(IV) detailed description of the preferred embodiments
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
example 1 construction of vectors
The GDH gene may be derived from a prokaryote or a eukaryote, and the GDH gene provided by the present invention includes, but is not limited to, the genes shown in table 2. In order to construct a transformation vector, an escherichia coli-derived GDH gene and a corresponding terminator sequence were artificially synthesized, including a chloroplast signal peptide, a GDH coding gene and a terminator, the nucleotide sequence was as shown in SEQ ID No.6 (amino acid sequence is shown in SEQ ID No.7), and BamHI and KpnI sites were provided at the 5 'end and 3' end, respectively.
The MS gene can be derived from prokaryotes or eukaryotes, and includes, but is not limited to, the genes shown in table 3. The rice MS gene is artificially synthesized, and comprises chloroplast signal peptide, an MS coding gene and a terminator, wherein the nucleotide sequence is shown as SEQ ID NO.8 (the amino acid sequence is shown as SEQ ID NO. 9), and BamHI and HindIII sites are respectively arranged at the 5 'end and the 3' end.
In order to achieve the suppression or knock-out of expression of BASS genes, the present invention provides BASS genes of plants themselves (table 1), the amino acid sequence of which is SEQ ID No.1 when the plants are rice, and SEQ ID No.2 or 3 when the plants are soybean. In order to construct BASS gene interference expression cassettes, OsBASS-RNAi and GmBASS-RNAi sequences which can form hairpin structures and target rice OsBASS genes and soybean GmBASS genes are artificially synthesized respectively, and the sequences are shown as SEQ ID NO.4 and SEQ ID NO. 5. As a control, OsPGGL1-RNAi and Gm PGGL1-RNAi sequences which target rice OsPGGL1 gene and soybean GmPGGL1 gene and can form hairpin structures are synthesized respectively, and are shown as SEQ ID NO.12 and SEQ ID NO. 13. Terminators ter1 are added to the 3' ends of the above sequences, respectively, to finally constitute OsBASS-RNAi-ter, GmBASS-RNAi-ter, Os PGGL1-RNAi-ter, and Gm PGGL 1-RNAi-ter. BglII and HindIII sites are respectively arranged at the 5 'end and the 3' end.
Meanwhile, 35S of cauliflower mosaic virus (CaMV) and a maize Ubi promoter sequence are synthesized artificially. EcoRI and BamHI sites are respectively arranged at the 5 'end and the 3' end of the 35S promoter, and HindIII and BamHI sites are respectively arranged at the 5 'end and the 3' end of the Ubi promoter and are used for mediating the transcription of RNAi sequences.
In order to construct a binary vector which can be used for transforming plants by the Agrobacterium method, a commercial binary vector pCambia1300 is used as a basis, the prior hptII (hygromycin resistance) gene is replaced by a glufosinate-resistant bar gene (NCBI ACCESSION: MG719235REGION:287-835) through an XhoI cleavage site, and the replaced vector is named as pCambia 1300-bar.
The Ubi promoter was ligated into the pCambia1300-bar vector with the GDH gene shown in SEQ ID NO.6 via EcoRI and KpnI sites to obtain the over-vector pCambia 1300-bar-GDH. The 35S promoter and the MS gene shown in SEQ ID NO.10 were ligated into the over-vector pCambia1300-bar-GDH through KpnI and HindIII sites to obtain the over-vector pCambia 1300-bar-GDH-MS. Finally, pCambia1300-bar-GDH-MS was digested with HindIII, and then OsBASS-RNAi-ter or GmBASS-RNAi-ter digested with BglII and HindIII and Ubi promoter digested with BamHI and HindIII were ligated to construct final vectors, which were named pCambia1300-bar-GDH-MS-OsBASS-RNAi (GMOsBi) and pCambia1300-bar-GDH-MS-GmBASS-RNAi (GMGmGmBi), respectively.
As a control, vectors containing the expression cassette for inhibiting PGGL1 gene were constructed in the same manner and named pCambia1300-bar-GDH-MS-OsPGGL1-RNAi (GMOsPi) and pCambia1300-bar-GDH-MS-GmPGGL1-RNAi (GMGmPi), respectively.
Finally, the T-DNA plasmid was transferred to Agrobacterium LB4404 by electrotransfer, and positive clones were selected by YEP solid medium containing 15. mu.g/mL tetracycline and 50. mu.g/mL kanamycin and maintained for the subsequent plant transformation.
Example 2 transformation of Rice
The transgenic rice is obtained by adopting the prior art (Luzhong, Gong ancestor Xun (1998) Life sciences 10: 125-. Mature and full 'Xishui-134' seeds are selected to be hulled, and callus is generated by induction and is used as a transformation material. Agrobacterium plates containing plasmids pCambia1300-bar-GDH-MS-OsBASS-RNAi (GMOsBi) and pCambia1300-bar-GDH-MS-OsPGGL1-RNAi (GMOsPi), respectively, constructed in example 1 were taken. A single colony is selected and inoculated, and agrobacterium for transformation is prepared. The callus to be transformed is placed into an Agrobacterium tumefaciens liquid with an OD of about 0.6 (preparation of Agrobacterium tumefaciens liquid: Agrobacterium tumefaciens is inoculated into a culture medium to be cultured until the OD is about 0.6, the culture medium consists of 3g/L K2HPO4、1g/L NaH2PO4、1g/L NH4Cl、0.3g/L MgSO4·7H2O、0.15g/L KCl、0.01g/L CaCl2、0.0025g/L FeSO4·7H2O, 5g/L sucrose, 20mg/L acetosyringone, water as solvent, pH 5.8), allowing Agrobacterium to bind to the callus surface, and transferring the callus to co-culture medium (MS +2 mg/L2, 4-D (2, 4-dichlorophenoxyacetic acid) +30g/L glucose +30g/L sucrose +3g/L agar (sigma7921) +20mg/L acetosyringone) for co-culture for 2-3 days. The transformed calli were rinsed with sterile water, transferred to selection medium (MS +2 mg/L2, 4-D +30g/L sucrose +3g/L agar (Sigma7921) +20mg/L acetosyringone +2mM glyphosate (Sigma)), and cultured for two months with selection (intermediate subculture). After screening, transferring the callus with good growth activity to a pre-differentiation culture medium (MS +0.1g/L inositol +5mg/L ABA (abscisic acid) +1mg/L NAA (naphthylacetic acid) +5 mg/L6-BA (6-benzylamino adenine) +20g/L sorbitol +30g/L sucrose +2.5g/L plant gel (gelrite)), culturing for about 20 days, then transferring the pre-differentiated callus to the differentiation culture medium, and irradiating for differentiation and germination for 14 hours every day. After 2-3 weeks, transferring the resistant regenerated plants to a rooting culture medium (1/2MS +0.2mg/L NAA +20g/L sucrose +2.5g/L gelrite), strengthening and rooting the strong seedlings, finally washing the regenerated plants and removing agar, transplanting the washed regenerated plants to a greenhouse, selecting transgenic lines with high yield, large seeds or high biomass and the like which can improve the rice yield, and culturing new varieties. Obtaining the transgenic rice plant containing the transformation vector.
