[go: up one dir, main page]

JP2009082120A - Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis - Google Patents

Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis Download PDF

Info

Publication number
JP2009082120A
JP2009082120A JP2007280964A JP2007280964A JP2009082120A JP 2009082120 A JP2009082120 A JP 2009082120A JP 2007280964 A JP2007280964 A JP 2007280964A JP 2007280964 A JP2007280964 A JP 2007280964A JP 2009082120 A JP2009082120 A JP 2009082120A
Authority
JP
Japan
Prior art keywords
photorespiration
photosynthesis
carbon dioxide
increasing
low oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007280964A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Mitoma
達久 三苫
Kuniaki Ogami
邦昭 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007280964A priority Critical patent/JP2009082120A/en
Publication of JP2009082120A publication Critical patent/JP2009082120A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decreasing photorespiration, and increasing a carbon fix rate by photosynthesis, intended for solving such problems that photorespiration vainly consumes part of ATP and NADPH which are produced by light reaction of photosynthesis, so photorespiration does not contribute to matter production at all, and decreases productivity by photosynthesis, and there is no effective method for decreasing photorespiration and increasing a carbon fix rate by photosynthesis. <P>SOLUTION: This method for decreasing photorespiration, and increasing a carbon fix rate by photosynthesis includes bringing an atmospheric composition in space divided from the present earth's atmospheric composition to a low oxygen and high carbon dioxide condition. A method for making a low oxygen and high carbon dioxide condition includes burning (oxidizing) hydrocarbon such as methane gas in the divided space so as to consume oxygen and produce carbon dioxide. It is possible to decrease photorespiration, increase a carbon fix rate by photosynthesis, and improve matter production of plants by making a low oxygen and high carbon dioxide condition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光呼吸の低減と光合成の炭素固定率の増大方法に関する。  The present invention relates to a method for reducing photorespiration and increasing the carbon fixation rate of photosynthesis.

光呼吸とは植物が光照射下において通常の呼吸(酸化的リン酸化)と異なる方法で酸素を消費し二酸化炭素を生成することである。  Photorespiration means that plants consume oxygen and produce carbon dioxide under light irradiation in a manner different from normal respiration (oxidative phosphorylation).

光呼吸は、低酸素下では二酸化炭素の放出は減少し、光呼吸は減少する。また高い二酸化炭素下では光合成による炭素固定の効率が良くなる。  Photobreathing reduces the release of carbon dioxide and hypoxia under hypoxia. In addition, the efficiency of carbon fixation by photosynthesis is improved under high carbon dioxide.

なお本発明に関する公知技術として次の非特許文献2を、挙げることが出来る。  In addition, the following nonpatent literature 2 can be mentioned as a well-known technique regarding this invention.

「フリー百科事典ウィキペディア」リブロース1,5ビスリン酸カルボキシラーゼ/オキシゲナーゼ オキシゲナーゼ反応 httm://ja.wikipedia.org/wiki/  “Free encyclopedia Wikipedia” ribulose 1,5 bisphosphate carboxylase / oxygenase oxygenase reaction http: // ja. wikipedia. org / wiki / 「学研学習辞典デターベース」二酸化炭素濃度と光合成量 httm://db.gakken.co.jp/jiten/ka/127020.htm  “Gakken Learning Dictionary Database” Carbon dioxide concentration and photosynthesis amount http: // db. gakken. co. jp / jiten / ka / 127020. htm

光呼吸は光合成の明反応で生じるATPとNADPHの一部を無駄に消費しているので、光呼吸は全く物質生産には貢献しない。C3植物は特に顕著で光合成は20%〜50%程度も阻害されているといわれる。光呼吸は光合成による生産性を低減させている。  Since photorespiration consumes part of ATP and NADPH generated by the light reaction of photosynthesis, photorespiration does not contribute to substance production at all. C3 plants are particularly prominent, and photosynthesis is said to be inhibited by about 20% to 50%. Photorespiration reduces the productivity of photosynthesis.

植物は古生代(シルル紀)に、地球大気組成の酸素が減少する中で誕生し、古生代に低い酸素(推定2%)、高い二酸化炭素(推定0.2%)下で最大の生物量となった。その後の地球環境の変化により、現在の大気組成は高い酸素(21%)、低い二酸化炭素(0.04%)下にある。なぜ光呼吸が存在するのか、進化の歴史上において、地球環境の変化(白亜紀からの高い酸素組成)に対応する何らかの必要性があり、生物学的な意味があるという考え方もある。光呼吸を必要とする現在の大気組成は、必ずしも植物の好適環境ではない。  Plants were born in the Paleozoic (Silurian) in the midst of a decrease in oxygen in the Earth's atmospheric composition. It was. Due to subsequent changes in the global environment, the current atmospheric composition is under high oxygen (21%) and low carbon dioxide (0.04%). There is also the notion that photorespiration exists, and that there is some need to deal with changes in the global environment (high oxygen composition from the Cretaceous) in the history of evolution, and there is also a biological significance. The current atmospheric composition that requires light respiration is not necessarily the preferred environment for plants.

