[go: up one dir, main page]

CN108103368A - The tough as-cast aluminum alloy of novel high-strength and preparation method - Google Patents

The tough as-cast aluminum alloy of novel high-strength and preparation method Download PDF

Info

Publication number
CN108103368A
CN108103368A CN201711273974.7A CN201711273974A CN108103368A CN 108103368 A CN108103368 A CN 108103368A CN 201711273974 A CN201711273974 A CN 201711273974A CN 108103368 A CN108103368 A CN 108103368A
Authority
CN
China
Prior art keywords
aluminum alloy
alloy
cast
refining
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711273974.7A
Other languages
Chinese (zh)
Inventor
邱丰
李强
姜启川
常芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Publication of CN108103368A publication Critical patent/CN108103368A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Ceramic Products (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Metal Extraction Processes (AREA)
  • Forging (AREA)

Abstract

本发明涉及新型高强韧铸态铝合金及制备方法,包括以下四个步骤:(1)铝合金配比及熔炼;(2)铝合金精炼;(3)微量纳米颗粒强化铝合金;(4)铝合金铸造成型。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入微量的纳米TiB2、NbB2、TiC颗粒强化铝合金,并严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不热处理的高强韧铸态铝合金。经过本工艺制备的铸态铝合金表现出优异的强度和塑性。该产品可用于制备大型铝合金结构件,不经过热处理,大量节省热处理时和热处理后校正所需的工装、工时、人工,减少能源能耗,简化铝合金结构件的生产工艺流程、降低制备成本,具有重要的应用价值。The invention relates to a novel high-strength and toughness cast aluminum alloy and a preparation method thereof, comprising the following four steps: (1) proportioning and melting of the aluminum alloy; (2) refining of the aluminum alloy; (3) strengthening the aluminum alloy with trace nanoparticles; (4) Aluminum alloy casting molding. The technical solution involved in the present invention is to design, smelt, and refine the aluminum alloy composition, then add a small amount of nano-TiB 2 , NbB 2 , TiC particles to strengthen the aluminum alloy, and strictly control the content of Fe, Ti, and Zn impurity elements to prepare a A new type of cast aluminum alloy with high strength and toughness without heat treatment. The cast aluminum alloy prepared by this process exhibits excellent strength and plasticity. This product can be used to prepare large aluminum alloy structural parts without heat treatment, which saves a lot of tooling, man-hours and labor required for correction during heat treatment and after heat treatment, reduces energy consumption, simplifies the production process of aluminum alloy structural parts, and reduces preparation costs. , has important application value.

Description

新型高强韧铸态铝合金及制备方法Novel high strength and toughness cast aluminum alloy and preparation method thereof

技术领域technical field

本发明涉及铝合金加工和制备领域,具体涉及一种新型高强韧铸态铝合金及制备方法。The invention relates to the field of aluminum alloy processing and preparation, in particular to a novel high-strength and tough cast aluminum alloy and a preparation method.

背景技术Background technique

目前,随着我国汽车行业的快速发展,追求更轻、更快、更环保的理念逐渐成为汽车行业的核心战略目标。汽车自主创新迫切需要先进、轻量化、高强韧性的汽车关键零部件的材料和制造技术。而目前,我国汽车产业中,大部分白车身为钢材。钢材虽然具有强度高,耐冲击性能较好等特点,但其密度较大,难以实现汽车的轻量化。而铝合金作为一种密度低、比强度高、耐腐蚀性较好的合金,将逐渐代替部分钢材冲压件,成为轻量化发展的重要组成部分。使用铝合金来代替钢材,最多可以使整体车身减重将近50%。所以,铝合金结构件及其材质的生产和研发,尤其是大型复杂铝合金结构件及其材质的研发至关重要,关系到乘用车轻量化发展进程、技术创新及轻量化的成败,有着重要的现实意义。部分前期研发可应用于乘用车的大型复杂铝合金结构件多为压铸件,一般压铸件无法热处理,因此强度较低、塑性差,无法满足车身结构件所需的塑性以及安全性的要求。其他的铸造方法如真空压铸件、低压铸造件和倾转铸造件,尽管这几种方法可以热处理,但是后续热处理过程较为复杂,且高温下热处理铝合金的变形严重,后续还需对热处理后铝合金结构件进行校正,也会进一步增加对能耗、工装、工时、人工的要求,延长了制造周期,增加了制造成本。基于以上原因,目前的汽车制造产业急需一种新型的无需后续热处理的高强韧铸态铝合金。纳米TiB2、NbB2、TiC陶瓷颗粒具有高熔点、高硬度、很好的耐腐蚀性以及很高的电导率等特点,且尺寸小,数量多,经过陶瓷颗粒强化的铝合金材料其强度、塑性都有明显的提高。较低的陶瓷颗粒含量即可获得很好的强化效果,这也使得制备过程简便,成本易于控制。经过纳米颗粒强化的铸态铝合金可以直接用于结构件的制备,不需要任何后续热处理工艺,大幅简化铝合金的生产工艺。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入纳米陶瓷颗粒强化铝合金,同时严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不经热处理的高强韧铸态铝合金。经过本专利涉及的制备方法制备的铝合金的强度和塑性有较大程度的提高,本方案可以避免大型铝合金构件热处理工艺,大量节省热处理和热处理后校正所需的工装、工时、人工,同时减少能源能耗,对于简化合金生产工艺、降低成本具有重要的应用价值。At present, with the rapid development of my country's automobile industry, the pursuit of lighter, faster and more environmentally friendly concepts has gradually become the core strategic goal of the automobile industry. Automobile independent innovation urgently needs advanced, lightweight, high-strength and high-strength materials and manufacturing technologies for key automotive parts. At present, in my country's automobile industry, most of the body-in-white is made of steel. Although steel has the characteristics of high strength and good impact resistance, its density is relatively high, making it difficult to reduce the weight of automobiles. As an alloy with low density, high specific strength and good corrosion resistance, aluminum alloy will gradually replace some steel stamping parts and become an important part of lightweight development. Using aluminum alloy instead of steel can reduce the overall body weight by nearly 50%. Therefore, the production and research and development of aluminum alloy structural parts and their materials, especially the research and development of large and complex aluminum alloy structural parts and their materials are very important. important practical significance. Some of the large and complex aluminum alloy structural parts that can be applied to passenger cars in the early stage are mostly die-casting parts. Generally, die-casting parts cannot be heat-treated, so they have low strength and poor plasticity, and cannot meet the plasticity and safety requirements required for body structural parts. Other casting methods such as vacuum die casting, low pressure casting and tilting casting, although these methods can be heat treated, the subsequent heat treatment process is more complicated, and the deformation of the heat treated aluminum alloy at high temperature is serious, and subsequent heat treatment of the aluminum alloy is required. Calibration of alloy structural parts will further increase the requirements for energy consumption, tooling, working hours, and labor, prolong the manufacturing cycle, and increase manufacturing costs. Based on the above reasons, the current automobile manufacturing industry is in urgent need of a new type of cast aluminum alloy with high strength and toughness that does not require subsequent heat treatment. Nano-TiB 2 , NbB 2 , TiC ceramic particles have the characteristics of high melting point, high hardness, good corrosion resistance and high electrical conductivity, etc., and are small in size and large in number. The strength, Plasticity has been significantly improved. A good strengthening effect can be obtained with a low content of ceramic particles, which also makes the preparation process simple and the cost easy to control. The as-cast aluminum alloy strengthened by nanoparticles can be directly used in the preparation of structural parts without any subsequent heat treatment process, which greatly simplifies the production process of aluminum alloy. The technical solution involved in the present invention is to prepare a new type of high-strength and tough cast alloy without heat treatment by designing, smelting, and refining the aluminum alloy composition, and then adding nano-ceramic particles to strengthen the aluminum alloy, while strictly controlling the content of Fe, Ti, and Zn impurity elements. state aluminum alloy. The strength and plasticity of the aluminum alloy prepared by the preparation method involved in this patent are greatly improved. This solution can avoid the heat treatment process of large aluminum alloy components, and save a lot of tooling, man-hours and labor required for heat treatment and correction after heat treatment. At the same time Reducing energy consumption has important application value for simplifying alloy production process and reducing cost.

