CN108103368A - The tough as-cast aluminum alloy of novel high-strength and preparation method - Google Patents
The tough as-cast aluminum alloy of novel high-strength and preparation method Download PDFInfo
- Publication number
- CN108103368A CN108103368A CN201711273974.7A CN201711273974A CN108103368A CN 108103368 A CN108103368 A CN 108103368A CN 201711273974 A CN201711273974 A CN 201711273974A CN 108103368 A CN108103368 A CN 108103368A
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- alloy
- cast
- refining
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 126
- 238000002360 preparation method Methods 0.000 title claims abstract description 24
- 238000007670 refining Methods 0.000 claims abstract description 47
- 238000005266 casting Methods 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 19
- 239000002105 nanoparticle Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000002844 melting Methods 0.000 claims abstract description 10
- 230000008018 melting Effects 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 50
- 229910052782 aluminium Inorganic materials 0.000 claims description 43
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 43
- 229910045601 alloy Inorganic materials 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 34
- 239000011777 magnesium Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000523 sample Substances 0.000 claims description 18
- 239000000919 ceramic Substances 0.000 claims description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000002893 slag Substances 0.000 claims description 14
- 239000000460 chlorine Substances 0.000 claims description 13
- 239000007789 gas Substances 0.000 claims description 13
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 238000003723 Smelting Methods 0.000 claims description 10
- 238000004321 preservation Methods 0.000 claims description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910019742 NbB2 Inorganic materials 0.000 claims description 4
- 229910033181 TiB2 Inorganic materials 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims 2
- 239000004615 ingredient Substances 0.000 claims 2
- 229910020056 Mg3N2 Inorganic materials 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910001610 cryolite Inorganic materials 0.000 claims 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 claims 1
- 229910001629 magnesium chloride Inorganic materials 0.000 claims 1
- 229910052573 porcelain Inorganic materials 0.000 claims 1
- 229910000029 sodium carbonate Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 abstract description 15
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000000465 moulding Methods 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 241001062472 Stokellia anisodon Species 0.000 abstract description 3
- 238000012937 correction Methods 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000005728 strengthening Methods 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 238000013461 design Methods 0.000 abstract description 2
- 238000007664 blowing Methods 0.000 description 12
- 229910018125 Al-Si Inorganic materials 0.000 description 11
- 229910018520 Al—Si Inorganic materials 0.000 description 11
- 229910016569 AlF 3 Inorganic materials 0.000 description 6
- 238000007872 degassing Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 238000009210 therapy by ultrasound Methods 0.000 description 6
- 238000004512 die casting Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/058—Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/40—Making wire or rods for soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1026—Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
- C22C1/1052—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/003—Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0073—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0084—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
- B22F2003/208—Warm or hot extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/002—Carbon nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Ceramic Products (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Metal Extraction Processes (AREA)
- Forging (AREA)
Abstract
本发明涉及新型高强韧铸态铝合金及制备方法,包括以下四个步骤:(1)铝合金配比及熔炼;(2)铝合金精炼;(3)微量纳米颗粒强化铝合金;(4)铝合金铸造成型。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入微量的纳米TiB2、NbB2、TiC颗粒强化铝合金,并严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不热处理的高强韧铸态铝合金。经过本工艺制备的铸态铝合金表现出优异的强度和塑性。该产品可用于制备大型铝合金结构件,不经过热处理,大量节省热处理时和热处理后校正所需的工装、工时、人工,减少能源能耗,简化铝合金结构件的生产工艺流程、降低制备成本,具有重要的应用价值。The invention relates to a novel high-strength and toughness cast aluminum alloy and a preparation method thereof, comprising the following four steps: (1) proportioning and melting of the aluminum alloy; (2) refining of the aluminum alloy; (3) strengthening the aluminum alloy with trace nanoparticles; (4) Aluminum alloy casting molding. The technical solution involved in the present invention is to design, smelt, and refine the aluminum alloy composition, then add a small amount of nano-TiB 2 , NbB 2 , TiC particles to strengthen the aluminum alloy, and strictly control the content of Fe, Ti, and Zn impurity elements to prepare a A new type of cast aluminum alloy with high strength and toughness without heat treatment. The cast aluminum alloy prepared by this process exhibits excellent strength and plasticity. This product can be used to prepare large aluminum alloy structural parts without heat treatment, which saves a lot of tooling, man-hours and labor required for correction during heat treatment and after heat treatment, reduces energy consumption, simplifies the production process of aluminum alloy structural parts, and reduces preparation costs. , has important application value.
Description
技术领域technical field
本发明涉及铝合金加工和制备领域,具体涉及一种新型高强韧铸态铝合金及制备方法。The invention relates to the field of aluminum alloy processing and preparation, in particular to a novel high-strength and tough cast aluminum alloy and a preparation method.
背景技术Background technique
目前,随着我国汽车行业的快速发展,追求更轻、更快、更环保的理念逐渐成为汽车行业的核心战略目标。汽车自主创新迫切需要先进、轻量化、高强韧性的汽车关键零部件的材料和制造技术。而目前,我国汽车产业中,大部分白车身为钢材。钢材虽然具有强度高,耐冲击性能较好等特点,但其密度较大,难以实现汽车的轻量化。而铝合金作为一种密度低、比强度高、耐腐蚀性较好的合金,将逐渐代替部分钢材冲压件,成为轻量化发展的重要组成部分。使用铝合金来代替钢材,最多可以使整体车身减重将近50%。所以,铝合金结构件及其材质的生产和研发,尤其是大型复杂铝合金结构件及其材质的研发至关重要,关系到乘用车轻量化发展进程、技术创新及轻量化的成败,有着重要的现实意义。部分前期研发可应用于乘用车的大型复杂铝合金结构件多为压铸件,一般压铸件无法热处理,因此强度较低、塑性差,无法满足车身结构件所需的塑性以及安全性的要求。其他的铸造方法如真空压铸件、低压铸造件和倾转铸造件,尽管这几种方法可以热处理,但是后续热处理过程较为复杂,且高温下热处理铝合金的变形严重,后续还需对热处理后铝合金结构件进行校正,也会进一步增加对能耗、工装、工时、人工的要求,延长了制造周期,增加了制造成本。基于以上原因,目前的汽车制造产业急需一种新型的无需后续热处理的高强韧铸态铝合金。纳米TiB2、NbB2、TiC陶瓷颗粒具有高熔点、高硬度、很好的耐腐蚀性以及很高的电导率等特点,且尺寸小,数量多,经过陶瓷颗粒强化的铝合金材料其强度、塑性都有明显的提高。较低的陶瓷颗粒含量即可获得很好的强化效果,这也使得制备过程简便,成本易于控制。经过纳米颗粒强化的铸态铝合金可以直接用于结构件的制备,不需要任何后续热处理工艺,大幅简化铝合金的生产工艺。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入纳米陶瓷颗粒强化铝合金,同时严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不经热处理的高强韧铸态铝合金。经过本专利涉及的制备方法制备的铝合金的强度和塑性有较大程度的提高,本方案可以避免大型铝合金构件热处理工艺,大量节省热处理和热处理后校正所需的工装、工时、人工,同时减少能源能耗,对于简化合金生产工艺、降低成本具有重要的应用价值。At present, with the rapid development of my country's automobile industry, the pursuit of lighter, faster and more environmentally friendly concepts has gradually become the core strategic goal of the automobile industry. Automobile independent innovation urgently needs advanced, lightweight, high-strength and high-strength materials and manufacturing technologies for key automotive parts. At present, in my country's automobile industry, most of the body-in-white is made of steel. Although steel has the characteristics of high strength and good impact resistance, its density is relatively high, making it difficult to reduce the weight of automobiles. As an alloy with low density, high specific strength and good corrosion resistance, aluminum alloy will gradually replace some steel stamping parts and become an important part of lightweight development. Using aluminum alloy instead of steel can reduce the overall body weight by nearly 50%. Therefore, the production and research and development of aluminum alloy structural parts and their materials, especially the research and development of large and complex aluminum alloy structural parts and their materials are very important. important practical significance. Some of the large and complex aluminum alloy structural parts that can be applied to passenger cars in the early stage are mostly die-casting parts. Generally, die-casting parts cannot be heat-treated, so they have low strength and poor plasticity, and cannot meet the plasticity and safety requirements required for body structural parts. Other casting methods such as vacuum die casting, low pressure casting and tilting casting, although these methods can be heat treated, the subsequent heat treatment process is more complicated, and the deformation of the heat treated aluminum alloy at high temperature is serious, and subsequent heat treatment of the aluminum alloy is required. Calibration of alloy structural parts will further increase the requirements for energy consumption, tooling, working hours, and labor, prolong the manufacturing cycle, and increase manufacturing costs. Based on the above reasons, the current automobile manufacturing industry is in urgent need of a new type of cast aluminum alloy with high strength and toughness that does not require subsequent heat treatment. Nano-TiB 2 , NbB 2 , TiC ceramic particles have the characteristics of high melting point, high hardness, good corrosion resistance and high electrical conductivity, etc., and are small in size and large in number. The strength, Plasticity has been significantly improved. A good strengthening effect can be obtained with a low content of ceramic particles, which also makes the preparation process simple and the cost easy to control. The as-cast aluminum alloy strengthened by nanoparticles can be directly used in the preparation of structural parts without any subsequent heat treatment process, which greatly simplifies the production process of aluminum alloy. The technical solution involved in the present invention is to prepare a new type of high-strength and tough cast alloy without heat treatment by designing, smelting, and refining the aluminum alloy composition, and then adding nano-ceramic particles to strengthen the aluminum alloy, while strictly controlling the content of Fe, Ti, and Zn impurity elements. state aluminum alloy. The strength and plasticity of the aluminum alloy prepared by the preparation method involved in this patent are greatly improved. This solution can avoid the heat treatment process of large aluminum alloy components, and save a lot of tooling, man-hours and labor required for heat treatment and correction after heat treatment. At the same time Reducing energy consumption has important application value for simplifying alloy production process and reducing cost.