問題を解決する為の手段Means to solve the problem

上述の課題を解決する為、本発明は、現在の地球大気組成と区分される空間内の大気組成を植物が誕生し大繁茂した古生代の大気組成である低い酸素、高い二酸化炭素状態を作り出し、光呼吸を低減し、光合成による炭素固定率を増大させる。  In order to solve the above-mentioned problem, the present invention creates a low oxygen, high carbon dioxide state, which is an atmospheric composition of the Paleozoic period in which plants were born and prospered in the atmospheric composition in the space separated from the current global atmospheric composition, Reduce photorespiration and increase carbon fixation by photosynthesis.

古生代の大気組成である低い酸素、高い二酸化炭素状態を作り出す方法として、現在の地球大気組成と区分された空間内で炭化水素等を燃焼(酸化)させる。例えばメタンガス(CH)を燃焼(酸化)させると酸素(O)が消費され二酸化炭素(CO)が発生する。これにより低い酸素、高い二酸化炭素状態を作り出す。As a method of creating low oxygen and high carbon dioxide states that are Paleozoic atmospheric compositions, hydrocarbons and the like are burned (oxidized) in a space separated from the current global atmospheric composition. For example, when methane gas (CH 4 ) is burned (oxidized), oxygen (O 2 ) is consumed and carbon dioxide (CO 2 ) is generated. This creates a low oxygen, high carbon dioxide state.

Figure 2009082120
Figure 2009082120

メタンガス等の炭化水素は石油、天然ガス等の地下資源や有機物のメタン生成菌等による発酵による。  Hydrocarbons such as methane gas are produced by fermentation using petroleum, natural gas and other underground resources, and organic methanogens.

発明の効果The invention's effect

以上説明したように本発明によれば、低い酸素、高い二酸化炭素状態の大気組成において、光呼吸の低減、光合成の炭素固定の増大が見られる。それにより植物の物質生産量が増える。またメタンガスを二酸化炭素に変換し、植物に固定することにより、温暖化ガスの低減ともなる。  As described above, according to the present invention, a reduction in photorespiration and an increase in carbon fixation during photosynthesis are observed in the atmospheric composition of low oxygen and high carbon dioxide. This increases plant material production. In addition, by converting methane gas to carbon dioxide and fixing it to plants, it also reduces greenhouse gases.

発明を実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明は、現在の地球大気組成と区分された空間である低い酸素、高い二酸化炭素状態を作り出すことにより上述の効果を発揮させる方法であり、様々な形態が考えられる。メタンガス等の炭化水素を様々な燃焼(酸化)方法、器具を用いる方法等がある。  The present invention is a method for producing the above effects by creating a low oxygen and high carbon dioxide state, which is a space separated from the current global atmospheric composition, and various forms are conceivable. There are various combustion (oxidation) methods for hydrocarbons such as methane gas, and methods using equipment.

産業上の利用分野Industrial application fields

施設園芸などの農業分野での利用が考えられる。  It can be used in the field of agriculture such as institutional horticulture.

Claims (4)