发明内容Contents of the invention

本发明所要解决的问题是提供一种新型高强韧铸态铝合金及制备方法。The problem to be solved by the present invention is to provide a novel high-strength and toughness cast aluminum alloy and a preparation method thereof.

本发明的目的可以通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:

一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A novel high-strength and toughness cast aluminum alloy and a preparation method thereof, comprising the following steps:

(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:

以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。Raw materials are prepared with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper.

按照铝合金的成分为:Si:9.30wt.%~10.5wt.%;Mg:0.39wt.%~2.70wt.%;Cu:0.00wt.%~1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003-1023K条件下熔炼0.5h~1h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 9.30wt.% ~ 10.5wt.%; Mg: 0.39wt.% ~ 2.70wt.%; Cu: 0.00wt.% ~ 1.00wt.%; Zn: ≤0.15wt.% ; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; the balance is Al, and the aluminum alloy is prepared. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003-1023K and smelt for 0.5h-1h to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:

经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003-1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理5-10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1003-1023K, the rotating air blowing probe is extended into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining with gas, blowing gas for 5-10 minutes, and using an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid during refining.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al、30wt.%NbB2/Al、30wt.%TiC/Al中间合金。其中纳米TiB2、NbB2、TiC陶瓷颗粒实际加入量为0.02-0.3wt.%,机械搅拌2-5min;将超声波探头下降至液面以下100mm并保温3-8min;随后开启超声波设备,对混合合金液采用超声处理3-10min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05-0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置5-10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al, 30wt.% NbB 2 /Al , 30wt.% TiC/Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was completed. The actual amount of nano-TiB 2 , NbB 2 , and TiC ceramic particles added is 0.02-0.3wt.%, and mechanically stirred for 2-5 minutes; the ultrasonic probe is lowered to 100 mm below the liquid surface and kept warm for 3-8 minutes; then the ultrasonic equipment is turned on, and the mixed The alloy liquid is ultrasonically treated for 3-10 minutes to assist the uniform dispersion of nanoparticles. The alloy liquid after ultrasonic treatment is added with 0.05-0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 5-10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973-1003K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 973-1003K;

优选的,步骤三中所述精炼剂成分为:35-50wt.%KCl、30-40wt.%MgCl2、5-10wt.%AlF3、10-15wt.%Na3AlF6、5-10wt.%Mg3N2、2-5wt.%Na2CO3、2-5wt.%C2Cl6Preferably, the refining agent components in step three are: 35-50wt.% KCl, 30-40wt.% MgCl 2 , 5-10wt.% AlF 3 , 10-15wt.% Na 3 AlF6, 5-10wt.% Mg 3 N 2 , 2-5 wt.% Na 2 CO 3 , 2-5 wt.% C 2 Cl 6 .

优选的,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Preferably, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

该发明的有益效果在于:本发明涉及新型高强韧铸态铝合金及制备方法,包括以下四个步骤:(1)铝合金配比及熔炼;(2)铝合金精炼;(3)微量纳米颗粒强化铝合金;(4)铝合金铸造成型。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入微量的纳米TiB2、NbB2、TiC颗粒强化铝合金,并严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不热处理的高强韧铸态铝合金。经过本工艺制备的铸态铝合金表现出优异的强度和塑性。该产品可用于制备大型铝合金结构件,不经过热处理,大量节省热处理时和热处理后校正所需的工装、工时、人工,减少能源能耗,简化铝合金结构件的生产工艺流程、降低制备成本,具有重要的应用价值。The beneficial effect of the invention is that: the invention relates to a novel high-strength and toughness cast aluminum alloy and its preparation method, including the following four steps: (1) aluminum alloy proportioning and smelting; (2) aluminum alloy refining; (3) trace nanoparticles Reinforced aluminum alloy; (4) Aluminum alloy casting. The technical solution involved in the present invention is to design, smelt, and refine the aluminum alloy composition, then add a small amount of nano-TiB 2 , NbB 2 , TiC particles to strengthen the aluminum alloy, and strictly control the content of Fe, Ti, and Zn impurity elements to prepare a A new type of cast aluminum alloy with high strength and toughness without heat treatment. The cast aluminum alloy prepared by this process exhibits excellent strength and plasticity. This product can be used to prepare large aluminum alloy structural parts without heat treatment, which saves a lot of tooling, man-hours and labor required for correction during heat treatment and after heat treatment, reduces energy consumption, simplifies the production process of aluminum alloy structural parts, and reduces preparation costs. , has important application value.

具体实施方式Detailed ways

为使本发明实现的技术手段、创新特征、达成目的易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, innovative features, and goals achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific embodiments.

实施例1:Example 1:

本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:

(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。按照铝合金的成分为:Si:9.80wt.%;Mg:0.39wt.%;Cu:1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper. According to the composition of aluminum alloy: Si: 9.80wt.%; Mg: 0.39wt.%; Cu: 1.00wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.% %; the balance is Al, the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理5min,精炼时采用在线测氢仪测定铝液的液态氢含量。(2) Step 2, aluminum alloy refining: transfer the smelted aluminum liquid to the holding furnace for heat preservation, and then carry out refining in the furnace. Feed chlorine and argon into the molten aluminum for refining, blow it for 5 minutes, and use an online hydrogen detector to measure the liquid hydrogen content of the molten aluminum during refining.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al中间合金。其中纳米TiB2陶瓷颗粒实际加入量为0.3wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温5min;随后开启超声波设备,对混合合金液采用超声处理10min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was completed. The actual amount of nano -TiB2 ceramic particles added is 0.3wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 5 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 10 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;

其中,步骤三中所述精炼剂成分为:35wt.%KCl、45wt.%MgCl2、5wt.%AlF3、5wt.%Na3AlF6、5wt.%Mg3N2、3wt.%Na2CO3、2wt.%C2Cl6Wherein, the refining agent composition in step three is: 35wt.% KCl, 45wt.% MgCl 2 , 5wt.% AlF 3 , 5wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 3wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .

其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

所述实例1中,经过0.3wt.%TiB2纳米颗粒强化处理的Al-Si10-Cu1-Mg0.39铝合金,其铸态下的力学性能优良:屈服强度为135.5MPa,抗拉强度为271.6MPa,延伸率为13.0%。如表1所示。In the example 1, the Al-Si 10 -Cu 1 -Mg 0.39 aluminum alloy strengthened by 0.3wt.% TiB 2 nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 135.5 MPa, and the tensile strength is 271.6MPa, elongation 13.0%. As shown in Table 1.

实施例2:Example 2:

本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:

(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。按照铝合金的成分为:Si:10.2wt.%;Mg:0.39wt.%;Cu:1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003K条件下熔炼1h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper. According to the composition of aluminum alloy: Si: 10.2wt.%; Mg: 0.39wt.%; Cu: 1.00wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.% %; the balance is Al, the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003K and melt for 1 hour to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理8min,精炼时采用在线测氢仪测定铝液的液态氢含量。(2) Step 2, aluminum alloy refining: the smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. Chlorine and argon are introduced into the molten aluminum for refining, blown for 8 minutes, and the liquid hydrogen content of the molten aluminum is measured by an online hydrogen detector during refining.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%NbB2/Al中间合金。其中纳米NbB2陶瓷颗粒实际加入量为0.3wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温8min;随后开启超声波设备,对混合合金液采用超声处理5min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05wt.%铝合金精炼剂进行除气精炼、扒渣、静置5min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% NbB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano -NbB2 ceramic particles added is 0.3wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100 mm below the liquid surface and kept warm for 8 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 5 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.05wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 5 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy billet, the thickness of the plate-shaped billet is 20mm, and the casting control temperature is 973K;

其中,步骤三中所述精炼剂成分为:45wt.%KCl、30wt.%MgCl2、5wt.%AlF3、11wt.%Na3AlF6、5wt.%Mg3N2、2wt.%Na2CO3、2wt.%C2Cl6Wherein, the refining agent composition in step three is: 45wt.% KCl, 30wt.% MgCl 2 , 5wt.% AlF 3 , 11wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .

其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

所述实例2中,经过0.3wt.%NbB2纳米颗粒强化处理的Al-Si10-Cu1-Mg0.39铝合金,其铸态下的力学性能优良:屈服强度为141.7MPa,抗拉强度为276.8MPa,延伸率为12.4%。如表1所示。In the example 2, the Al-Si 10 -Cu 1 -Mg 0.39 aluminum alloy strengthened by 0.3wt.% NbB 2 nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 141.7MPa, and the tensile strength is 276.8MPa, elongation 12.4%. As shown in Table 1.

实施例3:Example 3:

本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:

(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁为原料备料。按照铝合金的成分为:Si:9.30wt.%;Mg:2.60wt.%;;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy and pure magnesium. According to the composition of aluminum alloy: Si: 9.30wt.%; Mg: 2.60wt.%;; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; , the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:

经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1023K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 10 minutes, during refining, use an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%NbB2/Al中间合金。其中纳米NbB2陶瓷颗粒实际加入量为0.02wt.%,机械搅拌3min;将超声波探头下降至液面以下100mm并保温5min;随后开启超声波设备,对混合合金液采用超声处理5min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05wt.%铝合金精炼剂进行除气精炼、扒渣、静置6min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% NbB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano- NbB2 ceramic particles added is 0.02wt.%, and mechanically stirred for 3 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 5 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 5 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.05wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 6 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;

其中,步骤三中所述精炼剂成分为:40wt.%KCl、35wt.%MgCl2、6wt.%AlF3、10wt.%Na3AlF6、5wt.%Mg3N2、2wt.%Na2CO3、2wt.%C2Cl6Wherein, the refining agent composition in Step 3 is: 40wt.% KCl, 35wt.% MgCl 2 , 6wt.% AlF 3 , 10wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .

其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

所述实例3中,经过0.02wt.%NbB2纳米颗粒强化处理的Al-Si10-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为187.9MPa,抗拉强度为269.2MPa,延伸率为9.8%。如表1所示。In the example 3, the Al-Si 10 -Mg 2.6 aluminum alloy strengthened by 0.02wt.% NbB 2 nanoparticles has excellent mechanical properties in the as-cast state: yield strength is 187.9MPa, tensile strength is 269.2MPa, The elongation was 9.8%. As shown in Table 1.

实施例4:Example 4:

本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:

(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:

以纯铝、Al-Si12中间合金、纯镁为原料备料。Prepare raw materials with pure aluminum, Al-Si 12 master alloy and pure magnesium.

按照铝合金的成分为:Si:10.5wt.%;Mg:2.70wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 10.5wt.%; Mg: 2.70wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; Formulated aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:

经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1023K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 10 minutes, during refining, use an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiC/Al中间合金。其中纳米TiC陶瓷颗粒实际加入量为0.02wt.%,机械搅拌2min;将超声波探头下降至液面以下100mm并保温6min;随后开启超声波设备,对混合合金液采用超声处理3min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiC/Al master alloy containing endogenous nano-ceramic particles was added after the gas purification melt was finished. The actual amount of nano-TiC ceramic particles added is 0.02wt.%, mechanically stirred for 2 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 6 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 3 minutes to assist the uniform dispersion of nanoparticles . The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;

其中,步骤三中所述30wt.%TiC/Al中间合金中TiC纳米颗粒的Ti/C=1:1。Wherein, Ti/C=1:1 of the TiC nanoparticles in the 30wt.% TiC/Al master alloy mentioned in the third step.

其中,步骤三中所述精炼剂成分为:40wt.%KCl、30wt.%MgCl2、6wt.%AlF3、10wt.%Na3AlF6、6wt.%Mg3N2、4wt.%Na2CO3、4wt.%C2Cl6Wherein, the refining agent composition in step three is: 40wt.% KCl, 30wt.% MgCl 2 , 6wt.% AlF 3 , 10wt.% Na 3 AlF6, 6wt.% Mg 3 N 2 , 4wt.% Na 2 CO 3. 4 wt.% C 2 Cl 6 .

其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

所述实例4中,经过0.3wt.%TiC纳米颗粒强化处理的Al-Si10-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为181.0MPa,抗拉强度为277.2MPa,延伸率为9.1%。如表1所示。In the example 4, the Al-Si 10 -Mg 2.6 aluminum alloy treated with 0.3wt.% TiC nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 181.0MPa, the tensile strength is 277.2MPa, and the tensile strength is 277.2MPa. The rate was 9.1%. As shown in Table 1.

实施例5:Example 5:

本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:

(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:

以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。Raw materials are prepared with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper.

按照铝合金的成分为:Si:9.5wt.%;Mg:2.60wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003K条件下熔炼1h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 9.5wt.%; Mg: 2.60wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; Formulated aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003K and melt for 1 hour to obtain aluminum alloy melt;

(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:

经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理6min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1003K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 6 minutes, using an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid during refining.

(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:

气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al中间合金。其中纳米TiB2陶瓷颗粒实际加入量为0.02wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温3min;随后开启超声波设备,对混合合金液采用超声处理3min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置8min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano -TiB2 ceramic particles added is 0.02wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 3 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 3 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 8 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;

(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:

将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy billet, the thickness of the plate-shaped billet is 20mm, and the casting control temperature is 973K;

其中,步骤三中所述精炼剂成分为:40wt.%KCl、32wt.%MgCl2、8wt.%AlF3、6wt.%Na3AlF6、9wt.%Mg3N2、2wt.%Na2CO3、3wt.%C2Cl6Wherein, the refining agent composition in step three is: 40wt.% KCl, 32wt.% MgCl 2 , 8wt.% AlF 3 , 6wt.% Na 3 AlF6, 9wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 3 wt.% C 2 Cl 6 .

其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.

所述实例5中,经过0.3wt.%TiB2纳米颗粒强化处理的Al-Si9.5-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为189.2MPa,抗拉强度为282.7MPa,延伸率为10.2%。如表1所示。In the example 5, the Al-Si 9.5 -Mg 2.6 aluminum alloy strengthened by 0.3wt.% TiB 2 nanoparticles has excellent mechanical properties in the as-cast state: yield strength is 189.2MPa, tensile strength is 282.7MPa, The elongation was 10.2%. As shown in Table 1.

表1为实例1-5中不同合金成分、不同精炼工艺、不同微量纳米颗粒强化铝合金处理工艺下的铝合金的屈服强度、抗拉强度、延伸率数值。Table 1 shows the values of yield strength, tensile strength and elongation of aluminum alloys in Examples 1-5 under different alloy compositions, different refining processes, and different treatment processes for strengthening aluminum alloys with micro-nanoparticles.

表1Table 1

样品sample 屈服强度(MPa)Yield strength (MPa) 抗拉强度(MPa)Tensile strength (MPa) 延伸率(%)Elongation (%) 实施实例1Implementation example 1 135.5135.5 271.6271.6 13.013.0 实施实例2Implementation example 2 141.7141.7 276.8276.8 12.412.4 实施实例3Implementation example 3 187.9187.9 269.2269.2 9.89.8 实施实例4Implementation example 4 181.0181.0 277.2277.2 9.19.1 实施实例5Implementation Example 5 189.2189.2 282.7282.7 10.210.2

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.