Example 3 transformation of Soybean
The procedure used here to obtain transgenic soybeans is known from the prior art (Deng et al, 1998, Plant Physiology Communications 34: 381-387; Ma et al, 2008, Scientia Agricutural national informa 41: 661-668; Zhou et al, 2001, Journal of northern Agricultural University 32: 313-319). Healthy, full and mature soybeans of 'Tianlong No. 1' are selected, sterilized by 80% ethanol for 2 minutes, washed by sterile water and then placed in a dryer filled with chlorine (generated by the reaction of 50ml of NaClO and 2ml of concentrated HCl) for sterilization for 4-6 hours. The sterilized semen glycines is sowed in B5 culture medium in clean bench, and cultured at 25 deg.C for 5 days with optical density of 90-150 μmol photon/m2S level. Chinese angelica rootThe leaves turn green and burst the seed coat, and aseptic bean sprouts grow. The bean sprouts with the hypocotyl removed were cut into five-five pieces in length so that both explants had cotyledons and epicotyls. The explants are cut at about 7-8 of the node of the cotyledon and epicotyl and can be used as the target tissue to be infected.
Monoclonal agrobacteria containing the vectors pCambia1300-bar-GDH-MS-GmBASS-RNAi (GMGmBi) and pCambia1300-bar-GDH-MS-GmPGGL1-RNAi (GMGmPi), respectively, constructed by example 1 were separately cultured for use. The prepared explants are immersed in the agrobacterium suspension and co-cultured for about 30 minutes. Then, the excess cell suspension on the infected tissue was absorbed up with absorbent paper and transferred to 1/10B5 co-culture medium for 3-5 days at 25 ℃ in the dark.
The co-cultured plant tissue was washed with B5 liquid medium to remove excess Agrobacterium, and then placed in B5 solid medium for 5 days at 25 ℃ until it germinated. The induced germ tissue was transferred to B5 selection medium containing 0.2mM glyphosate and incubated at 25 ℃ with light for 4 weeks, during which the medium was changed every two weeks. Transferring the selected embryo tissue to a solid culture medium, culturing at 25 deg.C, and growing into plantlet. Subsequently, the transgenic plants were transferred to 1/2B5 medium for rooting induction. Finally, the grown plantlets are washed to remove agar and planted in a greenhouse.
Example 4: identification of transgenic Rice
Transgenic rice plants were obtained from the vectors pCambia1300-bar-GDH-MS-OsBASS-RNAi (GMOsBi) and pCambia1300-bar-GDH-MS-OsPGGL1-RNAi (GMOsPi), respectively, by example 2. The above transgenic plants had increased biomass and yield compared to the non-transgenic controls, and the GMOsBi plants had the greatest magnitude of increase in biomass or yield. In order to further identify the expression change of GMOsBi transgenic plants, the biomass and seed yield of the transgenic plants are evaluated and compared, normal water conditions, light drought conditions and medium drought conditions are set according to index grades based on farmland and crop drought shapes, which are formulated by the agricultural rural area part in Table 6, and the results are shown in Table 4. Under normal conditions, the biomass or yield of the GMOsBi transgenic plant and the GMOsPi transgenic plant is obviously increased by 5-50 percent compared with that of a non-transgenic control; but under the drought conditions, the biomass or yield of the GMOsBi transgenic plant is still significantly increased compared to the control, while the biomass or yield of the GMOsPi transgenic plant is increased very little compared to the non-transgenic control; under the drought condition, the biomass or yield of the GMOsBi transgenic plant is still remarkably increased compared with that of the control, and the biomass or yield of the GMOsPi transgenic plant is not increased or even reduced compared with that of the non-transgenic control. The results show that the drought resistance of the GMOsBi transgenic plant is obviously superior to that of the transgenic plant in the comparison scheme under the drought condition.
TABLE 4 determination of the yield of transgenic Rice under different drought conditions
Example 5: identification of transgenic Soybean
Transgenic soybean plants of the vectors pCambia1300-bar-GDH-MS-GmBASS-RNAi (GMGmBi) and pCambia1300-bar-GDH-MS-GmPGGL1-RNAi (GMGmPi), respectively, were obtained by example 3. The above transgenic plants had increased biomass and yield compared to the non-transgenic controls, and the transgenic plants had the greatest magnitude of increase in biomass or yield. In order to further identify the expression changes of the transgenic plants, the biomass and seed yield of the transgenic plants were evaluated, and normal moisture conditions, mild drought conditions and moderate drought conditions were set according to the index rating based on the drought morphology of farmland and crops, which was formulated by the rural part of agriculture in table 6, and the results are shown in table 5. Under normal conditions, the biomass or yield of the GMGmBi transgenic plant and the GMGmPi transgenic plant is remarkably increased by 5-50% compared with that of a non-transgenic control; but under the drought conditions, the biomass or yield of the gmgmgmbi transgenic plants is still significantly increased compared to the control, while the biomass or yield of the GMGmPi transgenic plants is increased very little compared to the non-transgenic control; under the drought condition, the biomass or yield of the GMGmBi transgenic plant is still remarkably increased compared with that of the control, and the biomass or yield of the GMGmPi transgenic plant is not increased or even reduced compared with that of the non-transgenic control. The results show that the drought resistance of the GMGmBi transgenic plant is obviously superior to that of the transgenic plant in the comparison scheme under the drought condition.
