CN106756342B - A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method - Google Patents
A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method Download PDFInfo
- Publication number
- CN106756342B CN106756342B CN201611247166.9A CN201611247166A CN106756342B CN 106756342 B CN106756342 B CN 106756342B CN 201611247166 A CN201611247166 A CN 201611247166A CN 106756342 B CN106756342 B CN 106756342B
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- temperature
- alloy
- time
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 33
- 238000005266 casting Methods 0.000 title claims description 14
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000000956 alloy Substances 0.000 claims abstract description 48
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 230000032683 aging Effects 0.000 claims abstract description 24
- 238000002844 melting Methods 0.000 claims description 25
- 230000008018 melting Effects 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 7
- 238000003723 Smelting Methods 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 abstract description 21
- 238000001556 precipitation Methods 0.000 abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 25
- 229910052749 magnesium Inorganic materials 0.000 description 18
- 229910052725 zinc Inorganic materials 0.000 description 17
- 229910052692 Dysprosium Inorganic materials 0.000 description 11
- 239000000470 constituent Substances 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 229910052748 manganese Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018182 Al—Cu Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910009369 Zn Mg Inorganic materials 0.000 description 2
- 229910007573 Zn-Mg Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Forging (AREA)
Abstract
本发明公开了一种可热处理强化的高强高韧铸造铝合金,该合金由以下各组分按重量百分比组成:Cu 3.8 wt%~4.6 wt%;Zn 2.5 wt%~3.5 wt%;Mg 0.25 wt%~0.5 wt%;Mn 0.25 wt%~0.5 wt%;Ti 0.02 wt%~0.35 wt%;Dy 0.15wt%~0.45 wt%。当元素添加含量比达到M(Cu):M(Zn):M(Mg)=(15‑20):(8‑15):(1‑3),在三级时效(160℃/2.5~4h+180℃/5~8.0h+210℃/1.5~3h)下能依次分别对应析出主要强化相θ’(Al2Cu)、T’(Al12CuMn2)和S’(Al2CuMg),随着时效温度和时间的增加,沉淀强化相能逐渐粗化,添加稀土元素Dy 0.15wt%~0.45 wt%可以有效抑制三种沉淀强化相的长大粗化,能更好的提高合金的强度与韧性。The invention discloses a high-strength and high-toughness cast aluminum alloy that can be strengthened by heat treatment. The alloy is composed of the following components by weight percentage: Cu 3.8 wt% to 4.6 wt%; Zn 2.5 wt% to 3.5 wt%; Mg 0.25 wt% %~0.5 wt%; Mn 0.25 wt%~0.5 wt%; Ti 0.02 wt%~0.35 wt%; Dy 0.15wt%~0.45 wt%. When the element addition content ratio reaches M(Cu):M(Zn):M(Mg)=(15-20):(8-15):(1-3), after three-stage aging (160℃/2.5~4h +180°C/5~8.0h+210°C/1.5~3h), the main strengthening phases θ'(Al 2 Cu), T'(Al 12 CuMn 2 ) and S'(Al 2 CuMg) can be precipitated in turn, respectively, With the increase of aging temperature and time, the precipitation strengthening phase can gradually coarsen. Adding 0.15wt%~0.45wt% of rare earth element Dy can effectively inhibit the growth and coarsening of the three precipitation strengthening phases, and can better improve the strength of the alloy and resilience.
Description
技术领域technical field
本发明涉及一种可热处理强化的高强高韧铸造铝合金,特别涉及一种可热处理强化的高强高韧铸造Al-Cu-Zn-Mn-Mg-Ti-Dy铝合金。The invention relates to a high-strength and high-toughness cast aluminum alloy which can be strengthened by heat treatment, in particular to a high-strength and high-toughness cast Al-Cu-Zn-Mn-Mg-Ti-Dy aluminum alloy which can be strengthened by heat treatment.