发明内容Contents of the invention
本发明所要解决的问题是提供一种新型高强韧铸态铝合金及制备方法。The problem to be solved by the present invention is to provide a novel high-strength and toughness cast aluminum alloy and a preparation method thereof.
本发明的目的可以通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:
一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A novel high-strength and toughness cast aluminum alloy and a preparation method thereof, comprising the following steps:
(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:
以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。Raw materials are prepared with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper.
按照铝合金的成分为:Si:9.30wt.%~10.5wt.%;Mg:0.39wt.%~2.70wt.%;Cu:0.00wt.%~1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003-1023K条件下熔炼0.5h~1h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 9.30wt.% ~ 10.5wt.%; Mg: 0.39wt.% ~ 2.70wt.%; Cu: 0.00wt.% ~ 1.00wt.%; Zn: ≤0.15wt.% ; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; the balance is Al, and the aluminum alloy is prepared. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003-1023K and smelt for 0.5h-1h to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:
经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003-1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理5-10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1003-1023K, the rotating air blowing probe is extended into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining with gas, blowing gas for 5-10 minutes, and using an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid during refining.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al、30wt.%NbB2/Al、30wt.%TiC/Al中间合金。其中纳米TiB2、NbB2、TiC陶瓷颗粒实际加入量为0.02-0.3wt.%,机械搅拌2-5min;将超声波探头下降至液面以下100mm并保温3-8min;随后开启超声波设备,对混合合金液采用超声处理3-10min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05-0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置5-10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al, 30wt.% NbB 2 /Al , 30wt.% TiC/Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was completed. The actual amount of nano-TiB 2 , NbB 2 , and TiC ceramic particles added is 0.02-0.3wt.%, and mechanically stirred for 2-5 minutes; the ultrasonic probe is lowered to 100 mm below the liquid surface and kept warm for 3-8 minutes; then the ultrasonic equipment is turned on, and the mixed The alloy liquid is ultrasonically treated for 3-10 minutes to assist the uniform dispersion of nanoparticles. The alloy liquid after ultrasonic treatment is added with 0.05-0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 5-10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973-1003K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 973-1003K;
优选的,步骤三中所述精炼剂成分为:35-50wt.%KCl、30-40wt.%MgCl2、5-10wt.%AlF3、10-15wt.%Na3AlF6、5-10wt.%Mg3N2、2-5wt.%Na2CO3、2-5wt.%C2Cl6。Preferably, the refining agent components in step three are: 35-50wt.% KCl, 30-40wt.% MgCl 2 , 5-10wt.% AlF 3 , 10-15wt.% Na 3 AlF6, 5-10wt.% Mg 3 N 2 , 2-5 wt.% Na 2 CO 3 , 2-5 wt.% C 2 Cl 6 .
优选的,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Preferably, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
该发明的有益效果在于:本发明涉及新型高强韧铸态铝合金及制备方法,包括以下四个步骤:(1)铝合金配比及熔炼;(2)铝合金精炼;(3)微量纳米颗粒强化铝合金;(4)铝合金铸造成型。本发明涉及的技术方案是通过铝合金成分设计、熔炼、精炼,随后加入微量的纳米TiB2、NbB2、TiC颗粒强化铝合金,并严格控制Fe、Ti、Zn杂质元素的含量,制备一种新型不热处理的高强韧铸态铝合金。经过本工艺制备的铸态铝合金表现出优异的强度和塑性。该产品可用于制备大型铝合金结构件,不经过热处理,大量节省热处理时和热处理后校正所需的工装、工时、人工,减少能源能耗,简化铝合金结构件的生产工艺流程、降低制备成本,具有重要的应用价值。The beneficial effect of the invention is that: the invention relates to a novel high-strength and toughness cast aluminum alloy and its preparation method, including the following four steps: (1) aluminum alloy proportioning and smelting; (2) aluminum alloy refining; (3) trace nanoparticles Reinforced aluminum alloy; (4) Aluminum alloy casting. The technical solution involved in the present invention is to design, smelt, and refine the aluminum alloy composition, then add a small amount of nano-TiB 2 , NbB 2 , TiC particles to strengthen the aluminum alloy, and strictly control the content of Fe, Ti, and Zn impurity elements to prepare a A new type of cast aluminum alloy with high strength and toughness without heat treatment. The cast aluminum alloy prepared by this process exhibits excellent strength and plasticity. This product can be used to prepare large aluminum alloy structural parts without heat treatment, which saves a lot of tooling, man-hours and labor required for correction during heat treatment and after heat treatment, reduces energy consumption, simplifies the production process of aluminum alloy structural parts, and reduces preparation costs. , has important application value.
具体实施方式Detailed ways
为使本发明实现的技术手段、创新特征、达成目的易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, innovative features, and goals achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific embodiments.
实施例1:Example 1:
本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:
(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。按照铝合金的成分为:Si:9.80wt.%;Mg:0.39wt.%;Cu:1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper. According to the composition of aluminum alloy: Si: 9.80wt.%; Mg: 0.39wt.%; Cu: 1.00wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.% %; the balance is Al, the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理5min,精炼时采用在线测氢仪测定铝液的液态氢含量。(2) Step 2, aluminum alloy refining: transfer the smelted aluminum liquid to the holding furnace for heat preservation, and then carry out refining in the furnace. Feed chlorine and argon into the molten aluminum for refining, blow it for 5 minutes, and use an online hydrogen detector to measure the liquid hydrogen content of the molten aluminum during refining.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al中间合金。其中纳米TiB2陶瓷颗粒实际加入量为0.3wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温5min;随后开启超声波设备,对混合合金液采用超声处理10min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was completed. The actual amount of nano -TiB2 ceramic particles added is 0.3wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 5 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 10 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;
其中,步骤三中所述精炼剂成分为:35wt.%KCl、45wt.%MgCl2、5wt.%AlF3、5wt.%Na3AlF6、5wt.%Mg3N2、3wt.%Na2CO3、2wt.%C2Cl6。Wherein, the refining agent composition in step three is: 35wt.% KCl, 45wt.% MgCl 2 , 5wt.% AlF 3 , 5wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 3wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .
其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
所述实例1中,经过0.3wt.%TiB2纳米颗粒强化处理的Al-Si10-Cu1-Mg0.39铝合金,其铸态下的力学性能优良:屈服强度为135.5MPa,抗拉强度为271.6MPa,延伸率为13.0%。如表1所示。In the example 1, the Al-Si 10 -Cu 1 -Mg 0.39 aluminum alloy strengthened by 0.3wt.% TiB 2 nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 135.5 MPa, and the tensile strength is 271.6MPa, elongation 13.0%. As shown in Table 1.
实施例2:Example 2:
本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:
(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。按照铝合金的成分为:Si:10.2wt.%;Mg:0.39wt.%;Cu:1.00wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003K条件下熔炼1h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper. According to the composition of aluminum alloy: Si: 10.2wt.%; Mg: 0.39wt.%; Cu: 1.00wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.% %; the balance is Al, the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003K and melt for 1 hour to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理8min,精炼时采用在线测氢仪测定铝液的液态氢含量。(2) Step 2, aluminum alloy refining: the smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. Chlorine and argon are introduced into the molten aluminum for refining, blown for 8 minutes, and the liquid hydrogen content of the molten aluminum is measured by an online hydrogen detector during refining.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%NbB2/Al中间合金。其中纳米NbB2陶瓷颗粒实际加入量为0.3wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温8min;随后开启超声波设备,对混合合金液采用超声处理5min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05wt.%铝合金精炼剂进行除气精炼、扒渣、静置5min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% NbB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano -NbB2 ceramic particles added is 0.3wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100 mm below the liquid surface and kept warm for 8 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 5 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.05wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 5 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy billet, the thickness of the plate-shaped billet is 20mm, and the casting control temperature is 973K;
其中,步骤三中所述精炼剂成分为:45wt.%KCl、30wt.%MgCl2、5wt.%AlF3、11wt.%Na3AlF6、5wt.%Mg3N2、2wt.%Na2CO3、2wt.%C2Cl6。Wherein, the refining agent composition in step three is: 45wt.% KCl, 30wt.% MgCl 2 , 5wt.% AlF 3 , 11wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .
其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
所述实例2中,经过0.3wt.%NbB2纳米颗粒强化处理的Al-Si10-Cu1-Mg0.39铝合金,其铸态下的力学性能优良:屈服强度为141.7MPa,抗拉强度为276.8MPa,延伸率为12.4%。如表1所示。In the example 2, the Al-Si 10 -Cu 1 -Mg 0.39 aluminum alloy strengthened by 0.3wt.% NbB 2 nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 141.7MPa, and the tensile strength is 276.8MPa, elongation 12.4%. As shown in Table 1.
实施例3:Example 3:
本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:
(1)步骤一、铝合金配比及熔炼:以纯铝、Al-Si12中间合金、纯镁为原料备料。按照铝合金的成分为:Si:9.30wt.%;Mg:2.60wt.%;;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;(1) Step 1, proportioning and smelting of aluminum alloy: prepare raw materials with pure aluminum, Al-Si 12 master alloy and pure magnesium. According to the composition of aluminum alloy: Si: 9.30wt.%; Mg: 2.60wt.%;; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; , the preparation of aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:
经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1023K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 10 minutes, during refining, use an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%NbB2/Al中间合金。其中纳米NbB2陶瓷颗粒实际加入量为0.02wt.%,机械搅拌3min;将超声波探头下降至液面以下100mm并保温5min;随后开启超声波设备,对混合合金液采用超声处理5min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.05wt.%铝合金精炼剂进行除气精炼、扒渣、静置6min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% NbB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano- NbB2 ceramic particles added is 0.02wt.%, and mechanically stirred for 3 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 5 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 5 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.05wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 6 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;
其中,步骤三中所述精炼剂成分为:40wt.%KCl、35wt.%MgCl2、6wt.%AlF3、10wt.%Na3AlF6、5wt.%Mg3N2、2wt.%Na2CO3、2wt.%C2Cl6。Wherein, the refining agent composition in Step 3 is: 40wt.% KCl, 35wt.% MgCl 2 , 6wt.% AlF 3 , 10wt.% Na 3 AlF6, 5wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 2 wt.% C 2 Cl 6 .
其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
所述实例3中,经过0.02wt.%NbB2纳米颗粒强化处理的Al-Si10-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为187.9MPa,抗拉强度为269.2MPa,延伸率为9.8%。如表1所示。In the example 3, the Al-Si 10 -Mg 2.6 aluminum alloy strengthened by 0.02wt.% NbB 2 nanoparticles has excellent mechanical properties in the as-cast state: yield strength is 187.9MPa, tensile strength is 269.2MPa, The elongation was 9.8%. As shown in Table 1.
实施例4:Example 4:
本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:
(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:
以纯铝、Al-Si12中间合金、纯镁为原料备料。Prepare raw materials with pure aluminum, Al-Si 12 master alloy and pure magnesium.
按照铝合金的成分为:Si:10.5wt.%;Mg:2.70wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1023K条件下熔炼0.5h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 10.5wt.%; Mg: 2.70wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; Formulated aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1023K and melt for 0.5h to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:
经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1023K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理10min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1023K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 10 minutes, during refining, use an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiC/Al中间合金。其中纳米TiC陶瓷颗粒实际加入量为0.02wt.%,机械搅拌2min;将超声波探头下降至液面以下100mm并保温6min;随后开启超声波设备,对混合合金液采用超声处理3min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置10min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiC/Al master alloy containing endogenous nano-ceramic particles was added after the gas purification melt was finished. The actual amount of nano-TiC ceramic particles added is 0.02wt.%, mechanically stirred for 2 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 6 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 3 minutes to assist the uniform dispersion of nanoparticles . The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 10 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为1003K;Cast the molten aluminum into a series of metal molds to form a plate-shaped aluminum alloy casting slab, the thickness of the plate-shaped casting slab is 20mm, and the casting control temperature is 1003K;
其中,步骤三中所述30wt.%TiC/Al中间合金中TiC纳米颗粒的Ti/C=1:1。Wherein, Ti/C=1:1 of the TiC nanoparticles in the 30wt.% TiC/Al master alloy mentioned in the third step.
其中,步骤三中所述精炼剂成分为:40wt.%KCl、30wt.%MgCl2、6wt.%AlF3、10wt.%Na3AlF6、6wt.%Mg3N2、4wt.%Na2CO3、4wt.%C2Cl6。Wherein, the refining agent composition in step three is: 40wt.% KCl, 30wt.% MgCl 2 , 6wt.% AlF 3 , 10wt.% Na 3 AlF6, 6wt.% Mg 3 N 2 , 4wt.% Na 2 CO 3. 4 wt.% C 2 Cl 6 .
其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
所述实例4中,经过0.3wt.%TiC纳米颗粒强化处理的Al-Si10-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为181.0MPa,抗拉强度为277.2MPa,延伸率为9.1%。如表1所示。In the example 4, the Al-Si 10 -Mg 2.6 aluminum alloy treated with 0.3wt.% TiC nanoparticles has excellent mechanical properties in the as-cast state: the yield strength is 181.0MPa, the tensile strength is 277.2MPa, and the tensile strength is 277.2MPa. The rate was 9.1%. As shown in Table 1.
实施例5:Example 5:
本实例的一种新型高强韧铸态铝合金及制备方法,包括以下步骤:A kind of novel high-strength and toughness cast aluminum alloy of this example and preparation method, comprise the following steps:
(1)步骤一、铝合金配比及熔炼:(1) Step 1, aluminum alloy proportioning and smelting:
以纯铝、Al-Si12中间合金、纯镁、纯铜为原料备料。Raw materials are prepared with pure aluminum, Al-Si 12 master alloy, pure magnesium and pure copper.
按照铝合金的成分为:Si:9.5wt.%;Mg:2.60wt.%;Zn:≤0.15wt.%;Ti:≤0.10wt.%;Fe:≤0.10wt.%;余量为Al,配制铝合金。将配制铝合金的原料一起加入到干燥的熔炼炉中,加热到温度为1003K条件下熔炼1h,得到铝合金熔液;According to the composition of aluminum alloy: Si: 9.5wt.%; Mg: 2.60wt.%; Zn: ≤0.15wt.%; Ti: ≤0.10wt.%; Fe: ≤0.10wt.%; Formulated aluminum alloy. Add the raw materials for preparing aluminum alloy into a dry melting furnace, heat to 1003K and melt for 1 hour to obtain aluminum alloy melt;
(2)步骤二、铝合金精炼:(2) Step two, aluminum alloy refining:
经熔炼的铝液转至保温炉保温,然后进行炉内精炼,在温度为1003K条件下,将旋转吹气探头伸入保温炉底部,由旋转吹气探头向铝液通入氯气和氩气进行精炼,吹气处理6min,精炼时采用在线测氢仪测定铝液的液态氢含量。The smelted aluminum liquid is transferred to the holding furnace for heat preservation, and then refined in the furnace. At a temperature of 1003K, the rotating air blowing probe is inserted into the bottom of the holding furnace, and chlorine and argon are introduced into the aluminum liquid through the rotating air blowing probe. Refining, gas blowing treatment for 6 minutes, using an online hydrogen detector to measure the liquid hydrogen content of the aluminum liquid during refining.
(3)步骤三、微量纳米颗粒强化铝合金:(3) Step 3, micro-nanoparticle-strengthened aluminum alloy:
气体净化熔体结束后分别加入含有内生纳米陶瓷颗粒的30wt.%TiB2/Al中间合金。其中纳米TiB2陶瓷颗粒实际加入量为0.02wt.%,机械搅拌5min;将超声波探头下降至液面以下100mm并保温3min;随后开启超声波设备,对混合合金液采用超声处理3min,辅助纳米颗粒分散均匀。超声处理后的合金液加入0.10wt.%铝合金精炼剂进行除气精炼、扒渣、静置8min;经过最后除渣处理的铝液可以直接进行浇铸;30wt.% TiB 2 /Al master alloys containing endogenous nano-ceramic particles were respectively added after the gas purification melt was finished. The actual amount of nano -TiB2 ceramic particles added is 0.02wt.%, and mechanically stirred for 5 minutes; the ultrasonic probe is lowered to 100mm below the liquid surface and kept warm for 3 minutes; then the ultrasonic equipment is turned on, and the mixed alloy liquid is ultrasonically treated for 3 minutes to assist in the dispersion of nanoparticles uniform. The alloy liquid after ultrasonic treatment is added with 0.10wt.% aluminum alloy refining agent for degassing and refining, slag removal, and standing for 8 minutes; the aluminum liquid after the final slag removal treatment can be directly cast;
(4)步骤四、铝合金铸造成型:(4) Step 4, aluminum alloy casting molding:
将铝液浇铸到一系列金属型模具中成板状铝合金铸坯,板状铸坯的厚度为20mm,浇铸控制温度为973K;Cast aluminum liquid into a series of metal molds to form a plate-shaped aluminum alloy billet, the thickness of the plate-shaped billet is 20mm, and the casting control temperature is 973K;
其中,步骤三中所述精炼剂成分为:40wt.%KCl、32wt.%MgCl2、8wt.%AlF3、6wt.%Na3AlF6、9wt.%Mg3N2、2wt.%Na2CO3、3wt.%C2Cl6。Wherein, the refining agent composition in step three is: 40wt.% KCl, 32wt.% MgCl 2 , 8wt.% AlF 3 , 6wt.% Na 3 AlF6, 9wt.% Mg 3 N 2 , 2wt.% Na 2 CO 3. 3 wt.% C 2 Cl 6 .