TABLE 5 yield determination of transgenic Soybean under different drought conditions
TABLE 6 drought form index rating based on farmland and crops (GB/T32136-
Sequence listing
<110> Zhejiang university
<120> a method for improving drought tolerance of plants by light respiration
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 401
<212> PRT
<213> Unknown (Unknown)
<400> 1
Met Ala Pro Asn Ala Ala Val Leu Val Arg Pro His Ile Ala Gly Val
1 5 10 15
His His Leu Pro Thr Gly Arg Arg Leu Pro Arg Leu Ala Pro Pro Gln
20 25 30
Ala Val Ser Pro Pro Phe Ser Arg Gln Lys Gly Ser Val Val Ala Ala
35 40 45
Ser Gly Arg Val Trp Ala Ser Ala Ser Gly Ser Phe Glu Lys Asp Arg
50 55 60
Ile Gly Asp Asp Asp Val Leu Ala Ser Pro Gln Ile Val Glu Glu Ser
65 70 75 80
Lys Val Asp Leu Leu Lys Ile Leu Lys Ser Ala Asn Thr Ile Ile Pro
85 90 95
His Val Val Leu Gly Ser Thr Ile Leu Ala Leu Val Tyr Pro Pro Ser
100 105 110
Phe Thr Trp Phe Thr Thr Arg Tyr Tyr Ala Pro Ala Leu Gly Phe Leu
115 120 125
Met Phe Ala Val Gly Val Asn Ser Ser Val Lys Asp Phe Ile Glu Ala
130 135 140
Ile Gln Arg Pro Asp Ala Ile Ala Ala Gly Tyr Val Gly Gln Phe Ile
145 150 155 160
Ile Lys Pro Phe Leu Gly Phe Leu Phe Gly Thr Leu Ala Val Thr Ile
165 170 175
Phe Asn Leu Pro Thr Ala Leu Gly Ala Gly Ile Met Leu Val Ser Cys
180 185 190
Val Ser Gly Ala Gln Leu Ser Asn Tyr Ala Thr Phe Leu Thr Asp Pro
195 200 205
His Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala Thr
210 215 220
Ala Val Phe Val Thr Pro Thr Leu Ser Tyr Phe Leu Ile Gly Lys Lys
225 230 235 240
Leu Pro Val Asp Val Lys Gly Met Met Ser Ser Ile Val Gln Ile Val
245 250 255
Val Ala Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Tyr Leu Pro Arg
260 265 270
Leu Cys Ser Ala Ile Gln Pro Phe Leu Pro Pro Leu Ser Val Phe Val
275 280 285
Thr Ala Leu Cys Val Gly Ser Pro Leu Ala Ile Asn Ile Lys Ala Val
290 295 300
Leu Ser Pro Phe Gly Leu Ala Thr Val Leu Leu Leu Phe Ala Phe His
305 310 315 320
Thr Ser Ser Phe Ile Ala Gly Tyr His Leu Ala Gly Thr Trp Phe Arg
325 330 335
Glu Ser Ala Asp Val Lys Ala Leu Gln Arg Thr Val Ser Phe Glu Thr
340 345 350
Gly Met Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Arg Phe Phe
355 360 365
Pro Asp Pro Leu Val Gly Val Pro Pro Ala Ile Ser Val Val Leu Met
370 375 380
Ser Leu Met Gly Phe Ala Leu Val Met Val Trp Ser Lys Arg Thr Lys
385 390 395 400
Glu
<210> 2
<211> 408
<212> PRT
<213> Unknown (Unknown)
<400> 2
Met Ile Ser Ser Gly Leu Lys Leu Lys His Phe Arg Asn Ile Asp Ser
1 5 10 15
Leu Phe His Phe Pro Lys Ser Lys Pro Pro Ile Leu Leu Pro Cys Cys
20 25 30
Pro Thr Ile Ser Ser Pro Cys Ser Ile Arg Phe Asn Ser His Phe Pro
35 40 45
Tyr Arg Ser Thr Lys Val Pro Leu Lys Cys Ala Pro Leu Pro Ser Ser
50 55 60
Asp Ser Leu Pro Pro Asp Leu Ser Asp Ala Pro Thr Gln Thr Glu Gln
65 70 75 80
Asn Ser Met Ser Ile Leu Glu Ile Leu Lys Gln Ser Asn Ser Tyr Leu
85 90 95
Pro His Val Leu Ile Ala Ser Ile Leu Leu Ala Leu Ile Tyr Pro Pro
100 105 110
Ser Leu Thr Trp Phe Thr Ser Arg Tyr Tyr Ala Pro Ala Leu Gly Phe
115 120 125
Leu Met Phe Ala Val Gly Val Asn Ser Asn Glu Asn Asp Phe Leu Glu
130 135 140
Ala Phe Lys Arg Pro Ala Glu Ile Val Thr Gly Tyr Phe Gly Gln Phe
145 150 155 160
Ala Val Lys Pro Leu Leu Gly Tyr Leu Phe Cys Met Ile Ala Val Thr
165 170 175
Val Leu Ser Leu Pro Thr Thr Val Gly Ala Gly Ile Val Leu Val Ala
180 185 190
Cys Val Ser Gly Ala Gln Leu Ser Ser Tyr Ala Thr Phe Leu Thr Asp
195 200 205
Pro Gln Met Ala Pro Leu Ser Ile Val Met Thr Ser Leu Ser Thr Ala
210 215 220
Ser Ala Val Phe Val Thr Pro Leu Leu Leu Leu Leu Leu Ile Gly Lys
225 230 235 240
Lys Leu Pro Ile Asp Val Arg Gly Met Val Tyr Ser Ile Thr Gln Ile
245 250 255
Val Val Val Pro Ile Ala Ala Gly Leu Leu Leu Asn Arg Phe Tyr Pro
260 265 270
Arg Ile Cys Asn Val Ile Arg Pro Phe Leu Pro Pro Leu Ser Val Leu
275 280 285
Val Ala Ser Ile Cys Ala Gly Ala Pro Leu Ala Phe Asn Val Glu Thr
290 295 300
Met Lys Ser Pro Leu Gly Val Val Ile Leu Leu Leu Val Val Ala Phe
305 310 315 320
His Leu Ser Ser Phe Ile Ala Gly Tyr Ile Leu Ser Gly Phe Val Phe
325 330 335
Arg Asp Ser Leu Asp Val Lys Ala Leu Gln Arg Thr Ile Ser Phe Glu
340 345 350
Thr Gly Leu Gln Ser Ser Leu Leu Ala Leu Ala Leu Ala Asn Lys Phe
355 360 365
Phe Glu Asp Pro Lys Val Ala Ile Pro Pro Ala Ile Phe Thr Ser Ile
370 375 380
Met Ser Leu Met Gly Phe Val Leu Val Leu Ile Trp Thr Arg Arg Gly
385 390 395 400