背景技术Background technique
铸造铝合金是近年来世界各国投入研究较多的一种铝合金产品。其优点是比重小、比强度高、组织各向同性,并具有良好的抗腐蚀性和铸造工艺性,可进行各种成型铸造;而且铸造铝合金还具有价格低廉,熔炼工艺和设备都比较简单,可以小批量生产也可以大批量生产的诸多优点。尤其是半固态铸造工艺,其铸造组织致密且偏析少,合金流动性好,可以更好的加入增强材料。即便如此,铸造铝合金强韧性稍逊于变形铝合金,使其应用范围受到较大的限制,变形铝合金通过挤压、轧制、锻造等手段减少了组织缺陷,许多重要用途如特种重载车负重轮、航空用铝合金等多采用变形铝合金。但对于变形铝合金来说,其设备和工装模具要求高,工序多,生产周期长、成本很高。Casting aluminum alloy is a kind of aluminum alloy product that countries in the world have invested more in research in recent years. Its advantages are small specific gravity, high specific strength, isotropic structure, good corrosion resistance and casting process, and can be used for various molding castings; moreover, cast aluminum alloy is also low in price, and the melting process and equipment are relatively simple. , Many advantages that can be produced in small batches or in large batches. Especially in the semi-solid casting process, the casting structure is dense and has less segregation, and the alloy has good fluidity, which can better add reinforcing materials. Even so, the strength and toughness of cast aluminum alloy is slightly lower than that of deformed aluminum alloy, which limits its application range. Deformed aluminum alloy reduces structural defects by means of extrusion, rolling, forging, etc. Many important uses such as special heavy-duty Deformed aluminum alloys are mostly used in vehicle road wheels and aviation aluminum alloys. However, for wrought aluminum alloys, the equipment and tooling molds require high requirements, many processes, long production cycles, and high costs.
发明内容Contents of the invention
本发明在传统的Al-Cu系铸造铝合金的基础上加入了特定比例的Zn、Mg元素 成为Al-Cu-Zn-Mg系合金,在合金组织中形成的主要强化相为θ(Al2Cu)、T(Al12CuMn2)和S(Al2CuMg)等,有效提高了合金的热处理强化效果。The present invention adds a specific proportion of Zn and Mg elements to the traditional Al-Cu series cast aluminum alloy to form an Al-Cu-Zn-Mg series alloy, and the main strengthening phase formed in the alloy structure is θ(Al 2 Cu ), T(Al 12 CuMn 2 ) and S(Al 2 CuMg), etc., effectively improve the heat treatment strengthening effect of the alloy.
本发明所采取的技术方案是:The technical scheme that the present invention takes is:
一种可热处理强化的高强高韧铸造铝合金材料,其主要包括以下组分:Cu、Zn、Mg、Al。Cu、Zn、Mg三种元素的重量比例为:M(Cu):M(Zn):M(Mg) =(15-20):(8-15):(1-3)。A high-strength and high-toughness cast aluminum alloy material that can be strengthened by heat treatment mainly includes the following components: Cu, Zn, Mg, and Al. The weight ratio of the three elements of Cu, Zn and Mg is: M(Cu):M(Zn):M(Mg) =(15-20):(8-15):(1-3).
作为优选的,所述铝合金材料中各组分的重量百分比组成为:As preferably, the weight percent composition of each component in the aluminum alloy material is:
Cu 3.8 wt%~4.6 wt%,Cu 3.8 wt%~4.6 wt%,
Zn 2.5 wt%~3.5 wt%,Zn 2.5wt%~3.5wt%,
Mg 0.25 wt%~0.5 wt%,Mg 0.25wt%~0.5wt%,
余量为Al。The balance is Al.
进一步优选的,所述铝合金材料中还包括Mn元素,含量为0.25 wt%~0.5 wt%。Further preferably, the aluminum alloy material further includes Mn element in an amount of 0.25 wt% to 0.5 wt%.
进一步优选的,所述铝合金材料中还包括稀土元素Dy,含量为0.15wt%~0.45wt%。Further preferably, the aluminum alloy material further includes a rare earth element Dy in an amount of 0.15wt%-0.45wt%.
进一步优选的,所述铝合金材料中还包括Ti元素,含量为0.02 wt%~0.35 wt%。Further preferably, the aluminum alloy material further includes Ti element in an amount of 0.02 wt% to 0.35 wt%.
一种可热处理强化的高强高韧铸造铝合金材料,其由以下重量百分比的组分组成:A high-strength and high-toughness cast aluminum alloy material that can be strengthened by heat treatment, which consists of the following components in weight percentage:
Cu 3.8 wt%~4.6 wt%,Cu 3.8 wt%~4.6 wt%,
Zn 2.5 wt%~3.5 wt%,Zn 2.5wt%~3.5wt%,
Mg 0.25 wt%~0.5 wt%,Mg 0.25wt%~0.5wt%,
Mn 0.25 wt%~0.5 wt%,Mn 0.25wt%~0.5wt%,
Ti 0.25 wt%~0.35 wt%,Ti 0.25wt%~0.35wt%,
Dy 0.15 wt%~0.45 wt%,Dy 0.15wt%~0.45wt%,
余量为Al。The balance is Al.