植物の光呼吸を低減し、光合成による炭素固定率を増大させる方法であって、その為に植物の生育空間を低い酸素、高い二酸化炭素状態とすることを特徴とする光呼吸の低減と光合成の炭素固定率の増大方法。  A method for reducing photorespiration of plants and increasing the carbon fixation rate by photosynthesis, which is characterized by reducing the amount of photorespiration and photosynthesis characterized by making the growth space of plants low oxygen and high carbon dioxide. A method for increasing the carbon fixation rate. 現在の地球大気組成と区分される空間内の大気組成を低い酸素、高い二酸化炭素状態の植物生育空間をメタンガス等の炭化水素を燃焼(酸化)させることにより作り出す。メタンガスの燃焼(酸化)は酸素が消費され二酸化炭素が発生する。これにより低い酸素、高い二酸化炭素状態を作り出す事を特徴とする請求項1記載の光呼吸の低減と光合成の炭素固定率の増大方法。  The atmospheric composition in the space separated from the current global atmospheric composition is created by burning (oxidizing) hydrocarbons such as methane gas in a plant growth space with low oxygen and high carbon dioxide. The combustion (oxidation) of methane gas consumes oxygen and generates carbon dioxide. 2. The method of reducing photorespiration and increasing the carbon fixation rate of photosynthesis according to claim 1, wherein a low oxygen and high carbon dioxide state is thereby created. 現在の地球大気組成と区分される空間内の大気組成を低い酸素、高い二酸化炭素状態とする為に、区分される空間内に二酸化炭素を発生または、注入し、酸素を消費、排出する事を特徴とする請求項2記載の光呼吸の低減と光合成の炭素固定率の増大方法。  In order to make the atmospheric composition in the space separated from the current Earth atmospheric composition low oxygen and high carbon dioxide state, it is necessary to generate or inject carbon dioxide into the separated space and consume and discharge oxygen. 3. The method for reducing photorespiration and increasing the carbon fixation rate of photosynthesis according to claim 2. メタンガス等の炭化水素は石油、天然ガス等の地下資源や有機物のメタン生成菌等による発酵による。またメタンガスを二酸化炭素に変換し、植物に固定することにより、温暖化ガスの低減ともなる事を特徴とする請求項3記載の光呼吸の低減と光合成の炭素固定率の増大方法。  Hydrocarbons such as methane gas are produced by fermentation using petroleum, natural gas and other underground resources, and organic methanogens. 4. The method of reducing photorespiration and increasing the carbon fixation rate of photosynthesis according to claim 3, wherein methane gas is converted to carbon dioxide and fixed to a plant to reduce greenhouse gases.
JP2007280964A 2007-10-01 2007-10-01 Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis Pending JP2009082120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280964A JP2009082120A (en) 2007-10-01 2007-10-01 Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280964A JP2009082120A (en) 2007-10-01 2007-10-01 Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis

Publications (1)

Publication Number Publication Date
JP2009082120A true JP2009082120A (en) 2009-04-23

Family

ID=40656448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280964A Pending JP2009082120A (en) 2007-10-01 2007-10-01 Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis

Country Status (1)

Country Link
JP (1) JP2009082120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628810A (en) * 2019-08-13 2019-12-31 浙江大学 Method for improving plant photosynthetic efficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628810A (en) * 2019-08-13 2019-12-31 浙江大学 Method for improving plant photosynthetic efficiency
CN110628810B (en) * 2019-08-13 2022-06-28 浙江大学 A kind of method to improve plant photosynthetic efficiency

Similar Documents

Publication Publication Date Title
Shi et al. Symbiosis of sulfate-reducing bacteria and methanogenic archaea in sewer systems
Han et al. N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers
Decock et al. How reliable is the intramolecular distribution of 15N in N2O to source partition N2O emitted from soil?
Kraft et al. Microbial nitrate respiration–genes, enzymes and environmental distribution
Fischer et al. How did life survive Earth's great oxygenation?
Kump et al. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia
Wang et al. Analysis on the formation condition of the algae-induced odorous black water agglomerate
BRPI0804513A2 (en) method for the growth of photosynthetic organisms
Wade et al. Emergent behaviour in a chlorophenol-mineralising three-tiered microbial ‘food web’
ATE526083T1 (en) METHOD FOR CONVERSING METAL NITRATES
EP2598448A4 (en) Selenium removal using chemical oxidation and biological reduction
EA201170265A1 (en) METHOD OF EXTRACTING HIGH-PURE CARBON DIOXIDE
EA201391559A1 (en) ACID GAS CONVERSION TO SULPHATE OR PHOSPHATE FERTILIZERS
DE602007007631D1 (en) METHOD OF CONVERTING METAL NITRATES
AU2002210393A1 (en) A method of reducing emission of ammonia from animal manure, a plant for performing the method and a use of such plant
Shen et al. Amendment with biodiesel co-product modifies genes for N cycling (nirK, nirS, nosZ) and greenhouse gas emissions (N2O, CH4, CO2) from an acid soil
EA201170460A1 (en) CATALYST AND METHOD
WO2013001365A3 (en) Sulfide generation via biological reduction of divalent, tetravalent or pentavalent sulfur containing combustion flue gas or liquor
FI20140114A7 (en) Production of hydrogen and other gaseous or liquid products in an accelerated bioprocess
JP2009082120A (en) Method for decreasing photorespiration, and increasing carbon fix rate of photosynthesis
Subramani et al. Characterization and potentiality of plant-derived silver nanoparticles for enhancement of biomass and hydrogen production in Chlorella sp. under nitrogen deprived condition
Lavoie et al. Reduced sulphur sources favour HgII reduction during anoxygenic photosynthesis by Heliobacteria
Wu et al. Mixed electron donors synergistically enhance CO2 fixation of non-photosynthetic microorganism communities through optimizing community structure to promote cbb gene transcription
Liu et al. Performance and Microbial Community Analysis of an Electrobiofilm Reactor Enhanced by Ferrous-EDTA
Lee et al. Methanogenic activities of sulfide and nitric oxide amended mesophilic, methanogenic culture: Role of nitrososufides complex