其中,步骤四中金属型模具的材质为:45#钢。金属型模具的尺寸为:200mm×150mm×20mm。Wherein, the material of the metal mold in step 4 is: 45# steel. The size of the metal mold is: 200mm×150mm×20mm.
所述实例5中,经过0.3wt.%TiB2纳米颗粒强化处理的Al-Si9.5-Mg2.6铝合金,其铸态下的力学性能优良:屈服强度为189.2MPa,抗拉强度为282.7MPa,延伸率为10.2%。如表1所示。In the example 5, the Al-Si 9.5 -Mg 2.6 aluminum alloy strengthened by 0.3wt.% TiB 2 nanoparticles has excellent mechanical properties in the as-cast state: yield strength is 189.2MPa, tensile strength is 282.7MPa, The elongation was 10.2%. As shown in Table 1.
表1为实例1-5中不同合金成分、不同精炼工艺、不同微量纳米颗粒强化铝合金处理工艺下的铝合金的屈服强度、抗拉强度、延伸率数值。Table 1 shows the values of yield strength, tensile strength and elongation of aluminum alloys in Examples 1-5 under different alloy compositions, different refining processes, and different treatment processes for strengthening aluminum alloys with micro-nanoparticles.
表1Table 1
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710436504.1A CN107254610A (en) | 2017-06-12 | 2017-06-12 | Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of |
CN2017104365041 | 2017-06-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108103368A true CN108103368A (en) | 2018-06-01 |
Family
ID=60024113
Family Applications (19)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710436504.1A Pending CN107254610A (en) | 2017-06-12 | 2017-06-12 | Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of |
CN201711273943.1A Active CN108070733B (en) | 2017-06-12 | 2017-12-06 | A new type of nanometer boride titanium-ceramic-aluminum composite welding wire |
CN201711273936.1A Active CN108103346B (en) | 2017-06-12 | 2017-12-06 | Aluminum alloy welding wire containing trace nano particles and preparation method thereof |
CN201711274044.3A Active CN107955889B (en) | 2017-06-12 | 2017-12-06 | A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles |
CN201711273967.7A Active CN108080811B (en) | 2017-06-12 | 2017-12-06 | A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles |
CN201711274094.1A Active CN108018444B (en) | 2017-06-12 | 2017-12-06 | A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material |
CN201711273929.1A Active CN108103345B (en) | 2017-06-12 | 2017-12-06 | Contains trace nano NbB2Granular aluminum alloy welding wire rod |
CN201711273961.XA Active CN107955888B (en) | 2017-06-12 | 2017-12-06 | A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy |
CN201711273930.4A Pending CN108103332A (en) | 2017-06-12 | 2017-12-06 | A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing |
CN201711274059.XA Active CN108018443B (en) | 2017-06-12 | 2017-12-06 | Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method |
CN201711273983.6A Active CN108018442B (en) | 2017-06-12 | 2017-12-06 | Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles |
CN201711273970.9A Active CN108103338B (en) | 2017-06-12 | 2017-12-06 | Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy |
CN201711273941.2A Active CN108080815B (en) | 2017-06-12 | 2017-12-06 | Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof |
CN201711273950.1A Pending CN108060314A (en) | 2017-06-12 | 2017-12-06 | One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle |
CN201711274134.2A Active CN108085528B (en) | 2017-06-12 | 2017-12-06 | A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy |
CN201711273974.7A Pending CN108103368A (en) | 2017-06-12 | 2017-12-06 | The tough as-cast aluminum alloy of novel high-strength and preparation method |
CN201711274156.9A Pending CN108085575A (en) | 2017-06-12 | 2017-12-06 | Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle |
CN201711273901.8A Pending CN107952948A (en) | 2017-06-12 | 2017-12-06 | As-cast aluminum alloy wheel hub low-pressure casting preparation method |
CN201711415938.XA Active CN108165793B (en) | 2017-06-12 | 2017-12-25 | A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material |
Family Applications Before (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710436504.1A Pending CN107254610A (en) | 2017-06-12 | 2017-06-12 | Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of |
CN201711273943.1A Active CN108070733B (en) | 2017-06-12 | 2017-12-06 | A new type of nanometer boride titanium-ceramic-aluminum composite welding wire |
CN201711273936.1A Active CN108103346B (en) | 2017-06-12 | 2017-12-06 | Aluminum alloy welding wire containing trace nano particles and preparation method thereof |
CN201711274044.3A Active CN107955889B (en) | 2017-06-12 | 2017-12-06 | A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles |
CN201711273967.7A Active CN108080811B (en) | 2017-06-12 | 2017-12-06 | A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles |
CN201711274094.1A Active CN108018444B (en) | 2017-06-12 | 2017-12-06 | A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material |
CN201711273929.1A Active CN108103345B (en) | 2017-06-12 | 2017-12-06 | Contains trace nano NbB2Granular aluminum alloy welding wire rod |
CN201711273961.XA Active CN107955888B (en) | 2017-06-12 | 2017-12-06 | A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy |
CN201711273930.4A Pending CN108103332A (en) | 2017-06-12 | 2017-12-06 | A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing |
CN201711274059.XA Active CN108018443B (en) | 2017-06-12 | 2017-12-06 | Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method |
CN201711273983.6A Active CN108018442B (en) | 2017-06-12 | 2017-12-06 | Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles |
CN201711273970.9A Active CN108103338B (en) | 2017-06-12 | 2017-12-06 | Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy |
CN201711273941.2A Active CN108080815B (en) | 2017-06-12 | 2017-12-06 | Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof |
CN201711273950.1A Pending CN108060314A (en) | 2017-06-12 | 2017-12-06 | One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle |
CN201711274134.2A Active CN108085528B (en) | 2017-06-12 | 2017-12-06 | A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711274156.9A Pending CN108085575A (en) | 2017-06-12 | 2017-12-06 | Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle |
CN201711273901.8A Pending CN107952948A (en) | 2017-06-12 | 2017-12-06 | As-cast aluminum alloy wheel hub low-pressure casting preparation method |
CN201711415938.XA Active CN108165793B (en) | 2017-06-12 | 2017-12-25 | A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material |
Country Status (1)
Country | Link |
---|---|
CN (19) | CN107254610A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109439951A (en) * | 2018-12-27 | 2019-03-08 | 吉林大学 | A method of ceramics particle strengthened dose of reinforcing alusil alloy of scale is mixed based on multiphase |
CN109439973A (en) * | 2018-12-27 | 2019-03-08 | 吉林大学 | A kind of alusil alloy and preparation method thereof mixing scale ceramic particle based on multiphase |
CN109468485A (en) * | 2018-12-27 | 2019-03-15 | 吉林大学 | A kind of preparation method of nanometer endogenous TiC particle reinforced aluminum alloy sheet |
CN109554570A (en) * | 2018-12-27 | 2019-04-02 | 吉林大学青岛汽车研究院 | A kind of molten internal in-situ multiphase mixes the method for scale ceramic reinforced aluminium alloy |
CN109576525A (en) * | 2018-12-27 | 2019-04-05 | 吉林大学 | A method of strengthening 7075 aluminum alloy rolled plates |
CN109680180A (en) * | 2018-12-27 | 2019-04-26 | 吉林大学青岛汽车研究院 | A method of strengthening Al-Zn-Mg-Cu aluminum alloy extrusion section bar |
CN111809075A (en) * | 2020-07-03 | 2020-10-23 | 西安石油大学 | A kind of Ti coating Ti3AlC2 particle reinforced Al-based internal combustion engine piston connecting rod and its manufacturing method |
CN114703390A (en) * | 2022-06-06 | 2022-07-05 | 中国航发北京航空材料研究院 | Refining agent and method for refining and purifying aluminum alloy combined with argon on-line casting |