Lys Arg Asp Ile Lys His Ser Ser
405
<210> 3
<211> 416
<212> PRT
<213> Unknown (Unknown)
<400> 3
Met Ile Ser Ser Gly Leu Lys Pro Lys His Phe Asn Asn Val His Ser
1 5 10 15
Leu Phe Asn Leu Ser Lys Ser Gln Gln Pro Pro Asn Pro Ile Ile Val
20 25 30
Pro Cys Cys Arg Thr Asn Thr Asn Asn Asn Ile Ser Ser Pro Phe Ser
35 40 45
Ile Arg Phe Asn Ser Pro Phe Pro Tyr Arg Ser Pro Lys Ile Pro Leu
50 55 60
Lys Cys Ala Pro Leu His Ser Ser Asp Ser Leu Pro Pro Asp Pro Ser
65 70 75 80
Ser Ala Ser Thr Gln Met Glu Gln Asn Ser Met Ser Ile Leu Glu Ile
85 90 95
Leu Lys Gln Ser Asn Ser Tyr Leu Pro His Ala Leu Ile Ala Ser Ile
100 105 110
Leu Leu Ala Leu Ile Tyr Pro Arg Ser Leu Thr Trp Phe Thr Ser Arg
115 120 125
Phe Tyr Ala Pro Ala Leu Gly Phe Leu Met Phe Ala Val Gly Val Asn
130 135 140
Ser Asn Glu Asn Asp Phe Leu Glu Ala Phe Lys Arg Pro Ala Glu Ile
145 150 155 160
Val Thr Gly Tyr Phe Gly Gln Phe Ala Val Lys Pro Leu Leu Gly Tyr
165 170 175
Leu Phe Cys Met Ile Ala Val Thr Val Leu Gly Leu Pro Thr Thr Val
180 185 190
Gly Ala Gly Ile Val Leu Val Ala Cys Val Ser Gly Ala Gln Leu Ser
195 200 205
Ser Tyr Ala Thr Phe Leu Thr Asp Pro Gln Met Ala Pro Leu Ser Ile
210 215 220
Val Met Thr Ser Leu Ser Thr Ala Ser Ala Val Phe Val Thr Pro Leu
225 230 235 240
Leu Leu Leu Leu Leu Ile Gly Lys Lys Leu Pro Ile Asp Val Lys Gly
245 250 255
Met Val Tyr Asn Ile Thr Gln Ile Val Val Val Pro Ile Ala Ala Gly
260 265 270
Leu Leu Leu Asn Arg Phe Phe Pro Arg Ile Cys Asn Val Ile Arg Pro
275 280 285
Phe Leu Pro Pro Leu Ser Val Leu Val Ala Ser Ile Cys Ala Gly Ala
290 295 300
Pro Leu Ala Leu Asn Val Glu Thr Met Lys Ser Pro Leu Gly Val Ala
305 310 315 320
Ile Leu Leu Leu Val Val Ala Phe His Leu Ser Ser Phe Ile Ala Gly
325 330 335
Tyr Ile Leu Ser Gly Phe Val Phe Arg Asp Ser Leu Asp Val Lys Ala
340 345 350
Leu Gln Arg Thr Ile Ser Phe Glu Thr Gly Met Gln Ser Ser Leu Leu
355 360 365
Ala Leu Ala Leu Ala Asn Lys Phe Phe Glu Asp Pro Lys Val Ala Ile
370 375 380
Pro Pro Ala Ile Ser Thr Ser Ile Met Ser Leu Met Gly Phe Val Leu
385 390 395 400
Val Leu Ile Trp Thr Arg Arg Gly Lys Ser Glu Ile Lys Asn Ser Ser
405 410 415
<210> 4
<211> 856
<212> DNA
<213> Unknown (Unknown)
<400> 4
gcttttgatg gaaagacaga catcataccg aatttataaa aggaaaagaa ataaattcaa 60
aactttacat tttttatgcc accaaccaaa ggtgaatcaa agatatgaac aagagtttct 120
taagactatt agcccccccc cccccccccc aacgacctcc aactccaatc ctccttaatc 180
gccaacccac acagctataa aaaggggata tttcagatcg gatcaagcag agcacctacg 240
ccgtgaaaac ggcggcgaga ccgcctgggg aggagccaga cggggcagtc gccggccggt 300
gggcagatgg tggacgccgg cgatgtgggg ccgcaccagg acggcggcgt tgggggccat 360
tcgagcgccg gcgaccgcga gggtgggtgg gttttggttt cagagtttca gagctgatga 420
cgcaacgcag cgaaagagac gattcagatt tcagtgagaa gttgggagtt tcgacaagga 480
acgaacaatc agtcgaatgg cccccaacgc cgccgtcctg gtgcggcccc acatcgccgg 540
cgtccaccat ctgcccaccg gccggcgact gccccgtctg gctcctcccc aggcggtctc 600
gccgccgttt tcacggcgta ggtgctctgc ttgatccgat ctgaaatatc ccctttttat 660
agctgtgtgg gttggcgatt aaggaggatt ggagttggag gtcgttgggg gggggggggg 720
ggggctaata gtcttaagaa actcttgttc atatctttga ttcacctttg gttggtggca 780
taaaaaatgt aaagttttga atttatttct tttcctttta taaattcggt atgatgtctg 840
tctttccatc aaaagt 856
<210> 5
<211> 733
<212> DNA
<213> Unknown (Unknown)
<400> 5
atgactgaaa ttgaagtcta agtggagggg gaacttacag aaattgctgg aggaatagcc 60
acttttggat cttcaaagaa cttattagca agagccaagg caagcaggct actttgcatt 120
cctggtatta gataaatgaa gttattgaaa caacatgcta ttacaggcat ttgatgtatg 180
aaaatggaga aactttgtac ctgtctcaaa ggaaattgtt cgttgcagtg ccttcacatc 240
aagagaatca cggaagacaa atccactgag gatataacca gctataaaag atgacaaatg 300
aaaagcaaca acaagcaaca agatagcaac tcccagaggg gatttcatag tctcaacatt 360
aaaggcgagt ggtgctccag cacagataga tgccaccagt actgatagtg gaggcaaaaa 420
tggtcgaata actgttattc gaccattttt gcctccacta tcagtactgg tggcatctat 480
ctgtgctgga gcaccactcg cctttaatgt tgagactatg aaatcccctc tgggagttgc 540
tatcttgttg cttgttgttg cttttcattt gtcatctttt atagctggtt atatcctcag 600
tggatttgtc ttccgtgatt ctcttgatgt gaaggcactg caacgaacaa tttcctttga 660
gacaggtaca aagtttctcc attttcatac atcaaatgcc tgtaatagca tgttgtttca 720
ataacttcat tta 733
<210> 6
<211> 3668
<212> DNA
<213> Unknown (Unknown)
<400> 6
ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60
gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120
caacgtgtcc aacggcggcc gcatccgctg catgccgcgc ggccagggca agcgcctcgc 180
