kb. Estimated.
  • Example 2 Complementarity test by transformation test of chromosome 7 terminal region of Oriza longistaminata (1) According to the genetic analysis of Example 1, the high-yield gene region possessed by Oriza longistaminata could be narrowed down to about 180 kb at the end of chromosome 7. Seven constructs covering a region of about 82 kb were prepared, and transformants obtained by transforming each of them into “Shiokari” were evaluated for traits.
  • a genomic library of “No. 645” was prepared using fosmid vector pCC1FOS (EPICENTRE). Since the genetic analysis of Example 1 showed that genes involved in high yielding sit on the end of the long arm of chromosome 7, C213 and C728 (Harushima), which are DNA markers in this region, were shown. et al, 1998), and the clones (Fos1, 2, 10, 12) were selected. The position of each clone was clarified by decoding the terminal nucleotide sequence of each clone and comparing it with the Nipponbare genome sequence. Furthermore, primer walking was performed and the base sequence of the contig was decoded. The decoded base sequence is shown in SEQ ID NO: 1.
  • Plasmid DNA pSB200 (an intermediate vector having a hygromycin resistance gene cassette) was completely digested with NotI, and then DNA was collected by ethanol precipitation. The recovered DNA was dissolved in a TE solution and dephosphorylated with CIAP (TAKARA-BIO). After the reaction solution was subjected to electrophoresis on an agarose gel, the vector fragment was purified from the gel using QIAEXII Gel Extraction Kit.
  • the two fragments prepared as described above were tested, and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix” (TAKARA-BIO). After the reaction, DNA was collected by ethanol precipitation. The recovered DNA was dissolved in pure water (produced by an apparatus manufactured by Millipore), mixed with E. coli DH5 ⁇ , and subjected to electroporation. The solution after electroporation was cultured with shaking in LB medium (37 ° C., 1 hour), spread on an LB plate containing spectinomycin (50 ⁇ g / ml), and incubated (37 ° C., 16 hours). About 24 of the resulting colonies, a plasmid was isolated, and the desired E. coli was selected by examining the restriction enzyme fragment length pattern and the boundary base sequence.
  • TAKARA-BIO DNA Ligation Kit “Mighty Mix”
  • This fragment was tested together with the NotI-CIAP-treated pSB200 fragment used in (1), and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix”. Thereafter, desired E. coli was selected according to the method described in (1).
  • This fragment was tested together with the NotI-CIAP-treated pSB200 fragment used in (1), and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix”. Thereafter, desired E. coli was selected according to the method described in (1).
  • This fragment was tested together with the NotI-CIAP-treated pSB200 fragment used in (1), and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix”. Thereafter, desired E. coli was selected according to the method described in (1).
  • This fragment was tested together with the NotI-CIAP-treated pSB200 fragment used in (1), and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix”. Thereafter, desired E. coli was selected according to the method described in (1).
  • This fragment was tested together with the NotI-CIAP-treated pSB200 fragment used in (1), and a ligation reaction was performed using DNA Ligation Kit “Mighty Mix”. Thereafter, desired E. coli was selected according to the method described in (1).
  • the fourth largest fragment (including from the 46056th base to the 49155th base of SEQ ID NO: 1) obtained by treating Fos1 with PstI and SacI was purified from an agarose gel using QIAEXII Gel Extraction Kit.
  • DNA was recovered by ethanol precipitation.
  • the recovered DNA was treated with CIAP by the method described in (1) to purify the vector fragment.
  • E. coli selected by (1) to (7) were tested together with Agrobacterium tumefaciens strain LB4404 / pSB1 ( Komari et al, 1996) and helper E. coli HB101 / pRK2013 (Dita et al, 1980). According to the method of (1980), trivalent mating was performed. Using Agrobacterium selected on AB plate containing spectinomycin (50 ⁇ g / ml), tetracycline (15 ⁇ g / ml) and hygromycin (35 ⁇ g / ml), according to the method of Hiei et al (1994), Transformation of “Shiokari” was performed. The transformed rice was cultivated in a greenhouse after acclimation. About 20 individual transformants were trained for each construct, and T1 seeds were collected.
  • Table 4 shows the average values of the agricultural trait data of the 2 lines of each construct. The number of spikelets and the weight of one spike of all the 7 constructs tested were almost equal to or less than the control “Shiokari”, and no construct surpassing “Shiokari” was found.
  • Example 3 Complementarity test by transformation test of chromosome 7 terminal region of Oriza longistaminata (2) About seven constructs that were tested in 2007 but failed to obtain results showing vigorous growth, the number of lines per construct (all derived from independent T0 individuals) was 5 lines (12 individuals per line. 2007). It was different from the system used in the year.) And the test was performed again. Sowing was performed on May 30, 2008, and 4 individuals (3 buckets per line, 12 individuals in total) were transplanted into 3.5 liter buckets containing paddy soil on June 16. Cultivation was carried out under non-fertilized conditions in a closed greenhouse dedicated to the evaluation of recombinants at the Plant Innovation Center of Japan Tobacco Inc. (long day condition of 14 hours 30 minutes long).
  • Table 5 shows the average value of agricultural trait data for each of the 5 lines of constructs. Compared to the control “Shiokari”, the Fr4 construct is significantly more up to 7 heads, head length, head length, number of ears, seed fertility, head weight, and head diameter The remaining six constructs were equivalent to or lower than “Shiokari” in all traits.
  • Fr4-4 which showed the most remarkable characteristics among the Fr4 strains, was subjected to PCR for each individual, and the relationship between the presence or absence of the transgene and the magnitude of the trait measurement value was examined.
  • the results are shown in Table 6 and FIG. It is clear that the gene-bearing individuals outnumber the missing individuals in terms of the number of days, culm length, panicle length, number of panicles, panicle size, and culm diameter under heading conditions (14 hours 30 minutes). became. It was also revealed that the gene-bearing individuals had higher seeding density (number of grains per 1 cm ear) than the missing individuals.
  • the Fr4 fragment contains the allele of Nipponbare full-length cDNA AK066612, which was presumed to give high yield.
  • AK066112 seat is Murakami et al. (2005) describes OsPRR37. Therefore, it was estimated that the PRR7 gene possessed by Oriza longistaminata is a causative gene that imparts high yield to “Shiokari”. This Fr4 fragment was considered to contain all of the coding region of the PRR7 gene and the region for expressing it.
  • Example 4 Confirmation of effect of coding region of Oriza longistaminata PRR gene From the result of Example 3, it was considered that the PRR7 gene possessed by Oriza longistaminata is a gene that imparts high yield. In order to confirm this, the influence of the coding region of the PRR gene of Oriza longistaminata on yield-related traits was investigated.
  • a construct in which the ubiquitin promoter as a promoter and the terminator region of the PRR gene of Oriza longistaminata as a terminator were linked to the coding region of the PRR7 gene of oriza longistaminata was prepared as follows.
  • the ubiquitin promoter is a constitutive promoter commonly used for monocotyledonous plants and was considered suitable for seeing the effect of the PRR gene.
  • a construct for expressing the coding region (SEQ ID NO: 2) of the PRR7 gene derived from Oriza longistaminata under the control of the ubiquitin promoter was constructed using conventional methods such as overlap extension PCR. Specifically, a region containing the ubiquitin promoter and ubiquitin intron of pSB200 was PCR-amplified, and immediately below that, the upstream region of the translation start point of Oriza Longistaminata (from the 35045th base to the 35824th base of SEQ ID NO: 1), the sequence No.
  • Example 5 Effect of construct in which Oriza longistaminata-derived promoter and various PRR gene coding regions are linked From the results of Example 4, the coding region of PRR7 gene possessed by Oriza longistaminata imparts high yield. We could not conclude that it was a gene.
  • the inventors have intensively studied and thought that the promoter region of the PRR7 gene of Oriza longistaminata is necessary for the expression of the PRR7 gene of oriza longistaminata, and A construction is made in which the promoter region of the promoter PPR7 gene of Oriza longistaminata is linked to the coding region and the terminator region of the PRR7 gene of oriza longistaminata as the terminator is ligated and introduced into cultivated rice for yield-related It was decided to perform trait evaluation.
  • RNA solution after treatment was checked for concentration and purity by agarose gel electrophoresis, and then QuantTect Rev. CDNA synthesis was performed with a transcription kit (QIAGEN).
  • QIAGEN QuantTect Rev. CDNA synthesis was performed with a transcription kit (QIAGEN).
  • RT-PCR was performed using the following two kinds of primers.
  • the following longi-PRR 2F corresponds to the base sequence represented by 35847-35869 of SEQ ID NO: 1
  • longi-PRR 2R corresponds to the base sequence represented by 46713-46735 of SEQ ID NO: 1.
  • the base sequence (SEQ ID NO: 2) of the PRR7 structural gene derived from Oriza longistaminata possessed by “No. 645” was determined.
  • the base sequence was presumed to encode a protein consisting of 740 amino acids (SEQ ID NO: 3).
  • SEQ ID NO: 3 the region corresponding to amino acid numbers 62 to 176 is the PR domain, and the region corresponding to amino acid numbers 676 to 722 is the CCT motif.
  • the base sequence (SEQ ID NO: 4) of the Nipponbare PRR7 structural gene was determined using the same method, and the base sequence was estimated to encode a protein consisting of 742 amino acids (SEQ ID NO: 5).
  • SEQ ID NO: 5 the region corresponding to amino acid numbers 62 to 176 is the PR domain, and the region corresponding to amino acid numbers 678 to 724 is the CCT motif.
  • FIG. 6 shows an alignment of amino acid sequences encoded by the translated regions of the isolated PRR genes derived from Nipponbare, Oriza longistaminata, and Arabidopsis thaliana. Furthermore, the identity% and similarity% values of the amino acid sequences encoded by the translation regions of the isolated PRR genes derived from Nipponbare, Oriza longistaminata, and Arabidopsis thaliana are shown in FIG. Shown in
  • FIG. 8 illustrates the construction strategy described below.
  • longi construct A construct containing the coding region of the PRR7 gene derived from Oriza longistaminata (hereinafter referred to as “longi construct”) Using the Fr4 construct plasmid of Example 2 as a template, PCR was performed using the following two kinds of primers.
  • the following longi-PRR 1F corresponds to the base sequence represented by 34019-34044 of SEQ ID NO: 1
  • longi-PRR 1R corresponds to the base sequence represented by 35838-35861 of SEQ ID NO: 1.
  • PCR was performed using the following two kinds of primers using the Fr4 construct plasmid of Example 2 as a template.
  • the following longi-PRR 3F recognizes the base sequence represented by 46721-46744 of SEQ ID NO: 1, and longi-PRR 3R corresponds to the base sequence represented by 49137-49157 of SEQ ID NO: 1.
  • the obtained PCR product and the above-mentioned “No. 645” -derived RT-PCR product were tested and overlap extension PCR was performed using longi-PRR 2F and longi-PRR 3R.
  • the reaction solution was subjected to electrophoresis on an agarose gel, and a 2.6 kb fragment (fragment 2 in FIG. 8) was recovered for use as an insert.
  • This 2.6 kb fragment corresponds to the base sequence represented by 4605649156 of SEQ ID NO: 1 (However, 46108-46595 is an intron, so that it becomes a sequence in which 46056-46107 and 46596-49156 are linked in tandem after being spliced) .
  • the obtained plasmid was digested with SacI and NotI, and the reaction solution was subjected to electrophoresis on an agarose gel to recover a 6.5 kb fragment (fragment 3 in FIG. 8).
  • the recovered fragment 3 was cloned into pSB200 (digestion with SacI and NotI followed by CIAP treatment).
  • the obtained plasmid was tested and digested with NotI and EcoRV and dephosphorylated with CIAP.
  • the reaction solution was subjected to electrophoresis through an agarose gel, and the vector fragment (including fragment 3) was recovered.
  • Fr4 construct plasmid of Example 2 was digested with NotI and EcoRV, and the reaction solution was subjected to electrophoresis through an agarose gel to recover a 7.3 kb fragment (fragment 4).
  • This 7.3 kb fragment corresponds to the nucleotide sequence represented by 26779-34022 of SEQ ID NO: 1. Ligation was performed using both fragments to obtain the target plasmid.
  • a construct containing the coding region of the PRR7 gene derived from Nipponbare (hereinafter “Nipponbare construct”) PCR was carried out using longi-PRR 1F and longi-PRR 1R using the plasmid of the Fr4 construct of Example 2 as a template.
  • the obtained PCR product and the above-mentioned Nipponbare-derived RT-PCR product were tested, and overlap extension PCR was performed using longi-PRR 1F and longi-PRR 2R. After adding A-Tail to the obtained PCR product using Ex-Taq, it was cloned into pCR-XL-TOPO.
  • the obtained plasmid was digested with PstI and NotI, the reaction solution was subjected to electrophoresis on an agarose gel, and a 3.9 kb fragment (derived from Nipponbare cDNA—fragment 1 in FIG. 8) was recovered and used as insert 1.
  • PCR was performed using longi-PRR 3F and longi-PRR 3R using the Fr4 construct plasmid of Example 2 as a template.
  • the obtained PCR product and the above-mentioned Nipponbare-derived RT-PCR product were tested, and overlap extension PCR was performed using longi-PRR 2F and longi-PRR 3R.
  • the obtained plasmid was digested with SacI and PstI, and the reaction solution was subjected to electrophoresis on an agarose gel.
  • a 2.6 kb fragment (derived from Nipponbare cDNA—fragment 2 in FIG.
  • the above two kinds of insert fragments were tested together with pSB200 (digested with SacI and NotI and then treated with CIAP) to perform ligation.
  • the obtained plasmid was tested and digested with NotI and EcoRV and dephosphorylated with CIAP.
  • the reaction solution was subjected to electrophoresis on an agarose gel, and a vector fragment (derived from Nipponbare cDNA—including fragment 3 in FIG. 8) was recovered.
  • Fr4 construct plasmid of Example 2 was digested with NotI and EcoRV, and the reaction solution was subjected to electrophoresis through an agarose gel to recover a 7.3 kb fragment (fragment 4 in FIG. 8). Ligation was performed using both fragments to obtain the target plasmid.
  • This 7.3 kb fragment corresponds to the nucleotide sequence represented by 26779-34022 of SEQ ID NO: 1.
  • Example 2 Using the Escherichia coli carrying the target plasmid obtained in (1) and (2), trivalent transformation and “Shiokari” were transformed by the method described in Example 2.
  • the transformed rice was cultivated in a closed greenhouse after acclimation. 60 individual transformants were trained for each construct, and T1 seeds were collected. Eighteen individuals were selected from each construct in descending order of the amount collected, and used for the T1 evaluation test.
  • the PRR7 gene is a causative gene imparting high yield. Furthermore, when the results of Example 3 and Example 4 are taken together, it is surprising that the yield of Oriza longistaminata is likely to be contributed by the promoter region rather than the coding region of the PRR7 gene. The result was obtained.
  • the structural region of the Longi PRR7 gene was more suitable as the structural gene to be introduced into the plant together with the promoter than the structural region of the Nipponbare PRR7 gene.
  • Example 6 Expression analysis of PRR gene of Oriza longistaminata and “Nippon Hare” From the results of Example 5, it was estimated that the promoter region of PRR7 gene affects the yield. In order to examine the difference in the expression of the PRR7 gene promoter in the cultivated rice “Nipponbare”, “Nipponbare” and “No. 240” (replacement lines in which the PRR7 gene of Oriza Longistaminata was introduced into “Shiokari” by crossing) Expression analysis of the PRR7 gene was performed using F1.
  • PCR was performed under the following reaction conditions using two types of primers (CGAGGTTACCATACACCTGTGCTT (SEQ ID NO: 12) and GCATCTGAGTTTGAACTTTCATGTTG (SEQ ID NO: 13)).
  • the PCR product (130 bp) was treated with the restriction enzyme HpyCH4V (New England Biolabs) at 37 ° C. overnight, and then subjected to electrophoresis using 3% Metaphor Agarose (TAKARA-BIO).
  • Example 7 Effects of Oriza longistaminata PRR promoter and PRR gene in corn Fr4 fragment prepared in Example 2 (including Oriza longistaminata PRR7 promoter and PRR7 structural gene) was transformed into a maize variety The yield-related traits were evaluated in the T1 generation.
  • a corn immature embryo (variety: A188) having a size of about 1.2 mm was aseptically removed from a greenhouse-grown plant and immersed in a liquid medium for suspension of Agrobacterium (LS-inf, Ishida et al. 2007). After heat treatment at 46 ° C. for 3 minutes, immature embryos were washed once with the same liquid medium. Next, centrifugation was performed at 15,000 rpm, 4 ° C. for 10 minutes. The immature embryos after centrifugation were immersed in LS-inf-AS medium (Ishida et al.
  • the immature embryos after co-culture were placed on a selective medium containing hygromycin (LSD1.5A and LSD1.5B, Ishida et al. 2007) and cultured at 25 ° C. in the dark.
  • the grown callus was cut into small pieces, placed on hygromycin regeneration medium (LSZ, Ishida et al. 2007), and cultured at 25 ° C. under illumination for 2 weeks.
  • the redifferentiated plant was placed on a rooting medium (LSF, Ishida et al. 2007) and cultured at 25 ° C. under illumination for 2 weeks.
  • the rooted plant was transplanted and cultivated in a pot in a greenhouse.
  • Extracted male ears were pulled out and removed before flowering. Pollen collected from maize (variety: A188) that was not transformed into silk thread sufficiently extracted from the ear was crossed. The withered ears were harvested, dried at 30 ° C. for 2 weeks, and seeds were shed. It was possible to collect seeds from 44 individuals.
  • the number of individuals was adjusted so that the yield traits could be evaluated for a pair of hygromycin resistant and sensitive individuals, transplanted to a 5100 cc polyethylene pot, and cultivation was continued. Plant height was measured every week from 14 days to 56 days after sowing. The extracted male ears were extracted and removed before flowering. The date of silk thread extraction from the ears was recorded and pollen collected from non-transformed corn (variety: A188) was crossed to the fully extracted silk thread. After harvesting the ears, the length of the ears, the number of grains in one row, and the ear weight were measured. For each line, hygromycin-resistant individuals (gene-bearing individuals) and hygromycin-sensitive individuals (gene-deficient individuals) were compared for yield-related traits.
  • Example 8 Effect of Oryza longistaminata-derived PRR gene cDNA construct in corn Transformation of Oriza longistaminata-derived PRR7 gene cDNA construct (hereinafter referred to as "Longi construct") prepared in Example 5 into corn varieties The yield-related traits were evaluated in the T1 generation.
  • untransformed corn (variety: A188) was also sown in the same manner. About two weeks after sowing, a part of the leaf was cut out and immersed in a hygromycin solution to investigate the resistance and sensitivity of hygromycin. The number of individuals was adjusted so that the yield traits could be evaluated for a pair of hygromycin resistant and sensitive individuals, transplanted to a 5100 cc polyethylene pot, and cultivation was continued. Plant height was measured every week from 14 days to 56 days after sowing. The extracted male ears were extracted and removed before flowering. The date of silk thread extraction from the ears was recorded and pollen collected from non-transformed corn (variety: A188) was crossed to the fully extracted silk thread.
  • the ear length, the number of rows, and the ear weight were measured.
  • hygromycin-resistant individuals (gene-bearing individuals) and hygromycin-sensitive individuals (gene-deficient individuals) were compared for yield-related traits.
  • a line from which a hygromycin sensitive individual (gene deficient individual) was not isolated was compared with non-recombinant A188.
  • Example 9 Effect on a construct in which the Arabidopsis PRR gene coding region and the sorghum PRR gene coding region were linked to the PRR promoter derived from Oriza longistaminata
  • the PRR7 gene (Accession No .: Accession number :) from Arabidopsis thaliana (Columbia)
  • the coding region of NM120359 was isolated and replaced with the Oriza Longistaminata PRR gene coding region of the construct produced in Example 5 according to the method described in Example 5 to produce the desired construct.
  • the isolated Arabidopsis PRR gene base sequence is shown in SEQ ID NO: 14, and the encoded amino acid sequence is shown in SEQ ID NO: 15.
  • the isolated sorghum-derived PRR gene coding region was 100% identical to the sequence hit by NCBI blastn search (accession number: XM — 002465391), 2295 bases (SEQ ID NO: 16), and encoded 765 amino acid residues ( SEQ ID NO: 17).
  • NCBI blastn search accession number: XM — 002465391
  • 2295 bases SEQ ID NO: 16
  • encoded 765 amino acid residues SEQ ID NO: 17.
  • the homology and identity of the amino acid sequences of these PRR gene translation regions are as shown in FIG.
  • Example 10 Linked construct of the PRR promoter derived from Oriza longistaminata and the GUS gene A promoter region of the PRR7 gene derived from Oriza longistaminata and a chimeric construct of the GUS gene were prepared and examined for the presence or absence of transcription. As shown in FIG. 12, a construct was prepared in which the GUS gene coding region was linked directly under the PRR7 gene promoter region of Oriza longistaminata. Specifically, the promoter region of the Oriza longistaminata PRR7 gene is composed of 200 bases (34845 to 35044 bases of SEQ ID NO: 1) and 2000 bases (33045 to 35044 bases of SEQ ID NO: 1) upstream region of transcription start point. Constructs P200 and P2000 were prepared by linking them, respectively. A construct P0 having no PRR7 gene promoter region was also prepared as a control.
  • the cultivated rice “Yukihikari” was transformed. From the seedlings of transformed rice grown to a plant height of about 10 cm, 4 individuals were extracted from the seedlings for each construct and sampled individually. Total RNA extraction and cDNA synthesis were performed by the methods described in Example 5. The obtained cDNA solution was used as a template, and whether the GUS gene was transcribed was investigated by the PCR method.
  • the primer pair was designed on both outer sides of the intron sequence (190 bases) incorporated in the GUS gene coding region. That is, if there is mature mRNA that has been transcribed and subjected to the function of the splicing mechanism, it is detected as a 450-base PCR amplification product.
  • Example 11 Expression analysis of Oriza longistaminata PRR gene Line “No. 240” in which only the end region of chromosome 7 of oriza longistaminata was introduced into “Shiokari” was 14 hours light period in an artificial weather room Cultivation was performed for 4 weeks under long-day conditions of 30 minutes (26 ° C.) and a dark period of 9 hours 30 minutes (20 ° C.). Young fully developed leaves at 0 hours (0 h) and 6 hours (6 h) after the start of the light period were sampled from 4 individuals. Total RNA was extracted and cDNA was synthesized by the method described in Example 5.
  • Example 12 Effect on a construct in which a sorghum-derived PRR promoter and a sorghum PRR gene coding region were linked
  • a DNA fragment corresponding to the promoter region of the sorghum PRR gene isolated in Example 9 was PCR-derived from sorghum (variety: Gold sorgho, kitten seedling) Amplified with By substituting the sequence shown in 1-9046 of the construct (SEQ ID NO: 18) obtained in Example 9 by using the sequence shown in SEQ ID NO: 19 in the obtained DNA fragment, the target construct is obtained. (Hereinafter, “sorghum construct”).
  • the sorghum construct was transformed in accordance with the method described in Example 5 for the trivalent mating and rice cultivar “Yukihikari”.
  • the transformed rice was cultivated in a greenhouse after acclimation. 60 individuals of the obtained transformant (T0) were trained, and T1 seeds were collected. Eighteen individuals were selected in descending order of the amount collected, and were used for the T1 evaluation test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