CN116179883A (en) * | 2022-12-28 | 2023-05-30 | 吉林大学 | A kind of preparation method of nanometer NbB2 particle reinforced NiAl alloy |
CN116179884A (en) * | 2022-12-28 | 2023-05-30 | 吉林大学 | Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107254610A (en) * | 2017-06-12 | 2017-10-17 | 吉林大学 | Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of |
CN108500234B (en) * | 2018-03-19 | 2020-01-31 | 中信戴卡股份有限公司 | Manufacturing process of aluminum alloy wheels |
CN108424341B (en) * | 2018-05-04 | 2021-01-26 | 北京理工大学 | A kind of preparation method of medicine type cover with high activity Ti/2B nano powder material added |
CN108504885A (en) * | 2018-05-15 | 2018-09-07 | 深圳市奥力压铸五金制品有限公司 | The preparation method and alusil alloy of alusil alloy |
CN108817734B (en) * | 2018-05-25 | 2020-04-24 | 迈特李新材料(广州)有限公司 | Metal-based nanocomposite welding wire and preparation method thereof |
CN108531788B (en) * | 2018-05-29 | 2019-10-11 | 东北轻合金有限责任公司 | A kind of manufacturing method of space flight silicon aluminum alloy welding wire wire rod |
CN108754242B (en) * | 2018-06-15 | 2020-02-07 | 淮阴工学院 | In-situ endogenetic ceramic phase synergistic reinforced aluminum-based composite material and forming method thereof |
CN110052615A (en) * | 2018-08-10 | 2019-07-26 | 南方科技大学 | Method for preparing high-strength aluminum alloy by selective laser melting |
CN109136608B (en) * | 2018-08-22 | 2020-06-09 | 北京理工大学 | A preparation method of TiB whisker reinforced titanium matrix composite material with controllable orientation |
CN109023084A (en) * | 2018-09-07 | 2018-12-18 | 吉林大学 | A kind of micro nano-TiC particle strengthens steel and preparation method thereof |
CN109023153A (en) * | 2018-09-07 | 2018-12-18 | 吉林大学 | Micro nano-TiC particle Strengthening and Toughening forging hot die steel in a kind of original position and preparation method thereof |
CN109055860A (en) * | 2018-09-07 | 2018-12-21 | 吉林大学 | One specific admixture scale TiCN and TiB2Particle Strengthening and Toughening low-alloy steel and preparation method thereof |
CN109207758B (en) * | 2018-10-20 | 2021-05-04 | 苏州安路特汽车部件有限公司 | Aluminum alloy workpiece smelting and casting process |
CN109295351B (en) * | 2018-10-31 | 2020-11-10 | 浙江万丰摩轮有限公司 | Die-casting aluminum alloy and preparation method and application thereof |
CN109439948A (en) * | 2018-12-20 | 2019-03-08 | 中国兵器科学研究院宁波分院 | A kind of nanometer fining agent and preparation method thereof for aluminium alloy |
CN109628787B (en) * | 2018-12-27 | 2020-05-08 | 吉林大学 | Preparation method of Al-Cu-Mg-Si alloy plate reinforced by in-situ micro-nano particles in melt |
CN109536769A (en) * | 2018-12-27 | 2019-03-29 | 吉林大学 | Two-way vertical controlled rolling trace Ti C-TiB2The preparation method of REINFORCED Al-Si-Mg sheet alloy |
CN109554571B (en) * | 2018-12-27 | 2019-10-22 | 吉林大学 | A preparation method of micro-TiC reinforced Al-Cu-Mg alloy plate by bidirectional vertical controlled rolling |
CN109439952B (en) * | 2018-12-27 | 2021-04-16 | 吉林大学 | A kind of preparation method of micro-nano hybrid scale multiphase ceramic particles |
CN109396422B (en) * | 2018-12-27 | 2019-09-27 | 吉林大学 | A kind of method evenly dispersed in the pre-dispersed complementary melt of nano particle in parcel |
CN109628788B (en) * | 2018-12-27 | 2021-02-12 | 吉林大学 | Method for preparing high-elasticity-modulus and high-strength aluminum alloy by mixing multi-phase ceramic particles |
CN109609798B (en) * | 2018-12-27 | 2020-03-20 | 吉林大学 | Controlled rolling preparation method of trace micro-nano hybrid particle reinforced Al-Cu-Mg-Si plate |
CN109609814B (en) * | 2018-12-27 | 2020-03-20 | 吉林大学 | High-strength aluminum alloy with high elastic modulus mixed with double-scale ceramic particles and preparation method thereof |
CN109570497A (en) * | 2018-12-27 | 2019-04-05 | 吉林大学青岛汽车研究院 | Raw multiple dimensioned pottery aluminium composite material of multiphase and preparation method thereof in one kind |
CN109439942B (en) * | 2018-12-27 | 2020-05-22 | 吉林大学 | Preparation method of ceramic-aluminum composite material based on endogenous nano TiCxNy particles |
CN109554572B (en) * | 2018-12-27 | 2020-03-20 | 吉林大学 | Multi-scale ceramic particle-mixed high-elasticity-modulus high-strength aluminum alloy and preparation method thereof |
CN109811161B (en) * | 2019-02-27 | 2021-04-16 | 北京工业大学 | A kind of large volume fraction nanoscale Al-TiB2 master alloy and preparation method thereof |
CN109778020A (en) * | 2019-03-11 | 2019-05-21 | 江苏华企铝业科技股份有限公司 | The high-densit aluminum titanium alloy ingot of high-purity and its manufacturing method |
CN109881050A (en) * | 2019-03-25 | 2019-06-14 | 滨州戴森车轮科技有限公司 | A kind of wheel hub and its processing technology for improving the wheel hub paint film adhesion |
JP6794604B1 (en) * | 2019-04-19 | 2020-12-02 | 住友電工ハードメタル株式会社 | Cutting tools |
US20210046553A1 (en) * | 2019-04-19 | 2021-02-18 | Sumitomo Electric Hardmetal Corp. | Cutting tool |
CN110181193B (en) * | 2019-05-17 | 2021-01-08 | 江西理工大学 | A new type of Al-Mg-Ti alloy welding wire and its preparation method |
CN110205527B (en) * | 2019-06-28 | 2020-05-05 | 江西理工大学 | Al-Mg-Si alloy wire for additive manufacturing and preparation method thereof |
CN110129640B (en) * | 2019-06-28 | 2020-05-05 | 江西理工大学 | 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof |
CN110205511A (en) * | 2019-06-28 | 2019-09-06 | 江西理工大学 | A kind of high-strength Al-Si alloy welding wire and preparation method thereof |
CN110184492B (en) * | 2019-06-28 | 2020-07-03 | 江西理工大学 | TiB2Particle reinforced aluminum-based composite material and preparation method thereof |
CN110306083B (en) * | 2019-07-24 | 2022-03-01 | 上海交通大学 | High-strength and tough aluminum-silicon-based composite welding wire and preparation method thereof |
CN110512125B (en) * | 2019-08-30 | 2020-09-22 | 中国航发北京航空材料研究院 | Preparation method of diameter aluminum-lithium alloy wire for additive manufacturing |
CN110560957B (en) * | 2019-09-03 | 2021-07-30 | 北京工业大学 | A micro-nano particle reinforced aluminum alloy flux-cored filler wire for welding 7075 aluminum alloy |
CN110625297B (en) * | 2019-09-19 | 2021-02-12 | 北京科技大学 | Preparation method of high-strength and high-toughness steel welding wire containing nano particles |
CN110656264A (en) * | 2019-11-05 | 2020-01-07 | 东北轻合金有限责任公司 | Manufacturing method of aluminum alloy wire for protective fence |
CN110747361A (en) * | 2019-11-20 | 2020-02-04 | 中南大学 | Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring |
CN111101026A (en) * | 2019-12-06 | 2020-05-05 | 江苏理工学院 | Preparation method of high-strength high-toughness aluminum-based composite material |
CN111097911B (en) * | 2019-12-12 | 2022-04-26 | 南方科技大学 | Ceramic-metal composite foam material and preparation method thereof |
CN111304562A (en) * | 2019-12-14 | 2020-06-19 | 江苏时代华宜电子科技有限公司 | High-modulus cast ceramic-aluminum high-purity material and preparation method thereof |
CN111057906A (en) * | 2019-12-30 | 2020-04-24 | 苏州再超冶金制品有限公司 | Nano ceramic powder reinforced alloy composite material and preparation method thereof |
CN111139385B (en) * | 2019-12-31 | 2021-06-15 | 上海交通大学 | A kind of aluminum alloy welding wire containing ceramic particles and its preparation method and application |
CN111112875B (en) * | 2019-12-31 | 2021-09-28 | 上海交通大学 | Aluminum alloy welding wire containing TiB2 particles and preparation method thereof |
CN111690857A (en) * | 2020-05-13 | 2020-09-22 | 宁波华源精特金属制品有限公司 | Engine connecting rod |
CN111411270B (en) * | 2020-05-21 | 2021-03-19 | 滨州渤海活塞有限公司 | Method for changing morphology of ferrosilicon phase in aluminum alloy |
CN111850351A (en) * | 2020-07-01 | 2020-10-30 | 吉林大学 | A method for preparing high elongation cast-rolled Al-Mn series aluminum alloy slab |