Claims (3)

1. a kind of tough as-cast aluminum alloy of novel high-strength and preparation method, it is characterised in that:Comprise the following steps:
(1) aluminium alloy matches somebody with somebody when melting:With fine aluminium, Al-Si12Intermediate alloy, pure magnesium, fine copper are material preparation, according to aluminium alloy Ingredient be:Si:9.30wt.%~10.5wt.%;Mg:0.39wt.%~2.70wt.%;Cu:0.00wt.%~ 1.00wt.%;Zn:≤ 0.15wt.%;Ti:≤ 0.10wt.%;Fe:≤ 0.10wt.%;Surplus is Al, prepares aluminium alloy;It will The raw material for preparing aluminium alloy is added to together in dry smelting furnace, is heated to temperature as melting 0.5h under the conditions of 1003-1023K ~1h, obtains molten aluminium alloy;
(2) alloy refining:Smelting molten aluminum goes to holding furnace heat preservation, then carries out furnace refining, is 1003- in temperature Under the conditions of 1023K, will rotation blow probe stretch into heat preservation furnace bottom, from rotation blow probe to molten aluminum be passed through chlorine and argon gas into Row refining, blow processing 5-10min, measures the liquid hydrogen content of molten aluminum during refining using online hydrogen meter;
(3) micro reinforced by nanoparticles aluminium alloy:It is separately added into after gas purification melt containing interior raw nano-ceramic particle 30wt.%TiB2/ Al, 30wt.%NbB2/ Al, 30wt.%TiC/Al intermediate alloys;Wherein nanometer TiB2、NbB2, TiC pottery The porcelain particle amount of being actually added into is 0.02-0.3wt.%, mechanical agitation 2-5min;Ultrasonic probe is dropped to below liquid level 100mm simultaneously keeps the temperature 3-8min;Later on ultrasonic equipment, to hybrid alloys liquid using supersound process 3-10min, aided nano Particle is uniformly dispersed;Aluminium alloy after supersound process adds in 0.05-0.10wt.% aluminum refining agents and carries out refinery by de-gassing, takes off Slag stands 5-10min;It can directly cast by the molten aluminum for finally removing Slag treatment;
(4) aluminium alloy casting:Molten aluminum is cast in a series of metal type dies into plate aluminium alloy strand, plate strand Thickness for 20mm, cast controlled at 973-1003K.
2. the tough as-cast aluminum alloy of novel high-strength according to claim 1 and preparation method, it is characterised in that:Institute in step 3 Stating refining agent ingredient is:35-50wt.%KCl, 30-40wt.%MgCl2, 5-10wt.%AlF3, 10-15wt.%Na3AlF6、 5-10wt.%Mg3N2, 2-5wt.%Na2CO3, 2-5wt.%C2Cl6
3. the tough as-cast aluminum alloy of novel high-strength according to claim 1 and preparation method, it is characterised in that:It is golden in step 4 The material of genotype mold is:45# steel;The size of metal type dies is:200mm×150mm×20mm.
CN201711273974.7A 2017-06-12 2017-12-06 The tough as-cast aluminum alloy of novel high-strength and preparation method Pending CN108103368A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710436504.1A CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN2017104365041 2017-06-12

Publications (1)

Publication Number Publication Date
CN108103368A true CN108103368A (en) 2018-06-01

Family

ID=60024113

Family Applications (19)

Application Number Title Priority Date Filing Date
CN201710436504.1A Pending CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN201711273943.1A Active CN108070733B (en) 2017-06-12 2017-12-06 A new type of nanometer boride titanium-ceramic-aluminum composite welding wire
CN201711273936.1A Active CN108103346B (en) 2017-06-12 2017-12-06 Aluminum alloy welding wire containing trace nano particles and preparation method thereof
CN201711274044.3A Active CN107955889B (en) 2017-06-12 2017-12-06 A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles
CN201711273967.7A Active CN108080811B (en) 2017-06-12 2017-12-06 A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles
CN201711274094.1A Active CN108018444B (en) 2017-06-12 2017-12-06 A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material
CN201711273929.1A Active CN108103345B (en) 2017-06-12 2017-12-06 Contains trace nano NbB2Granular aluminum alloy welding wire rod
CN201711273961.XA Active CN107955888B (en) 2017-06-12 2017-12-06 A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy
CN201711273930.4A Pending CN108103332A (en) 2017-06-12 2017-12-06 A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing
CN201711274059.XA Active CN108018443B (en) 2017-06-12 2017-12-06 Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method
CN201711273983.6A Active CN108018442B (en) 2017-06-12 2017-12-06 Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles
CN201711273970.9A Active CN108103338B (en) 2017-06-12 2017-12-06 Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy
CN201711273941.2A Active CN108080815B (en) 2017-06-12 2017-12-06 Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof
CN201711273950.1A Pending CN108060314A (en) 2017-06-12 2017-12-06 One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle
CN201711274134.2A Active CN108085528B (en) 2017-06-12 2017-12-06 A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy
CN201711273974.7A Pending CN108103368A (en) 2017-06-12 2017-12-06 The tough as-cast aluminum alloy of novel high-strength and preparation method
CN201711274156.9A Pending CN108085575A (en) 2017-06-12 2017-12-06 Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle
CN201711273901.8A Pending CN107952948A (en) 2017-06-12 2017-12-06 As-cast aluminum alloy wheel hub low-pressure casting preparation method
CN201711415938.XA Active CN108165793B (en) 2017-06-12 2017-12-25 A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material

Family Applications Before (15)

Application Number Title Priority Date Filing Date
CN201710436504.1A Pending CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN201711273943.1A Active CN108070733B (en) 2017-06-12 2017-12-06 A new type of nanometer boride titanium-ceramic-aluminum composite welding wire
CN201711273936.1A Active CN108103346B (en) 2017-06-12 2017-12-06 Aluminum alloy welding wire containing trace nano particles and preparation method thereof
CN201711274044.3A Active CN107955889B (en) 2017-06-12 2017-12-06 A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles
CN201711273967.7A Active CN108080811B (en) 2017-06-12 2017-12-06 A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles
CN201711274094.1A Active CN108018444B (en) 2017-06-12 2017-12-06 A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material
CN201711273929.1A Active CN108103345B (en) 2017-06-12 2017-12-06 Contains trace nano NbB2Granular aluminum alloy welding wire rod
CN201711273961.XA Active CN107955888B (en) 2017-06-12 2017-12-06 A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy
CN201711273930.4A Pending CN108103332A (en) 2017-06-12 2017-12-06 A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing
CN201711274059.XA Active CN108018443B (en) 2017-06-12 2017-12-06 Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method
CN201711273983.6A Active CN108018442B (en) 2017-06-12 2017-12-06 Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles
CN201711273970.9A Active CN108103338B (en) 2017-06-12 2017-12-06 Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy
CN201711273941.2A Active CN108080815B (en) 2017-06-12 2017-12-06 Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof
CN201711273950.1A Pending CN108060314A (en) 2017-06-12 2017-12-06 One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle
CN201711274134.2A Active CN108085528B (en) 2017-06-12 2017-12-06 A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201711274156.9A Pending CN108085575A (en) 2017-06-12 2017-12-06 Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle
CN201711273901.8A Pending CN107952948A (en) 2017-06-12 2017-12-06 As-cast aluminum alloy wheel hub low-pressure casting preparation method
CN201711415938.XA Active CN108165793B (en) 2017-06-12 2017-12-25 A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material

Country Status (1)