植物に多収性を付与することのできる核酸を提供することが、本発明の課題である。更にそのような核酸を用いて、収量が増大した形質転換植物と、植物の収量を増大させる方法を提供することも本発明の課題である。オリザ・ロンギスタミナータの疑似レスポンスレギュレーターのプロモーター、および/または、植物の疑似レスポンスレギュレーターの構造遺伝子を機能可能に連結したコンストラクトを、植物に導入することにより該植物に多収性を付与することができる。

Description

植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法
 本発明は、植物に多収性を付与する核酸、特にイネ野生種オリザ・ロンギスタミナータ由来の擬似レスポンスレギュレーターのプロモーターおよび/または擬似レスポンスレギュレーターのコード領域を含む核酸に関する。更に本発明は、上記核酸を用いて収量が増加した形質転換植物を作製する方法、および、植物の収量を増大させる方法に関する。
 1.植物の量的形質を増加させる遺伝子に関する研究
 農業上有益な新品種を育成するため、植物同士を交配させて後代を選抜する交配育種法や、植物に突然変異を誘発させる突然変異育種法などが行われてきた。また、近年では、有用遺伝子を導入し、その機能を発現させる遺伝子組換え植物も育成されている。このような新品種育成のためには優れた性質を付与する遺伝子を集積する方法が有効であるが、作物のさらなる生産性の向上が望まれる状況にあって、利用できる遺伝子がまだまだ少なく、特に多収形質等の量的形質を支配する遺伝子の特定が行われることが望まれている。
 近年、分子生物学的手法の発展とともにDNAマーカーを用いて量的形質の遺伝解析を行うことが可能になってきている。さらに遺伝地図を利用し、分子生物学的手法により、農業上有用な遺伝子をクローニングする研究も盛んになっている。遺伝地図が作製されている生物では、特定の表現型を示す形質とマーカーの連鎖分析、およびそれに続く染色体歩行などにより、その形質を支配する遺伝子の物理的位置を明らかにし、遺伝子を単離する試みが行われている(マップベースクローニング法)。しかし、通常、量的形質を支配する遺伝子を含む部位の特定は大まかにしかできず、理論的に多くの遺伝子を含むDNA断片が明らかになるに過ぎない。そして、クローニング可能な大きさの断片、あるいは、形質転換により植物に導入することが可能な大きさの断片として同定することは容易ではない。また、詳細な遺伝地図を作製して地図情報を基に求める遺伝子を特定し、遺伝子をクローニングする作業には、長い時間と多くの労力が必要となる。実際に、マップベースクローニング法により量的形質を増大させる遺伝子がクローニングされた例は何例かあるものの(非特許文献1:Ashikari et.al.2005、非特許文献2:Miura et.al.2010)、未だその数は限られている。
 アフリカに自生するイネ野生種オリザ・ロンギスタミナータ(O.longistaminata)は、栽培種であるオリザ・サティバ(O.sativa L.)と同じAゲノムを有しているものの、栽培種に比べ大きなバイオマスを示すことが知られている。本発明者は、イネ栽培品種「しおかり」にオリザ・ロンギスタミナータの長葯性を導入する過程で、生育旺盛性を示すBC7F6系統「No.645」を育成した。そして、マップベースクローニングを利用して、生育旺盛性を付与する領域を第7染色体最末端部約180kbに絞り込むことに成功した。そしてこの領域の約82kbについて塩基配列を決定し、それを基にして作製した形質転換体について調査をしたが、生育旺盛性を示す形質転換体を得ることができなかった(非特許文献3)。
 2.植物の時計関連遺伝子
 植物の時計関連遺伝子については、シロイヌナズナ(Arabidopsis:アラビドプシス)を用いた研究で、CIRCADIAN CLOCK ASSOCIATED1(CCA1)、LATE ELONGATED HYPOCOTYL(LHY)、TIMING OF CAB EXPRESSION1(TOC1)という3つの遺伝子が発見されている。そして植物の概日時計の基盤をなす機構は、これらの遺伝子発現のフィードバックループであることが判明している。この中でTOC1遺伝子は、擬似レスポンスレギュレーター(Pseudo response regulator:PRR)の1つとして知られている。以下において、擬似レスポンスレギュレーターをPRRと記載する。シロイヌナズナで同定されたPRR遺伝子としては、現在、TOC1(PRR1)を含め、PRR3、PRR5、PRR7、PRR9の5つが知られている。更にPRR9、PRR7、PRR5、PRR3、PRR1(TOC1)の順に、発現量が上昇・減衰することで日周期的現象を担っていることが見出された(非特許文献4:Matsushika et.al.2000)。
 その後、単子葉植物のイネにおいて、双子葉植物のシロイヌナズナのPRR遺伝子に対応するオーソログが5種類同定され、それらのオーソログはシロイヌナズナと同様に概日リズムを示すことが明らかとなった。さらに、これらのイネのオーソログ、すなわち、OsPRR1、OsPRR37、OsPRR59、OsPRR73、OsPRR95が、それぞれイネのゲノム上の第1染色体、第7染色体、第11染色体、第3染色体、第9染色体にマッピングされた(非特許文献5:Murakami et.al.2003)。また、シロイヌナズナのPRR7遺伝子変異株に、イネOsPRR37 cDNAをシロイヌナズナPRR7のプロモーターで発現制御するコンストラクトを導入して、機能の相補を示した報告がある(非特許文献6:Murakami et.al.2006)。
 また、ジャポニカイネ品種「日本晴」とインディカイネ「kasalath」の間でOsPRR遺伝子の発現プロファイルを比較したところ、非常に似通っており、ジャポニカとインディカの間でかなり保存されていることが明らかとなっている(非特許文献7:Murakami M et.al.2005)。
 ところで、PRR遺伝子に関しては、該遺伝子に構成的プロモーターを連結することにより、植物の収量が増加することが報告されている。具体的には、トマト由来のPRR2構造遺伝子にイネで構成的に発現するプロモーター(GOS2プロモーター)を連結したコンストラクトをイネに導入したところ、イネの収量が増加したという事例(特許文献1)や、シロイヌナズナ由来のPRR5遺伝子に構成的プロモーター(RICEACTINプロモーター)を連結したコンストラクトをイネに導入したところ、イネの茎数が増加し背丈が伸びた事例(特許文献2)が知られている。しかしPRRのプロモーターに着目した例はこれまでに存在しない。
米国特許出願公開2011/0145949 WO2011/049243
Ashikari M.,Sakakibara H.,Lin S.,Yamamoto T.,Takashi T.,Nishimura A.,Angeles ER.,Qian Q.,Kitano H.,and Matsuoka M.(2005)Cytokinin oxidase regulates rice grain production Science 309:741−745 Miura K.,Ikeda M.,Matsubara A.,Song X.J.,Ito M.,Asano K.,Matsuoka M.,Kitano H.and Ashikari M.(2010)OsSPL14 promotes panicle branching and higher grain productivity in rice Nature Genetics 42:545−549 前川雅彦、小森俊之「イネ野生種オリザ・ロンギスタミナータ染色体部分導入系統における生育旺盛性に係わる原因遺伝子単離と機能解析(QT2002)40−43」研究成果第473集「ゲノム育種による効率的品種育成技術の開発—QTL遺伝子解析の推進—」平成21年2月20日発行 編集・発行 農林水産省農林水産技術会議事務局 Matsushika A.,Makino S.,Kojima M.and Mizuno T.(2000)Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudo−Response Regulators in Arabidopsis thaliana:Insight into the Plant Circadian Clock Plant Cell Physiol.41:1002−1012 Murakami M.,Ashikari M.,Miura K.,Yamashino T.and Mizuno T.(2003)The Evolutionarily Conserved OsPRR Quintet:Rice Pseudo−Response Regulators Implicated in Circadian Rhythm Plant Cell Physiol.44:1229−1236 MURAKAMI,M.,Y.TAGO,et al.(2007).″Characterization of the Rice Circadian Clock−Associated Pseudo−Response Regulators in Arabidopsis thaliana.Bioscience,Biotechnology,and Biochemistry 71(4):1107−1110. Murakami M.,Matsushika A.,Ashikari M.,Yamashino T.and Mizuno T.(2005) Circadian−associated rice pseudo−response regulators(OsPRRs):Insight into the control of flowering time Biosci.Biotechnol.Biochem.69:410−414 Harushima,Y.,Yano,M.,Shomura,A.,Sato,M.,Shimano,T.,Kuboki,Y.,Yamamoto,T.,Lin,S.Y.,Antonio,B.A.,Parco,A.,Kajiya,H.,Huang,N.,Yamamoto,K.,Nagamura,Y.,Kurata,N.,Khush,G.S.,and Sasaki,T.(1998)A high−density rice genetic linkage map with 2275 markers using a single F2 population.Genetics,148,479−494. Hiei et al (1994)Efficient transformation of rice(Oryza Sativa L.)mediated by Agrobacterium and sequence analysis of boundaries of the T−DNA Plant J.6:271−282. Komari et al (1996)Vectors carrying two separate T−DNAs for co−transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers.Plant J.10,165−174. Ditta et al (1980)Broad host range DNA cloning system for gram−negative bacteria:construction of a gene bank of Rhizobium meliloti.Proceedings of the National Academy of Sciences of the United States of America 77:7347−7351. Ishida et al.(2007)Agrobacterium−mediated transformation of maize.Nature Protocols 2:1614−1621. Ogiso et al.(2010)The role of casein kinase II in flowering time regulation has diversified during evolution.Plant Physiology.152:808−820
 上記で述べたように植物の量的形質を増加させる手段の開発が必要とされている。よって本発明の課題は、植物に多収性を付与することのできる核酸を提供することである。更に本発明の課題はそのような核酸を用いて、収量が増大した形質転換植物、および、植物の収量を増大させる方法を提供することである。
 本発明者らによって、オリザ・ロンギスタミナータの第7染色体最末端部に座乗する生育旺盛性を付与する領域についてマップベースクローニングを利用して検討が行われ、第7染色体最末端部約180kbへの絞り込みが行われていた。この領域の82kbについて塩基配列を決定したが、5箇所に1kbp以上の大きな欠失があり、末端側には約3kbpの挿入も存在していた。よって約180kbまでは絞り込まれたものの、この差異のためにこれ以上絞り込むことは困難であった。
 本発明者らはこの82kb領域について、「日本晴」の完全長cDNAの位置も考慮にいれつつ7つのコンストラクトを設計・作製して検討を行った。その結果、約82kb領域に座乗するPRR7遺伝子ホモローグが多収性を付与する原因遺伝子であることが明らかになった。さらに本発明者らは、驚くべきことにオリザ・ロンギスタミナータの多収性は、遺伝子のコード領域だけでは付与されず、オリザ・ロンギスタミナータのプロモーター領域が大きく寄与していることを見出した。
 以上の知見に基づき本発明は、オリザ・ロンギスタミナータの擬似レスポンスレギュレーター遺伝子のプロモーターの塩基配列を含む核酸、および、該プロモーターと擬似レスポンスレギュレーターの構造遺伝子とが機能が可能なように結合している核酸を提供する。そのような核酸は植物に多収性を付与することができる。
 本発明は、好ましくは以下に記載するような態様により行われるが、これに限定されるものではない。
 [態様1]
(1)配列番号1の34845−35044で示される塩基配列、又は
(2)配列番号1の34845−35044で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
を含む、核酸。
[態様2]
(1)配列番号1の33045−35044で示される塩基配列、又は
(2)配列番号1の33045−35044で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
を含む、核酸。
[態様3]
(1)配列番号1の26779−35044で示される塩基配列、又は
(2)配列番号1の26779−35044で示される塩基配列と少なくとも80%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
を含む、核酸。
[態様4]
 オリザ・ロンギスタミナータに由来する塩基配列であって、少なくとも配列番号1の34845−35044で示される塩基配列を含み、植物の遺伝子の転写を促進する活性を示す、核酸。
[態様5]
 配列番号1の33045−35044で示される塩基配列からなる核酸の断片を含む、態様4記載の核酸。
[態様6]
 配列番号1の26779−35044で示される塩基配列からなる核酸の断片を含む、態様4又は態様5記載の核酸。
[態様7]
(1)態様1から態様6のいずれか1記載の核酸、ならびに、
(2)下記の(a)から(c)により規定されるタンパク質をコードする核酸;
 (a)配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
 (b)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
 (c)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する、
が機能を可能なように結合している核酸。
[態様8]
 植物の収量の増大を可能とする、態様7記載の核酸。
[態様9]
 態様1から態様8のいずれか1に記載の核酸を含む、ベクター。
[態様10]
 態様7又は態様8記載の核酸を含む、形質転換植物。
[態様11]
 前記植物が単子葉植物である、態様10記載の形質転換植物。
[態様12]
 前記植物がイネまたはトウモロコシである、態様11記載の形質転換植物。
[態様13]
 態様7又は態様8記載の核酸または態様9のベクターを植物に導入する工程を含む、収量が増大した形質転換植物を作製する方法。
[態様14]
 前記植物が単子葉植物である、態様13記載の方法。
[態様15]
 前記植物がイネまたはトウモロコシである、態様14記載の方法。
[態様16]
 態様7又は態様8記載の核酸を植物に導入することを特徴とする、植物の収量を増大させる方法。
[態様17]
 配列番号1の26779−35044で示される塩基配列および/または配列番号1の35825−46721で示される塩基配列の15から2000塩基を含む、収量が増加した植物を選抜するためのDNAマーカー。
[態様18]
 植物において態様17に記載のDNAマーカーの検出を行い、該DNAマーカーが検出された場合には該植物は多収性であると判定する方法。
[態様19]
 配列番号1の34845−35044で示される塩基配列、又は、配列番号1の34845−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列;を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法。
[態様20]
 配列番号1の33045−35044で示される塩基配列、又は、配列番号1の33045−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列;を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法。
[態様21]
 機能を可能なように結合している下記(1)および(2)の核酸を植物に導入することを特徴とする、植物の収量を増大させる方法。
(1)下記の(a)または(b)により規定される塩基配列からなる核酸
 (a)配列番号1の26779−35044で示される塩基配列、またはその塩基配列の一部分からなる断片であって、植物の遺伝子の転写を促進する活性を示す塩基配列、又は
 (b)上記(a)で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
(2)下記の(c)から(e)により規定されるタンパク質をコードする核酸
 (c)配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
 (d)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
 (e)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する。
[態様22]
 配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸。
[態様23]
 配列番号3で示されるアミノ酸配列を有する、タンパク質。
[態様24]
 下記(1)および(2)の核酸が機能を可能なように結合している、核酸。
(1)下記の(a)または(b)により規定される塩基配列からなる核酸;
 (a)配列番号19で示される塩基配列、又は
 (b)配列番号19で示される塩基配列と少なくとも80%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
を含む核酸;
 (2)下記の(c)から(e)により規定されるタンパク質をコードする核酸;
 (c)配列番号17で示されるアミノ酸配列または配列番号Yで示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
 (d)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
 (e)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する。
 本発明のプロモーターとPRR7の構造遺伝子を機能可能に連結したコンストラクトを、植物に導入することにより植物に多収性を付与することができる。
図1は、イネ野生種オリザ・ロンギスタミナータの染色体部分導入系統「No.645」の遺伝子型を示す図である。図1で塗りつぶされた領域がオリザ・ロンギスタミナータに由来する染色体部分である。 図2は、第7染色体末端部で組換えを起こし最末端が「No.645」型または「しおかり」型で固定された7個体の遺伝子型を示す図である。 図3は、生育旺盛性遺伝子周辺の物理地図である。4個のフォスミドクローンと、実施例2で作製した7つのコンストラクト(Fr1からFr7)の関係をこの図に示す。 図4は、Fr4断片をイネ品種「しおかり」に導入した形質転換体(Fr4−4)の穂を示す写真である。図4の左はFr4断片を有さない遺伝子欠落個体を、右はFr4断片を有する遺伝子保持個体を示す。 図5は、ユビキチンプロモーターで制御されたオリザ・ロンギスタミナータ由来のPRR遺伝子のコード領域を含むコンストラクトを導入した形質転換体の穂(左)と、対照の選抜マーカー遺伝子のみを含むコンストラクトを導入した形質転換体の穂(右)を示す図である。左は稔っていないので籾は緑のままであり、右は稔っているので籾は黄変している。また左では、大きく開穎したまま閉穎しない穎花も見られる(矢印)。 図6は、単離された日本晴由来、オリザ・ロンギスタミナータ由来、ソルガム由来、及びシロイヌナズナ由来のPRR7遺伝子の翻訳領域によりコードされるアミノ酸配列のアラインメントを示す図である。Pseudo−receiverドメイン(赤括弧)とCCTモチーフ(青括弧)は、Takata et al.,(2010)BMC Evolutionary Biology 10:126を参考にした。 図7は、単離された日本晴由来、オリザ・ロンギスタミナータ由来、ソルガム由来、及びシロイヌナズナ由来のPRR7遺伝子の翻訳領域によりコードされるアミノ酸配列の同一性(identity)%と類似性(similarity)%の値を示す図である。遺伝子解析ソフトウェアGenetyx(登録商標)ネットワーク版ver.11.0.4(株式会社ゼネティックス)を用いて、Protein vs Protein Global Homologyをデフォルト設定で実行する(Unit size to compareを2に設定する)ことにより、同一性(identity)%と類似性(similarity)%を求めた。 図8は、(1)オリザ・ロンギスタミナータ由来のPRR遺伝子を含むコンストラクトと、(2)日本晴由来のPRR遺伝子を含むコンストラクトを作製するストラテジーを図解した図である。 図9Aは、オリザ・ロンギスタミナータ由来のPRR遺伝子のPCR産物がHpyCH4Vにより切断されることを示す。図9Bは、「日本晴」、オリザ・ロンギスタミナータのPRR遺伝子を交配で「しおかり」に導入した置換系統「No.240」および「日本晴」と「No.240」とのF1を用いて、PRR遺伝子の発現をPCRにより解析した結果を示す。 図10は、オリザ・ロンギスタミナータ由来のFr4断片を導入したトウモロコシ形質転換体のT1系統No.4の穂の写真である。図10の上列はFr4断片を有さない遺伝子欠落個体を、図10の下列はFr4断片を有する遺伝子保持個体を示す。 図11は、オリザ・ロンギスタミナータのPRRプロモーターとオリザ・ロンギスタミナータのPRR遺伝子を含むコンストラクトを導入した、トウモロコシの形質転換体T1系統No.11の穂の写真である。図11のRはハイグロマイシン耐性の遺伝子欠落個体を、Sはハイグロマイシン感受性の遺伝子保持個体を示す。 図12は、オリザ・ロンギスタミナータのPRRプロモーターが、GUS遺伝子の転写活性に及ぼす効果を評価する実験に用いたGUS遺伝子発現ベクターの構造を示す図である。 図13は、オリザ・ロンギスタミナータのPRRプロモーター領域の200塩基(P200)又は2000塩基(P2000)の核酸とGUS遺伝子コード領域の連結コンストラクトで形質転換したイネにおいてGUS遺伝子の転写活性促進を評価した、RT−PCR解析の写真である。GはゲノムDNA、−は逆転写反応なし、+は逆転写反応あり、PはプラスミドDNAを示す。 図14は、明期開始後0時間と6時間における、オリザ・ロンギスタミナータのPRR遺伝子の相対発現量を示す図である。
 以下に、本発明の構成を具体的に説明する。
 (1)オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーター
 本発明者らは下記の実施例に示すように、オリザ・ロンギスタミナータのフォスミド・ライブラリーから、多収性に関与している(オリザ・ロンギスタミナータの)第7染色体末端部に位置する4つのフォスミドクローン(Fos1、Fos2、Fos10、Fos12)を選抜し、当該コンティグの塩基配列をプライマー歩行により解読した。得られた塩基配列を配列番号1に示す。
 上記4つのフォスミドクローンを用いて7個の相補性試験用コンストラクトを作製したが、Fos10をSmaIおよびPstIで処理して得られる最も大きな断片と、Fos1をPstIおよびSacIで処理して得られる4番目に大きな断片とを連結したものがフラグメント(Fr)4である。Fr4は多収性に関与しているゲノム断片であり、配列番号1の26779番目の塩基から49155番目の塩基を含む。