一种可热处理强化的高强高韧铸造铝合金材料的制备方法,包括如下步骤:A method for preparing a high-strength and high-toughness cast aluminum alloy material that can be strengthened by heat treatment, comprising the following steps:
(1)以用纯Cu、Al-5%Zn中间合金、纯Mg、Al-20%Mn、Al-5%Ti中间合金和Al-10%Dy中间合金为原料,按以上所述的可热处理强化的高强高韧铸造铝合金材料中各组分的比例进行配料;(1) Using pure Cu, Al-5%Zn master alloy, pure Mg, Al-20%Mn, Al-5%Ti master alloy and Al-10%Dy master alloy as raw materials, it can be heat treated according to the above-mentioned The ratio of each component in the reinforced high-strength and high-toughness cast aluminum alloy material is used for batching;
(2)将步骤(1)配好的材料在熔炼炉中熔炼,然后将合金熔体浇注在模具内,搅拌,冷却得到铸锭;(2) Melting the prepared material in step (1) in a melting furnace, then pouring the alloy melt into a mold, stirring, and cooling to obtain an ingot;
(3)对铸锭进行均匀固溶热处理;(3) Perform uniform solution heat treatment on the ingot;
(4)三级时效温度/时间:160℃/2.5~4h+180℃/5~8.0h+210℃/1.5~3h。(4) Tertiary aging temperature/time: 160°C/2.5~4h+180°C/5~8.0h+210°C/1.5~3h.
作为优选的,步骤(2)熔炼的温度为740℃~780℃。Preferably, the melting temperature in step (2) is 740°C to 780°C.
作为优选的,步骤(3)均匀固溶温度/时间为:500℃~530℃/20h~30h。Preferably, the uniform solid solution temperature/time in step (3) is: 500°C-530°C/20h-30h.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明具有先进的合金设计成分,本发明在传统的Al-Cu系铸造铝合金的基础上加入了起强化效果的Zn、Mg元素,并通过不同的三级时效温度和时间控制析出的不同沉淀强化相。本发明通过元素含量配比元素含量比M(Cu):M(Zn): M(Mg) =(15-20):(8-15):(1-3),能在铸态时共同生成θ(Al2Cu)、T(Al12CuMn2) 和S(Al2CuMg)强化相。(1) The present invention has advanced alloy design components. On the basis of the traditional Al-Cu cast aluminum alloy, the present invention adds Zn and Mg elements with strengthening effect, and controls the precipitation through different three-stage aging temperatures and times Different precipitation strengthening phases. In the present invention, the element content ratio M(Cu):M(Zn):M(Mg)=(15-20):(8-15):(1-3) can co-generate θ(Al 2 Cu), T(Al 12 CuMn 2 ) and S(Al 2 CuMg) strengthening phases.
(2)本发明具有良好的热处理制度,通过固溶温度/时间:500℃~530℃/20h~30h,能让铸态生成的θ(Al2Cu)、T(Al12CuMn2) 和S(Al2CuMg)强化相溶到基体中,达到过饱和固溶体,再通过在三级时效(160℃/2.5~4h+180℃/5~8.0h+210℃/1.5~3h)下能依次分别对应析出主要强化相θ’(Al2Cu)、T’(Al12CuMn2) 和S’(Al2CuMg),所以控制时效温度和时间能选择性的析出所需要的强化相。在本发明的三级时效制度下,三种强化相能分别析出,但随着温度和时间的延长,沉淀强化相会长大粗化,因此本发明在合金中加入稀土元素Dy0.15wt%~0.45 wt%,具有除氧,除氢、精炼和净化溶体的效果,有效实现替代贵重稀有金属Ag、V、Zr等的作用,添加的合理比例的稀土元素Dy能生成共晶相Al3Dy,可以促进后续时效过程中GP区生成θ’(Al2Cu)、 T’(Al12CuMn2) 和S’(Al2CuMg)的析出,能钉扎位错的运动,能使这三种强化相保持初始析出的尺寸,抑制了强化相的长大,既保证不损害合金的韧性的前提下又能明显的提高合金的强度。(2) The present invention has a good heat treatment system, through solution temperature/time: 500℃~530℃/20h~30h, the θ(Al 2 Cu), T(Al 12 CuMn 2 ) and S (Al 2 CuMg) enhances phase dissolution into the matrix to reach a supersaturated solid solution, and then through three-stage aging (160°C/2.5~4h+180°C/5~8.0h+210°C/1.5~3h) can sequentially separate Corresponding to the precipitation of the main strengthening phases θ'(Al 2 Cu), T'(Al 12 CuMn 2 ) and S'(Al 2 CuMg), so the required strengthening phases can be selectively precipitated by controlling the aging temperature and time. Under the three-stage aging system of the present invention, the three strengthening phases can be precipitated separately, but as the temperature and time prolong, the precipitation strengthening phase will grow and coarsen, so the present invention adds rare earth elements Dy0.15wt%~ 0.45 wt%, has the effect of removing oxygen, removing hydrogen, refining and purifying the solution, effectively realizing the role of replacing precious and rare metals Ag, V, Zr, etc., adding a reasonable proportion of rare earth element Dy can generate eutectic phase Al 3 Dy, It can promote the precipitation of θ'(Al 2 Cu), T'(Al 12 CuMn 2 ) and S'(Al 2 CuMg) in the GP region during the subsequent aging process, and can pin the movement of dislocations, enabling these three types of strengthening The phase maintains the size of the initial precipitation, inhibits the growth of the strengthening phase, and can significantly improve the strength of the alloy without compromising the toughness of the alloy.