Country Link
CN (19) CN107254610A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439951A (en) * 2018-12-27 2019-03-08 吉林大学 A method of ceramics particle strengthened dose of reinforcing alusil alloy of scale is mixed based on multiphase
CN109439973A (en) * 2018-12-27 2019-03-08 吉林大学 A kind of alusil alloy and preparation method thereof mixing scale ceramic particle based on multiphase
CN109468485A (en) * 2018-12-27 2019-03-15 吉林大学 A kind of preparation method of nanometer endogenous TiC particle reinforced aluminum alloy sheet
CN109554570A (en) * 2018-12-27 2019-04-02 吉林大学青岛汽车研究院 A kind of molten internal in-situ multiphase mixes the method for scale ceramic reinforced aluminium alloy
CN109576525A (en) * 2018-12-27 2019-04-05 吉林大学 A method of strengthening 7075 aluminum alloy rolled plates
CN109680180A (en) * 2018-12-27 2019-04-26 吉林大学青岛汽车研究院 A method of strengthening Al-Zn-Mg-Cu aluminum alloy extrusion section bar
CN111809075A (en) * 2020-07-03 2020-10-23 西安石油大学 A kind of Ti coating Ti3AlC2 particle reinforced Al-based internal combustion engine piston connecting rod and its manufacturing method
CN114703390A (en) * 2022-06-06 2022-07-05 中国航发北京航空材料研究院 Refining agent and method for refining and purifying aluminum alloy combined with argon on-line casting
CN116179883A (en) * 2022-12-28 2023-05-30 吉林大学 A kind of preparation method of nanometer NbB2 particle reinforced NiAl alloy
CN116179884A (en) * 2022-12-28 2023-05-30 吉林大学 Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254610A (en) * 2017-06-12 2017-10-17 吉林大学 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN108500234B (en) * 2018-03-19 2020-01-31 中信戴卡股份有限公司 Manufacturing process of aluminum alloy wheels
CN108424341B (en) * 2018-05-04 2021-01-26 北京理工大学 A kind of preparation method of medicine type cover with high activity Ti/2B nano powder material added
CN108504885A (en) * 2018-05-15 2018-09-07 深圳市奥力压铸五金制品有限公司 The preparation method and alusil alloy of alusil alloy
CN108817734B (en) * 2018-05-25 2020-04-24 迈特李新材料(广州)有限公司 Metal-based nanocomposite welding wire and preparation method thereof
CN108531788B (en) * 2018-05-29 2019-10-11 东北轻合金有限责任公司 A kind of manufacturing method of space flight silicon aluminum alloy welding wire wire rod
CN108754242B (en) * 2018-06-15 2020-02-07 淮阴工学院 In-situ endogenetic ceramic phase synergistic reinforced aluminum-based composite material and forming method thereof
CN110052615A (en) * 2018-08-10 2019-07-26 南方科技大学 Method for preparing high-strength aluminum alloy by selective laser melting
CN109136608B (en) * 2018-08-22 2020-06-09 北京理工大学 A preparation method of TiB whisker reinforced titanium matrix composite material with controllable orientation
CN109023084A (en) * 2018-09-07 2018-12-18 吉林大学 A kind of micro nano-TiC particle strengthens steel and preparation method thereof
CN109023153A (en) * 2018-09-07 2018-12-18 吉林大学 Micro nano-TiC particle Strengthening and Toughening forging hot die steel in a kind of original position and preparation method thereof
CN109055860A (en) * 2018-09-07 2018-12-21 吉林大学 One specific admixture scale TiCN and TiB2Particle Strengthening and Toughening low-alloy steel and preparation method thereof
CN109207758B (en) * 2018-10-20 2021-05-04 苏州安路特汽车部件有限公司 Aluminum alloy workpiece smelting and casting process
CN109295351B (en) * 2018-10-31 2020-11-10 浙江万丰摩轮有限公司 Die-casting aluminum alloy and preparation method and application thereof
CN109439948A (en) * 2018-12-20 2019-03-08 中国兵器科学研究院宁波分院 A kind of nanometer fining agent and preparation method thereof for aluminium alloy
CN109628787B (en) * 2018-12-27 2020-05-08 吉林大学 Preparation method of Al-Cu-Mg-Si alloy plate reinforced by in-situ micro-nano particles in melt
CN109536769A (en) * 2018-12-27 2019-03-29 吉林大学 Two-way vertical controlled rolling trace Ti C-TiB2The preparation method of REINFORCED Al-Si-Mg sheet alloy
CN109554571B (en) * 2018-12-27 2019-10-22 吉林大学 A preparation method of micro-TiC reinforced Al-Cu-Mg alloy plate by bidirectional vertical controlled rolling
CN109439952B (en) * 2018-12-27 2021-04-16 吉林大学 A kind of preparation method of micro-nano hybrid scale multiphase ceramic particles
CN109396422B (en) * 2018-12-27 2019-09-27 吉林大学 A kind of method evenly dispersed in the pre-dispersed complementary melt of nano particle in parcel
CN109628788B (en) * 2018-12-27 2021-02-12 吉林大学 Method for preparing high-elasticity-modulus and high-strength aluminum alloy by mixing multi-phase ceramic particles
CN109609798B (en) * 2018-12-27 2020-03-20 吉林大学 Controlled rolling preparation method of trace micro-nano hybrid particle reinforced Al-Cu-Mg-Si plate
CN109609814B (en) * 2018-12-27 2020-03-20 吉林大学 High-strength aluminum alloy with high elastic modulus mixed with double-scale ceramic particles and preparation method thereof
CN109570497A (en) * 2018-12-27 2019-04-05 吉林大学青岛汽车研究院 Raw multiple dimensioned pottery aluminium composite material of multiphase and preparation method thereof in one kind
CN109439942B (en) * 2018-12-27 2020-05-22 吉林大学 Preparation method of ceramic-aluminum composite material based on endogenous nano TiCxNy particles
CN109554572B (en) * 2018-12-27 2020-03-20 吉林大学 Multi-scale ceramic particle-mixed high-elasticity-modulus high-strength aluminum alloy and preparation method thereof
CN109811161B (en) * 2019-02-27 2021-04-16 北京工业大学 A kind of large volume fraction nanoscale Al-TiB2 master alloy and preparation method thereof
CN109778020A (en) * 2019-03-11 2019-05-21 江苏华企铝业科技股份有限公司 The high-densit aluminum titanium alloy ingot of high-purity and its manufacturing method
CN109881050A (en) * 2019-03-25 2019-06-14 滨州戴森车轮科技有限公司 A kind of wheel hub and its processing technology for improving the wheel hub paint film adhesion
JP6794604B1 (en) * 2019-04-19 2020-12-02 住友電工ハードメタル株式会社 Cutting tools
US20210046553A1 (en) * 2019-04-19 2021-02-18 Sumitomo Electric Hardmetal Corp. Cutting tool
CN110181193B (en) * 2019-05-17 2021-01-08 江西理工大学 A new type of Al-Mg-Ti alloy welding wire and its preparation method
CN110205527B (en) * 2019-06-28 2020-05-05 江西理工大学 Al-Mg-Si alloy wire for additive manufacturing and preparation method thereof
CN110129640B (en) * 2019-06-28 2020-05-05 江西理工大学 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof
CN110205511A (en) * 2019-06-28 2019-09-06 江西理工大学 A kind of high-strength Al-Si alloy welding wire and preparation method thereof
CN110184492B (en) * 2019-06-28 2020-07-03 江西理工大学 TiB2Particle reinforced aluminum-based composite material and preparation method thereof