 イネ野生種であるオリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーター(以下、「本発明のプロモーター」と称する)は、配列番号1の34845−35044で示される塩基配列を含む核酸であり、好ましくは配列番号1の33045−35044で示される塩基配列を含む核酸であり、更に好ましくは配列番号1の26779−35044で示される塩基配列を含む核酸である。
 本願明細書において「プロモーター」とは直下に存在する任意の植物の構造遺伝子の転写を活性化する機能を有する核酸を意味する。本願明細書における「プロモーター」は広義の意味で解釈されるものであり、転写因子が結合し、正確な転写開始を導く働きをもつコアプロモーター領域などの狭義の意味に限定されるものではない。本発明のプロモーターはPRR遺伝子のコード領域のみに限らず、種々の植物の任意の構造遺伝子の転写活性を促進する作用を有する。すなわち本発明は、植物の任意の構造遺伝子に本発明のプロモーターを機能可能に結合した核酸を含む。この核酸は、好ましくは天然に由来するゲノム断片ではない。
 なお本願明細書で構造遺伝子の転写活性を促進する作用とは、光などの刺激により誘導されて構造遺伝子の転写活性を促進することにより該活性を調節又は制御する態様を包含するものである。ここでプロモーターが光の刺激により誘導されて構造遺伝子の転写活性を促進するとは、光が存在している明期ではプロモーターは構造遺伝子の転写活性を促進するが、それ以外の期間ではプロモーターは構造遺伝子の転写活性を促進しないことを意味する。
 本発明のプロモーターは、配列番号1の34845−35044で示される塩基配列を含む核酸であり、好ましくは配列番号1の33045−35044で示される塩基配列を含む核酸であり、更に好ましくは配列番号1の26779−35044で示される塩基配列を含む核酸である。なお本発明のプロモーターはそれらの核酸に限定されるものではなく、それらの核酸と一定以上の配列同一性を有するもの、および、それらの核酸の断片も包含するものであり、それについては下記で述べる。
 該プロモーターをPRR7遺伝子と機能可能に連結して植物に導入することにより、植物に多収性を付与することができる。すなわち本発明のプロモーターは、好ましくは、配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸と機能可能に連結した時に植物の収量を増大させることができる。
 本願明細書におけるPRR7タンパク質の定義は下記(2)「本発明のプロモーターとPRRの構造遺伝子とが機能を可能なように結合した核酸」において記載する。
 本願明細書において「多収性」とは、植物の、全体重、地上部重、収量、茎径、茎数、稈長、葉面積、葉数、穂数、一穂粒数、穂長、全穂重、又は種子収量等の、一部又は複数が増大していることをいい、好ましくは全穂重及び/又は種子収量が増大していることを、より好ましくは稔実種子収量が増加していることをいう。イネ、トウモロコシなどの穀物において、稔実種子収量は非常に重要な形質である。増大の指標としては、例えば、対照植物(親植物、非形質転換体等)と比較することで評価できる。また、本願明細書において「多収性」と「生育旺盛性」は同じ意味を表す。
 配列番号1において、26779−35044に該当する配列はオリザ・ロンギスタミナータのPRR7遺伝子のプロモーター領域であり、35825−46721に該当する配列はオリザ・ロンギスタミナータのPRR7遺伝子のコード領域であり、46722−49157に該当する配列はオリザ・ロンギスタミナータのPRR7遺伝子のターミネーター領域である。上記プロモーター領域の中で、配列番号1の34845−35044で示される塩基配列は転写開始点の上流領域200塩基に相当し、配列番号1の33045−35044で示される塩基配列は転写開始点の上流領域2000塩基に相当する。
 本発明のプロモーターの塩基配列は、配列番号1の34845−35044で示されるもの、配列番号1の33045−35044で示されるもの、あるいは配列番号1の26779−35044で示されるものに限定されず、それらの塩基配列と少なくとも80%、85%、90%、95%、97%、99%、あるいは99.5%の同一性を有し、植物のコード領域の転写を促進する活性を示す塩基配列を含む核酸も含有する。
 他の側面において本発明のプロモーターは、オリザ・ロンギスタミナータに由来する塩基配列であって、少なくとも配列番号1の34845−35044で示される塩基配列を含み、植物の遺伝子の転写を促進する活性を示す核酸である。そのような核酸において、配列番号1の33045−35044で示される塩基配列からなる核酸の断片を含むことは好ましく、配列番号1の26779−35044で示される塩基配列からなる核酸の断片を含むことは更に好ましい。ここで核酸の断片とは、配列番号1の上記で述べた特定の塩基番号により範囲が規定される塩基配列の一部分である核酸を意味するものである。限定されるものではないが具体的には、配列番号1の26779−35044から得られたより短い配列、すなわち転写開始点の上流領域6000塩基に相当する配列、5000塩基に相当する配列、4000塩基に相当する配列、3000塩基に相当する配列、2000塩基、あるいは1000塩基に相当する配列等を含む。
 2つの核酸配列の同一性%は、視覚的検査と数学的計算により決定可能であるか、またはより好ましくは、この比較はコンピュータ・プログラムを使用して配列情報を比較することによってなされる。代表的な、好ましいコンピュータ・プログラムは、遺伝学コンピュータ・グループ(GCG;ウィスコンシン州マディソン)のウィスコンシン・パッケージ、バージョン10.0プログラム「GAP」である(Devereux,et al.,1984,Nucl.Acids Res.,12:387)。この「GAP」プログラムの使用により、2つの核酸配列の比較の他に、2つのアミノ酸配列の比較、核酸配列とアミノ酸配列との比較を行うことができる。ここで、「GAP」プログラムの好ましいデフォルトパラメーターには:(1)ヌクレオチドについての(同一物について1、及び非同一物について0の値を含む)一元(unary)比較マトリックスのGCG実行と、Schwartz及びDayhoff監修「ポリペプチドの配列および構造のアトラス(Atlas of Polypeptide Sequence and Structure)」国立バイオ医学研究財団、353−358頁、1979により記載されるような、GribskovおよびBurgess,Nucl.Acids Res.,14:6745,1986の加重アミノ酸比較マトリックス;又は他の比較可能な比較マトリックス;(2)アミノ酸の各ギャップについて30のペナルティと各ギャップ中の各記号について追加の1のペナルティ;又はヌクレオチド配列の各ギャップについて50のペナルティと各ギャップ中の各記号について追加の3のペナルティ;(3)エンドギャップへのノーペナルティ:及び(4)長いギャップへは最大ペナルティなし、が含まれる。当業者により使用される他の配列比較プログラムでは、例えば、米国国立医学ライブラリーのウェブサイト:http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.htmlにより使用が利用可能なBLASTNプログラム、バージョン2.2.7、またはUW−BLAST2.0アルゴリズムが使用可能である。UW−BLAST2.0についての標準的なデフォルトパラメーターの設定は、以下のインターネットサイト:http://blast.wustl.eduに記載されている。さらに、BLASTアルゴリズムは、BLOSUM62アミノ酸スコア付けマトリックスを使用し、使用可能である選択パラメーターは以下の通りである:(A)低い組成複雑性を有するクエリー配列のセグメント(WoottonおよびFederhenのSEGプログラム(Computers and Chemistry,1993)により決定される;WoottonおよびFederhen,1996「配列データベースにおける組成編重領域の解析(Analysis of compositionally biased regions in sequence databases)」Methods Enzymol.,266:544−71も参照されたい)、又は、短周期性の内部リピートからなるセグメント(ClaverieおよびStates(Computers and Chemistry,1993)のXNUプログラムにより決定される)をマスクするためのフィルターを含むこと、及び(B)データベース配列に対する適合を報告するための統計学的有意性の閾値、またはE−スコア(KarlinおよびAltschul,1990)の統計学的モデルにしたがって、単に偶然により見出される適合の期待確率;ある適合に起因する統計学的有意差がE−スコア閾値より大きい場合、この適合は報告されない);好ましいE−スコア閾値の数値は0.5であるか、または好ましさが増える順に、0.25、0.1、0.05、0.01、0.001、0.0001、1e−5、1e−10、1e−15、1e−20、1e−25、1e−30、1e−40、1e−50、1e−75、または1e−100である。
 本発明のプロモーターの変異体はまた、配列番号1の34845−35044で示される塩基配列、好ましくは配列番号1の33045−35044で示される塩基配列、更に好ましくは配列番号1の26779−35044で示される塩基配列の相補鎖にストリンジェントな条件でハイブリダイズする塩基配列を含んでなる核酸であって、プロモーター活性を有する核酸であってもよい。
 ここで、「ストリンジェントな条件下」とは、中程度または高程度にストリンジェントな条件においてハイブリダイズすることを意味する。具体的には、中程度にストリンジェントな条件は、例えば、DNAの長さに基づき、一般の技術を有する当業者によって、容易に決定することが可能である。基本的な条件は、Sambrookら,Molecular Cloning:A Laboratory Manual,第3版,第6章,Cold Spring Harbor Laboratory Press,2001に示され、例えば5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約42℃での、約50%ホルムアミド、2×ないし6×SSC、好ましくは5×ないし6×SSC、0.5% SDS(または約42℃での約50%ホルムアミド中の、スターク溶液などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、及び例えば、約50℃ないし68℃、0.1×、ないし、6×SSC、0.1% SDSの洗浄条件の使用が含まれる。好ましくは中程度にストリンジェントな条件は、約50℃、6×SSC、0.5% SDSのハイブリダイゼーション条件(及び洗浄条件)を含む。
 高ストリンジェントな条件もまた、例えばDNAの長さに基づき、当業者によって、容易に決定することが可能である。一般に、こうした条件は、中程度にストリンジェントな条件よりも高い温度及び/又は低い塩濃度でのハイブリダイゼーション(例えば、0.5%程度のSDSを含み、約65℃、6×SSCないし0.2×SSC、好ましくは6×SSC、より好ましくは2×SSC、より好ましくは0.2×SSC、あるいは0.1×SSCのハイブリダイゼーション)及び/又は洗浄を含み、例えば上記のようなハイブリダイゼーション条件、及びおよそ65℃、ないし68℃、0.2×ないし0.1×SSC、0.1% SDSの洗浄を伴うと定義される。ハイブリダイゼーションおよび洗浄の緩衝液では、SSC(1×SSCは、0.15M NaClおよび15mM クエン酸ナトリウムである)にSSPE(1×SSPEは、0.15M NaCl、10mM NaHPO、および1.25mM EDTA、pH7.4である)を代用することが可能であり、洗浄はハイブリダイゼーションが完了した後で15分間ないし1時間程度行う。
 また、プローブに放射性物質を使用しない市販のハイブリダイゼーションキットを使用することもできる。具体的には、ECL direct labeling & detection system(Amersham社製)を使用したハイブリダイゼーション等が挙げられる。ストリンジェントなハイブリダイゼーションとしては、例えば、キット中のhybridization bufferにBlocking試薬を5%(w/v)、NaClを0.5Mになるように加え、42℃で4時間行い、洗浄は、0.4% SDS、0.5xSSC中で、55℃で20分を2回、2xSSC中で室温、5分を一回行う、という条件が挙げられる。
 (2)本発明のプロモーターとPRR7構造遺伝子とが機能を可能なように結合した核酸
 本発明は、本発明のプロモーターと、植物のPRR7タンパク質をコードする塩基配列を含む核酸(すなわちPRR7構造遺伝子)、とが機能を可能なように結合した核酸である。ここでいう本発明のプロモーターは、上記(1)の「オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーター」の項で記載したものである。本発明のプロモーターとPRR7の構造遺伝子とが機能が可能なように結合した上記核酸を植物に導入することにより、植物に多収性を付与することができる。下記の実施例において、配列番号1の26779−35044で示される塩基配列からなる本発明のプロモーターとPRR7の構造遺伝子とが、機能が可能なように結合した核酸を導入することにより、植物が多収性となったことが実際に示されている。配列番号1の26779−35044から得られたより短い配列、すなわち転写開始点の上流領域6000塩基に相当する配列、5000塩基に相当する配列、4000塩基に相当する配列、3000塩基に相当する配列、2000塩基、あるいは1000塩基に相当する配列等をプロモーターとして適宜選択し、これを使用して、植物に多収性を付与することは、当業者が本願明細書に開示された知見から容易に行うことができる事項である。すなわち当業者は本願明細書の記載に基づき、このような配列を、配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸と機能可能に連結させ、これを導入した植物の収量を確認することにより、容易に選択することができる。このように植物に多収性を付与することができる核酸は、光などの刺激により誘導されて構造遺伝子の転写活性を促進することにより該活性を調節又は制御する活性を有する本発明のプロモーターと、PRR7の構造遺伝子とを結合したものであることが好ましい。
 本願明細書で「機能を可能なように結合している」とは、本発明のプロモーターの核酸とPRR7の構造遺伝子の核酸が、プロモーターが構造遺伝子の転写活性を促進するというプロモーター活性の機能を作動することができるような様式で結合していることを意味する。
 本願明細書で「PRR7タンパク質」とは以下の条件を満たすタンパク質を意味する。
 (a)配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列を有するタンパク質であること
 本願明細書におけるPRR7タンパク質は、配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列を有するタンパク質である。オリザ・ロンギスタミナータ由来のPRR7タンパク質は配列番号3に示す740個のアミノ酸からなり、配列番号2で示される塩基配列の核酸によりコードされている。日本晴由来のPRR7タンパク質は配列表の配列番号5に示す742個のアミノ酸からなり、配列番号4で示される塩基配列の核酸によりコードされている。
 本願明細書におけるPRR7タンパク質は配列番号3または配列番号5で示されるアミノ酸配列を含むものに限定されるものではなく、配列番号3または配列番号5で示されるアミノ酸配列と少なくとも65%、70%、75%、80%、85%、90%、95%、97%、あるいは99%の同一性を有するアミノ酸配列を有するタンパク質を含有するものである。
 また本願明細書におけるPRR7タンパク質は、配列番号3または配列番号5で示されるアミノ酸配列と少なくとも90%、95%、97%、あるいは99%の類似性を有するアミノ酸配列を有するタンパク質を含有するものである。
 本願明細書においてアミノ酸配列の類似性%とは、アミノ酸の違いを考慮したタンパク質間の類似性の程度を意味する。即ち後に述べるアミノ酸の保存的置換などが行われた場合に、類似したアミノ酸とみなして求められた値が類似性%である。
 (b)PRドメインとCCTモチーフを含むタンパク質であること
 本願明細書におけるPRR7タンパク質は、PRドメインとCCTモチーフを含むタンパク質である。PRRタンパク質は、植物の概日時計と関連し、植物に普遍的に存在することが知られている。PRRタンパク質は、高度に保存された疑似レシーバー(pseudo−receiver:PR)ドメインとCCTモチーフとを含む。PRドメインはPRRタンパク質の共通モチーフであり、タンパク質の相互作用能を有することが知られている。また、CCTモチーフは塩基性に富み、タンパク質間の結合に関与していると考えられている。PRR7タンパク質はPRRタンパク質の一つであり、PRドメインとCCTモチーフを含む。
 PRドメインは、配列番号3のアミノ酸配列においてはアミノ酸番号62から176に相当し、配列番号5のアミノ酸配列においてはアミノ酸番号62から176に相当する。さらにCCTモチーフは、配列番号3のアミノ酸配列においてはアミノ酸番号676から722に相当し、配列番号5のアミノ酸配列においてアミノ酸番号678から724に相当する。よって本願明細書においてPRドメインとは、配列番号3のアミノ酸配列のアミノ酸番号62から176に相当するアミノ酸配列を意味する。更に本願明細書においてCCTモチーフとは、配列番号3のアミノ酸配列のアミノ酸番号676から722にするアミノ酸配列に相当するアミノ酸配列を意味する。しかし本願明細書においてPRR7タンパク質のPRドメインとCCTモチーフのアミノ酸配列は上記のものに限定される訳ではなく、それらのアミノ酸配列と少なくとも80%、85%、90%、95%、97%、あるいは99%の同一性を有するものも含有する。
 PRドメインのアミノ酸配列において好ましくは、配列番号3のアミノ酸番号64のバリン(Val)、66のロイシン(Leu)、67のバリン(Val)、70のアスパラギン酸(Asp)、71のアスパラギン酸(Asp)、73のトレオニン(Thr)、74のアルギニン(Arg)、77のバリン(Val)、79のアラニン(Ala)、80のロイシン(Leu)、81のロイシン(Leu)、82のアルギニン(Arg)、84のシステイン(Cys)、86のチロシン(Tyr)、87のグルタミン酸(Glu)、88のバリン(Val)、91のアラニン(Ala)、93のアスパラギン(Asn)、94のグリシン(Gly)、97のアラニン(Ala)、98のトリプトファン(Trp)、101のロイシン(Leu)、102のグルタミン酸(Glu)、103のアスパラギン酸(Asp)、106のアスパラギン(Asn)、108のイソロイシン(Ile)、109のアスパラギン酸(Asp)、111のバリン(Val)、112のロイシン(Leu)、113のトレオニン(Thr)、114のグルタミン酸(Glu)、115のバリン(Val)、117のメチオニン(Met)、118のプロリン(Pro)、121のセリン(Ser)、122のグリシン(Gly)、123のイソロイシン(Ile)、125のロイシン(Leu)、126のロイシン(Leu)、129のイソロイシン(Ile)、132のヒスチジン(His)、138のイソロイシン(Ile)、139のプロリン(Pro)、140のバリン(Val)、141のイソロイシン(Ile)、142のメチオニン(Met)、143のメチオニン(Met)、144のセリン(Ser)、145のセリン(Ser)、147のアスパラギン酸(Asp)、149のメチオニン(Met)、152のバリン(Val)、153のフェニルアラニン(Phe)、154のリジン(Lys)、155のシステイン(Cys)、156のロイシン(Leu)、157のセリン(Ser)、158のリジン(Lys)、159のグリシン(Gly)、160のアラニン(Ala)、161のバリン(Val)、162のアスパラギン酸(Asp)、163のフェニルアラニン(Phe)、164のロイシン(Leu)、165のバリン(Val)、166のリジン(Lys)、167のプロリン(Pro)、169のアルギニン(Arg)、170のリジン(Lys)、171のアスパラギン(Asn)、172のグルタミン酸(Glu)、173のロイシン(Leu)、174のリジン(Lys)、176のロイシン(Leu)のアミノ酸残基は置換されずに保存されている。本願明細書においてはこれらのアミノ酸残基を「疑似レシーバー(PR)ドメイン保存アミノ酸」と称する。
 PRドメインのアミノ酸配列において更に好ましくは上記の「疑似レシーバー(PR)ドメイン保存アミノ酸」に加えて、配列番号3のアミノ酸番号68のグルタミン酸(Glu)、72のセリン(Ser)、75のグルタミン(Gln)、76のバリン(Val)、78のセリン(Ser)、89のイソロイシン(Ile)、90のプロリン(Pro)、92のグルタミン酸(Glu)、100のチロシン(Tyr)、105のグルタミン(Gln)、110のロイシン(Leu)、127のセリン(Ser)、134のイソロイシン(Ile)、135のシステイン(Cys)、136のリジン(Lys)、146のアスパラギン(Asn)、175のアスパラギン(Asn)のアミノ酸残基も置換されずに保存されていてもよい。なおアミノ酸番号68のグルタミン酸(Glu)については、配列番号5のアミノ酸番号68のアスパラギン酸(Asp)であってもよい。またPRドメインのアミノ酸配列において更に好ましくは上記の「疑似レシーバー(PR)ドメイン保存アミノ酸」に加えて、配列番号3のアミノ酸番号62のイソロイシン(Ile)、65のロイシン(Leu)、96のグルタミン(Gln)、131のアスパラギン(Asn)、137のアスパラギン(Asn)、150のグリシン(Gly)、168のイソロイシン(Ile)のアミノ酸残基も置換されずに保存されていてもよい。
 CCTモチーフのアミノ酸配列において好ましくは、配列番号3のアミノ酸番号676のグルタミン(Gln)、678のグルタミン酸(Glu)、682のアラニン(Ala)、683のアラニン(Ala)、686のリジン(Lys)、687のフェニルアラニン(Phe)、688のアルギニン(Arg)、690のリジン(Lys)、691のアルギニン(Arg)、692のリジン(Lys)、694のアルギニン(Arg)、696のフェニルアラニン(Phe)、698のリジン(Lys)、699のリジン(Lys)、700のバリン(Val)、701のアルギニン(Arg)、702のチロシン(Tyr)、703のグルタミン(Gln)、704のセリン(Ser)、705のアルギニン(Arg)、706のリジン(Lys)、708のロイシン(Leu)、709のアラニン(Ala)、710のグルタミン酸(Glu)、711のグルタミン(Gln)、712のアルギニン(Arg)、713のプロリン(Pro)、714のアルギニン(Arg)、715のバリン(Val)、716のアルギニン(Arg)、717のグリシン(Gly)、718のグルタミン(Gln)、719のフェニルアラニン(Phe)、720のバリン(Val)、721のアルギニン(Arg)のアミノ酸残基は置換されずに保存されている。本願明細書においてはこれらのアミノ酸残基を「CCTモチーフ保存アミノ酸」と称する。
 CCTモチーフのアミノ酸配列において更に好ましくは上記の「CCTモチーフ保存アミノ酸」に加えて、配列番号3のアミノ酸番号677のグルタミン(Gln)、アミノ酸番号695のアスパラギン(Asn)、697のグリシン(Gly)、707のアルギニン(Arg)、722のグルタミン(Gln)のアミノ酸残基も置換されずに保存されていてもよい。なおアミノ酸番号677のグルタミン(Gln)については、配列番号5のアミノ酸番号679のアルギニン(Arg)であってもよい。またCCTモチーフのアミノ酸配列において更に好ましくは上記の「CCTモチーフ保存アミノ酸」に加えて、配列番号3のアミノ酸番号689のグルタミン(Gln)、693のグルタミン酸(Glu)のアミノ酸残基も置換されずに保存されていてもよい。
 本願明細書におけるPRドメインと同一性を有するアミノ酸配列は、PRドメイン保存アミノ酸を維持し、かつ、PRドメインのアミノ酸配列において、PRドメイン保存アミノ酸以外のアミノ酸については改変されてもよい。
 本願明細書におけるCCTモチーフと同一性を有するアミノ酸配列は、CCTモチーフ保存アミノ酸を維持し、かつ、CCTモチーフのアミノ酸配列において、CCTモチーフ保存アミノ酸以外のアミノ酸については改変されてもよい。
 これらのアミノ酸の改変は、アミノ酸の欠失、置換、挿入および/または付加であってよい。また、アミノ酸の置換は、保存的置換であってもよく、これは、特定のアミノ酸残基を類似の物理化学的特徴を有する残基で置き換えることである。保存的置換の非限定的な例には、Ile、Val、LeuまたはAla相互の置換のような脂肪族基含有アミノ酸残基の間の置換、Lys及びArg、Glu及びAsp、Gln及びAsn相互の置換のような極性残基の間での置換などが含まれる。