本发明成分配方及制备方法所制备的半固态铸造铝合金,其抗拉强度可达480~550MPa,屈服强度可达380~440MPa,延伸率可达7.5~10%,适用于对强度和塑形要求较高的工业领域。The semi-solid cast aluminum alloy prepared by the composition formula and preparation method of the present invention has a tensile strength of 480-550MPa, a yield strength of 380-440MPa, and an elongation of 7.5-10%, which is suitable for strength and shaping. Highly demanding industrial fields.
附图说明Description of drawings
图1 为热处理前后的金相显微组织(A未经过热处理;B经过热处理);Figure 1 is the metallographic microstructure before and after heat treatment (A has not been heat treated; B has been heat treated);
图2 为样品拉伸曲线;Figure 2 is the tensile curve of the sample;
图3 为样品拉伸断口扫描图。Figure 3 is the scanning diagram of the tensile fracture of the sample.
具体实施方式Detailed ways
本发明在传统的Al-Cu系铸造铝合金的基础上加入了特定比例的Zn、Mg元素 成为Al-Cu-Zn-Mg系合金,在合金组织中形成的主要强化相为θ(Al2Cu)、T(Al12CuMn2)和S(Al2CuMg)等,有效提高了合金的热处理强化效果。当熔体含Cu量较高时,在547.5℃发生L→α(Al)+θ(Al2Cu)+T(Al12CuMn2)三元共晶反应,生成θ和T为铸态合金的主要强化相,当Mg含量少于0.05%,可在507℃时生成另一主要S(Al2CuMg)相。由于添加合适元素组分含量比M(Cu):M(Zn): M(Mg) =(15-20):(8-15):(1-3),能生成定量的θ(Al2Cu)、T(Al12CuMn2)和S(Al2CuMg),超过含量Cu 3.8 wt%~4.6 wt%、 Mg 0.25 wt%~0.5 wt% 和Mn 0.25 wt%~0.5 wt%,生成的强化相对合金性能有脆化作用及降低耐蚀性,所以不宜添加过量元素。通过160℃/2.5~4h+180℃/5~8.0h+210℃/1.5~3h三级时效,在三个时效阶段分别生成θ’(Al2Cu)、T’(Al12CuMn2)和S’(Al2CuMg),如若超过该时效范围,则不能起到热处理控制相析出的作用。The present invention adds a specific proportion of Zn and Mg elements to the traditional Al-Cu series cast aluminum alloy to form an Al-Cu-Zn-Mg series alloy, and the main strengthening phase formed in the alloy structure is θ(Al 2 Cu ), T(Al 12 CuMn 2 ) and S(Al 2 CuMg), etc., effectively improve the heat treatment strengthening effect of the alloy. When the Cu content in the melt is high, the L → α(Al)+θ(Al 2 Cu)+ T (Al 12 CuMn 2 ) ternary eutectic reaction occurs at 547.5°C, and θ and T are formed as cast alloys. The main strengthening phase, when the Mg content is less than 0.05%, another main S(Al 2 CuMg) phase can be formed at 507°C. Quantitative θ(Al 2 Cu ), T(Al 12 CuMn 2 ) and S(Al 2 CuMg), exceeding the content of Cu 3.8 wt%~4.6 wt%, Mg 0.25 wt%~0.5 wt% and Mn 0.25 wt%~0.5 wt%, the resulting strengthening is relatively Alloy properties have embrittlement and reduce corrosion resistance, so it is not suitable to add excessive elements. Through tertiary aging at 160℃/2.5~4h+180℃/5~8.0h+210℃/1.5~3h, θ'(Al 2 Cu), T'(Al 12 CuMn 2 ) and If S'(Al 2 CuMg) exceeds this aging range, it cannot play the role of heat treatment to control phase precipitation.