CN110306083B (en) * 2019-07-24 2022-03-01 上海交通大学 High-strength and tough aluminum-silicon-based composite welding wire and preparation method thereof
CN110512125B (en) * 2019-08-30 2020-09-22 中国航发北京航空材料研究院 Preparation method of diameter aluminum-lithium alloy wire for additive manufacturing
CN110560957B (en) * 2019-09-03 2021-07-30 北京工业大学 A micro-nano particle reinforced aluminum alloy flux-cored filler wire for welding 7075 aluminum alloy
CN110625297B (en) * 2019-09-19 2021-02-12 北京科技大学 Preparation method of high-strength and high-toughness steel welding wire containing nano particles
CN110656264A (en) * 2019-11-05 2020-01-07 东北轻合金有限责任公司 Manufacturing method of aluminum alloy wire for protective fence
CN110747361A (en) * 2019-11-20 2020-02-04 中南大学 Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring
CN111101026A (en) * 2019-12-06 2020-05-05 江苏理工学院 Preparation method of high-strength high-toughness aluminum-based composite material
CN111097911B (en) * 2019-12-12 2022-04-26 南方科技大学 Ceramic-metal composite foam material and preparation method thereof
CN111304562A (en) * 2019-12-14 2020-06-19 江苏时代华宜电子科技有限公司 High-modulus cast ceramic-aluminum high-purity material and preparation method thereof
CN111057906A (en) * 2019-12-30 2020-04-24 苏州再超冶金制品有限公司 Nano ceramic powder reinforced alloy composite material and preparation method thereof
CN111139385B (en) * 2019-12-31 2021-06-15 上海交通大学 A kind of aluminum alloy welding wire containing ceramic particles and its preparation method and application
CN111112875B (en) * 2019-12-31 2021-09-28 上海交通大学 Aluminum alloy welding wire containing TiB2 particles and preparation method thereof
CN111690857A (en) * 2020-05-13 2020-09-22 宁波华源精特金属制品有限公司 Engine connecting rod
CN111411270B (en) * 2020-05-21 2021-03-19 滨州渤海活塞有限公司 Method for changing morphology of ferrosilicon phase in aluminum alloy
CN111850351A (en) * 2020-07-01 2020-10-30 吉林大学 A method for preparing high elongation cast-rolled Al-Mn series aluminum alloy slab
CN112264732B (en) * 2020-10-16 2023-11-14 大连理工大学 Welding wire for copper/steel dissimilar welding, preparation method of welding wire and copper/steel dissimilar welding method
CN112210694B (en) * 2020-10-21 2022-04-19 吉林大学 Nanoparticle toughened ZTC4 titanium alloy and preparation method thereof
CN112251646A (en) * 2020-10-21 2021-01-22 吉林大学 Titanium alloy powder of endogenous nano composite ceramic particles and preparation method and application thereof
CN112593110B (en) * 2020-12-11 2021-09-10 迈特李新材料(深圳)有限公司 Preparation method of nano-carbide reinforced aluminum matrix composite welding wire
CN112746195B (en) * 2020-12-30 2022-02-01 吉林大学 Recession-resistant refiner, preparation method and application thereof, aluminum alloy and refining method thereof
CN113042748B (en) * 2021-03-09 2022-10-11 中北大学 Method for preparing high-strength high-elongation Al-Cu-Mg alloy by SLM
CN113084395B (en) * 2021-03-25 2022-09-13 山东滨州华创金属有限公司 A kind of preparation method of aluminum alloy welding wire and the prepared aluminum alloy welding wire
CN113106276B (en) * 2021-04-10 2022-03-01 中北大学 A kind of preparation method of multi-component synergistically strengthened aluminum matrix composite material
CN113210573B (en) * 2021-04-20 2024-04-05 扬州戴卡轮毂制造有限公司 Aluminum alloy hub and multi-field coupling casting forming and grain refinement method thereof
CN113414365A (en) * 2021-05-14 2021-09-21 江苏大学 Aluminum alloy hub blank manufacturing equipment and working method thereof
CN113416861A (en) * 2021-05-17 2021-09-21 江苏大学 Preparation method of micro-nano dual-scale TiC particle reinforced aluminum matrix composite material
CN113373367A (en) * 2021-06-04 2021-09-10 江西理工大学 Aluminum intermediate alloy containing multi-scale mixed particles and preparation method thereof
CN113385855A (en) * 2021-06-09 2021-09-14 江西理工大学 Multi-scale particle modified Al-Mg alloy welding wire and preparation method thereof
CN113373355A (en) * 2021-06-09 2021-09-10 江西理工大学 Multi-scale particle modified 7000 series alloy wire and preparation method thereof
CN113737037A (en) * 2021-09-17 2021-12-03 苏州明志科技股份有限公司 Method for refining aluminum alloy grains
CN113909454A (en) * 2021-10-09 2022-01-11 大冶市东晟机械制造有限公司 Low-pressure casting process for rear hub of alloy automobile
CN113909733B (en) * 2021-10-11 2023-06-09 河北科技大学 A kind of aluminum-magnesium alloy welding wire for arc fuse additive manufacturing and preparation method thereof
CN114350993B (en) * 2021-12-30 2023-04-07 安徽科蓝特铝业有限公司 Production process of high-strength aluminum alloy applied to bicycle frame
CN114790522A (en) * 2022-04-29 2022-07-26 山东裕航特种合金装备有限公司 Preparation method of electronic material containing nano ceramic aluminum alloy material
CN114908266B (en) * 2022-05-12 2023-09-22 昆明理工大学 A method of preparing aluminum-based composite material wire for 3D printing
CN115159450B (en) * 2022-07-03 2024-02-23 复旦大学 NbB-based 2 Catalytic lifting of MgH 2 Method for hydrogen storage performance
CN115070038B (en) * 2022-07-21 2022-11-04 西安稀有金属材料研究院有限公司 In-situ mixed dual-phase ceramic reinforced iron-based composite material and preparation method thereof
CN115430843B (en) * 2022-08-16 2024-10-18 上海交通大学 Diphase particle reinforced additive aluminum alloy and preparation method thereof
CN115740832B (en) * 2022-10-18 2023-11-07 江苏鑫华能环保工程股份有限公司 Carbon fiber reinforced magnesium alloy welding material and preparation method thereof
CN115896524B (en) * 2022-11-19 2024-03-08 吉林大学 Method for improving segregation and strength of cast superalloy through micro-nano particles
CN116240443B (en) * 2022-12-28 2024-06-25 吉林大学 Nano-ceramic particle reinforced stainless steel and preparation method thereof
CN116200625B (en) * 2022-12-28 2024-06-25 吉林大学 Nanoparticle modified aluminum alloy and preparation method thereof
CN116159995B (en) * 2023-03-02 2023-11-17 阳江普利餐厨用品有限公司 Powder material for metal additive and application thereof in production of cladding coating
CN116334459B (en) * 2023-03-15 2025-02-28 北京工业大学 A micro-nano particle reinforced aluminum wire based on electroplasticity and a preparation method thereof
CN116716508B (en) * 2023-06-12 2024-11-22 昆明理工大学 A TiB2/TiC ceramic reinforced aluminum alloy matrix composite piston and preparation method thereof
CN116925837A (en) * 2023-07-19 2023-10-24 浙江理工大学嵊州创新研究院有限公司 Preparation method of composite nano lubricating oil for steel-steel friction pair
CN116752018B (en) * 2023-08-21 2023-12-05 小米汽车科技有限公司 Heat treatment-free die-cast aluminum alloy material and preparation method thereof, automobile structural parts