 (c)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有すること
 本発明者らは、オリザ・ロンギスタミナータの第7染色体末端に座乗し、配列番号2で示される塩基配列を有するPRR遺伝子、及び「日本晴」の第7染色体末端に座乗し、配列番号4で示される塩基配列を有するPRR遺伝子(OsPRR37)が、多収性に関連する遺伝子であることを見出した。これらのPRRタンパク質はPRR7に分類されるが、PRR7タンパク質はLHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する。すなわち本願明細書においてPRR7タンパク質は、LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有するタンパク質である。
 下記の実施例で示すようにオリザ・ロンギスタミナータ由来のPRR7のプロモーターを日本晴由来のPRR7構造遺伝子と機能を可能なように結合させた核酸を植物に導入することによっても、植物の収量を増大すること、即ち該植物に多収性を付与することが可能であった。よって本発明の効果を得るにあたり、本発明のオリザ・ロンギスタミナータ由来のPRR7のプロモーターが重要な役割を果たしていると考えられる。
 さらに本発明は、配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも65%、70%、75%、80%、85%、90%、95%、97%、あるいは99%の同一性を有するアミノ酸配列を有し、オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーターと機能可能に連結したときに植物の収量を増大させる活性を有するタンパク質をコードする核酸と、オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーターとを機能可能に連結した核酸である。この核酸も植物に導入することによって、植物に多収性を付与することが可能である。本発明の好適な態様においてそのような核酸は、PRドメインとCCTモチーフを含むタンパク質をコードするもの、及び/又は、LHY遺伝子およびCCA1遺伝子の転写を抑制する活性を有するタンパク質をコードするものであってもよい。なお、この核酸は下記(3)~(6)に記載の本発明のための核酸として用いることができる。
 (3)本発明のプロモーター、あるいは本発明のプロモーターとPRR7の構造遺伝子とが機能を可能なように結合した核酸を含むベクター
 本発明は、本発明のプロモーターを単独で含むベクター、あるいは、本発明のプロモーターとPRR7タンパク質をコードする塩基配列を含む核酸(PRR7の構造遺伝子)とが機能を可能なように結合している核酸を含むベクターである。このようなベクターは植物に多収性を付与するのに有用である。
 更に本発明は、本発明のプロモーターとPRR7タンパク質をコードする塩基配列を含む核酸(PRR7の構造遺伝子)とが機能を可能なように結合している核酸を含むベクターの、植物に多収性を付与するための使用である。
 ベクターは、簡便には当業界において入手可能な組換え用ベクターに所望の遺伝子を常法により連結することによって、調製することができる。本発明の核酸を用いて植物に多収性を付与する場合には、植物形質転換用ベクターが特に有用である。本発明で使用されるベクターは、植物細胞中で本発明の目的とする効果を達成するために使用できるものであれば特に限定されないが、例えば、pBI系のベクター、pBluescript系のベクター、pUC系のベクター等を使用できる。pBI系のベクターとしては、例えば、pBI121、pBI101、pBI101.2、pBI101.3、pBI221などが挙げられる。pBI系のベクター等のバイナリーベクターは、アグロバクテリウムを介して植物に目的のDNAを導入できるという点で好ましい。また、pBluescript系のベクターとしては、例えば、pBluescript SK(+)、pBluescript SK(−)、pBluescript II KS(+)、pBluescript II KS(−)、pBluescript II SK(+)、pBluescript II SK(−)などが挙げられる。pUC系のベクターとしては、pUC19、pUC119等を挙げることができる。pBluescript系のベクター、pUC系ベクターは、植物にDNAを直接導入することができるという点で好ましい。さらにはpGreenシリーズ(www.pgreen.ac.uk)、pCAMBIAシリーズ(www.cambia.org)などのバイナリーベクターや、pSB11(Komari et al,1996,Plant J,10:165−174)、pSB200(Komori et al,2004,Plant J,37:315−325)などのスーパーバイナリーベクターも好ましく使用することができる。
 また、上記ベクターは、転写産物の安定化に必要なポリアデニレーション部位を含む転写ターミネーター配列を含むことが好ましい。当業者は、転写ターミネーター配列を適切に選択することができる。
 転写ターミネーター配列は、転写終結部位としての機能を有していれば特に限定されるものではなく、公知のものであってもよい。例えば、ノパリン合成酵素遺伝子の転写終結領域(Nosターミネーター)、カリフラワーモザイクウイルス35Sの転写終結領域(CaMV35Sターミネーター)等を好ましく用いることができる。上記組換え発現ベクターにおいては、転写ターミネーター配列を適当な位置に配置することにより、植物細胞に導入された後に、不必要に長い転写物を合成する現象等の発生を防止することができる。
 また、上記組換え発現ベクターには、さらに他のDNAセグメントを含んでいてもよい。当該他のDNAセグメントは特に限定されるものではないが、形質転換体選別マーカー、エンハンサー、翻訳効率を高めるための塩基配列等を挙げることができる。また、上記組換え発現ベクターは、さらにT−DNA領域を有していてもよい。T−DNA領域は特にアグロバクテリウムを用いて上記組換え発現ベクターを植物体に導入する場合に遺伝子導入の効率を高めることができる。
 形質転換体選別マーカーとしては、例えば薬剤耐性遺伝子を用いることができる。かかる薬剤耐性遺伝子の具体的な一例としては、例えば、ハイグロマイシン、ブレオマイシン、カナマイシン、ゲンタマイシン、クロラムフェニコール等に対する薬剤耐性遺伝子を挙げることができる(抗生物質カナマイシン又はゲンタマイシンに耐性であるネオマイシンホスホトランスフェラーゼ遺伝子、ハイグロマイシンに耐性であるハイグロマイシンホスホトランスフェラーゼ遺伝子)。また、除草剤ホスフィノスリシンに耐性であるホスフィノスリシンアセチルトランスフェラーゼ遺伝子等も利用可能である。これにより、上記抗生物質や除草剤を含む培地中で生育する植物体を選択することによって、形質転換された植物体を容易に選別することができる。
 翻訳効率を高めるための塩基配列としては、例えばタバコモザイクウイルス由来のomega配列を挙げることができる。このomega配列をプロモーターの非翻訳領域(5’UTR)に配置させることによって、上記融合遺伝子の翻訳効率を高めることができる。
 また、エンハンサーとしては、CaMV35Sプロモーター内の上流側の配列を含むエンハンサー領域があげられる。このように、上記組換え発現ベクターには、その目的に応じて、さまざまなDNAセグメントを含ませることができる。
 組換え発現ベクターの構築方法についても特に限定されるものではなく、適宜選択された母体となるベクターに、本発明のプロモーター、PRR7の構造遺伝子、及びターミネーター配列、並びに必要に応じて上記他のDNAセグメントを所定の順序となるように導入すればよい。上記遺伝子を母体となるベクターに挿入するには、常法にしたがい、精製された遺伝子のDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位またはマルチクローニングサイトに挿入する方法などが用いられる(例えば、Molecular Cloning,5.61−5.63)。
 当業者においては、所望の遺伝子を有するベクターを、一般的な遺伝子工学技術によって、適宜、作製することが可能である。通常、市販の種々のベクターを利用することにより容易に作製できる。
 (4)本発明のプロモーターとPRR7の構造遺伝子が導入された形質転換植物
 更に本発明は、本発明のプロモーターと、PRR7タンパク質をコードする塩基配列を含む核酸(PRR7の構造遺伝子)とが機能を可能なように結合している核酸が植物に導入された、形質転換植物である。上記核酸は、通常、適当なベクターへ挿入され、形質転換の対象となる植物細胞へ導入される。すなわち本発明は、上記核酸又は組換え発現ベクターを保持する植物細胞(形質転換植物)を提供するものである。上記植物細胞には、種々の形態の植物細胞、例えば、懸濁培養細胞、プロトプラスト、植物体中の細胞が含まれる。また、本発明に係る形質転換体としては、植物細胞のみならず、植物体全体、植物器官(例えば、根、茎、葉、花弁、種子、果実、完熟胚、未熟胚、胚珠、子房、茎頂、葯、花粉等)、植物組織(例えば、表皮、篩部、柔組織、木部、維管束等)、これらの切片、カルス、苗条原基、多芽体、毛状根及び培養根等のいずれをも包含する。
 宿主細胞内で上記遺伝子を発現させる方法としては、上記遺伝子を適当なベクターに組み込み、例えば、ポリエチレングリコール法、アグロバクテリウム法、リポソーム法、カチオニックリポソーム法、リン酸カルシウム沈殿法、電気パルス穿孔法(エレクトロポレーション)(Current protocols in Molecular Biology edit.Ausubel et al.(1987)Publish.John Wiley & Sons.Section 9.1−9.9)、リポフェクション法(GIBCO−BRL社製)、マイクロインジェクション法、パーティクルガン法等の当業者に公知の方法により生体内に導入する方法が挙げられる。本発明においては、アグロバクテリウム法を好ましく使用することができる。植物体内へ本発明の遺伝子を導入する場合、遺伝子は、マイクロインジェクション法、エレクトロポレーション法、ポリエチレングリコール法等を用いて、植物細胞に直接導入することもできるが、植物への遺伝子導入用プラスミドに組込み、これをベクターとして、植物感染能のあるウイルスあるいは細菌を介して、間接的に植物細胞に導入することもできる。かかるウイルスとしては、例えば、代表的なウイルスとして、カリフラワーモザイクウイルス、タバコモザイクウイルス、ジェミニウイルス等が挙げられ、細菌としては、アグロバクテリウム等が挙げられる。アグロバクテリウム法により、植物への遺伝子導入を行う場合には、市販のプラスミドを用いることができる。
 また、本発明には、上記核酸又はベクターを直接導入した植物細胞のみならず、植物細胞を生育させた植物体、当該植物の、後代、子孫またはクローンである植物、並びに繁殖材料(例えば、種子、果実、切穂、塊茎、塊根、株、カルス、プロトプラスト等)が含まれる。形質転換植物細胞からの植物体の再生は、植物細胞の種類に応じて当業者に公知の方法で行うことが可能である。上記技術については既に確立し、本発明の技術分野において広く用いられており、本発明において上記方法を好適に用いることができる。
 形質転換された植物細胞を再分化させて植物体を再生させる方法は、植物細胞の種類により異なるが、例えばイネであればFujimuraら(Plant Tissue Culture Lett.2:74(1995))の方法が挙げられ、トウモロコシであればShillitoら(Bio/Technology 7:581(1989))の方法やGorden−Kammら(Plant Cell 2:603(1990))の方法が挙げられる。上記手法により再生され、かつ栽培した形質転換植物体中の導入された外来遺伝子の存在は、公知のPCR法やサザンハイブリダイゼーション法によって、又は植物体中のDNAの塩基配列を解析することによって確認することができる。この場合、形質転換植物体からのDNAの抽出は、公知のJ.Sambrookらの方法(Molecular Cloning、第2版、Cold Spring Harbor Laboratory Press,1989)にしたがって実施することができる。
 例えば、再生させた植物体中に存在する本発明の遺伝子を、PCR法を用いて解析する場合には、上記のように再生植物体から抽出したDNAを鋳型として増幅反応を行う。また、本発明の遺伝子、あるいは改変された遺伝子の塩基配列に従って適当に選択された塩基配列をもつ合成したオリゴヌクレオチドをプライマーとして用い、これらを混合させた反応液中において増幅反応を行うこともできる。増幅反応においては、DNAの変性、アニーリング、伸張反応を数十回繰り返すと、本発明の遺伝子の塩基配列を含むDNA断片の増幅生成物を得ることができる。増幅生成物を含む反応液を例えばアガロース電気泳動にかけると、増幅された各種のDNA断片が分画されて、そのDNA断片が本発明の遺伝子に対応することを確認することが可能である。
 一旦、ゲノム内に本発明の遺伝子が導入された形質転換植物体が得られれば、該植物体から有性生殖又は無性生殖により子孫を得ることが可能である。また、該植物体やその子孫あるいはクローンから繁殖材料を得て、それらを基に該植物体を量産することも可能である。本発明には、本発明の遺伝子又は組換え発現ベクターが導入された植物細胞、該細胞を含む植物体、該植物体の子孫及びクローン、並びに該植物体、その子孫、及びクローンの繁殖材料が含まれる。つまり、本発明には、形質転換処理を施した再分化当代である「T0世代」やT0世代の植物の自殖種子である「T1世代」などの後代植物や、それらを片親にして交配した雑種植物やその後代植物を含む。
 このようにして作出された形質転換植物は、通常の植物に比べて、多収性という有利な特性を有することが期待される。本発明で形質転換をする対象として用いられる植物は特に限定されるものではなく、本発明の方法により、多収性を有する種々の形質転換植物を作製することができる。
 本発明の好ましい態様において形質転換される植物は被子植物であり、好ましくは単子葉植物であり、さらに好ましくはイネ、トウモロコシ、ソルガムであり、最も好ましくはイネとトウモロコシである。また、本発明の好ましい態様において形質転換される植物は、短日植物である。
 下記の実施例では、本発明のプロモーターとオリザ・ロンギスタミナータ由来のPRR構造遺伝子を導入した形質転換トウモロコシを作製したことが示されている。
 (5)本発明のプロモーターとPRR7構造遺伝子を用いて収量が増大した形質転換植物を作製する方法
 更に本発明は、本発明のプロモーター配列と、PRR7タンパク質をコードする塩基配列を含む核酸(PRR7の構造遺伝子)とが機能を可能なように結合している核酸を植物に導入する工程を含む、収量が増大した形質転換植物を作製する方法である。より具体的には、本発明のプロモーター配列と、PRR7タンパク質をコードする核酸(PRR7の構造遺伝子)とが機能を可能なように結合している核酸を作製し、前記核酸を植物細胞に導入し、核酸が導入された前記植物細胞から植物体を再生する、ことにより、収量が増大した形質転換植物を作製することができる。核酸を導入するための植物材料として、例えば、根、茎、葉、種子、完熟胚、未熟胚、胚珠、子房、茎頂、葯、花粉等の植物組織やその切片、細胞、カルス、それを酵素処理して細胞壁を除いたプロトプラスト等の植物細胞を挙げることができ、完熟胚又は未熟胚を好ましく使用することができる。本発明の形質転換植物を作製する方法は特に限定されるものではなく、本技術分野で一般的に用いられている種々の植物の形質転換方法を用いることができる。例えば、上記(4)に記載した形質転換方法を、適宜用いることができる。
 本発明の好ましい態様において形質転換される植物は被子植物であり、好ましくは単子葉植物であり、さらに好ましくはイネ、トウモロコシ、ソルガムであり、最も好ましくはイネとトウモロコシである。また、本発明の好ましい態様において形質転換される植物は、短日植物である。下記の実施例では、本発明のプロモーターとオリザ・ロンギスタミナータ由来のPRR7構造遺伝子をトウモロコシに導入することにより、トウモロコシに多収性を付与できたことが示されている。
 (6)植物の収量を増大させる方法
 更に本発明は、本発明のプロモーター配列と、PRR7タンパク質をコードする塩基配列とを含む核酸(PRR7の構造遺伝子)が機能を可能なように結合している核酸を植物に導入することを特徴とする、植物の収量を増大させる方法である。上記(2)で述べた核酸を植物に導入することにより、植物の収量を増大させることができる。本方法で使用するPRR7タンパク質は上記(2)で規定されたPRR7タンパク質の定義を満たすものである。即ち、配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも65%、70%、75%、80%、85%、90%、95%、97%、あるいは99%の同一性を有するアミノ酸配列を有し、PRドメインとCCTモチーフを含み、かつ、LHY遺伝子およびCCA1遺伝子の転写を抑制する活性を有するタンパク質である。PRドメインと同一性を有するアミノ酸配列は、PRドメイン保存アミノ酸を維持し、かつ、PRドメインのアミノ酸配列において、PRドメイン保存アミノ酸以外のアミノ酸については改変されてもよい。CCTモチーフと同一性を有するアミノ酸配列は、CCTモチーフ保存アミノ酸を維持し、かつ、CCTモチーフのアミノ酸配列において、CCTモチーフ保存アミノ酸以外のアミノ酸については改変されてもよい。
 PRR7タンパク質をコードする塩基配列と機能を可能なように結合させるプロモーターは、好ましくは配列番号1の34845−35044で示される塩基配列、配列番号1の33045−35044で示される塩基配列、あるいは配列番号1の26779−35044で示される塩基配列からなる核酸である。本方法で用いられるプロモーターはそれらの核酸に限定されるものではなく、配列番号1の34845−35044で示される塩基配列の一部分、配列番号1の33045−35044で示される塩基配列の一部分、あるいは配列番号1の26779−35044で示される塩基配列の一部分からなる断片であって、植物の遺伝子の転写を促進する活性を示す塩基配列を含む核酸も包含する。更に本方法で用いられるプロモーターは、配列番号1の34845−35044で示される塩基配列、配列番号1の33045−35044で示される塩基配列、あるいは配列番号1の26779−35044で示される塩基配列と80%、85%、90%、95%、97%、99%、あるいは99.5%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列を含む核酸を含有する。更に本方法で用いられるプロモーターは、オリザ・ロンギスタミナータに由来する塩基配列であって、少なくとも配列番号1の34845−35044で示される塩基配列を含み、植物の遺伝子の転写を促進する活性を示す核酸を包含する。
 (7)本発明のプロモーターとオリザ・ロンギスタミナータ由来のPRR7構造遺伝子の、DNAマーカーとしての使用
 本発明のプロモーターおよび/またはオリザ・ロンギスタミナータ由来のPRR7構造遺伝子の全体又は部分配列は、植物の多収性のDNAマーカーとして有用である。本発明のプロモーターの配列あるいはオリザ・ロンギスタミナータ由来のPRR7構造遺伝子の配列が植物において検出された場合には、その植物はオリザ・ロンギスタミナータ様の多収性の形質を示すことが期待される。このようなマーカーとしては、本発明のプロモーター由来の塩基配列がより好ましい。
 そのような目的で使用される本発明のDNAマーカーは、好ましくは配列番号1の26779−35044で示される塩基配列および/または配列番号1の35825−46721で示される塩基配列の15から2000塩基を含むものであり、更に好ましくは配列番号1の26779−35044で示される塩基配列および/または配列番号1の35825−46721で示される塩基配列で示される塩基配列の20乃至500塩基を含むものであり、更に好ましくは配列番号1の26779−35044で示される塩基配列および/または配列番号1の35825−46721で示される塩基配列で示される塩基配列の30乃至100塩基を含むものである。しかし本発明の多収性のDNAマーカーは、それらに限定されるものではない。
 好適な1態様として、本発明のプロモーターの塩基配列またはオリザ・ロンギスタミナータのPRR構造遺伝子の塩基配列と、日本晴の対応する部分の塩基配列との比較を行い、両者の間で差が見られる領域に相当するオリザ・ロンギスタミナータ部分配列を、上記で述べたDNAマーカーとして選択することができる。
 本発明のDNAマーカーを植物において検出し、該DNAマーカーが存在する場合には該植物は多収性であると判定することができる。例えば、日本晴とオリザ・ロンギスタミナータを交配することにより得られた植物について、多収性のイネ品種を選抜する際には、上記で述べたようなオリザ・ロンギスタミナータと日本晴で差異がある領域に相当するオリザ・ロンギスタミナータ部分配列をDNAマーカーとして使用することができる。
 本発明のDNAマーカーの検出手段は特に限定されるものではなく、PCR、RFLP、あるいは塩基配列解読など、本技術分野で知られている種々の方法を用いることができる。更に本発明のDNAマーカーの検出は、交配で得られた植物の成長のいずれの段階においても行うことが可能である。交配で得られた植物について幼植物の段階でDNAマーカーの検出を行うことは本発明において好適であり、それによって交配した植物が成長する前に該植物が多収性かどうか、判定をすることができる。
 (8)本発明のプロモーターを用いて植物の遺伝子の転写活性を促進する方法
 本発明は、本発明のプロモーターを用いて植物の遺伝子の転写活性を促進する方法を提供する。即ち本発明は、配列番号1の34845−35044で示される塩基配列、又は、配列番号1の34845−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法である。更に本発明は、配列番号1の33045−35044で示される塩基配列、又は、配列番号1の33045−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法である。また本発明は、オリザ・ロンギスタミナータに由来する塩基配列であって、少なくとも配列番号1の34845−35044で示される塩基配列を含み、植物の遺伝子の転写を促進する活性を示す核酸を用いて、植物の遺伝子の転写活性を促進する方法である。そのような核酸において、配列番号1の33045−35044で示される塩基配列からなる核酸の断片を含むことは好ましく、配列番号1の26779−35044で示される塩基配列からなる核酸の断片を含むことは更に好ましい。下記の実施例において、配列番号1の34845−35044と配列番号1の33045−35044に相当する塩基配列を含む核酸が、GUS遺伝子の転写を促進させる活性を有することが実際に確認されている。
 (9)オリザ・ロンギスタミナータ由来のPRR7タンパク質とそれをコードする核酸
 更に本発明は、オリザ・ロンギスタミナータ由来のPRR7タンパク質と、それをコードする核酸を提供する。既に述べたようにオリザ・ロンギスタミナータ由来のPRR7タンパク質は配列番号3に示すアミノ酸からなり、配列番号2で示される塩基配列の核酸によりコードされている。よって本発明は配列番号3で示されるアミノ酸配列を有するタンパク質と該タンパク質をコードする核酸である。更に本発明は配列番号2で示される塩基配列を有する核酸である。下記の実施例においてオリザ・ロンギスタミナータ由来のPRR7プロモーターに、オリザ・ロンギスタミナータ由来のPRR7タンパク質をコードする遺伝子を結合させたコンストラクトを導入した場合には、同じプロモーターに日本晴由来のPRR7タンパク質をコードする遺伝子を結合させたコンストラクトを導入した場合と比較して、多収性を付与する効果が大きかったという結果が示された。すなわち、オリザ・ロンギスタミナータ由来のPRR7プロモーターに機能可能に結合して発現させた場合に、オリザ・ロンギスタミナータ由来のPRR7タンパク質をコードする核酸は、他の植物由来のPRR7タンパク質をコードする核酸と比べて、より大きな多収性を植物に付与するという特性を有する。よって植物に多収性を付与するにあたり、オリザ・ロンギスタミナータ由来のPRR7タンパク質をコードする核酸を、オリザ・ロンギスタミナータ由来のPRR7プロモーターと共に用いることは、本発明において好適である。更に本発明は、このようなオリザ・ロンギスタミナータ由来PRR7タンパク質をコードする核酸の特徴に鑑み、配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸の植物に多収性を付与するための使用、配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸を植物に導入することを特徴とする植物の収量を増大させる方法、及び、配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸を植物に導入することを特徴とする収量が増大した形質転換植物作製方法、を提供する。