ccagctcctc ggcgcccagc tcaagcagta cgccgccgag gtgcgcggca tctccaccgc 240
cggcggcgcc tcccgcggcg gcgcccgcgg cccggcctcc ccgtcctccc tcgagcagca 300
gacccgccag gtggcccagg tggccgtgca gcagtccacc cagcaggccg tgaaggtggt 360
ggtgccggcc atcaaggtgg acctcgtggg cgccgtgtcc tccgtgtccg agtccgacaa 420
ggtggagccg ggcgtgttca agaacgtgga cggccaccgc ttcgaggacg gccgctacgc 480
cgccttcgtg gaggagatca ccaagttcat cccgaaggag cgccagtact ccgacccggt 540
gcgcaccttc gcctacggca ccgacgcctc cttctaccgc ctcaacccga agctcgtggt 600
gaaggtgcac aacgaggacg aggtgcgccg catcatgccg atcgccgagc gcctccaggt 660
gccgatcacc ttccgcgccg ccggcacctc cctctccggc caggccatca ccgactccgt 720
gctcatcaag ctctcccaca ccggcaagaa cttccgcaac ttcaccgtgc acggcgacgg 780
ctccgtgatc accgtggagc cgggcctcat cggcggcgag gtgaaccgca tcctcgccgc 840
ccaccagaag aagaacaagc tcccgatcca gtacaagatc ggcccggacc cgtcctccat 900
cgactcctgc atgatcggcg gcatcgtgtc caacaactcc tccggcatgt gctgcggcgt 960
gtcccagaac acctaccaca ccctcaagga catgcgcgtg gtgttcgtgg acggcaccgt 1020
gctcgacacc gccgacccga actcctgcac cgccttcatg aagtcccacc gctccctcgt 1080
ggacggcgtg gtgtccctcg cccgccgcgt gcaggccgac aaggagctca ccgccctcat 1140
ccgccgcaag ttcgccatca agtgcaccac cggctactcc ctcaacgccc tcgtggactt 1200
cccggtggac aacccgatcg agatcatcaa gcacctcatc atcggctccg agggcaccct 1260
cggcttcgtg tcccgcgcca cctacaacac cgtgccggag tggccgaaca aggcctccgc 1320
cttcatcgtg ttcccggacg tgcgcgccgc ctgcaccggc gcctccgtgc tccgcaacga 1380
gacctccgtg gacgccgtgg agctcttcga ccgcgcctcc ctccgcgagt gcgagaacaa 1440
cgaggacatg atgcgcctcg tgccggacat caagggctgc gacccgatgg ccgccgccct 1500
cctcatcgag tgccgcggcc aggacgaggc cgccctccag tcccgcatcg aggaggtggt 1560
gcgcgtgctc accgccgccg gcctcccgtt cggcgccaag gccgcccagc cgatggccat 1620
cgacgcctac ccgttccacc acgaccagaa gaacgccaag gtgttctggg acgtgcgccg 1680
cggcctcatc ccgatcgtgg gcgccgcccg cgagccgggc acctccatgc tcatcgagga 1740
cgtggcctgc ccggtggaca agctcgccga catgatgatc gacctcatcg acatgttcca 1800
gcgccacggc taccacgacg cctcctgctt cggccacgcc ctcgagggca acctccacct 1860
cgtgttctcc cagggcttcc gcaacaagga ggaggtgcag cgcttctccg acatgatgga 1920
ggagatgtgc cacctcgtgg ccaccaagca ctccggctcc ctcaagggcg agcacggcac 1980
cggccgcaac gtggccccgt tcgtggagat ggagtggggc aacaaggcct acgagctcat 2040
gtgggagctc aaggccctct tcgacccgtc ccacaccctc aacccgggcg tgatcctcaa 2100
ccgcgaccag gacgcccaca tcaagttcct caagccgtcc ccggccgcct ccccgatcgt 2160
gaaccgctgc atcgagtgcg gcttctgcga gtccaactgc ccgtcccgcg acatcaccct 2220
caccccgcgc cagcgcatct ccgtgtaccg cgagatgtac cgcctcaagc agctcggccc 2280
gggcgcctcc gaggaggaga agaagcagct cgccgccatg tcctcctcct acgcctacga 2340
cggcgagcag acctgcgccg ccgacggcat gtgccaggag aagtgcccgg tgaagatcaa 2400
caccggcgac ctcatcaagt ccatgcgcgc cgagcacatg aaggaggaga agaccgcctc 2460
cggcatggcc gactggctcg ccgccaactt cggcgtgatc aactccaacg tgccgcgctt 2520
cctcaacatc gtgaacgcca tgcactccgt ggtgggctcc gccccgctct ccgccatctc 2580
ccgcgccctc aacgccgcca ccaaccactt cgtgccggtg tggaacccgt acatgccgaa 2640
gggcgccgcc ccgctcaagg tgccggcccc gccggccccg gccgccgccg aggcctccgg 2700
catcccgcgc aaggtggtgt acatgccgtc ctgcgtgacc cgcatgatgg gcccggccgc 2760
ctccgacacc gagaccgccg ccgtgcacga gaaggtgatg tccctcttcg gcaaggccgg 2820
ctacgaggtg atcatcccgg agggcgtggc ctcccagtgc tgcggcatga tgttcaactc 2880
ccgcggcttc aaggacgccg ccgcctccaa gggcgccgag ctcgaggccg ccctcctcaa 2940
ggcctccgac aacggcaaga tcccgatcgt gatcgacacc tccccgtgcc tcgcccaggt 3000
gaagtcccaa atctccgagc cgtccctccg cttcgccctc tacgagccgg tggagttcat 3060
ccgccacttc ctcgtggaca agctcgagtg gaagaaggtg cgcgaccagg tggccatcca 3120
cgtgccgtgc tcctccaaga agatgggcat cgaggagtcc ttcgccaagc tcgccggcct 3180
ctgcgccaac gaggtggtgc cgtccggcat cccgtgctgc ggcatggccg gcgaccgcgg 3240
catgcgcttc ccggagctca ccggcgcctc cctccagcac ctcaacctcc cgaagacctg 3300
caaggacggc tactccacct cccgcacctg cgagatgtcc ctctccaacc acgccggcat 3360
caacttccgc ggcctcgtgt acctcgtgga cgaggccacc gccccgaaga agcaggccgc 3420
cgccgccaag accgcctaag tagatgccga ccggatctgt cgatcgacaa gctcgagttt 3480
ctccataata atgtgtgagt agttcccaga taagggaatt agggttccta tagggtttcg 3540
ctcatgtgtt gagcatataa gaaaccctta gtatgtattt gtatttgtaa aatacttcta 3600
tcaataaaat ttctaattcc taaaaccaaa atccagtact aaaatccaga tcccccgaat 3660
taaagctt 3668
<210> 7
<211> 1136
<212> PRT
<213> Unknown (Unknown)
<400> 7
Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala
1 5 10 15
Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala
20 25 30
Phe Pro Ala Thr Arg Lys Ala Asn Gly Gly Pro Arg Gly Gln Gly Lys
35 40 45
Arg Leu Ala Gln Leu Leu Gly Ala Gln Leu Lys Gln Tyr Ala Ala Glu
50 55 60
Val Arg Gly Ile Ser Thr Ala Gly Gly Ala Ser Arg Gly Gly Ala Arg
65 70 75 80
Gly Pro Ala Ser Pro Ser Ser Leu Glu Gln Gln Thr Arg Gln Val Ala
85 90 95
Gln Val Ala Val Gln Gln Ser Thr Gln Gln Ala Val Lys Val Val Val
100 105 110
Pro Ala Ile Lys Val Asp Leu Val Gly Ala Val Ser Ser Val Ser Glu
115 120 125
Ser Asp Lys Val Glu Pro Gly Val Phe Lys Asn Val Asp Gly His Arg
130 135 140
Phe Glu Asp Gly Arg Tyr Ala Ala Phe Val Glu Glu Ile Thr Lys Phe
145 150 155 160
Ile Pro Lys Glu Arg Gln Tyr Ser Asp Pro Val Arg Thr Phe Ala Tyr
165 170 175
Gly Thr Asp Ala Ser Phe Tyr Arg Leu Asn Pro Lys Leu Val Val Lys
180 185 190
Val His Asn Glu Asp Glu Val Arg Arg Ile Met Pro Ile Ala Glu Arg
195 200 205
Leu Gln Val Pro Ile Thr Phe Arg Ala Ala Gly Thr Ser Leu Ser Gly
210 215 220
Gln Ala Ile Thr Asp Ser Val Leu Ile Lys Leu Ser His Thr Gly Lys
225 230 235 240
Asn Phe Arg Asn Phe Thr Val His Gly Asp Gly Ser Val Ile Thr Val
245 250 255
Glu Pro Gly Leu Ile Gly Gly Glu Val Asn Arg Ile Leu Ala Ala His
260 265 270
Gln Lys Lys Asn Lys Leu Pro Ile Gln Tyr Lys Ile Gly Pro Asp Pro
275 280 285
Ser Ser Ile Asp Ser Cys Met Ile Gly Gly Ile Val Ser Asn Asn Ser
290 295 300
Ser Gly Met Cys Cys Gly Val Ser Gln Asn Thr Tyr His Thr Leu Lys
305 310 315 320
Asp Met Arg Val Val Phe Val Asp Gly Thr Val Leu Asp Thr Ala Asp
325 330 335
Pro Asn Ser Cys Thr Ala Phe Met Lys Ser His Arg Ser Leu Val Asp
340 345 350
Gly Val Val Ser Leu Ala Arg Arg Val Gln Ala Asp Lys Glu Leu Thr
355 360 365
Ala Leu Ile Arg Arg Lys Phe Ala Ile Lys Cys Thr Thr Gly Tyr Ser
370 375 380
Leu Asn Ala Leu Val Asp Phe Pro Val Asp Asn Pro Ile Glu Ile Ile
385 390 395 400
Lys His Leu Ile Ile Gly Ser Glu Gly Thr Leu Gly Phe Val Ser Arg
405 410 415
Ala Thr Tyr Asn Thr Val Pro Glu Trp Pro Asn Lys Ala Ser Ala Phe
420 425 430
Ile Val Phe Pro Asp Val Arg Ala Ala Cys Thr Gly Ala Ser Val Leu
435 440 445
Arg Asn Glu Thr Ser Val Asp Ala Val Glu Leu Phe Asp Arg Ala Ser
450 455 460
Leu Arg Glu Cys Glu Asn Asn Glu Asp Met Met Arg Leu Val Pro Asp
465 470 475 480
Ile Lys Gly Cys Asp Pro Met Ala Ala Ala Leu Leu Ile Glu Cys Arg
485 490 495
Gly Gln Asp Glu Ala Ala Leu Gln Ser Arg Ile Glu Glu Val Val Arg
500 505 510
Val Leu Thr Ala Ala Gly Leu Pro Phe Gly Ala Lys Ala Ala Gln Pro
515 520 525
Met Ala Ile Asp Ala Tyr Pro Phe His His Asp Gln Lys Asn Ala Lys
530 535 540
Val Phe Trp Asp Val Arg Arg Gly Leu Ile Pro Ile Val Gly Ala Ala
545 550 555 560
Arg Glu Pro Gly Thr Ser Met Leu Ile Glu Asp Val Ala Cys Pro Val
565 570 575
Asp Lys Leu Ala Asp Met Met Ile Asp Leu Ile Asp Met Phe Gln Arg
580 585 590
His Gly Tyr His Asp Ala Ser Cys Phe Gly His Ala Leu Glu Gly Asn
595 600 605
Leu His Leu Val Phe Ser Gln Gly Phe Arg Asn Lys Glu Glu Val Gln
610 615 620
Arg Phe Ser Asp Met Met Glu Glu Met Cys His Leu Val Ala Thr Lys
625 630 635 640
His Ser Gly Ser Leu Lys Gly Glu His Gly Thr Gly Arg Asn Val Ala
645 650 655
Pro Phe Val Glu Met Glu Trp Gly Asn Lys Ala Tyr Glu Leu Met Trp
660 665 670
Glu Leu Lys Ala Leu Phe Asp Pro Ser His Thr Leu Asn Pro Gly Val
675 680 685
Ile Leu Asn Arg Asp Gln Asp Ala His Ile Lys Phe Leu Lys Pro Ser
690 695 700
Pro Ala Ala Ser Pro Ile Val Asn Arg Cys Ile Glu Cys Gly Phe Cys
705 710 715 720
Glu Ser Asn Cys Pro Ser Arg Asp Ile Thr Leu Thr Pro Arg Gln Arg
725 730 735
Ile Ser Val Tyr Arg Glu Met Tyr Arg Leu Lys Gln Leu Gly Pro Gly
740 745 750
Ala Ser Glu Glu Glu Lys Lys Gln Leu Ala Ala Met Ser Ser Ser Tyr
755 760 765
Ala Tyr Asp Gly Glu Gln Thr Cys Ala Ala Asp Gly Met Cys Gln Glu
770 775 780
Lys Cys Pro Val Lys Ile Asn Thr Gly Asp Leu Ile Lys Ser Met Arg
785 790 795 800
Ala Glu His Met Lys Glu Glu Lys Thr Ala Ser Gly Met Ala Asp Trp
805 810 815
Leu Ala Ala Asn Phe Gly Val Ile Asn Ser Asn Val Pro Arg Phe Leu
820 825 830
Asn Ile Val Asn Ala Met His Ser Val Val Gly Ser Ala Pro Leu Ser
835 840 845
Ala Ile Ser Arg Ala Leu Asn Ala Ala Thr Asn His Phe Val Pro Val
850 855 860
Trp Asn Pro Tyr Met Pro Lys Gly Ala Ala Pro Leu Lys Val Pro Ala
865 870 875 880
Pro Pro Ala Pro Ala Ala Ala Glu Ala Ser Gly Ile Pro Arg Lys Val
885 890 895
Val Tyr Met Pro Ser Cys Val Thr Arg Met Met Gly Pro Ala Ala Ser
900 905 910