在添加稀土元素Dy后,能自发非均匀形核生成Al3Dy相能提高合金的强度。除此之外,随着时效温度和时间的增加,强化相θ’(Al2Cu)、T’(Al12CuMn2)和S’(Al2CuMg)会长大粗化,添加含量Dy 0.15wt%~0.45 wt%后,能钉扎位错的运动,能使这三种强化相保持初始析出的尺寸,抑制了强化相的长大,既保证不损害合金的韧性的前提下又能明显的提高合金的强度。After the rare earth element Dy is added, the Al 3 Dy phase can spontaneously nucleate and form Al 3 Dy phase, which can improve the strength of the alloy. In addition, as the aging temperature and time increase, the strengthening phases θ'(Al 2 Cu), T'(Al 12 CuMn 2 ) and S'(Al 2 CuMg) will grow and coarsen, and the added content of Dy 0.15 wt%~0.45 wt%, the movement of dislocations can be pinned, the size of these three strengthening phases can be maintained at the initial precipitation, the growth of strengthening phases can be suppressed, and the toughness of the alloy can be guaranteed without compromising the toughness of the alloy. increase the strength of the alloy.
因此,添加元素组分含量比M(Cu):M(Zn): M(Mg) =(15-20):(8-15):(1-3);添加稀土元素含量Dy 0.15wt%~0.45 wt%,开发出能够替代部分变形铝合金的可热处理的高强高韧铸造铝合金材料及制备方法,达到以铸代锻、缩短制造周期、降低制造成本的目的,具有重要的理论意义和重大的实际应用价值。Therefore, the content ratio of added element components M(Cu):M(Zn):M(Mg) =(15-20):(8-15):(1-3); the content of added rare earth elements Dy 0.15wt%~ 0.45 wt%, to develop a heat-treatable high-strength and high-toughness cast aluminum alloy material and preparation method that can replace part of the deformed aluminum alloy, to achieve the purpose of replacing forging with casting, shortening the manufacturing cycle, and reducing manufacturing costs, which has important theoretical significance and great significance. practical application value.
下面结合实施例对本发明作进一步的说明,但并不局限于此。The present invention will be further described below in conjunction with the examples, but not limited thereto.
实施例1Example 1
(1)按照组成元素重量百分比取Cu:3.8 wt%、Zn:2.5 wt%、Mg:0.25 wt%、Mn:0.25wt%、Ti:0.25 wt%、Dy:0.15 wt%、余量为Al。(1) Take Cu: 3.8 wt%, Zn: 2.5 wt%, Mg: 0.25 wt%, Mn: 0.25 wt%, Ti: 0.25 wt%, Dy: 0.15 wt% according to the weight percentage of the constituent elements, and the balance is Al.
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为740℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above-mentioned materials are smelted at a high temperature in a melting furnace at a temperature of 740°C until they are melted, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:500℃/20h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 500°C/20h.
(4)三级时效温度/时间:160℃/2.5h+180℃/5h+210℃/1.5h。(4) Tertiary aging temperature/time: 160°C/2.5h+180°C/5h+210°C/1.5h.
实施例2Example 2
(1)按照组成元素重量百分比取Cu:3.9 wt%、Zn:2.9 wt%、Mg:0.29 wt%、Mn:0.28wt%、Ti:0.28wt%、Dy:0.20 wt%、余量为Al;(1) Take Cu: 3.9 wt%, Zn: 2.9 wt%, Mg: 0.29 wt%, Mn: 0.28 wt%, Ti: 0.28 wt%, Dy: 0.20 wt% according to the weight percentage of the constituent elements, and the balance is Al;
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为750℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above-mentioned materials are smelted at a high temperature in a melting furnace at a temperature of 750°C until they are melted, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:500℃/25h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 500°C/25h.
(4)三级时效温度/时间:160℃/3.0 h+180℃/6h+210℃/2.0h。(4) Tertiary aging temperature/time: 160°C/3.0 h+180°C/6h+210°C/2.0h.
实施例3Example 3
(1)按照组成元素重量百分比取Cu:4.0 wt%、Zn:3.1 wt%、Mg:0.32 wt%、Mn:0.32wt%、Ti:0.30wt%、Dy:0.25 wt%、余量为Al;(1) Take Cu: 4.0 wt%, Zn: 3.1 wt%, Mg: 0.32 wt%, Mn: 0.32 wt%, Ti: 0.30 wt%, Dy: 0.25 wt% according to the weight percentage of the constituent elements, and the balance is Al;
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为760℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above-mentioned materials are smelted at a high temperature in a melting furnace at a temperature of 760°C until they are melted, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:510℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 510°C/30h.
(4)三级时效温度/时间:160℃/3.5 h+180℃/6.5h+210℃/2.5h。(4) Tertiary aging temperature/time: 160°C/3.5h+180°C/6.5h+210°C/2.5h.