 (10)ソルガム由来のPRR7プロモーターとソルガムPRR7構造遺伝子とが機能を可能なように結合した核酸
 更に本発明は、ソルガム由来のPRR7プロモーターとソルガムPRR7構造遺伝子とが機能を可能なように結合した核酸である。ソルガム由来のPRR7プロモーターは、配列番号19に示される9049個の塩基配列で示される塩基配列を含む核酸である。本願明細書におけるソルガム由来のPRR7プロモーターの塩基配列は配列番号19に示されるものに限定されず、その塩基配列と少なくとも80%、85%、90%、95%、97%、99%、あるいは99.5%の同一性を有し、植物のコード領域の転写を促進する活性を示す塩基配列を含む核酸も含有する。
 ソルガム由来のPRR7タンパク質は配列番号17に示す765個のアミノ酸からなり、配列番号16で示される塩基配列の核酸によりコードされている。本願明細書におけるソルガム由来のPRR7タンパク質はそれに限定されるものではなく、配列番号17で示されるアミノ酸配列と少なくとも50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、あるいは99%の類似性を有するアミノ酸配列を有するタンパク質を含有するものである。更に本願明細書におけるソルガム由来のPRR7タンパク質は、上記(2)においてオリザ・ロンギスタミナータ由来のPRR7タンパク質に関連して述べたのと同様に、PRドメインとCCTモチーフを含み、かつ、LHY遺伝子およびCCA1遺伝子の転写を抑制する活性を有する。ソルガム由来のPRR7タンパク質のPRドメインは、配列番号17のアミノ酸配列においてアミノ酸番号80から194に相当し、CCTモチーフはアミノ酸番号709から752に相当する。しかし本願明細書においてソルガム由来のPRR7タンパク質のPRドメインとCCTモチーフのアミノ酸配列は、上記のPRドメインとCCTモチーフに限定される訳ではなく、それらのアミノ酸配列と少なくとも70%、75%、80%、85%、90%、95%、97%、あるいは99%の同一性を有するものも含有する。
 ソルガム由来のPRR7プロモーターとソルガムPRR7構造遺伝子とが機能を可能なように結合した核酸を用いて、植物の収量を増大させることが可能である。下記の実施例において、配列番号19に示される塩基配列の核酸と配列番号16で示される塩基配列の核酸を含むコンストラクトをイネに導入することにより、収量が増加する効果が認められたことを示す。
 実施例1:イネ野生種オリザ・ロンギスタミナータの持つ多収性を有する栽培イネ系統の作出と多収性遺伝子領域の同定
 アフリカに自生するイネ野生種オリザ・ロンギスタミナータ(O.longistaminata)は、栽培種であるオリザ・サティバ(O.sativa L.)と同じAゲノムを有しているものの、栽培種に比べ大きなバイオマスを示すことが知られている。本発明者は、オリザ・ロンギスタミナータの有するこのような優良形質を栽培種に導入するべく、イネ栽培品種「しおかり」とオリザ・ロンギスタミナータとの交配・選抜を続けた結果、「しおかり」に比較して多収性を示すBC7F6系統「No.645」を得た。この「No.645」はほとんどの農業形質で「しおかり」を凌駕しており、特に、稈基径が太くなるのが特徴であった(表1)。この多収性系統について全12本の染色体をカバーする80個のDNAマーカーを用いて、遺伝子型を調査したところ、オリザ・ロンギスタミナータの第3染色体末端部と第7染色体末端部だけを有することがわかった(図1)。
 そこで、本発明者は、「No.645」の有する多収性に関与する遺伝子領域を明らかにするため、「No.645」を反復親の「しおかり」と交雑したF2、133個体を用いて収量関連形質に関するQTL解析を行った。その結果、第7染色体末端部に、出穂まで日数、稈長、穂長、1穂穎花数、稈基径に関するQTLが検出された(表2)。引き続き、交雑後代F3個体のうち、第7染色体末端部がヘテロで、その他の第7染色体領域が「しおかり」型の個体と「No.645」型の個体を選抜し、その後代4313個体と4944個体を用いて、末端部の組換え個体を選抜した。その結果、最末端が「No.645」型に固定した個体3個体(F4−No.1,No.2,No.3)と、最末端が「しおかり」型に固定した4個体(F4−No.4,No.5,No.6,No.7)を選抜できた(図2)。最末端が「No.645」型に固定した個体の形質は、「No.645」とほとんど同じであった。また最末端が「しおかり」型に固定した個体の形質は「しおかり」とほとんど同じであった(表3)。マーカーCH15377−1はパッククローンP0627E10の図2の右末端から約180kb離れていることから、オリザ・ロンギスタミナータの持つ多収性の遺伝子領域は第7染色体末端部約180kbに絞り込むことができると推定された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例2:オリザ・ロンギスタミナータの第7染色体末端部領域の形質転換試験による相補性検定(1)
 実施例1の遺伝学的解析により、オリザ・ロンギスタミナータの持つ多収性の遺伝子領域を第7染色体末端部の約180kbに絞り込むことができた。そのうちの約82kbの領域を網羅する7つのコンストラクトを作製し、それぞれを「しおかり」へ形質転換して得られた形質転換体の形質評価を行った。
 フォスミドベクターpCC1FOS(EPICENTRE社)を用いて、「No.645」のゲノミックライブラリーを作製した。実施例1の遺伝学的解析により、多収性に関与する遺伝子は第7染色体の長腕末端部に座乗することが示されていたので、当該領域のDNAマーカーであるC213およびC728(Harushima et al,1998)を用いてライブラリーをスクリーニングし、4個のクローン(Fos1、2、10、12)を選抜した。各クローンの末端塩基配列を解読し、日本晴ゲノム配列と比較することにより、相互の位置関係を明らかにした。さらに、プライマー歩行を行い、当該コンティグの塩基配列を解読した。解読された塩基配列を配列番号1に示す。
 上記4個のフォスミドクローンを用いて、下記で述べる7個の相補性試験用コンストラクトを作製した(図3)。
 (1)Fr3の作製
 Fos12をNotI処理して得られる最も大きな断片(配列番号1の15961番目の塩基から37129番目の塩基までを含む)を、QIAEXII Gel Extraction Kit(QIAGEN社)を用いてアガロースゲルから精製した。
 プラスミドベクターpSB200(ハイグロマイシン耐性遺伝子カセットを持つ中間ベクター)をNotIで完全消化後、エタノール沈殿によりDNAを回収した。回収したDNAをTE溶液に溶解後、CIAP(TAKARA−BIO社)により脱リン酸化した。反応液をアガロースゲルによる電気泳動にかけた後、QIAEXII Gel Extraction Kitを用いてゲルからベクター断片を精製した。
 上記により準備した2つの断片を供試して、DNA Ligation Kit“Mighty Mix”(TAKARA−BIO社)を用いてライゲーション反応を行った。反応後、エタノール沈殿によりDNAを回収した。回収したDNAを純水(Millipore社製装置により作製)に溶解後、大腸菌DH5αと混合し、エレクトロポレーションに供試した。エレクトロポレーション後の溶液を、LB培地で振とう培養(37℃、1時間)した後、スペクチノマイシン(50μg/ml)を含むLBプレートに広げ、保温(37℃、16時間)した。生じたコロニーのなかの24個について、プラスミドを単離し、制限酵素断片長パターンおよび境界部塩基配列を調査することにより、所望の大腸菌を選抜した。
 (2)Fr1の作製
 Fos12をNotI処理して得られる2番目に大きな断片(配列番号1の3番目の塩基から9746番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 この断片を、(1)で用いたNotI−CIAP処理済みのpSB200断片とともに供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (3)Fr7の作製
 Fos1をNotI処理して得られる最も大きな断片(配列番号1の58805番目の塩基から82355番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 この断片を、(1)で用いたNotI−CIAP処理済みのpSB200断片とともに供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (4)Fr5の作製
 Fos1をNotI処理して得られる2番目に大きな断片(配列番号1の42409番目の塩基から58808番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 この断片を、(1)で用いたNotI−CIAP処理済みのpSB200断片とともに供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (5)Fr2の作製
 Fos12をPspOMI処理して得られる2番目に大きな断片(配列番号1の6929番目の塩基から19723番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 この断片を、(1)で用いたNotI−CIAP処理済みのpSB200断片とともに供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (6)Fr6の作製
 Fos1をPspOMI処理して得られる2番目に大きな断片(配列番号1の51665番目の塩基から62366番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 この断片を、(1)で用いたNotI−CIAP処理済みのpSB200断片とともに供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (7)Fr4の作製
 Fos10をSmaIおよびPstIで処理して得られる最も大きな断片(配列番号1の26779番目の塩基から46059番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 Fos1をPstIおよびSacIで処理して得られる4番目に大きな断片(配列番号1の46056番目の塩基から49155番目の塩基までを含む)を、QIAEXII Gel Extraction Kitを用いてアガロースゲルから精製した。
 プラスミドベクターpSB200をEcoRVおよびSacIで完全消化後、エタノール沈殿によりDNAを回収した。回収したDNAを、(1)に記載した方法でCIAP処理し、ベクター断片を精製した。
 これら3断片を供試して、DNA Ligation Kit“Mighty Mix”を用いてライゲーション反応を行った。以後、(1)に記載の方法に準拠して、所望の大腸菌を選抜した。
 (1)から(7)により選抜した7種類の大腸菌を、Agrobacterium tumefaciens菌株LB4404/pSB1(Komari et al,1996)およびヘルパー大腸菌HB101/pRK2013(Ditta et al,1980)とともに供試して、Ditta et al(1980)の方法に従いtriparential matingを行った。スペクチノマイシン(50μg/ml)、テトラサイクリン(15μg/ml)およびハイグロマイシン(35μg/ml)を含むABプレート上で選抜したアグロバクテリウムを用いて、Hiei et al(1994)の方法に準拠し、「しおかり」の形質転換を行った。形質転換イネは、馴化後、温室で栽培した。各コンストラクトにつき独立した形質転換体を約20個体養成し、T1種子を採種した。
 T1世代は、1コンストラクトにつき2系統、計18個体(1系統あたり9個体)を供試した。播種は2007年6月25日に行い、7月9日に水田土壌を入れた3.5リットルのバケツに3個体ずつ(1系統あたり3バケツ、計9個体)移植した。対照の「しおかり」に加え、参考品種としてオリザ・ロンギスタミナータの第3染色体末端領域および第7染色体末端領域を「しおかり」に導入した系統「No.645」を栽植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で、無施肥条件下で行った。収穫は9月21日に行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実重(以下、1穂重)につき行った。
 各コンストラクト2系統の農業形質データの平均値を表4に示した。供試した全7コンストラクトの1穂粒数や1穂重は対照の「しおかり」とほぼ同等またはそれ以下であり、「しおかり」を凌駕するコンストラクトは見出せなかった。
Figure JPOXMLDOC01-appb-T000004
 実施例3:オリザ・ロンギスタミナータの第7染色体末端部領域の形質転換試験による相補性検定(2)
 2007年に供試したものの、生育旺盛性を示す結果を得られなかった7つのコンストラクトについて、コンストラクトあたりの系統数(いずれも独立したT0個体に由来)を5系統(1系統あたり12個体。2007年に供試した系統とは異なる。)に増やして、再度試験を行った。播種は、2008年5月30日に行い、6月16日に水田土壌を入れた3.5リットルのバケツに4個体ずつ(1系統あたり3バケツ、計12個体)移植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で、無施肥条件下で行った。収穫は9月8日に行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実重(以下、1穂重)につき行った。2008年は対照の「しおかり」に加え、オリザ・ロンギスタミナータの第7染色体末端領域のみを「しおかり」に導入した系統「No.240」を参考品種として栽植した。
 各コンストラクト5系統の農業形質データの平均値を表5に示した。Fr4コンストラクトは対照の「しおかり」に比較して、出穂まで日数、稈長、穂長、1穂粒数、種子稔性、1穂重、稈基径の7形質で大きく上回っているに対して、残りの6つのコンストラクトはすべての形質において「しおかり」と同等またはそれ以下であった。
Figure JPOXMLDOC01-appb-T000005
 次に、Fr4系統のうち最もその特性が顕著に表れたFr4−4について、個体別にPCRを行い、導入遺伝子の有無と形質測定値の大小との関係を調べた。その結果を表6と図4に示す。遺伝子保有個体は、欠落個体より、長日条件下(14時間30分)で出穂まで日数、稈長、穂長、1穂粒数、1穂重、稈基径において、上回っていることが明らかとなった。また、遺伝子保有個体は、欠落個体に比較して粒着密度(穂1cmあたりの粒数)が高いことも明らかとなった。
 以上の結果から、「しおかり」に多収を付与するゲノム断片はFr4断片であることが強く示唆された。
Figure JPOXMLDOC01-appb-T000006
 2009年は2008年に栽培したFr4−4の遺伝子保有個体および遺伝子欠落個体の後代(T2世代)を対照の「しおかり」、「No.240」とともに栽培し(1系統あたり12個体)、収量形質を評価することとした。播種は、2009年5月1日に行い、5月11日に水田土壌を入れた3.5リットルのバケツに4個体ずつ移植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で、無施肥条件下で行った。収穫は8月19日に行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実重(以下、1穂重)につき行った。
 結果を表7に示した。遺伝子保有個体の後代Fr4−4−1とFr4−4−2は、遺伝子欠落個体の後代Fr4−4−3に比較して、出穂まで日数、稈長、穂長、1穂粒数、1穂重、稈基径において、上回っていることが明らかとなった。また、遺伝子保有系統は、欠落系統に比較して粒着密度(穂1cmあたりの粒数)が高いことも明らかとなった。一方、Fr4−4−3の全形質測定値は「しおかり」とほぼ同等であることがわかった。
 以上の結果から、「しおかり」に多収を付与するゲノム断片はFr4断片であると結論した。日本晴配列(AP005199)のアノテーション情報を参照すると、Fr4断片には日本晴完全長cDNA AK066112の対立遺伝子が包含されており、当該遺伝子が多収性を付与するものと推察された。なお、AK066112座は、Murakami et al.(2005)では、OsPRR37と記載されている。従って、オリザ・ロンギスタミナータの持つPRR7遺伝子が「しおかり」に多収を付与する原因遺伝子であると推定された。そしてこのFr4断片には、PRR7遺伝子のコード領域及びこれを発現させるための領域がすべて含まれると考えられた。
Figure JPOXMLDOC01-appb-T000007
 実施例4:オリザ・ロンギスタミナータPRR遺伝子のコード領域の効果の確認
 実施例3の結果から、オリザ・ロンギスタミナータの持つPRR7遺伝子が多収性を付与する遺伝子であると考えられた。このことを確認するため、オリザ・ロンギスタミナータのPRR遺伝子のコード領域が収量関連形質に及ぼす影響を調査した。
 具体的には、オリザ・ロンギスタミナータのPRR7遺伝子のコード領域に、プロモーターとしてユビキチンプロモーターを、ターミネーターとしてオリザ・ロンギスタミナータのPRR遺伝子のターミネーター領域を連結させたコンストラクトを以下のようにして作製した。ユビキチンプロモーターは、単子葉植物用に通常用いられる構成的プロモーターであり、PRR遺伝子の効果を見るために適切であると考えられた。これらのコンストラクトを栽培イネ「ゆきひかり」に導入して収量関連形質の評価を実施することとした。
 オリザ・ロンギスタミナータ由来のPRR7遺伝子のコード領域(配列番号2)をユビキチンプロモーターの制御下で発現させるためのコンストラクトを、overlap extension PCR等の常法を用いて構築した。具体的には、pSB200のユビキチンプロモーターおよびユビキチンイントロンを含む領域をPCR増幅し、その直下にオリザ・ロンギスタミナータの翻訳開始点上流領域(配列番号1の35045番目塩基から35824番目塩基まで)、配列番号2、および、オリザ・ロンギスタミナータの翻訳終了点下流領域(配列番号1の46722番目塩基から49157番目塩基まで)を接続したキメラ遺伝子が、pSB200のマルチプルクローニングサイトに挿入されているコンストラクトを作成した。なお、選抜マーカー遺伝子(ハイグロマイシン抵抗性遺伝子)のみを保持するプラスミドを対照として用いた。
 上記2種のコンストラクトを保有する大腸菌を用いて、実施例2で記載した方法でtriparental matingおよび栽培イネ「ゆきひかり」への形質転換を行った。形質転換イネは、馴化後、閉鎖系温室で栽培した。PRR7遺伝子および対照のコンストラクトは、独立した形質転換体をそれぞれ60個体、20個体養成した。供試60個体のうち、(1)草丈が高い、(2)茎が太い、(3)出穂まで日数が長いといった多収性に関連する特性を示す個体が18個体観察された。その18個体について、成熟期に穂の形質を観察したところ、全個体において、(1)種子稔性が低い(20%未満)、(2)穂が止葉から十分に抽出していない、(3)穎花が開穎したまま閉穎しないなどのいずれかの状況が観察された。そして最終的な種子収量は対照と比較して大幅に低下した(図5)。一方、残りの42個体は対照の20個体とほぼ同様の特性を示し、上記の劣悪形質はほとんど観察されなかった。
 以上の結果から、オリザ・ロンギスタミナータの持つPRR7遺伝子のコード領域が多収性を付与する遺伝子であると確認することはできなかった。
 実施例5:オリザ・ロンギスタミナータ由来プロモーターと各種PRR遺伝子コード領域を連結したコンストラクトの効果
 実施例4の結果からは、オリザ・ロンギスタミナータの持つPRR7遺伝子のコード領域が多収性を付与する遺伝子であると結論することはできなかった。そこで発明者らは鋭意検討の末、オリザ・ロンギスタミナータのPRR7遺伝子のプロモーター領域が、オリザ・ロンギスタミナータのPRR7遺伝子の発現に必要なのではないかと考え、オリザ・ロンギスタミナータのPRR7遺伝子のコード領域に、プロモーターとしてオリザ・ロンギスタミナータのPRR7遺伝子のプロモーター領域を、ターミネーターとしてオリザ・ロンギスタミナータのPRR7遺伝子のターミネーター領域を、連結させたコンストラクトを作製し、栽培イネに導入して収量関連形質の評価を実施することとした。なお、オリザ・ロンギスタミナータPRR7遺伝子の効果を評価するための対照として、通常の栽培イネ「日本晴」のPRR7遺伝子のコード領域を、上記プロモーターおよびターミネーターと連結したコンストラクトも作製して実験を行った。
 オリザ・ロンギスタミナータPRR遺伝子及び栽培イネ「日本晴」PRR遺伝子の単離
 オリザ・ロンギスタミナータ染色体断片導入系統「No.645」および「日本晴」の幼苗から、RNeasy Plant Mini Kit(QIAGEN)を用いて、全RNAを抽出した。キットのマニュアル通りに操作したが、RLTバッファーに添加するメルカプトエタノールは使用せず、替わりにDTTを最終濃度40mMになるように添加した。付属のRNase free water(40~50μl)で全RNAを溶出後、DNase処理(TURBO DNA−free Kit,Ambion)を行った。処理後のRNA溶液をアガロースゲル電気泳動で濃度および純度をチェックした後、QuantiTect Rev.Transcription kit(QIAGEN)によりcDNA合成を行った。得られたcDNA溶液を鋳型に、PRR遺伝子のコード領域を単離するために、以下の2種類のプライマーを用いて、RT−PCRを行った。下記のlongi−PRR 2Fは配列番号1の35847−35869で示される塩基配列に、longi−PRR 2Rは配列番号1の46713−46735で示される塩基配列に、それぞれ該当する。
Figure JPOXMLDOC01-appb-I000008
 その結果得られた塩基配列を用いて、「No.645」が保有するオリザ・ロンギスタミナータ由来PRR7構造遺伝子の塩基配列(配列番号2)を決定した。その塩基配列は、740個のアミノ酸から成るタンパク質(配列番号3)をコードするものと推定された。配列番号3においてアミノ酸番号62から176に相当する領域がPRドメインであり、アミノ酸番号676から722に相当する領域がCCTモチーフである。また、日本晴のPRR7構造遺伝子の塩基配列(配列番号4)も同様の手法を使って決定し、その塩基配列は、742個のアミノ酸から成るタンパク質(配列番号5)をコードするものと推定された。配列番号5においてアミノ酸番号62から176に相当する領域がPRドメインであり、アミノ酸番号678から724に相当する領域がCCTモチーフである。
 単離された日本晴由来、オリザ・ロンギスタミナータ由来、及びシロイヌナズナ由来のPRR遺伝子の翻訳領域によりコードされるアミノ酸配列のアラインメントを図6に示す。更に、単離された日本晴由来、オリザ・ロンギスタミナータ由来、及びシロイヌナズナ由来のPRR遺伝子の翻訳領域によりコードされるアミノ酸配列の同一性(identity)%と類似性(similarity)%の値を図7に示す。
 各PRR遺伝子を含むコンストラクトの作製
 単離したcDNAを、オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーター領域とターミネーター領域との間に挿入させたコンストラクトを、以下の手順で作製した。PCRにはPrimeSTAR MAX DNA Polymerase(TAKARA−BIO社)を、ライゲーションにはDNA Ligation Kit“Mighty Mix”(TAKARA−BIO社)を用いた。なお下記に述べるコンストラクト作製のストラテジーを図解したものを図8に示す。
 (1)オリザ・ロンギスタミナータ由来のPRR7遺伝子のコード領域を含むコンストラクト(以下、ロンギコンストラクト)
 実施例2のFr4コンストラクトのプラスミドを鋳型に、以下の2種類のプライマーを用いて、PCRを行った。下記のlongi−PRR 1Fは配列番号1の34019−34044で示される塩基配列に、longi−PRR 1Rは配列番号1の35838−35861で示される塩基配列に、それぞれ該当する。
Figure JPOXMLDOC01-appb-I000009
 次に、得られたPCR産物と上記「No.645」由来RT−PCR産物を供試して、longi−PRR 1Fおよびlongi−PRR 2Rを用いてoverlap extension PCRを行った。得られたPCR産物にEx−Taq(TAKARA−BIO社)を用いてA−Tailを付加後、pCR−XL−TOPO(Invitrogen社)にクローニングした後、pCR−XL−TOPOに元々存在するPstI部位を破壊するために、EcoRV処理後、セルフライゲーションを行った。セルフライゲーション後、SacIおよびPstIによる消化ならびにCIAP(TAKARA−BIO社)による脱リン酸化を行った。反応液をアガロースゲルによる電気泳動にかけ、ベクター断片(図8の断片1を含む)を回収した。