CN112264732B (en) * | 2020-10-16 | 2023-11-14 | 大连理工大学 | Welding wire for copper/steel dissimilar welding, preparation method of welding wire and copper/steel dissimilar welding method |
CN112210694B (en) * | 2020-10-21 | 2022-04-19 | 吉林大学 | Nanoparticle toughened ZTC4 titanium alloy and preparation method thereof |
CN112251646A (en) * | 2020-10-21 | 2021-01-22 | 吉林大学 | Titanium alloy powder of endogenous nano composite ceramic particles and preparation method and application thereof |
CN112593110B (en) * | 2020-12-11 | 2021-09-10 | 迈特李新材料(深圳)有限公司 | Preparation method of nano-carbide reinforced aluminum matrix composite welding wire |
CN112746195B (en) * | 2020-12-30 | 2022-02-01 | 吉林大学 | Recession-resistant refiner, preparation method and application thereof, aluminum alloy and refining method thereof |
CN113042748B (en) * | 2021-03-09 | 2022-10-11 | 中北大学 | Method for preparing high-strength high-elongation Al-Cu-Mg alloy by SLM |
CN113084395B (en) * | 2021-03-25 | 2022-09-13 | 山东滨州华创金属有限公司 | A kind of preparation method of aluminum alloy welding wire and the prepared aluminum alloy welding wire |
CN113106276B (en) * | 2021-04-10 | 2022-03-01 | 中北大学 | A kind of preparation method of multi-component synergistically strengthened aluminum matrix composite material |
CN113210573B (en) * | 2021-04-20 | 2024-04-05 | 扬州戴卡轮毂制造有限公司 | Aluminum alloy hub and multi-field coupling casting forming and grain refinement method thereof |
CN113414365A (en) * | 2021-05-14 | 2021-09-21 | 江苏大学 | Aluminum alloy hub blank manufacturing equipment and working method thereof |
CN113416861A (en) * | 2021-05-17 | 2021-09-21 | 江苏大学 | Preparation method of micro-nano dual-scale TiC particle reinforced aluminum matrix composite material |
CN113373367A (en) * | 2021-06-04 | 2021-09-10 | 江西理工大学 | Aluminum intermediate alloy containing multi-scale mixed particles and preparation method thereof |
CN113385855A (en) * | 2021-06-09 | 2021-09-14 | 江西理工大学 | Multi-scale particle modified Al-Mg alloy welding wire and preparation method thereof |
CN113373355A (en) * | 2021-06-09 | 2021-09-10 | 江西理工大学 | Multi-scale particle modified 7000 series alloy wire and preparation method thereof |
CN113737037A (en) * | 2021-09-17 | 2021-12-03 | 苏州明志科技股份有限公司 | Method for refining aluminum alloy grains |
CN113909454A (en) * | 2021-10-09 | 2022-01-11 | 大冶市东晟机械制造有限公司 | Low-pressure casting process for rear hub of alloy automobile |
CN113909733B (en) * | 2021-10-11 | 2023-06-09 | 河北科技大学 | A kind of aluminum-magnesium alloy welding wire for arc fuse additive manufacturing and preparation method thereof |
CN114350993B (en) * | 2021-12-30 | 2023-04-07 | 安徽科蓝特铝业有限公司 | Production process of high-strength aluminum alloy applied to bicycle frame |
CN114790522A (en) * | 2022-04-29 | 2022-07-26 | 山东裕航特种合金装备有限公司 | Preparation method of electronic material containing nano ceramic aluminum alloy material |
CN114908266B (en) * | 2022-05-12 | 2023-09-22 | 昆明理工大学 | A method of preparing aluminum-based composite material wire for 3D printing |
CN115159450B (en) * | 2022-07-03 | 2024-02-23 | 复旦大学 | NbB-based 2 Catalytic lifting of MgH 2 Method for hydrogen storage performance |
CN115070038B (en) * | 2022-07-21 | 2022-11-04 | 西安稀有金属材料研究院有限公司 | In-situ mixed dual-phase ceramic reinforced iron-based composite material and preparation method thereof |
CN115430843B (en) * | 2022-08-16 | 2024-10-18 | 上海交通大学 | Diphase particle reinforced additive aluminum alloy and preparation method thereof |
CN115740832B (en) * | 2022-10-18 | 2023-11-07 | 江苏鑫华能环保工程股份有限公司 | Carbon fiber reinforced magnesium alloy welding material and preparation method thereof |
CN115896524B (en) * | 2022-11-19 | 2024-03-08 | 吉林大学 | Method for improving segregation and strength of cast superalloy through micro-nano particles |
CN116240443B (en) * | 2022-12-28 | 2024-06-25 | 吉林大学 | Nano-ceramic particle reinforced stainless steel and preparation method thereof |
CN116200625B (en) * | 2022-12-28 | 2024-06-25 | 吉林大学 | Nanoparticle modified aluminum alloy and preparation method thereof |
CN116159995B (en) * | 2023-03-02 | 2023-11-17 | 阳江普利餐厨用品有限公司 | Powder material for metal additive and application thereof in production of cladding coating |
CN116334459B (en) * | 2023-03-15 | 2025-02-28 | 北京工业大学 | A micro-nano particle reinforced aluminum wire based on electroplasticity and a preparation method thereof |
CN116716508B (en) * | 2023-06-12 | 2024-11-22 | 昆明理工大学 | A TiB2/TiC ceramic reinforced aluminum alloy matrix composite piston and preparation method thereof |
CN116925837A (en) * | 2023-07-19 | 2023-10-24 | 浙江理工大学嵊州创新研究院有限公司 | Preparation method of composite nano lubricating oil for steel-steel friction pair |
CN116752018B (en) * | 2023-08-21 | 2023-12-05 | 小米汽车科技有限公司 | Heat treatment-free die-cast aluminum alloy material and preparation method thereof, automobile structural parts |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE32239T1 (en) * | 1983-11-29 | 1988-02-15 | Alcan Int Ltd | ALUMINUM REDUCTION CELLS. |
US4690796A (en) * | 1986-03-13 | 1987-09-01 | Gte Products Corporation | Process for producing aluminum-titanium diboride composites |
JPS63312923A (en) * | 1987-06-17 | 1988-12-21 | Agency Of Ind Science & Technol | Wire preform material for carbon fiber reinforced aluminum composite material |
US4909842A (en) * | 1988-10-21 | 1990-03-20 | The United States Of America As Represented By The United States Department Of Energy | Grained composite materials prepared by combustion synthesis under mechanical pressure |
US5104456A (en) * | 1990-02-15 | 1992-04-14 | Colorado School Of Mines | Process for optimizing titanium and zirconium additions to aluminum welding consumables |
US5256368A (en) * | 1992-07-31 | 1993-10-26 | The United States Of America As Represented By The Secretary Of The Interior | Pressure-reaction synthesis of titanium composite materials |
JP3417217B2 (en) * | 1996-06-07 | 2003-06-16 | トヨタ自動車株式会社 | Method for producing titanium carbide particle-dispersed metal matrix composite material |
JPH10219312A (en) * | 1997-02-10 | 1998-08-18 | Toyota Motor Corp | Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material |
NO990813L (en) * | 1999-02-19 | 2000-08-21 | Hydelko Ks | Alloy for grain refinement of aluminum alloys |
CN1079443C (en) * | 1999-06-24 | 2002-02-20 | 东南大学 | Titanium carbide reinforced antiwear aluminium alloy and its preparing process |
CN1161483C (en) * | 2001-03-23 | 2004-08-11 | 中国科学院金属研究所 | A high-strength in-situ aluminum matrix composite |
US6899844B2 (en) * | 2001-04-25 | 2005-05-31 | Taiho Kogyo Co., Ltd. | Production method of aluminum alloy for sliding bearing |
ATE422000T1 (en) * | 2001-07-25 | 2009-02-15 | Showa Denko Kk | ALUMINUM ALLOY HAVING EXCELLENT MACHINABILITY AND ALUMINUM ALLOY MATERIAL AND PRODUCTION PROCESS THEREOF |
CN1228464C (en) * | 2003-06-20 | 2005-11-23 | 吉林大学 | Method for preparing two-phase granular mixed reinforced magnesium alloy based composite material |
CN1250760C (en) * | 2003-10-30 | 2006-04-12 | 上海交通大学 | Method for preparing aluminium based composite material intensified by interlarding in situ |
CN1298877C (en) * | 2004-03-11 | 2007-02-07 | 山东理工大学 | Method for manufacturing ceramic particle reinforced aluminium-based nano composite material |
CN100422368C (en) * | 2004-07-05 | 2008-10-01 | 北京有色金属研究总院 | In situ formed TiC reinforced Al-Fe-V-Si series heat resistant aluminium alloy material and its preparation method |
FR2875153B1 (en) * | 2004-09-10 | 2008-02-01 | Pechiney Aluminium | SUPPORT WIRE FOR WELDING ALUMINUM ALLOYS |
CN100396650C (en) * | 2006-10-30 | 2008-06-25 | 陕西科技大学 | Method for preparing Ti2AlC ceramic material |