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE32239T1 (en) * 1983-11-29 1988-02-15 Alcan Int Ltd ALUMINUM REDUCTION CELLS.
US4690796A (en) * 1986-03-13 1987-09-01 Gte Products Corporation Process for producing aluminum-titanium diboride composites
JPS63312923A (en) * 1987-06-17 1988-12-21 Agency Of Ind Science & Technol Wire preform material for carbon fiber reinforced aluminum composite material
US4909842A (en) * 1988-10-21 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Grained composite materials prepared by combustion synthesis under mechanical pressure
US5104456A (en) * 1990-02-15 1992-04-14 Colorado School Of Mines Process for optimizing titanium and zirconium additions to aluminum welding consumables
US5256368A (en) * 1992-07-31 1993-10-26 The United States Of America As Represented By The Secretary Of The Interior Pressure-reaction synthesis of titanium composite materials
JP3417217B2 (en) * 1996-06-07 2003-06-16 トヨタ自動車株式会社 Method for producing titanium carbide particle-dispersed metal matrix composite material
JPH10219312A (en) * 1997-02-10 1998-08-18 Toyota Motor Corp Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
NO990813L (en) * 1999-02-19 2000-08-21 Hydelko Ks Alloy for grain refinement of aluminum alloys
CN1079443C (en) * 1999-06-24 2002-02-20 东南大学 Titanium carbide reinforced antiwear aluminium alloy and its preparing process
CN1161483C (en) * 2001-03-23 2004-08-11 中国科学院金属研究所 A high-strength in-situ aluminum matrix composite
US6899844B2 (en) * 2001-04-25 2005-05-31 Taiho Kogyo Co., Ltd. Production method of aluminum alloy for sliding bearing
ATE422000T1 (en) * 2001-07-25 2009-02-15 Showa Denko Kk ALUMINUM ALLOY HAVING EXCELLENT MACHINABILITY AND ALUMINUM ALLOY MATERIAL AND PRODUCTION PROCESS THEREOF
CN1228464C (en) * 2003-06-20 2005-11-23 吉林大学 Method for preparing two-phase granular mixed reinforced magnesium alloy based composite material
CN1250760C (en) * 2003-10-30 2006-04-12 上海交通大学 Method for preparing aluminium based composite material intensified by interlarding in situ
CN1298877C (en) * 2004-03-11 2007-02-07 山东理工大学 Method for manufacturing ceramic particle reinforced aluminium-based nano composite material
CN100422368C (en) * 2004-07-05 2008-10-01 北京有色金属研究总院 In situ formed TiC reinforced Al-Fe-V-Si series heat resistant aluminium alloy material and its preparation method
FR2875153B1 (en) * 2004-09-10 2008-02-01 Pechiney Aluminium SUPPORT WIRE FOR WELDING ALUMINUM ALLOYS
CN100396650C (en) * 2006-10-30 2008-06-25 陕西科技大学 Method for preparing Ti2AlC ceramic material
CN100443605C (en) * 2006-12-28 2008-12-17 上海交通大学 Preparation Method of Particle Hybrid Reinforced Aluminum Matrix Composite
CN100460136C (en) * 2007-01-30 2009-02-11 山东大学 Filler metal particles for welding and preparation method thereof
CN101214540A (en) * 2008-01-07 2008-07-09 吉林大学 Method for preparing TiC/TiB2 biphase ceramic granule partial reinforced manganese steel composite material
CN101758203B (en) * 2008-11-12 2013-04-03 郑东海 Process for smelting and lower-pressure casting of aluminum alloy wheel hub
CN101775514A (en) * 2009-11-11 2010-07-14 昆明理工大学 Method for preparing (TiB2+TiC) dispersion-strengthening copper-based composites by adopting self-propagating high-temperature synthesis
CN101775513B (en) * 2009-11-11 2012-05-30 昆明理工大学 Method for preparing (TiB2+TiC) dispersion strengthened copper matrix composites by mechanical alloying
CN101876017B (en) * 2009-12-15 2012-02-29 哈尔滨工业大学 Preparation method of nano ceramic particle reinforced aluminum foam matrix composite
CN101760674B (en) * 2010-02-05 2012-11-07 哈尔滨工业大学 Roll forming technique of board made of NiAl-based composite material
CN102260814B (en) * 2011-07-26 2013-01-09 吉林大学 In situ nano TiC ceramic particle reinforced aluminum based composite material and preparation method thereof
CN103842534A (en) * 2011-09-19 2014-06-04 美铝有限责任公司 Improved aluminum casting alloys containing vanadium
CN102366828B (en) * 2011-10-10 2016-12-21 陈丹红 A kind of low-pressure casting method of aluminium alloy automobile hub
CN102430757A (en) * 2011-11-25 2012-05-02 天津大学 A method for preparing TiB2/TiC ultrafine powder for surface spraying of engine piston rings by high-energy ball milling
CN102584242B (en) * 2012-02-28 2013-08-14 吉林大学 High-temperature high-pressure preparation method for titanium diboride
CN102644010B (en) * 2012-04-11 2014-06-18 北京工业大学 Al-Ti-B-Er refiner and preparation method thereof
CN102747254B (en) * 2012-07-27 2013-10-16 哈尔滨工业大学 Preparation process of reinforced intragranular aluminum matrix composites with nano ceramic particles added externally
CN102787252B (en) * 2012-08-14 2014-05-21 大连理工大学 Method for In Situ Preparation of TiB2 Reinforced Aluminum Matrix Composite
CN102839306B (en) * 2012-09-17 2014-05-07 东北轻合金有限责任公司 Manufacturing method of aluminum alloy welding wire for aerospace
CN102876919B (en) * 2012-09-27 2014-05-21 南京航空航天大学 In-situ synthesis of TiC particle reinforced titanium aluminum alloy material and its preparation method
KR20140063024A (en) * 2012-11-16 2014-05-27 현대자동차주식회사 Aluminum wheel and method for producing the same
CN103192064A (en) * 2013-04-25 2013-07-10 丹阳百斯特新型合金科技有限公司 Al-Ti-B-C refiner and preparation method
CN103266243A (en) * 2013-06-06 2013-08-28 中南林业科技大学 High performance aluminum alloy for low pressure casting of minicar structural member and preparation method of high performance aluminum alloy
CN104372207B (en) * 2013-08-12 2016-06-22 大力神铝业股份有限公司 A kind of soldering 4004 aluminium alloys
CN103572111A (en) * 2013-11-20 2014-02-12 江苏江旭铸造集团有限公司 High-strength and toughness cast aluminum alloy
CN103817495B (en) * 2014-03-05 2016-06-08 浙江巨科实业股份有限公司 Manufacturing method of aluminum alloy hub
CN104263988B (en) * 2014-05-04 2016-08-24 昆明理工大学 A kind of preparation method of TiB2 particle reinforced aluminum foam/aluminum alloy
CN104120291B (en) * 2014-07-22 2017-06-13 上海交通大学 A kind of TiC, TiB2The preparation method of particle enhanced nickel base composite material
CN104209498B (en) * 2014-07-24 2017-02-15 昆明理工大学 Preparing method of interface modification layer of ceramic particle enhanced metal base composite material
CN104264001B (en) * 2014-09-16 2016-08-17 广东新劲刚新材料科技股份有限公司 In-situ synthesized particle reinforced aluminum matrix composite material and preparation method thereof
CN104372208B (en) * 2014-10-28 2019-03-29 赵遵成 A kind of endogenetic particle hybrid reinforced aluminum-matrix composite material and preparation method thereof
CN104532068B (en) * 2014-12-15 2016-08-17 河海大学 Nano TiC ceramic particle reinforced aluminium base composite material and preparation method thereof
CN104532044B (en) * 2014-12-18 2017-01-25 兰州理工大学 Low-cost and high-efficiency Al-Ti-C-Ce refining agent and preparation method thereof
CN105671350A (en) * 2015-03-19 2016-06-15 中信戴卡股份有限公司 Aluminum alloy refiner, preparation method therefor and use thereof
CN104789811B (en) * 2015-04-03 2016-09-28 昆明冶金研究院 A kind of preparation method of Al-Ti-B intermediate alloy
CN104946920B (en) * 2015-06-17 2017-01-11 广东省材料与加工研究所 Preparation method of grain refiner
CN105002407A (en) * 2015-08-13 2015-10-28 枞阳县金源汽车零部件有限公司 Aluminum profile for automobile wheels and preparation method of aluminum profile
CN105149590A (en) * 2015-08-28 2015-12-16 苏州莱特复合材料有限公司 Powder metallurgy gear and manufacturing method thereof
CN105132733B (en) * 2015-09-29 2017-10-13 华中科技大学 A kind of method for preparing nanoparticle reinforced aluminum-based composite
CN105525157A (en) * 2016-02-17 2016-04-27 苏州华冲精密机械有限公司 Aluminum alloy automobile hub casting process
CN105689687A (en) * 2016-03-01 2016-06-22 刘加兴 High-pressure and low-pressure casting process and equipment for aluminum alloy casting products
CN105734387B (en) * 2016-03-17 2018-02-23 中南大学 A kind of TiB2Based ceramic metal and preparation method thereof
CN105728734B (en) * 2016-03-24 2017-10-20 西安工业大学 High-strength superfine ultra-fine(TixBy‑TiC)/ 7075Al composites and preparation method thereof
CN105779831B (en) * 2016-05-25 2017-08-29 桂林航天工业学院 Aero-Space aluminium alloy welding wire and preparation method thereof
CN105886847A (en) * 2016-06-01 2016-08-24 上海交通大学 High-temperature-resistant ceramic nanoparticle reinforced aluminum alloy and preparation method and application thereof
CN105886853A (en) * 2016-06-01 2016-08-24 上海交通大学 Nano ceramic particle reinforced aluminum silicon alloy, preparation method and application thereof
CN106086538A (en) * 2016-06-21 2016-11-09 上海交通大学 High-temperature resistant nano ceramic particle strengthens hypoeutectic al-si alloy and casting method thereof
CN105908024A (en) * 2016-06-21 2016-08-31 上海交通大学 High-temperature-resistant nano ceramic particle reinforced cocrystallized Al-Si alloy and casting method thereof
CN106086488B (en) * 2016-07-15 2017-09-22 南南铝业股份有限公司 Subway station furred ceiling aluminium alloy and preparation method thereof
CN105970037B (en) * 2016-07-15 2017-09-22 南南铝业股份有限公司 Overpass aluminium alloy and preparation method thereof
CN106271189B (en) * 2016-08-24 2018-09-14 上海交通大学 A kind of preparation method of welding wire or welding rod with small grains tissue
CN106086546B (en) * 2016-08-26 2017-08-25 山东金马汽车装备科技有限公司 The low-pressure casting process of aluminium alloy wheel hub
CN106756352B (en) * 2016-11-22 2018-04-06 昆明理工大学 Raw Cr in one kind2B and MgO diphase particles strengthen the preparation method of magnesium-based composite material
CN106756264B (en) * 2016-11-24 2019-06-21 湖南江滨机器(集团)有限责任公司 A kind of aluminum matrix composite, preparation method and its application
CN106591618A (en) * 2016-12-06 2017-04-26 昆明理工大学 Preparation method of endogenous double-phase particle enhanced aluminum-based composite material
CN106756319A (en) * 2016-12-13 2017-05-31 中国科学院金属研究所 A kind of aluminium alloy and aluminum matrix composite for preparing high-strength high-plastic aluminum matrix composite
CN107043901B (en) * 2017-02-23 2019-01-08 吉林大学 Basalt fibre and ceramic particle mix aluminium drill pipe material and preparation method thereof
CN107254610A (en) * 2017-06-12 2017-10-17 吉林大学 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN107419126B (en) * 2017-07-04 2019-04-02 北京理工大学 A kind of TiB-TiB2The fast preparation method of-Al composite ceramics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439951A (en) * 2018-12-27 2019-03-08 吉林大学 A method of ceramics particle strengthened dose of reinforcing alusil alloy of scale is mixed based on multiphase
CN109439973A (en) * 2018-12-27 2019-03-08 吉林大学 A kind of alusil alloy and preparation method thereof mixing scale ceramic particle based on multiphase
CN109468485A (en) * 2018-12-27 2019-03-15 吉林大学 A kind of preparation method of nanometer endogenous TiC particle reinforced aluminum alloy sheet
CN109554570A (en) * 2018-12-27 2019-04-02 吉林大学青岛汽车研究院 A kind of molten internal in-situ multiphase mixes the method for scale ceramic reinforced aluminium alloy
CN109576525A (en) * 2018-12-27 2019-04-05 吉林大学 A method of strengthening 7075 aluminum alloy rolled plates
CN109680180A (en) * 2018-12-27 2019-04-26 吉林大学青岛汽车研究院 A method of strengthening Al-Zn-Mg-Cu aluminum alloy extrusion section bar
CN109554570B (en) * 2018-12-27 2020-07-31 吉林大学青岛汽车研究院 Method for strengthening aluminum alloy by in-situ multiphase mixed scale ceramic in melt
CN111809075A (en) * 2020-07-03 2020-10-23 西安石油大学 A kind of Ti coating Ti3AlC2 particle reinforced Al-based internal combustion engine piston connecting rod and its manufacturing method
CN114703390A (en) * 2022-06-06 2022-07-05 中国航发北京航空材料研究院 Refining agent and method for refining and purifying aluminum alloy combined with argon on-line casting
CN116179883A (en) * 2022-12-28 2023-05-30 吉林大学 A kind of preparation method of nanometer NbB2 particle reinforced NiAl alloy
CN116179884A (en) * 2022-12-28 2023-05-30 吉林大学 Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles

Also Published As

Publication number Publication date
CN108018442B (en) 2019-09-24
CN108103346A (en) 2018-06-01
CN108165793B (en) 2020-01-07
CN107254610A (en) 2017-10-17
CN108018444A (en) 2018-05-11
CN107955888B (en) 2019-10-22
CN108080815A (en) 2018-05-29
CN108018443B (en) 2019-10-08
CN108103345B (en) 2020-03-13
CN108103338B (en) 2020-01-07
CN108080815B (en) 2020-10-02
CN108070733B (en) 2020-01-07
CN108018444B (en) 2019-10-18
CN108103346B (en) 2019-09-13
CN108085575A (en) 2018-05-29
CN108018442A (en) 2018-05-11
CN107955889A (en) 2018-04-24
CN107955888A (en) 2018-04-24
CN108165793A (en) 2018-06-15
CN108103338A (en) 2018-06-01
CN108103345A (en) 2018-06-01
CN108080811B (en) 2020-05-08
CN108080811A (en) 2018-05-29
CN107955889B (en) 2019-08-27
CN108085528B (en) 2020-01-07
CN108018443A (en) 2018-05-11
CN108060314A (en) 2018-05-22
CN108103332A (en) 2018-06-01
CN108085528A (en) 2018-05-29
CN108070733A (en) 2018-05-25
CN107952948A (en) 2018-04-24

Similar Documents

Publication Publication Date Title
CN108103368A (en) The tough as-cast aluminum alloy of novel high-strength and preparation method
WO2019090963A1 (en) In-situ nanoreinforced aluminum alloy extrusion for car body and preparation method
CN104651684B (en) A kind of Aluminium alloy structural material and preparation method thereof
CN102337435B (en) Aluminum alloy pipe and manufacture method thereof
CN105132772B (en) Low-cost non-rare-earth type high-strength magnesium alloy and preparing method thereof
CN102330004B (en) Manufacturing method for aluminum alloy die forgings
CN106282692B (en) A kind of preparation method of the vehicle body of railway vehicle aluminium section bar of high bending property
CN102133629A (en) Light-alloy electromagnetic suspension casting device and method
CN101537480A (en) Semi-solid forming die-casting process for aluminum-magnesium alloy pot
CN102443725B (en) High-strength aluminum alloy treated by AlH3 and preparation method of high-strength aluminum alloy
CN114262829B (en) 7-series aluminum alloy anti-collision cross beam profile for automobile and production process
EP4428258A1 (en) High strength and toughness die-casting aluminum alloy without heat treatment, preparation method and article thereof
CN111041288B (en) High-toughness anti-fatigue in-situ aluminum-based composite material and preparation method thereof
CN106399728A (en) Smelting method for high-manganese aluminum bronze alloy
CN109576526A (en) A kind of molten internal in-situ multiphase mixes scale ceramic reinforced Al-Zn-Mg-Cu aluminium alloy and preparation method thereof
CN109735731A (en) A kind of process method of preparing ultrafine grain high strength aluminum alloy
CN102925768B (en) Production method of powder-coated aluminum alloy section bars
CN101376937B (en) Squeeze casting Al-Si-Cu alloy material
CN111112871B (en) A kind of hot-crack-resistant 2xxx series aluminum alloy welding wire and preparation method thereof
CN109609798B (en) Controlled rolling preparation method of trace micro-nano hybrid particle reinforced Al-Cu-Mg-Si plate
CN110643870A (en) Corrosion-resistant high-performance wrought magnesium alloy and preparation method thereof
CN101871064A (en) A kind of method of rare earth Y modified AlSi7Mg alloy
US20240200167A1 (en) Aluminum matrix composite with high strength, high toughness, high thermal conductivity, and good weldability for 5g base station and preparation method thereof
CN106756342B (en) A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method
CN105543584B (en) The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180601

RJ01 Rejection of invention patent application after publication