 また、実施例2のFr4コンストラクトのプラスミドを鋳型に、以下の2種類のプライマーを用いて、PCRを行った。下記のlongi−PRR 3Fは配列番号1の46721−46744で示される塩基配列を認識し、longi−PRR 3Rは配列番号1の49137−49157で示される塩基配列に、それぞれ該当する。
Figure JPOXMLDOC01-appb-I000010
 得られたPCR産物と上記「No.645」由来RT−PCR産物を供試して、longi−PRR 2Fおよびlongi−PRR 3Rを用いてoverlap extension PCRを行った。得られたPCR産物をSacIおよびPstIにより消化した後、反応液をアガロースゲルによる電気泳動にかけ、2.6kb断片(図8の断片2)をインサート用として回収した。この2.6kb断片は配列番号1の4605649156で示される塩基配列に対応する(ただし、46108−46595がイントロンのため、スプライシングを受けて46056−46107と46596−49156をタンデムに結合した配列となる)。
 上記2種類の回収断片を用いてライゲーションを行った。得られたプラスミドをSacIおよびNotIで消化し、反応液をアガロースゲルによる電気泳動にかけ、6.5kb断片(図8の断片3)を回収した。回収した断片3は、pSB200(SacIおよびNotIによる消化後、CIAP処理)にクローニングした。得られたプラスミドを供試して、NotIおよびEcoRVによる消化ならびにCIAPによる脱リン酸化を行った。反応液をアガロースゲルによる電気泳動にかけ、ベクター断片(断片3を含む)を回収した。一方、実施例2のFr4コンストラクトのプラスミドをNotIおよびEcoRVで消化し、反応液をアガロースゲルによる電気泳動にかけ、7.3kb断片(断片4)を回収した。この7.3kb断片は配列番号1の26779−34022で示される塩基配列に対応する。両断片を用いてライゲーションを行い、目的のプラスミドを得た。
 (2)日本晴由来のPRR7遺伝子のコード領域を含むコンストラクト(以下、日本晴コンストラクト)
 実施例2のFr4コンストラクトのプラスミドを鋳型に、longi−PRR 1Fおよびlongi−PRR 1Rを用いて、PCRを行った。得られたPCR産物と上記日本晴由来RT−PCR産物を供試して、longi−PRR 1Fおよびlongi−PRR 2Rを用いてoverlap extension PCRを行った。得られたPCR産物にEx−Taqを用いてA−Tailを付加後、pCR−XL−TOPOにクローニングした。得られたプラスミドをPstIおよびNotIで消化し、反応液をアガロースゲルによる電気泳動にかけ、3.9kb断片(日本晴cDNA由来−図8の断片1)を回収し、インサート1とした。
 また、実施例2のFr4コンストラクトのプラスミドを鋳型に、longi−PRR 3Fおよびlongi−PRR 3Rを用いて、PCRを行った。得られたPCR産物と上記日本晴由来RT−PCR産物を供試して、longi−PRR 2Fおよびlongi−PRR 3Rを用いてoverlap extension PCRを行った。得られたPCR産物にEx−Taqを用いてA−Tailを付加後、pCR−XL−TOPOにクローニングした。得られたプラスミドをSacIおよびPstIで消化し、反応液をアガロースゲルによる電気泳動にかけ、2.6kb断片(日本晴cDNA由来−図8の断片2)を回収し、インサート2とした。この2.6kb断片は配列番号1の46056−49156で示される塩基配列に対応する(ただし、46108−46595がイントロンのため、スプライシングを受けて46056−46107と46596−49156をタンデムに結合した配列となる)。
 上記2種類のインサート断片を、pSB200(SacIおよびNotIによる消化後、CIAP処理)とともに供試して、ライゲーションを行った。得られたプラスミドを供試して、NotIおよびEcoRVによる消化ならびにCIAPによる脱リン酸化を行った。反応液をアガロースゲルによる電気泳動にかけ、ベクター断片(日本晴cDNA由来−図8の断片3を含む)を回収した。
 一方、実施例2のFr4コンストラクトのプラスミドをNotIおよびEcoRVで消化し、反応液をアガロースゲルによる電気泳動にかけ、7.3kb断片(図8の断片4)を回収した。両断片を用いてライゲーションを行い、目的のプラスミドを得た。この7.3kb断片は配列番号1の26779−34022で示される塩基配列に対応する。
 (1)および(2)で得た目的のプラスミドを保有する大腸菌を用いて、実施例2に記載した方法でtriparential matingおよび「しおかり」の形質転換を行った。形質転換イネは、馴化後、閉鎖系温室で栽培した。各コンストラクトにつき独立した形質転換体を60個体養成し、T1種子を採種した。各コンストラクトから採種量の多い順に18個体を選んで、T1の評価試験に供試した。
 T1世代では、1コンストラクトにつき18系統(1系統あたり12個体)を供試した。播種は、6月25日に行った。移植前に個体別に葉を切り取り、ハイグロマイシン溶液に浸漬し、ハイグロマイシンに抵抗性を示した個体(遺伝子を保持していると推定される個体)を移植の対象とした。7月12日に水稲用育苗土を入れた容量570mlのポリエチレン製ポットに1個体ずつ(1系統あたり12ポット、計12個体)移植した。施肥はポットあたりN、P、Kを各0.21g、0.33g、0.05gとした。対照として、「しおかり」に加え、野生イネの第7染色体末端領域のみを「しおかり」に導入した系統「No.240」を参考品種として栽植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実籾重(以下、1穂重)につき行った。
 結果を表8に示した。まず、ロンギコンストラクトと日本晴コンストラクトについて、それぞれ全18系統の平均値をみると、対照「しおかり」に比較して、両コンストラクトを導入した植物は共に、出穂まで日数、稈長、穂長、1穂粒数、1穂重、稈基径において明らかに上回っていた。また、いずれのコンストラクトを導入した植物も、出穂まで日数、稈長、穂長、1穂粒数、1穂重、稈基径において、複数の系統で、対照「しおかり」より有意に上回っていた。さらに、ロンギコンストラクトを導入した全18系統、および日本晴コンストラクトを導入した全18系統の粒着密度(穂1cmあたりの粒数)の平均値は、それぞれ5.15粒/cm、4.80粒/cmであり、「しおかり」の粒着密度の平均値4.40粒/cmより高いことが明らかとなった。
 以上のことから、PRR7遺伝子が多収性を付与する原因遺伝子であることが確認された。さらに、実施例3と実施例4の結果を考え併せると、驚くべきことにオリザ・ロンギスタミナータの多収性は、PRR7遺伝子のコード領域よりも、プロモーター領域が寄与している可能性が高いという結果が得られた。
 加えて表8においてロンギコンストラクトと日本晴コンストラクトを導入した植物の収量を比較すると、前者の効果は後者の効果より顕著であった。よってプロモーターと共に植物に導入する構造遺伝子として、日本晴PRR7遺伝子の構造領域よりもロンギPRR7遺伝子の構造領域の方が好適であった。
Figure JPOXMLDOC01-appb-T000011
 実施例6:オリザ・ロンギスタミナータと「日本晴」のPRR遺伝子の発現解析
 実施例5の結果からPRR7遺伝子のプロモーター領域が多収に影響すると推定されたため、オリザ・ロンギスタミナータのPRR7遺伝子プロモーターと栽培イネ「日本晴」のPRR7遺伝子プロモーターの発現の違いを調べるべく、「日本晴」と「No.240」(オリザ・ロンギスタミナータのPRR7遺伝子を交配によって「しおかり」に導入した置換系統)のF1を用いて、PRR7遺伝子の発現解析を行った。
 「日本晴」(2個体)、「No.240」(2個体)および「日本晴」と「No.240」のF1(4個体)を供試して、播種3週間後に最も若い完全展開葉をサンプリングし、実施例3に記載した方法で全RNAを抽出およびcDNA合成を行った。なお、逆転写酵素を添加せずに調整したサンプルも準備し、ネガティブコントロールとして用いた。また、RNA抽出時に得たDNase処理前の核酸溶液の一部を用いて、全DNA溶液を準備した。得られた全DNA溶液およびcDNA溶液を鋳型にし、2種類のプライマー(CGAGGTACCATACACCTGTGGCTT(配列番号12)とGCATCTGAGTTTGACTTCATGTTG(配列番号13))を用いて、以下の反応条件でPCRを行った。
                        全DNA       cDNA
Template DNA            1.0μl      1.0μl
10×PCR buffer           2.0μl      2.5μl
2.5mM dNTP              1.0μl     1.25μl
rTaq                    0.1μl    0.125μl
Forward primer(10μM)    0.5μl      0.5μl
Reverse primer(10μM)    0.5μl      0.5μl
O                    14.9μl   19.125μl
Total                  20.0μl     25.0μl
94℃       2min
94℃      30sec
60℃      30sec
(94℃、30secと60℃、30secを35サイクル行った)
 PCR産物(130bp)を制限酵素HpyCH4V(New England Biolabs社)で37℃一晩処理した後、3% Metaphor Agarose(TAKARA−BIO社)を用いて電気泳動にかけた。
 日本晴の全DNA溶液およびcDNA溶液を鋳型に用いた場合には、PCR産物がHpyCH4Vにより切断されたのに対し、No.240の全DNA溶液およびcDNA溶液を鋳型に用いた場合には、PCR産物がHpyCH4Vにより切断されなかった(図9A)。このことから、本手法により、日本晴対立遺伝子からのPCR産物とオリザ・ロンギスタミナータ対立遺伝子からのPCR産物を、識別できることが確認できた。
 そこで、F1のサンプルを用いてHpyCH4V処理後のバンドパターンを比較した結果、cDNA溶液を鋳型に用いた場合には全DNA溶液を鋳型に用いた場合と比較して、HpyCH4Vで切断されないPCR産物の比率が高いことが示された。本結果から、日本晴にオリザ・ロンギスタミナータ遺伝子を導入した置換系統のF1においては、日本晴由来のPRR7の対立遺伝子発現量と比較して、オリザ・ロンギスタミナータ由来のPRR7の対立遺伝子の発現量の方が多いことが示された(図9B)
 実施例7:オリザ・ロンギスタミナータのPRRプロモーター及びPRR遺伝子のトウモロコシにおける効果
 実施例2で作製したFr4断片(オリザ・ロンギスタミナータのPRR7プロモーター及びPRR7構造遺伝子を含む)をトウモロコシ品種に形質転換し、T1世代で収量関連形質の評価を行った。
 大きさ約1.2mmのトウモロコシ未熟胚(品種:A188)を温室栽培した植物から無菌的に取り出し、アグロバクテリウム懸濁用液体培地(LS−inf、Ishida et al.2007)に浸漬した。46℃、3分間の熱処理後、同液体培地で未熟胚を1回洗浄した。次に15,000rpm、4℃、10分間の遠心処理を行った。実施例2で作製したFr4コンストラクトを保有するアグロバクテリウム菌LBA4404を約1x10cfu/mlで懸濁したLS−inf−AS培地(Ishida et al.2007)に遠心処理後の未熟胚を浸漬した。30秒間撹拌し、5分間室温で静置した後、共存培地(LS−AS、Ishida et al.2007)に置床し、25℃、暗黒下で7日間培養した。
 共存培養後の未熟胚をハイグロマイシンを含む選抜培地(LSD1.5AおよびLSD1.5B、Ishida et al.2007)に置床し、25℃、暗黒下で培養した。増殖したカルスを小片に切り取り、ハイグロマイシン再分化培地(LSZ、Ishida et al.2007)に置床し、25℃、照明下で2週間培養した。再分化した植物を発根培地(LSF、Ishida et al.2007)に置床し、25℃、照明下で2週間培養した。発根した植物を温室内のポットに移植し栽培した。
 抽出した雄穂は、開花前に引き抜き除雄した。雌穂から十分に抽出した絹糸に形質転換してないトウモロコシ(品種:A188)から採取した花粉を交配した。包被の枯れた雌穂を収穫し、30℃で2週間乾燥後、種子を脱粒した。44個体から採種することができた。
 T0個体に稔った穂の中で大きいものから順に11個体を選抜し、T1世代で収量関連形質の評価を行った。試験は3回(1回目:5系統、2回目:3系統、3回目:3系統の計11系統)に分けて行った。容量360mlのポリエチレン製ポットに1系統あたり1粒ずつ(1回目試験は16粒、計16ポット、2回目および3回目試験は25粒、計25ポット)播種した。播種して約2週間後に葉の一部を切り取り、ハイグロマイシン溶液に浸漬し、ハイグロマイシンの抵抗性・感受性を調査した。ハイグロマイシン抵抗性と感受性の個体を対にして収量形質の評価ができるように個体数を調整して、容量5100ccのポリエチレン製ポットへ移植し、栽培を継続した。草丈は播種して14日後から56日後まで毎週測定した。抽出した雄穂は、開花前に引き抜き除雄した。雌穂からの絹糸抽出日を記録するとともに十分に抽出した絹糸に非形質転換トウモロコシ(品種:A188)から採取した花粉を交配した。穂を収穫後、雌穂長、1列粒数、穂重を測定した。各系統について、ハイグロマイシン抵抗性個体(遺伝子保有個体)とハイグロマイシン感受性個体(遺伝子欠落個体)の収量関連形質の比較を行った。その結果、全11系統のうち、2系統(T1−No.4、T1−No.6)において、抵抗性個体が感受性個体に比較して、雌穂長、1列粒数、穂重の3形質が大きくなることがわかった(表9、図10)。さらに、系統T1−No.4は播種して35日目以降、一貫して、抵抗性個体が感受性個体より草丈が高くなっており、栄養成長期より生育を旺盛にすることが示唆された。
 以上のことから、オリザ・ロンギスタミナータのPRR7プロモーターと機能可能に連結したPRR7遺伝子はイネだけでなく、トウモロコシの収量も増大させることが明らかとなった。また、栄養生長期の生育も旺盛にすることが示唆された。
Figure JPOXMLDOC01-appb-T000012
 実施例8:オリザ・ロンギスタミナータ由来PRR遺伝子のcDNAコンストラクトのトウモロコシにおける効果
 実施例5で作成したオリザ・ロンギスタミナータ由来PRR7遺伝子のcDNAコンストラクト(以下、「ロンギコンストラクト」)をトウモロコシ品種に形質転換し、T1世代で収量関連形質の評価を行った。
 実施例7に記載の方法に従い、ロンギコンストラクトをトウモロコシ品種に形質転換した。得られた形質転換体は温室内のポットに移植し栽培した。T0植物の雄穂は開花前に引き抜き除雄し、雌穂から十分に抽出した絹糸に形質転換していないトウモロコシ(品種:A188)から採取した花粉をかけ交配した。包被の枯れた雌穂を収穫し、30℃で2週間乾燥後、種子を脱粒した。T0個体に稔った穂の中で着粒数が十分確保できた18穂を選抜し、T1世代で収量関連形質の評価を行った。試験は3回(各回6系統)に分けて行った。容量360mlのポリエチレン製ポットに1系統・25粒ずつ播種した。対照として形質転換していないトウモロコシ(品種:A188)も同様に播種した。播種して約2週間後に葉の一部を切り取り、ハイグロマイシン溶液に浸漬し、ハイグロマイシンの抵抗性・感受性を調査した。ハイグロマイシン抵抗性と感受性の個体を対にして収量形質の評価ができるように個体数を調整して、容量5100ccのポリエチレン製ポットへ移植し、栽培を継続した。草丈は播種して14日後から56日後まで毎週測定した。抽出した雄穂は、開花前に引き抜き除雄した。雌穂からの絹糸抽出日を記録するとともに十分に抽出した絹糸に非形質転換トウモロコシ(品種:A188)から採取した花粉を交配した。穂を収穫乾燥後、雌穂長、1列粒数、穂重を測定した。各系統について、ハイグロマイシン抵抗性個体(遺伝子保有個体)とハイグロマイシン感受性個体(遺伝子欠落個体)の収量関連形質の比較を行った。ハイグロマイシン感受性個体(遺伝子欠落個体)が分離しなかった系統については、非組換えのA188との比較を行った。
 その結果、全18系統のうち2系統(T1−cDNA No.11、T1−cDNA No.13)において、抵抗性個体が感受性個体または非組換えA188に比較して、それぞれ雌穂長、1列粒数、穂重の3形質が大きくなることが示された(表10、図11)。図11においてRはハイグロマイシン抵抗性個体(遺伝子保有個体)であり、Sはハイグロマイシン感受性個体(遺伝子欠落個体)である。
 以上のことから、オリザ・ロンギスタミナータのPRR7プロモーターに同遺伝子のcDNAを連結した導入遺伝子はトウモロコシの収量を増大させることが明らかとなった。即ちオリザ・ロンギスタミナータのPRR7遺伝子の中で、イントロンを含まないcDNAを導入することにより本発明の効果が得られることが確認された。
Figure JPOXMLDOC01-appb-T000013
 実施例9:オリザ・ロンギスタミナータ由来PRRプロモーターに、シロイヌナズナPRR遺伝子コード領域、ソルガムPRR遺伝子コード領域をそれぞれ連結したコンストラクトにおける効果
 シロイヌナズナ(Columbia)からRT−PCRを用いてPRR7遺伝子(アクセッション番号:NM120359)のコード領域を単離し、実施例5に記載した方法に従って、実施例5で作製したコンストラクトのオリザ・ロンギスタミナータPRR遺伝子コード領域と置換することで、目的のコンストラクトを作製した。単離したシロイヌナズナPRR遺伝子塩基配列を配列番号14に、コードするアミノ酸配列を配列番号15に示す。次に、ソルガムPRR遺伝子コード領域を連結したコンストラクトについても同様の方法で作製した。NCBI blastn検索
(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome)を行い、オリザ・ロンギスタミナータPRR7遺伝子コード領域(配列番号4)と相同性の高かった遺伝子(アクセッション番号:XM_002465391)を、PRR遺伝子として単離した。この遺伝子のコード領域配列をソルガム(品種:Gold sorgho、カネコ種苗)からRT−PCRを用いて単離し、実施例5で作製したコンストラクトのオリザ・ロンギスタミナータPRR遺伝子コード領域と置換することで、目的のコンストラクトを得た(配列番号18)。単離したソルガム由来PRR遺伝子コード領域は、NCBI blastn検索でヒットした配列(アクセッション番号:XM_002465391)と100%一致し、2295塩基(配列番号16)で、765アミノ酸残基をコードしていた(配列番号17)。これらのPRR遺伝子翻訳領域のアミノ酸配列の相同性及び同一性については、図7のとおりである。
 これらのコンストラクトについて、実施例5に記載した方法により、triparential matingおよびイネ品種「ゆきひかり」の形質転換を行った。形質転換イネは、馴化後、温室で栽培した。各コンストラクトにつき独立した形質転換体を60個体養成し、T1種子を採種した。各コンストラクトから採種量の多い順に18個体を選んで、T1の評価試験に供試した。
 T1世代では、1コンストラクトにつき18系統(1系統あたり12個体)を供試した。播種は、9月14日に行った。移植前に個体別に葉を切り取り、ハイグロマイシン溶液に浸漬し、ハイグロマイシンに抵抗性を示した個体(遺伝子保持個体)を移植の対象とした。9月28日に水稲用育苗土を入れた容量570mlのポリエチレン製ポットに1個体ずつ(1系統あたり12ポット、計12個体)移植した。施肥はポットあたりN、P、Kを各0.21g、0.33g、0.05gとした。対照として「ゆきひかり」を栽植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実籾重(以下、1穂重)につき行った。
 結果を表11に示した。まず、シロイヌナズナコンストラクトについては、全18系統の平均値をみると、対照「ゆきひかり」に比較して、稈長、1穂粒数、1穂重、稈基径において下回っており、収量増大効果はないものと考えられた。次に、ソルガムコンストラクトについては、対照「ゆきひかり」に比較して、稈長、穂長、1穂粒数はほぼ同等とみられたが、1穂重、稈基径では下回っており、収量増大効果は認められなかった。
Figure JPOXMLDOC01-appb-T000014
 実施例10:オリザ・ロンギスタミナータ由来PRRプロモーターとGUS遺伝子の連結コンストラクト
 オリザ・ロンギスタミナータ由来のPRR7遺伝子のプロモーター領域とGUS遺伝子のキメラコンストラクトを作製し、転写の有無を調査した。図12に示すように、オリザ・ロンギスタミナータのPRR7遺伝子プロモーター領域の直下にGUS遺伝子コード領域を連結したコンストラクトを作製した。オリザ・ロンギスタミナータPRR7遺伝子のプロモーター領域は、具体的には、転写開始点上流領域200塩基(配列番号1の34845−35044番目塩基)、2000塩基(配列番号1の33045−35044番目塩基)をそれぞれ連結させ、コンストラクトP200、P2000を作製した。PRR7遺伝子プロモーター領域をもたないコンストラクトP0も対照用として作製した。
 作製したコンストラクトを用いて、栽培イネ「ゆきひかり」の形質転換を行った。草丈が約10cmに生育した形質転換イネの幼苗から、各コンストラクトにつき4個体を根ごと引き抜き、個別にサンプリングした。実施例5に記載した方法で全RNA抽出およびcDNA合成を行った。得られたcDNA溶液を鋳型にし、GUS遺伝子が転写されているかをPCR法で調査した。プライマー対はGUS遺伝子コード領域内に組み込んだイントロン配列(190塩基)の両外側に設計した。すなわち、転写されスプライシング機構の働きを受けた成熟mRNAが存在すれば、450塩基のPCR増幅産物として検出される。その結果、P200とP2000の形質転換体で転写活性があることを確認した(図13)。なお、対照のP0では成熟mRNAに由来するPCR増幅産物を確認することができなかった。以上から、P200とP2000も植物体内でプロモーター活性を有することが示された。
 実施例11: オリザ・ロンギスタミナータPRR遺伝子の発現解析
 オリザ・ロンギスタミナータの第7染色体末端領域のみを「しおかり」に導入した系統「No.240」を人工気象室で明期14時間30分(26℃)、暗期9時間30分(20℃)の長日条件下で4週間栽培した。明期開始後0時間(0h)と6時間(6h)の若い完全展開葉を4個体からそれぞれサンプリングした。実施例5に記載した方法で全RNAを抽出およびcDNA合成を行った。得られたcDNA溶液を鋳型にし、非特許文献13(Ogiso et al.)に記載の方法でリアルタイムPCRを行った。PRR7遺伝子発現量は、同一サンプルのアクチン遺伝子発現量に対する相対値で表した。その結果、明期開始後0時間(0h)ではPRR7遺伝子発現量が0.21−0.32(平均0.27)の範囲であったのに対して、明期開始後6時間(6h)では13.69−18.43(平均16.31)という値が得られた(図14)。したがって、オリザ・ロンギスタミナータPRR7遺伝子プロモーターは構成的ではなく、光誘導的に発現をしていることが示された。
 実施例12:ソルガム由来PRRプロモーターとソルガムPRR遺伝子コード領域を連結したコンストラクトにおける効果
 実施例9で単離したソルガムPRR遺伝子のプロモーター領域にあたるDNA断片を、ソルガム(品種:Gold sorgho、カネコ種苗)からPCRで増幅した。得られたDNA断片の中の、配列番号19に示される配列を用いて、実施例9で得られたコンストラクト(配列番号18)の1−9046に示される配列を置換することで、目的のコンストラクト(以下、「ソルガムコンストラクト」)を得た。
 このソルガムコンストラクトについて、実施例5に記載した方法に従い、triparential matingおよびイネ品種「ゆきひかり」の形質転換を行った。形質転換イネは、馴化後、温室で栽培した。得られた形質転換体(T0)を60個体養成し、T1種子を採種した。採種量の多い順に18個体を選んで、T1の評価試験に供試した。
 T1世代では、18系統(1系統あたり12個体)を供試した。播種は、9月14日に行った。移植前に個体別に葉を切り取り、ハイグロマイシン溶液に浸漬し、ハイグロマイシンに抵抗性を示した個体(遺伝子保持個体)を移植の対象とした。9月28日に水稲用育苗土を入れた容量570mlのポリエチレン製ポットに1個体ずつ(1系統あたり12ポット、計12個体)移植した。施肥はポットあたりN(窒素)、P(リン)、K(カリウム)を各0.21g、0.33g、0.05gとした。対照として「ゆきひかり」を栽植した。栽培は日本たばこ産業株式会社植物イノベーションセンターの組換え体評価専用の閉鎖系温室(14時間30分日長の長日条件)で行った。調査形質は、出穂日、稈長、穂数、稈基径、最大穂を対象に穂長、1穂粒数、種子稔性、1穂稔実籾重(以下、1穂重)につき行った。
 結果を表12に示した。ソルガムコンストラクトは、全18系統のうち2系統(系統No.8、系統No.10)が、対照「ゆきひかり」に比較して、稈長、1穂粒数、1穂重において上回っていた。よってソルガムコンストラクトにおいても、収量向上効果が見られた。
Figure JPOXMLDOC01-appb-T000015