Asp Thr Glu Thr Ala Ala Val His Glu Lys Val Met Ser Leu Phe Gly
915 920 925
Lys Ala Gly Tyr Glu Val Ile Ile Pro Glu Gly Val Ala Ser Gln Cys
930 935 940
Cys Gly Met Met Phe Asn Ser Arg Gly Phe Lys Asp Ala Ala Ala Ser
945 950 955 960
Lys Gly Ala Glu Leu Glu Ala Ala Leu Leu Lys Ala Ser Asp Asn Gly
965 970 975
Lys Ile Pro Ile Val Ile Asp Thr Ser Pro Cys Leu Ala Gln Val Lys
980 985 990
Ser Gln Ile Ser Glu Pro Ser Leu Arg Phe Ala Leu Tyr Glu Pro Val
995 1000 1005
Glu Phe Ile Arg His Phe Leu Val Asp Lys Leu Glu Trp Lys Lys Val
1010 1015 1020
Arg Asp Gln Val Ala Ile His Val Pro Cys Ser Ser Lys Lys Met Gly
1025 1030 1035 1040
Ile Glu Glu Ser Phe Ala Lys Leu Ala Gly Leu Cys Ala Asn Glu Val
1045 1050 1055
Val Pro Ser Gly Ile Pro Cys Cys Gly Met Ala Gly Asp Arg Gly Met
1060 1065 1070
Arg Phe Pro Glu Leu Thr Gly Ala Ser Leu Gln His Leu Asn Leu Pro
1075 1080 1085
Lys Thr Cys Lys Asp Gly Tyr Ser Thr Ser Arg Thr Cys Glu Met Ser
1090 1095 1100
Leu Ser Asn His Ala Gly Ile Asn Phe Arg Gly Leu Val Tyr Leu Val
1105 1110 1115 1120
Asp Glu Ala Thr Ala Pro Lys Lys Gln Ala Ala Ala Ala Lys Thr Ala
1125 1130 1135
<210> 8
<211> 2057
<212> DNA
<213> Unknown (Unknown)
<400> 8
ggatccaaca atggccccgt ccgtgatggc ctcctccgcc accaccgtgg ccccgttcca 60
gggcctcaag tccaccgccg gcatgccggt ggcccgccgc tccggcaact cctccttcgg 120
caacgtgtcc aacggcggcc gcatccgctg catggccacc aacgccgccg ccccgccgtg 180
cccgtgctac gacaccccgg agggcgtgga catcctcggc cgctacgacc cggagttcgc 240
cgccatcctc acccgcgacg ccctcgcctt cgtggccggc ctccagcgcg agttccgcgg 300
cgccgtgcgc tacgccatgg agcgccgccg cgaggcccag cgccgctacg acgccggcga 360
gctcccgcgc ttcgacccgg ccacccgccc ggtgcgcgag gccggcggct gggcctgcgc 420
cccggtgccg ccggccatcg ccgaccgcac cgtggagatc accggcccgg ccgagccgcg 480
caagatggtg atcaacgccc tcaactccgg cgccaaggtg ttcatggccg acttcgagga 540
cgccctctcc ccgacctggg agaacctcat gcgcggccag gtgaacctcc gcgacgccgt 600
ggccggcacc atcacctacc gcgacgccgc ccgcggccgc gagtaccgcc tcggcgaccg 660
cccggccacc ctcttcgtgc gcccgcgcgg ctggcacctc ccggaggccc acgtgctcgt 720
ggacggcgag ccggccatcg gctgcctcgt ggacttcggc ctctacttct tccactccca 780
cgccgccttc cgctccggcc agggcgccgg cttcggcccg ttcttctacc tcccgaagat 840
ggagcactcc cgcgaggccc gcatctggaa gggcgtgttc gagcgcgccg agaaggaggc 900
cggcatcggc cgcggctcca tccgcgccac cgtgctcgtg gagaccctcc cggccgtgtt 960
ccagatggag gagatcctcc acgagctccg cgaccactcc gccggcctca actgcggccg 1020
ctgggactac atcttctcct acgtgaagac cttccgcgcc cgcccggacc gcctcctccc 1080
ggaccgcgcc ctcgtgggca tggcccagca cttcatgcgc tcctactccc acctcctcat 1140
ccagacctgc caccgccgcg gcgtgcacgc catgggcggc atggccgccc agatcccgat 1200
caaggacgac gccgccgcca acgaggccgc cctcgagctc gtgcgcaagg acaagctccg 1260
cgaggtgcgc gccggccacg acggcacctg ggccgcccac ccgggcctca tcccggccat 1320
ccgcgaggtg ttcgagggcc acctcggcgg ccgcccgaac cagatcgacg ccgccgccgg 1380
cgacgccgcc cgcgccggcg tggccgtgac cgaggaggac ctcctccagc cgccgcgcgg 1440
cgcccgcacc gtggagggcc tccgccacaa cacccgcgtg ggcgtgcagt acgtggccgc 1500
ctggctctcc ggctccggct ccgtgccgct ctacaacctc atggaggacg ccgccaccgc 1560
cgagatttcc cgcgtgcaga actggcagtg gctccgccac ggcgccgtgc tcgacgccgg 1620
cggcgtggag gtgcgcgcca ccccggagct cctcgcccgc gtggtggagg aggagatggc 1680
ccgcgtggag gccgaggtgg gcgccgagcg cttccgccgc ggccgctacg ccgaggccgg 1740
ccgcatcttc tcccgccagt gcaccgcccc ggagctcgac gacttcctca ccctcgacgc 1800
ctacaacctc atcgtggtgc accacccggg cgcctcctcc ccgtgcaagc tctaagagct 1860
ctagatcgtt ctgcacaaag tggagtagtc agtcatcgat caggaaccag acaccagact 1920
tttattcata cagtgaagtg aagtgaagtg cagtgcagtg agttgctggt ttttgtacaa 1980
cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa ttcctaaaac 2040
caaaatccag gggatcc 2057
<210> 9
<211> 567
<212> PRT
<213> Unknown (Unknown)
<400> 9
Met Ala Thr Asn Ala Ala Ala Pro Pro Cys Pro Cys Tyr Asp Thr Pro
1 5 10 15
Glu Gly Val Asp Ile Leu Gly Arg Tyr Asp Pro Glu Phe Ala Ala Ile
20 25 30
Leu Thr Arg Asp Ala Leu Ala Phe Val Ala Gly Leu Gln Arg Glu Phe
35 40 45
Arg Gly Ala Val Arg Tyr Ala Met Glu Arg Arg Arg Glu Ala Gln Arg
50 55 60
Arg Tyr Asp Ala Gly Glu Leu Pro Arg Phe Asp Pro Ala Thr Arg Pro
65 70 75 80
Val Arg Glu Ala Gly Gly Trp Ala Cys Ala Pro Val Pro Pro Ala Ile
85 90 95
Ala Asp Arg Thr Val Glu Ile Thr Gly Pro Ala Glu Pro Arg Lys Met
100 105 110
Val Ile Asn Ala Leu Asn Ser Gly Ala Lys Val Phe Met Ala Asp Phe
115 120 125
Glu Asp Ala Leu Ser Pro Thr Trp Glu Asn Leu Met Arg Gly Gln Val