实施例4Example 4
(1)按照组成元素重量百分比取Cu:4.1 wt%、Zn:3.3 wt%、Mg:0.38 wt%、Mn:0.35wt%、Ti:0.32wt%、Dy:0.30 wt%、余量为Al;(1) Take Cu: 4.1 wt%, Zn: 3.3 wt%, Mg: 0.38 wt%, Mn: 0.35 wt%, Ti: 0.32 wt%, Dy: 0.30 wt% according to the weight percentage of the constituent elements, and the balance is Al;
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为770℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above materials are smelted at a high temperature in a smelting furnace at a temperature of 770°C until melting, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:515℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 515°C/30h.
(4)三级时效温度/时间:160℃/4.0 h+180℃/7.0 h+210℃/3.0h。(4) Tertiary aging temperature/time: 160°C/4.0 h+180°C/7.0 h+210°C/3.0h.
实施例5Example 5
(1)按照组成元素重量百分比取Cu:4.2 wt%、Zn:3.5wt%、Mg:0.45 wt%、Mn:0.40wt%、Ti:0.35wt%、Dy:0.35 wt%、余量为Al。(1) Take Cu: 4.2 wt%, Zn: 3.5 wt%, Mg: 0.45 wt%, Mn: 0.40 wt%, Ti: 0.35 wt%, Dy: 0.35 wt% according to the weight percentage of the constituent elements, and the balance is Al.
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为780℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above materials are smelted at a high temperature in a smelting furnace at a temperature of 780°C until melting, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:520℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 520°C/30h.
(4)三级时效温度/时间:160℃/3.5 h+180℃/7.5h+210℃/2.5h。(4) Tertiary aging temperature/time: 160°C/3.5h+180°C/7.5h+210°C/2.5h.
实施例6Example 6
(1)按照组成元素重量百分比取Cu:4.3 wt%、Zn:3.5wt%、Mg:0.45 wt%、Mn:0.40wt%、Ti:0.35wt%、Dy:0.35 wt%、余量为Al。(1) According to the weight percentage of the constituent elements, Cu: 4.3 wt%, Zn: 3.5 wt%, Mg: 0.45 wt%, Mn: 0.40 wt%, Ti: 0.35 wt%, Dy: 0.35 wt%, and the balance is Al.
(2)将上述材料在熔炼炉中进行高温熔炼,温度为780℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) Melting the above materials at a high temperature in a melting furnace at a temperature of 780°C until melting, pouring the alloy melt into a cylindrical stainless steel mold, and then cooling it with water to form an ingot;
(3)对铸锭进行均匀固溶热处理,均匀固溶温度/时间:530℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 530°C/30h.
(4)三级时效温度/时间:160℃/4.0h+180℃/8.0h+210℃/3.0h。(4) Tertiary aging temperature/time: 160°C/4.0h+180°C/8.0h+210°C/3.0h.
实施例7Example 7
(1)按照组成元素重量百分比取Cu:0.5 wt%、Zn:0.5wt%、Mg:0.5wt%、余量为Al。(1) Cu: 0.5wt%, Zn: 0.5wt%, Mg: 0.5wt%, and Al in the balance according to the weight percentage of the constituent elements.
(2)将上述材料在熔炼炉中进行高温熔炼,温度为780℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) Melting the above materials at a high temperature in a melting furnace at a temperature of 780°C until melting, pouring the alloy melt into a cylindrical stainless steel mold, and then cooling it with water to form an ingot;
(3)对铸锭进行均匀固溶热处理,均匀固溶温度/时间:530℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 530°C/30h.
(4)三级时效温度/时间:160℃/4.0h+180℃/8.0h+210℃/3.0h。(4) Tertiary aging temperature/time: 160°C/4.0h+180°C/8.0h+210°C/3.0h.
实施例8Example 8
(1)按照组成元素重量百分比取Cu:2.0 wt%、Zn:1.0wt%、Mg:1.0wt%、Dy:0.15 wt%余量为Al。(1) According to the weight percentage of the constituent elements, Cu: 2.0 wt%, Zn: 1.0 wt%, Mg: 1.0 wt%, Dy: 0.15 wt%, and the balance is Al.
(2)将上述材料在熔炼炉中进行高温熔炼,温度为780℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) Melting the above materials at a high temperature in a melting furnace at a temperature of 780°C until melting, pouring the alloy melt into a cylindrical stainless steel mold, and then cooling it with water to form an ingot;
(3)对铸锭进行均匀固溶热处理,均匀固溶温度/时间:530℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 530°C/30h.
(4)三级时效温度/时间:150℃/7.0h+120℃/3.0h+230℃/5.0h。(4) Tertiary aging temperature/time: 150°C/7.0h+120°C/3.0h+230°C/5.0h.