Claims (24)

  1.  (1)配列番号1の34845−35044で示される塩基配列、又は
     (2)配列番号1の34845−35044で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
    を含む、核酸。
  2.  (1)配列番号1の33045−35044で示される塩基配列、又は
     (2)配列番号1の33045−35044で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
    を含む、核酸。
  3.  (1)配列番号1の26779−35044で示される塩基配列、又は
     (2)配列番号1の26779−35044で示される塩基配列と少なくとも80%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
    を含む、核酸。
  4.  オリザ・ロンギスタミナータに由来する塩基配列であって、少なくとも配列番号1の34845−35044で示される塩基配列を含み、植物の遺伝子の転写を促進する活性を示す、核酸。
  5.  配列番号1の33045−35044で示される塩基配列からなる核酸の断片を含む、請求項4記載の核酸。
  6.  配列番号1の26779−35044で示される塩基配列からなる核酸の断片を含む、請求項4又は請求項5記載の核酸。
  7.  (1)請求項1から請求項6のいずれか1項記載の核酸、ならびに、
     (2)下記の(a)から(c)により規定されるタンパク質をコードする核酸;
     (a)配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
     (b)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
     (c)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する、
    が機能を可能なように結合している核酸。
  8.  植物の収量の増大を可能とする、請求項7記載の核酸。
  9.  請求項1から請求項8のいずれか1項に記載の核酸を含む、ベクター。
  10.  請求項7又は請求項8記載の核酸を含む、形質転換植物。
  11.  前記植物が単子葉植物である、請求項10記載の形質転換植物。
  12.  前記植物がイネまたはトウモロコシである、請求項11記載の形質転換植物。
  13.  請求項7又は請求項8記載の核酸または請求項9のベクターを植物に導入する工程を含む、収量が増大した形質転換植物を作製する方法。
  14.  前記植物が単子葉植物である、請求項13記載の方法。
  15.  前記植物がイネまたはトウモロコシである、請求項14記載の方法。
  16.  請求項7又は請求項8記載の核酸を植物に導入することを特徴とする、植物の収量を増大させる方法。
  17.  配列番号1の26779−35044で示される塩基配列および/または配列番号1の35825−46721で示される塩基配列の15から2000塩基を含む、収量が増加した植物を選抜するためのDNAマーカー。
  18.  植物において請求項17に記載のDNAマーカーの検出を行い、該DNAマーカーが検出された場合には該植物は多収性であると判定する方法。
  19.  配列番号1の34845−35044で示される塩基配列、又は、配列番号1の34845−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列;を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法。
  20.  配列番号1の33045−35044で示される塩基配列、又は、配列番号1の33045−35044で示される塩基配列と少なくとも90%の同一性を有する塩基配列;を含む核酸を用いて、植物の遺伝子の転写活性を促進する方法。
  21.  機能を可能なように結合している下記(1)および(2)の核酸を植物に導入することを特徴とする、植物の収量を増大させる方法。
     (1)下記の(a)または(b)により規定される塩基配列からなる核酸
     (a)配列番号1の26779−35044で示される塩基配列、またはその塩基配列の一部分からなる断片であって、植物の遺伝子の転写を促進する活性を示す塩基配列、又は
     (b)上記(a)で示される塩基配列と少なくとも90%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
     (2)下記の(c)から(e)により規定されるタンパク質をコードする核酸
     (c)配列番号3で示されるアミノ酸配列または配列番号5で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
     (d)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
     (e)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する。
  22.  配列番号3で示されるアミノ酸配列を有するタンパク質をコードする核酸。
  23.  配列番号3で示されるアミノ酸配列を有する、タンパク質。
  24.  下記(1)および(2)の核酸が機能を可能なように結合している、核酸。
     (1)下記の(a)または(b)により規定される塩基配列からなる核酸;
     (a)配列番号19で示される塩基配列、又は
     (b)配列番号19で示される塩基配列と少なくとも80%の同一性を有し、植物の遺伝子の転写を促進する活性を示す塩基配列、
    を含む核酸;
     (2)下記の(c)から(e)により規定されるタンパク質をコードする核酸;
     (c)配列番号17で示されるアミノ酸配列または配列番号Yで示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ酸配列を有し、
     (d)植物の疑似レスポンスレギュレータータンパク質の疑似レシーバードメインのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列、および、植物の疑似レスポンスレギュレータータンパク質のCCTモチーフのアミノ酸配列またはそれと少なくとも90%の同一性を有するアミノ酸配列を含み、かつ、
     (e)LHY(Late Elongated Hypocotyl)遺伝子およびCCA1(Circadian Clock−Associated 1)遺伝子の転写を抑制する活性を有する。
PCT/JP2013/078889 2012-10-31 2013-10-18 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法 WO2014069339A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380057268.2A CN104903444B (zh) 2012-10-31 2013-10-18 对植物赋予高产性的核酸、制备产量增加的转基因植物的方法、使植物的产量增大的方法
MX2015005511A MX362095B (es) 2012-10-31 2013-10-18 Ácido nucleico que imparte propiedad de alto rendimiento a la planta, método para producir plantas transgenicas con mayor rendimiento, y el método para aumentar el rendimiento de la planta.
BR112015006718A BR112015006718A8 (pt) 2012-10-31 2013-10-18 Ácido nucleico conferindo propriedade de rendimento alto à planta, vetor, marcador de dna, métodos para produzir uma planta transgênica com rendimento aumentado, para aumentar o rendimento de planta, para determinar a habilidade de rendimento alto de uma planta, para promover a atividade transcricional de um gene de planta, e proteína
CA2886908A CA2886908A1 (en) 2012-10-31 2013-10-18 Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield
US14/434,149 US10100327B2 (en) 2012-10-31 2013-10-18 Nucleic acid imparting high-yielding property to plant, method for producing transgenic plant with increased yield, and method for increasing plant yield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012241287A JP2016013057A (ja) 2012-10-31 2012-10-31 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法
JP2012-241287 2012-10-31