130 135 140
Asn Leu Arg Asp Ala Val Ala Gly Thr Ile Thr Tyr Arg Asp Ala Ala
145 150 155 160
Arg Gly Arg Glu Tyr Arg Leu Gly Asp Arg Pro Ala Thr Leu Phe Val
165 170 175
Arg Pro Arg Gly Trp His Leu Pro Glu Ala His Val Leu Val Asp Gly
180 185 190
Glu Pro Ala Ile Gly Cys Leu Val Asp Phe Gly Leu Tyr Phe Phe His
195 200 205
Ser His Ala Ala Phe Arg Ser Gly Gln Gly Ala Gly Phe Gly Pro Phe
210 215 220
Phe Tyr Leu Pro Lys Met Glu His Ser Arg Glu Ala Arg Ile Trp Lys
225 230 235 240
Gly Val Phe Glu Arg Ala Glu Lys Glu Ala Gly Ile Gly Arg Gly Ser
245 250 255
Ile Arg Ala Thr Val Leu Val Glu Thr Leu Pro Ala Val Phe Gln Met
260 265 270
Glu Glu Ile Leu His Glu Leu Arg Asp His Ser Ala Gly Leu Asn Cys
275 280 285
Gly Arg Trp Asp Tyr Ile Phe Ser Tyr Val Lys Thr Phe Arg Ala Arg
290 295 300
Pro Asp Arg Leu Leu Pro Asp Arg Ala Leu Val Gly Met Ala Gln His
305 310 315 320
Phe Met Arg Ser Tyr Ser His Leu Leu Ile Gln Thr Cys His Arg Arg
325 330 335
Gly Val His Ala Met Gly Gly Met Ala Ala Gln Ile Pro Ile Lys Asp
340 345 350
Asp Ala Ala Ala Asn Glu Ala Ala Leu Glu Leu Val Arg Lys Asp Lys
355 360 365
Leu Arg Glu Val Arg Ala Gly His Asp Gly Thr Trp Ala Ala His Pro
370 375 380
Gly Leu Ile Pro Ala Ile Arg Glu Val Phe Glu Gly His Leu Gly Gly
385 390 395 400
Arg Pro Asn Gln Ile Asp Ala Ala Ala Gly Asp Ala Ala Arg Ala Gly
405 410 415
Val Ala Val Thr Glu Glu Asp Leu Leu Gln Pro Pro Arg Gly Ala Arg
420 425 430
Thr Val Glu Gly Leu Arg His Asn Thr Arg Val Gly Val Gln Tyr Val
435 440 445
Ala Ala Trp Leu Ser Gly Ser Gly Ser Val Pro Leu Tyr Asn Leu Met
450 455 460
Glu Asp Ala Ala Thr Ala Glu Ile Ser Arg Val Gln Asn Trp Gln Trp
465 470 475 480
Leu Arg His Gly Ala Val Leu Asp Ala Gly Gly Val Glu Val Arg Ala
485 490 495
Thr Pro Glu Leu Leu Ala Arg Val Val Glu Glu Glu Met Ala Arg Val
500 505 510
Glu Ala Glu Val Gly Ala Glu Arg Phe Arg Arg Gly Arg Tyr Ala Glu
515 520 525
Ala Gly Arg Ile Phe Ser Arg Gln Cys Thr Ala Pro Glu Leu Asp Asp
530 535 540
Phe Leu Thr Leu Asp Ala Tyr Asn Leu Ile Val Val His His Pro Gly
545 550 555 560
Ala Ser Ser Pro Cys Lys Leu
565
<210> 10
<211> 47
<212> PRT
<213> Unknown (Unknown)
<400> 10
Met Ala Pro Ser Val Met Ala Ser Ser Ala Thr Thr Val Ala Pro Phe
1 5 10 15
Gln Gly Leu Lys Ser Thr Ala Gly Met Pro Val Ala Arg Arg Ser Gly
20 25 30
Asn Ser Ser Phe Gly Asn Val Ser Asn Gly Gly Arg Ile Arg Cys
35 40 45
<210> 11
<211> 42
<212> PRT
<213> Unknown (Unknown)
<400> 11
Met Ala Ser Ser Met Leu Ser Ser Ala Thr Met Val Ala Ser Pro Ala
1 5 10 15
Gln Ala Thr Met Val Ala Pro Phe Asn Gly Leu Lys Ser Ser Ala Ala
20 25 30
Phe Pro Ala Thr Arg Lys Ala Asn Gly Gly
35 40
<210> 12
<211> 838
<212> DNA
<213> Unknown (Unknown)
<400> 12
cgatcggcag gtcatgcgaa atcgcgacga ggctgcgtgc attttgactg attgacgact 60
cacgctgggt aggcccgagg gagaggtggc gcccgcgcct cctcctcctc ctccggcggc 120
ggcggcggcg tggatcgggg cgatgaggcg gtggcgagga ttggcgggag ccatggagat 180
tgccgccgct tggcgggagg aggaggagga ggaggagggg ttgcgtcggc atcggcgggg 240
aggaagcgtg cggaggcggg gcggcgacgt ggcggtggcg gagggcgaaa ggcggcagcg 300
atggctgctg cgtagcgagg caatcatgca gggggaggat gatgatgagg tcgctgccat 360
ctcttctctt ctcttctctt cttctccttc tcctttggcc agcgagagag cagtggcagt 420
gacagtggat gagaagggag ctgggagcag tggcagaggc caggtggaag agaggagatg 480
gcagcgacct catcatcatc ctccccctgc atgattgcct cgctacgcag cagccatcgc 540
tgccgccttt cgccctccgc caccgccacg tcgccgcccc gcctccgcac gcttcctccc 600
cgccgatgcc gacgcaaccc ctcctcctcc tcctcctcct cccgccaagc ggcggcaatc 660
tccatggctc ccgccaatcc tcgccaccgc ctcatcgccc cgatccacgc cgccgccgcc 720
gccggaggag gaggaggagg cgcgggcgcc acctctccct cgggcctacc cagcgtgagt 780
cgtcaatcag tcaaaatgca cgcagcctcg tcgcgatttc gcatgacctg ccgatcgg 838
<210> 13
<211> 491
<212> DNA
<213> Unknown (Unknown)
<400> 13
gccgtgacat aaatgacagt ctcagccaac aattgcaagc aaactttgtc taacagcagg 60
aatcgagcaa agaatggatc caaatatacc attcagagca taagcaatgg cacaaaatgg 120
gagagcctcg ggttccttgg cagacaaagc tgctgttcca agcccgtggg cactgaaaaa 180
taaaatttag gtcaagagag taagtaaata accatgcacg cacaaagaaa atgtcattca 240
actattattg catgtttggt atagattaat ttttgagaaa taatcactta ttttacagaa 300
actaatttta tttttcagtg cccacgggct tggaacagca gctttgtctg ccaaggaacc 360
cgaggctctc ccattttgtg ccattgctta tgctctgaat ggtatatttg gatccattct 420
ttgctcgatt cctgctgtta gacaaagttt gcttgcaatt gttggctgag actgtcattt 480
atgtcacggc c 491