CN100443605C (en) * | 2006-12-28 | 2008-12-17 | 上海交通大学 | Preparation Method of Particle Hybrid Reinforced Aluminum Matrix Composite |
CN100460136C (en) * | 2007-01-30 | 2009-02-11 | 山东大学 | Filler metal particles for welding and preparation method thereof |
CN101214540A (en) * | 2008-01-07 | 2008-07-09 | 吉林大学 | Method for preparing TiC/TiB2 biphase ceramic granule partial reinforced manganese steel composite material |
CN101758203B (en) * | 2008-11-12 | 2013-04-03 | 郑东海 | Process for smelting and lower-pressure casting of aluminum alloy wheel hub |
CN101775514A (en) * | 2009-11-11 | 2010-07-14 | 昆明理工大学 | Method for preparing (TiB2+TiC) dispersion-strengthening copper-based composites by adopting self-propagating high-temperature synthesis |
CN101775513B (en) * | 2009-11-11 | 2012-05-30 | 昆明理工大学 | Method for preparing (TiB2+TiC) dispersion strengthened copper matrix composites by mechanical alloying |
CN101876017B (en) * | 2009-12-15 | 2012-02-29 | 哈尔滨工业大学 | Preparation method of nano ceramic particle reinforced aluminum foam matrix composite |
CN101760674B (en) * | 2010-02-05 | 2012-11-07 | 哈尔滨工业大学 | Roll forming technique of board made of NiAl-based composite material |
CN102260814B (en) * | 2011-07-26 | 2013-01-09 | 吉林大学 | In situ nano TiC ceramic particle reinforced aluminum based composite material and preparation method thereof |
CN103842534A (en) * | 2011-09-19 | 2014-06-04 | 美铝有限责任公司 | Improved aluminum casting alloys containing vanadium |
CN102366828B (en) * | 2011-10-10 | 2016-12-21 | 陈丹红 | A kind of low-pressure casting method of aluminium alloy automobile hub |
CN102430757A (en) * | 2011-11-25 | 2012-05-02 | 天津大学 | A method for preparing TiB2/TiC ultrafine powder for surface spraying of engine piston rings by high-energy ball milling |
CN102584242B (en) * | 2012-02-28 | 2013-08-14 | 吉林大学 | High-temperature high-pressure preparation method for titanium diboride |
CN102644010B (en) * | 2012-04-11 | 2014-06-18 | 北京工业大学 | Al-Ti-B-Er refiner and preparation method thereof |
CN102747254B (en) * | 2012-07-27 | 2013-10-16 | 哈尔滨工业大学 | Preparation process of reinforced intragranular aluminum matrix composites with nano ceramic particles added externally |
CN102787252B (en) * | 2012-08-14 | 2014-05-21 | 大连理工大学 | Method for In Situ Preparation of TiB2 Reinforced Aluminum Matrix Composite |
CN102839306B (en) * | 2012-09-17 | 2014-05-07 | 东北轻合金有限责任公司 | Manufacturing method of aluminum alloy welding wire for aerospace |
CN102876919B (en) * | 2012-09-27 | 2014-05-21 | 南京航空航天大学 | In-situ synthesis of TiC particle reinforced titanium aluminum alloy material and its preparation method |
KR20140063024A (en) * | 2012-11-16 | 2014-05-27 | 현대자동차주식회사 | Aluminum wheel and method for producing the same |
CN103192064A (en) * | 2013-04-25 | 2013-07-10 | 丹阳百斯特新型合金科技有限公司 | Al-Ti-B-C refiner and preparation method |
CN103266243A (en) * | 2013-06-06 | 2013-08-28 | 中南林业科技大学 | High performance aluminum alloy for low pressure casting of minicar structural member and preparation method of high performance aluminum alloy |
CN104372207B (en) * | 2013-08-12 | 2016-06-22 | 大力神铝业股份有限公司 | A kind of soldering 4004 aluminium alloys |
CN103572111A (en) * | 2013-11-20 | 2014-02-12 | 江苏江旭铸造集团有限公司 | High-strength and toughness cast aluminum alloy |
CN103817495B (en) * | 2014-03-05 | 2016-06-08 | 浙江巨科实业股份有限公司 | Manufacturing method of aluminum alloy hub |
CN104263988B (en) * | 2014-05-04 | 2016-08-24 | 昆明理工大学 | A kind of preparation method of TiB2 particle reinforced aluminum foam/aluminum alloy |
CN104120291B (en) * | 2014-07-22 | 2017-06-13 | 上海交通大学 | A kind of TiC, TiB2The preparation method of particle enhanced nickel base composite material |
CN104209498B (en) * | 2014-07-24 | 2017-02-15 | 昆明理工大学 | Preparing method of interface modification layer of ceramic particle enhanced metal base composite material |
CN104264001B (en) * | 2014-09-16 | 2016-08-17 | 广东新劲刚新材料科技股份有限公司 | In-situ synthesized particle reinforced aluminum matrix composite material and preparation method thereof |
CN104372208B (en) * | 2014-10-28 | 2019-03-29 | 赵遵成 | A kind of endogenetic particle hybrid reinforced aluminum-matrix composite material and preparation method thereof |
CN104532068B (en) * | 2014-12-15 | 2016-08-17 | 河海大学 | Nano TiC ceramic particle reinforced aluminium base composite material and preparation method thereof |
CN104532044B (en) * | 2014-12-18 | 2017-01-25 | 兰州理工大学 | Low-cost and high-efficiency Al-Ti-C-Ce refining agent and preparation method thereof |
CN105671350A (en) * | 2015-03-19 | 2016-06-15 | 中信戴卡股份有限公司 | Aluminum alloy refiner, preparation method therefor and use thereof |
CN104789811B (en) * | 2015-04-03 | 2016-09-28 | 昆明冶金研究院 | A kind of preparation method of Al-Ti-B intermediate alloy |
CN104946920B (en) * | 2015-06-17 | 2017-01-11 | 广东省材料与加工研究所 | Preparation method of grain refiner |
CN105002407A (en) * | 2015-08-13 | 2015-10-28 | 枞阳县金源汽车零部件有限公司 | Aluminum profile for automobile wheels and preparation method of aluminum profile |
CN105149590A (en) * | 2015-08-28 | 2015-12-16 | 苏州莱特复合材料有限公司 | Powder metallurgy gear and manufacturing method thereof |
CN105132733B (en) * | 2015-09-29 | 2017-10-13 | 华中科技大学 | A kind of method for preparing nanoparticle reinforced aluminum-based composite |
CN105525157A (en) * | 2016-02-17 | 2016-04-27 | 苏州华冲精密机械有限公司 | Aluminum alloy automobile hub casting process |
CN105689687A (en) * | 2016-03-01 | 2016-06-22 | 刘加兴 | High-pressure and low-pressure casting process and equipment for aluminum alloy casting products |
CN105734387B (en) * | 2016-03-17 | 2018-02-23 | 中南大学 | A kind of TiB2Based ceramic metal and preparation method thereof |
CN105728734B (en) * | 2016-03-24 | 2017-10-20 | 西安工业大学 | High-strength superfine ultra-fine(TixBy‑TiC)/ 7075Al composites and preparation method thereof |
CN105779831B (en) * | 2016-05-25 | 2017-08-29 | 桂林航天工业学院 | Aero-Space aluminium alloy welding wire and preparation method thereof |
CN105886847A (en) * | 2016-06-01 | 2016-08-24 | 上海交通大学 | High-temperature-resistant ceramic nanoparticle reinforced aluminum alloy and preparation method and application thereof |
CN105886853A (en) * | 2016-06-01 | 2016-08-24 | 上海交通大学 | Nano ceramic particle reinforced aluminum silicon alloy, preparation method and application thereof |
CN106086538A (en) * | 2016-06-21 | 2016-11-09 | 上海交通大学 | High-temperature resistant nano ceramic particle strengthens hypoeutectic al-si alloy and casting method thereof |
CN105908024A (en) * | 2016-06-21 | 2016-08-31 | 上海交通大学 | High-temperature-resistant nano ceramic particle reinforced cocrystallized Al-Si alloy and casting method thereof |
CN106086488B (en) * | 2016-07-15 | 2017-09-22 | 南南铝业股份有限公司 | Subway station furred ceiling aluminium alloy and preparation method thereof |
CN105970037B (en) * | 2016-07-15 | 2017-09-22 | 南南铝业股份有限公司 | Overpass aluminium alloy and preparation method thereof |
CN106271189B (en) * | 2016-08-24 | 2018-09-14 | 上海交通大学 | A kind of preparation method of welding wire or welding rod with small grains tissue |
CN106086546B (en) * | 2016-08-26 | 2017-08-25 | 山东金马汽车装备科技有限公司 | The low-pressure casting process of aluminium alloy wheel hub |
CN106756352B (en) * | 2016-11-22 | 2018-04-06 | 昆明理工大学 | Raw Cr in one kind2B and MgO diphase particles strengthen the preparation method of magnesium-based composite material |
CN106756264B (en) * | 2016-11-24 | 2019-06-21 | 湖南江滨机器(集团)有限责任公司 | A kind of aluminum matrix composite, preparation method and its application |
CN106591618A (en) * | 2016-12-06 | 2017-04-26 | 昆明理工大学 | Preparation method of endogenous double-phase particle enhanced aluminum-based composite material |