Publications (1)

Publication Number Publication Date
WO2014069339A1 true WO2014069339A1 (ja) 2014-05-08

Family

ID=50627248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078889 WO2014069339A1 (ja) 2012-10-31 2013-10-18 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法

Country Status (7)

Country Link
US (1) US10100327B2 (ja)
JP (1) JP2016013057A (ja)
CN (1) CN104903444B (ja)
BR (1) BR112015006718A8 (ja)
CA (1) CA2886908A1 (ja)
MX (2) MX362095B (ja)
WO (1) WO2014069339A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018395264B2 (en) 2017-12-29 2023-06-22 Synthetic Genomics, Inc. Genetic modulation of photosynthetic organisms for improved growth
CN112585274A (zh) * 2018-08-21 2021-03-30 先锋国际良种公司 用于在稻植物中改变成熟的组合物和方法
EP4018821A1 (en) * 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Methods for identifying and selecting maize plants with cytoplasmatic male sterility restorer gene
CN112724216B (zh) * 2021-01-22 2022-04-26 华中农业大学 改变玉米开花期的基因及方法
CN112646820B (zh) * 2021-01-22 2022-04-26 华中农业大学 改变玉米开花期的基因及方法
CN112899305B (zh) * 2021-02-02 2023-05-02 中国科学院遗传与发育生物学研究所 一种缩短水稻生育期的方法、蛋白质、核酸分子、生物材料及其应用
CN113207451B (zh) * 2021-06-05 2023-05-23 云南省农业科学院生物技术与种质资源研究所 利用鲜切法对野生稻进行营养培养和种子采集的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365185B2 (en) * 2000-07-19 2008-04-29 Monsanto Technology Llc Genomic plant sequences and uses thereof
EP1288302A1 (en) * 2001-08-28 2003-03-05 Monsanto UK Ltd. Rice regulatory sequences for gene expression in defined wheat tissue
WO2010020555A1 (en) 2008-08-20 2010-02-25 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same
WO2011049243A1 (ja) 2009-10-23 2011-04-28 独立行政法人理化学研究所 バイオマスが増大し、かつ環境ストレス耐性が向上した形質転換植物およびその作出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIKO MAEKAWA ET AL.: "Ine Yaseishu Oryza Longistaminata Senshokutai Bubun Donyu Keito ni Okeru Seiiku Oseisei ni Kakawaru Gen'in Idenshi Tanri to Kino Kaiseki(QT2002)", NORIN SUISANSHO NORIN SUISAN GIJUTSU KAIGI JIMUKYOKU KENKYU SEIKA, vol. 473, 2009, pages 40 - 43 *
MURAKAMI,M. ET AL.: "The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm.", PLANT CELL PHYSIOL., vol. 44, no. 11, November 2003 (2003-11-01), pages 1229 - 36 *

Also Published As

Publication number Publication date
CN104903444B (zh) 2019-01-22
US10100327B2 (en) 2018-10-16
JP2016013057A (ja) 2016-01-28
CA2886908A1 (en) 2014-05-08
US20160032309A1 (en) 2016-02-04
BR112015006718A8 (pt) 2022-10-25
BR112015006718A2 (ja) 2017-09-05
MX2015005511A (es) 2015-08-05
MX2018004927A (es) 2022-01-25
CN104903444A (zh) 2015-09-09
MX362095B (es) 2019-01-04

Similar Documents

Publication Publication Date Title
CN108603197B (zh) 提高植物氮利用效率的方法
JP5323831B2 (ja) 草高調節遺伝子およびその使用
WO2014069339A1 (ja) 植物に多収性を付与する核酸、収量が増加した形質転換植物を作製する方法、植物の収量を増大させる方法
US11001849B2 (en) Methods of increasing crop yield under abiotic stress
RU2665804C2 (ru) Рнк-интерференция гена phya1 хлопчатника, повышающая качество волокон, удлинение корня, цветение, созревание и потенциал урожайности у хлопчатника мохнатого (gossypium hirsutum l.)
CN110904071B (zh) Raf49蛋白及其编码基因在调控植物抗旱性中的应用
CA2903700A1 (en) Enhanced adaptation of corn
WO2011050281A2 (en) A method of controlling plant growth and architecture by controlling expression of gibberellin 2-oxidase
JP2011520461A (ja) トランスジェニック甜菜植物
CN105063063A (zh) 具有增强的产量相关性状的植物和用于制备该植物的方法
WO2019130018A1 (en) Methods of increasing yield and/or abiotic stress tolerance
CN103503777B (zh) 谷氨酸受体多肽基因应用的载体和方法
CN107858371B (zh) 番茄基因SlSAUR58在调控番茄生长和抗旱性中的应用
JP2009540822A (ja) 植物の構造及び成長を調節するための植物クロマチンリモデリング遺伝子の使用
WO2005002325A2 (en) Generation of plants with improved drought tolerance
US20140068811A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding zinc-finger (c3hc4-type ring finger) family polypeptides
WO2015007241A1 (en) Molecular marker
US20180105824A1 (en) Modulation of dreb gene expression to increase maize yield and other related traits
MX2014007711A (es) Metodos para mejorar rendimiento de cultivos.
CN107573411B (zh) 小麦TaZIM1-7A蛋白在调控作物抽穗期中的应用
US20070266454A1 (en) Generation of Plants with Improved Drought Tolerance
JP4987734B2 (ja) ストレス応答性遺伝子が導入された形質転換植物
US20160102316A1 (en) Stress tolerant plants
CN104878018B (zh) 一种控制玉米行粒数和穗粒数的多效性基因及其应用
CN112342236A (zh) 水稻组蛋白甲基转移酶在增强作物干旱抗性及改善单株产量中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2886908

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015006718

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005511

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14434149

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13851861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112015006718

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150325