实施例9Example 9
(1)按照组成元素重量百分比取Cu:0.5 wt%、Zn:0.5wt%、Mg:0.5wt%、Ti:0.28wt%、Dy:0.15 wt%,余量为Al。(1) Take Cu: 0.5 wt%, Zn: 0.5 wt%, Mg: 0.5 wt%, Ti: 0.28 wt%, Dy: 0.15 wt% according to the weight percentage of the constituent elements, and the balance is Al.
(2)将上述材料在熔炼炉中进行高温熔炼,温度为780℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) Melting the above materials at a high temperature in a melting furnace at a temperature of 780°C until melting, pouring the alloy melt into a cylindrical stainless steel mold, and then cooling it with water to form an ingot;
(3)对铸锭进行均匀固溶热处理,均匀固溶温度/时间:530℃/30h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 530°C/30h.
(4)时效温度/时间:160℃/4.0h+180℃/8.0h+210℃/3.0h。(4) Aging temperature/time: 160°C/4.0h+180°C/8.0h+210°C/3.0h.
实施例10Example 10
(1)按照组成元素重量百分比取Cu:3.8 wt%、Zn:2.5 wt%、Mg:0.25 wt%、Mn:0.25wt%、Ti:0.25 wt%、Dy:0.05 wt%、余量为Al。(1) According to the weight percentage of the constituent elements, Cu: 3.8 wt%, Zn: 2.5 wt%, Mg: 0.25 wt%, Mn: 0.25 wt%, Ti: 0.25 wt%, Dy: 0.05 wt%, and the balance is Al.
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为740℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above-mentioned materials are smelted at a high temperature in a melting furnace at a temperature of 740°C until they are melted, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:500℃/20h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 500°C/20h.
(4)三级时效温度/时间:160℃/2.5h+180℃/5h+210℃/1.5h。(4) Tertiary aging temperature/time: 160°C/2.5h+180°C/5h+210°C/1.5h.
实施例11Example 11
(1)按照组成元素重量百分比取Cu:3.8 wt%、Zn:2.5 wt%、Mg:0.25 wt%、Mn:0.25wt%、Ti:0.25 wt%、Dy:0.15 wt%、余量为Al。(1) Take Cu: 3.8 wt%, Zn: 2.5 wt%, Mg: 0.25 wt%, Mn: 0.25 wt%, Ti: 0.25 wt%, Dy: 0.15 wt% according to the weight percentage of the constituent elements, and the balance is Al.
(2) 将上述材料在熔炼炉中进行高温熔炼,温度为740℃,直至熔融为止,将合金熔体浇注在圆柱不锈钢模具内,随后水冷成为铸锭;(2) The above-mentioned materials are smelted at a high temperature in a melting furnace at a temperature of 740°C until they are melted, and the alloy melt is poured into a cylindrical stainless steel mold, and then water-cooled to form an ingot;
(3) 对铸锭进行均匀固溶热处理,均匀固溶温度/时间:500℃/20h。(3) Perform uniform solution heat treatment on the ingot, uniform solution temperature/time: 500°C/20h.
(4) 时效温度/时间:130℃/4.0h+180℃/1.0h。(4) Aging temperature/time: 130°C/4.0h+180°C/1.0h.
上述的可热处理强化的高强高韧铸造Al-Cu-Zn-Mn-Mg-Ti-Dy铝合金的抗拉强度、屈服强度和延伸率如下:The tensile strength, yield strength and elongation of the above-mentioned high-strength and high-toughness cast Al-Cu-Zn-Mn-Mg-Ti-Dy aluminum alloy that can be strengthened by heat treatment are as follows:
由上表可知,本发明成分配方及制备方法所制备的半固态铸造铝合金,其抗拉强度可达480~550MPa,屈服强度可达380~440MPa,延伸率可达7.5~10%,适用于对强度和塑形要求较高的工业领域。It can be known from the above table that the tensile strength of the semi-solid cast aluminum alloy prepared by the composition formula and preparation method of the present invention can reach 480-550MPa, the yield strength can reach 380-440MPa, and the elongation can reach 7.5-10%. Industrial fields that require high strength and shape.