CN106756319A (en) * | 2016-12-13 | 2017-05-31 | 中国科学院金属研究所 | A kind of aluminium alloy and aluminum matrix composite for preparing high-strength high-plastic aluminum matrix composite |
CN107043901B (en) * | 2017-02-23 | 2019-01-08 | 吉林大学 | Basalt fibre and ceramic particle mix aluminium drill pipe material and preparation method thereof |
CN107254610A (en) * | 2017-06-12 | 2017-10-17 | 吉林大学 | Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of |
CN107419126B (en) * | 2017-07-04 | 2019-04-02 | 北京理工大学 | A kind of TiB-TiB2The fast preparation method of-Al composite ceramics |
-
2017
- 2017-06-12 CN CN201710436504.1A patent/CN107254610A/en active Pending
- 2017-12-06 CN CN201711273943.1A patent/CN108070733B/en active Active
- 2017-12-06 CN CN201711273936.1A patent/CN108103346B/en active Active
- 2017-12-06 CN CN201711274044.3A patent/CN107955889B/en active Active
- 2017-12-06 CN CN201711273967.7A patent/CN108080811B/en active Active
- 2017-12-06 CN CN201711274094.1A patent/CN108018444B/en active Active
- 2017-12-06 CN CN201711273929.1A patent/CN108103345B/en active Active
- 2017-12-06 CN CN201711273961.XA patent/CN107955888B/en active Active
- 2017-12-06 CN CN201711273930.4A patent/CN108103332A/en active Pending
- 2017-12-06 CN CN201711274059.XA patent/CN108018443B/en active Active
- 2017-12-06 CN CN201711273983.6A patent/CN108018442B/en active Active
- 2017-12-06 CN CN201711273970.9A patent/CN108103338B/en active Active
- 2017-12-06 CN CN201711273941.2A patent/CN108080815B/en active Active
- 2017-12-06 CN CN201711273950.1A patent/CN108060314A/en active Pending
- 2017-12-06 CN CN201711274134.2A patent/CN108085528B/en active Active
- 2017-12-06 CN CN201711273974.7A patent/CN108103368A/en active Pending
- 2017-12-06 CN CN201711274156.9A patent/CN108085575A/en active Pending
- 2017-12-06 CN CN201711273901.8A patent/CN107952948A/en active Pending
- 2017-12-25 CN CN201711415938.XA patent/CN108165793B/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109439951A (en) * | 2018-12-27 | 2019-03-08 | 吉林大学 | A method of ceramics particle strengthened dose of reinforcing alusil alloy of scale is mixed based on multiphase |
CN109439973A (en) * | 2018-12-27 | 2019-03-08 | 吉林大学 | A kind of alusil alloy and preparation method thereof mixing scale ceramic particle based on multiphase |
CN109468485A (en) * | 2018-12-27 | 2019-03-15 | 吉林大学 | A kind of preparation method of nanometer endogenous TiC particle reinforced aluminum alloy sheet |
CN109554570A (en) * | 2018-12-27 | 2019-04-02 | 吉林大学青岛汽车研究院 | A kind of molten internal in-situ multiphase mixes the method for scale ceramic reinforced aluminium alloy |
CN109576525A (en) * | 2018-12-27 | 2019-04-05 | 吉林大学 | A method of strengthening 7075 aluminum alloy rolled plates |
CN109680180A (en) * | 2018-12-27 | 2019-04-26 | 吉林大学青岛汽车研究院 | A method of strengthening Al-Zn-Mg-Cu aluminum alloy extrusion section bar |
CN109554570B (en) * | 2018-12-27 | 2020-07-31 | 吉林大学青岛汽车研究院 | Method for strengthening aluminum alloy by in-situ multiphase mixed scale ceramic in melt |
CN111809075A (en) * | 2020-07-03 | 2020-10-23 | 西安石油大学 | A kind of Ti coating Ti3AlC2 particle reinforced Al-based internal combustion engine piston connecting rod and its manufacturing method |
CN114703390A (en) * | 2022-06-06 | 2022-07-05 | 中国航发北京航空材料研究院 | Refining agent and method for refining and purifying aluminum alloy combined with argon on-line casting |
CN116179883A (en) * | 2022-12-28 | 2023-05-30 | 吉林大学 | A kind of preparation method of nanometer NbB2 particle reinforced NiAl alloy |
CN116179884A (en) * | 2022-12-28 | 2023-05-30 | 吉林大学 | Vacuum induction smelting method for preparing titanium-coated NbB 2 Method for reinforcing TiAl alloy by nano particles |
Also Published As
Publication number | Publication date |
---|---|
CN108018442B (en) | 2019-09-24 |
CN108103346A (en) | 2018-06-01 |
CN108165793B (en) | 2020-01-07 |
CN107254610A (en) | 2017-10-17 |
CN108018444A (en) | 2018-05-11 |
CN107955888B (en) | 2019-10-22 |
CN108080815A (en) | 2018-05-29 |
CN108018443B (en) | 2019-10-08 |
CN108103345B (en) | 2020-03-13 |
CN108103338B (en) | 2020-01-07 |
CN108080815B (en) | 2020-10-02 |
CN108070733B (en) | 2020-01-07 |
CN108018444B (en) | 2019-10-18 |
CN108103346B (en) | 2019-09-13 |
CN108085575A (en) | 2018-05-29 |
CN108018442A (en) | 2018-05-11 |
CN107955889A (en) | 2018-04-24 |
CN107955888A (en) | 2018-04-24 |
CN108165793A (en) | 2018-06-15 |
CN108103338A (en) | 2018-06-01 |
CN108103345A (en) | 2018-06-01 |
CN108080811B (en) | 2020-05-08 |
CN108080811A (en) | 2018-05-29 |
CN107955889B (en) | 2019-08-27 |
CN108085528B (en) | 2020-01-07 |
CN108018443A (en) | 2018-05-11 |
CN108060314A (en) | 2018-05-22 |
CN108103332A (en) | 2018-06-01 |
CN108085528A (en) | 2018-05-29 |
CN108070733A (en) | 2018-05-25 |
CN107952948A (en) | 2018-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108103368A (en) | The tough as-cast aluminum alloy of novel high-strength and preparation method | |
WO2019090963A1 (en) | In-situ nanoreinforced aluminum alloy extrusion for car body and preparation method | |
CN104651684B (en) | A kind of Aluminium alloy structural material and preparation method thereof | |
CN102337435B (en) | Aluminum alloy pipe and manufacture method thereof | |
CN105132772B (en) | Low-cost non-rare-earth type high-strength magnesium alloy and preparing method thereof | |
CN102330004B (en) | Manufacturing method for aluminum alloy die forgings | |
CN106282692B (en) | A kind of preparation method of the vehicle body of railway vehicle aluminium section bar of high bending property | |
CN102133629A (en) | Light-alloy electromagnetic suspension casting device and method | |
CN101537480A (en) | Semi-solid forming die-casting process for aluminum-magnesium alloy pot | |
CN102443725B (en) | High-strength aluminum alloy treated by AlH3 and preparation method of high-strength aluminum alloy | |
CN114262829B (en) | 7-series aluminum alloy anti-collision cross beam profile for automobile and production process | |
EP4428258A1 (en) | High strength and toughness die-casting aluminum alloy without heat treatment, preparation method and article thereof | |
CN111041288B (en) | High-toughness anti-fatigue in-situ aluminum-based composite material and preparation method thereof | |
CN106399728A (en) | Smelting method for high-manganese aluminum bronze alloy | |
CN109576526A (en) | A kind of molten internal in-situ multiphase mixes scale ceramic reinforced Al-Zn-Mg-Cu aluminium alloy and preparation method thereof | |
CN109735731A (en) | A kind of process method of preparing ultrafine grain high strength aluminum alloy | |
CN102925768B (en) | Production method of powder-coated aluminum alloy section bars | |
CN101376937B (en) | Squeeze casting Al-Si-Cu alloy material | |
CN111112871B (en) | A kind of hot-crack-resistant 2xxx series aluminum alloy welding wire and preparation method thereof | |
CN109609798B (en) | Controlled rolling preparation method of trace micro-nano hybrid particle reinforced Al-Cu-Mg-Si plate | |
CN110643870A (en) | Corrosion-resistant high-performance wrought magnesium alloy and preparation method thereof | |
CN101871064A (en) | A kind of method of rare earth Y modified AlSi7Mg alloy | |
US20240200167A1 (en) | Aluminum matrix composite with high strength, high toughness, high thermal conductivity, and good weldability for 5g base station and preparation method thereof | |
CN106756342B (en) | A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method | |
CN105543584B (en) | The method that gravitational casting prepares high-strength high-plastic high-ductility hypoeutectic al-si alloy material with hot-extrudable group technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180601 |
|
RJ01 | Rejection of invention patent application after publication |