以上实施例仅为介绍本发明的优选案例,对于本领域技术人员来说,在不背离本发明精神的范围内所进行的任何显而易见的变化和改进,都应被视为本发明的一部分。The above embodiments are only preferred cases for introducing the present invention. For those skilled in the art, any obvious changes and improvements made within the scope of not departing from the spirit of the present invention should be regarded as a part of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611247166.9A CN106756342B (en) | 2016-12-29 | 2016-12-29 | A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611247166.9A CN106756342B (en) | 2016-12-29 | 2016-12-29 | A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106756342A CN106756342A (en) | 2017-05-31 |
CN106756342B true CN106756342B (en) | 2018-08-21 |
Family
ID=58929249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611247166.9A Expired - Fee Related CN106756342B (en) | 2016-12-29 | 2016-12-29 | A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106756342B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109112372A (en) * | 2018-10-17 | 2019-01-01 | 合肥月煌新型装饰材料有限公司 | A kind of high-strength abrasion-proof aluminum alloy materials and preparation method thereof |
CN110527883B (en) * | 2019-09-18 | 2021-06-29 | 江苏集萃精凯高端装备技术有限公司 | High-temperature-resistant cast aluminum alloy containing Cu-Mn-Mg and preparation method thereof |
CN113005376B (en) * | 2021-02-10 | 2022-04-19 | 北京科技大学 | Solid solution-aging heat treatment process for Al-Zn-Mg-Cu aluminum alloy with ultra-strong high toughness |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3598577A (en) * | 1967-08-23 | 1971-08-10 | Aluminum Co Of America | Aluminum base alloy |
FR2971793B1 (en) * | 2011-02-18 | 2017-12-22 | Alcan Rhenalu | IMPROVED MICROPOROSITY ALUMINUM ALLOY SEMI-PRODUCT AND METHOD OF MANUFACTURING THE SAME |
CN105803272B (en) * | 2016-03-31 | 2017-12-15 | 广东省材料与加工研究所 | A kind of high-toughness casting aluminum alloy and preparation method thereof |
-
2016
- 2016-12-29 CN CN201611247166.9A patent/CN106756342B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106756342A (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102978497B (en) | Casting magnesium alloy with high strength and toughness and preparation method thereof | |
CN112143945B (en) | High-strength and high-toughness cast aluminum-silicon alloy containing multiple composite rare earth elements and preparation method thereof | |
CN101205578A (en) | High-strength, high-toughness, corrosion-resistant Al-Zn-Mg-(Cu) alloy | |
CN105177382B (en) | A kind of high-strength and toughness casting magnesium alloy and preparation method thereof | |
CN110004341A (en) | High-strength rare earth-containing magnesium alloy and preparation method thereof | |
CN101353744A (en) | Stress corrosion resistant Al-Zn-Mg-(Cu) alloy and preparation method thereof | |
CN105112742B (en) | A kind of Al-Si-Mg-Cu-Ti-Sc casting wrought alloy and preparation method thereof | |
CN109136685B (en) | A kind of aluminum alloy and its preparation method and application | |
CN109972009A (en) | A kind of high strength toughness high modulus deformation magnesium alloy and preparation method thereof | |
CN109837438B (en) | Low-cost high-strength wrought magnesium alloy and preparation method thereof | |
CN111519074A (en) | High-strength Mg-Ca-Mn-Al-Zn series wrought magnesium alloy containing light rare earth element lanthanum and preparation method thereof | |
CN106756342B (en) | A kind of heat-treatable strengthened high strength high toughness casting aluminum alloy and preparation method | |
CN102409206A (en) | A high strength and toughness squeeze casting Al-Zn alloy material | |
CN114855043A (en) | Superfine crystal high-strength plastic magnesium alloy and preparation method thereof | |
CN110106401A (en) | A kind of high tough non-heat treated reinforcing pack alloy and preparation method thereof | |
CN102242299A (en) | Bi and Nd composite reinforced high-strength cast magnesium alloy and preparation method thereof | |
CN109930044B (en) | High strength, toughness and heat resistance Mg-Gd-Y alloy suitable for gravity casting and preparation method thereof | |
CN109852859B (en) | High-strength-toughness heat-resistant Mg-Y-Er alloy suitable for gravity casting and preparation method thereof | |
CN111607728A (en) | Low-cost wrought magnesium alloy strengthened by light rare earth elements Ce and Sm and preparation method thereof | |
CN110643870A (en) | Corrosion-resistant high-performance wrought magnesium alloy and preparation method thereof | |
CN111485153A (en) | Wrought magnesium alloy containing neodymium-samarium light rare earth elements and high Mn content and preparation method thereof | |
CN111455243A (en) | A kind of Mg-Ca-Mn-Al-Zn wrought magnesium alloy with high Mn content and preparation method thereof | |
CN109881065B (en) | High strength, toughness and heat resistance Mg-Gd-Er alloy suitable for low pressure casting and preparation method thereof | |
CN103484742A (en) | High-strength damping magnesium alloy | |
CN108425052A (en) | A kind of heat-resistance high-strength wrought magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180821 Termination date: 20201229 |