[go: up one dir, main page]

CN108085575A - Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle - Google Patents

Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle Download PDF

Info

Publication number
CN108085575A
CN108085575A CN201711274156.9A CN201711274156A CN108085575A CN 108085575 A CN108085575 A CN 108085575A CN 201711274156 A CN201711274156 A CN 201711274156A CN 108085575 A CN108085575 A CN 108085575A
Authority
CN
China
Prior art keywords
powder
grams
tib
copper
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711274156.9A
Other languages
Chinese (zh)
Inventor
邱丰
董柏欣
常芳
姜启川
查敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Publication of CN108085575A publication Critical patent/CN108085575A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • C22C1/1052Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/14Alloys based on aluminium with copper as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Ceramic Products (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Metal Extraction Processes (AREA)
  • Forging (AREA)

Abstract

本发明涉及了一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:(1)硼粉球磨预处理;(2)含有细化元素的Al‑Ti‑B‑M反应体系的混合制备;(3)含有细化元素的Al‑Ti‑B‑M反应体系球磨均匀化及粉体压坯致密化;(4)压坯原位反应制备并细化处理TiB2颗粒;本发明中的合金元素添加细化陶铝复合材料中内生纳米TiB2颗粒可以用于陶瓷颗粒的细化和尺寸控制,有利于制备纳米尺寸TiB2颗粒,TiB2颗粒是铝合金重要的细化剂和强化剂,纳米尺寸TiB2颗粒可大幅提高合金组织的细化效果,大幅减少TiB2颗粒使用量,降低细化铝合金的成本。The present invention relates to a kind of method of endogenous nanometer TiB2 particle in refinement pottery-aluminum composite material, comprises the following steps: (1) boron powder ball milling pretreatment; (2) Al-Ti-B-M containing refinement element Mixed preparation of the reaction system; (3) Al-Ti-B-M reaction system containing refinement elements, ball milling homogenization and powder compact compaction; (4) In-situ reaction of the compact to prepare and refine TiB 2 particles ; The alloying element in the present invention adds endogenous nanometer TiB in the pottery-aluminum composite material of refinement 2 particles can be used for the refinement and size control of ceramic particles, which is conducive to the preparation of nano-sized TiB 2 particles, TiB 2 particles are important for aluminum alloys As a refiner and strengthener, nano-sized TiB 2 particles can greatly improve the refinement effect of the alloy structure, greatly reduce the amount of TiB 2 particles used, and reduce the cost of refining aluminum alloys.

Description

一种细化陶铝复合材料中内生纳米TiB2颗粒的方法A method for refining endogenous nano-TiB2 particles in ceramic-aluminum composite materials

技术领域technical field

本发明涉及铝合金和陶瓷复合加工和制备领域,具体涉及一种细化陶铝复合材料中内生纳米TiB2颗粒的方法。The invention relates to the field of composite processing and preparation of aluminum alloy and ceramics, in particular to a method for refining endogenous nanometer TiB2 particles in ceramic-aluminum composite materials.

背景技术Background technique

目前,颗粒增强铝基复合材料的增强体主要是微米尺寸颗粒。尽管微米尺寸颗粒能够明显提高复合材料的强度和弹性模量,但是它同时会降低塑性和韧性,且高温性能提高不明显,这极大地限制了其在一些高端领域的应用。纳米陶瓷颗粒增强金属基复合具有较高的比强度、较低的密度、较高的硬度、较好的热稳定性以及良好的耐磨损性能等,广泛应用与结构件和功能件中,例如航空航天、汽车制造等领域。且对于陶瓷金属复合来说,较低的陶瓷颗粒含量即可获得很好的强化效果,这也使得制备过程简便,成本易于控制。此外,纳米颗粒还可以作为α-Al的异质核心,促进α-Al形核,细化铝合金组织。内生纳米TiB2颗粒陶铝复合材料中的纳米TiB2陶瓷颗粒作为一种纳米级的增强相,可以通过细晶强化、奥罗万强化、钉扎晶界、热错配强化等强化铝合金。大量的实验结果表明,陶瓷颗粒的含量相同时,颗粒尺寸越细小,其对材料性能的改善越好。由于纳米颗粒的尺寸越小,提高复合材料的屈服强度、抗拉强度、延伸率的效果越好,因此有必要考虑一种纳米颗粒的细化方法;通过加入一定质量分数的合金元素,在不生成其他中间产物的基础上,进一步减小纳米颗粒的尺寸。At present, the reinforcements of particle-reinforced aluminum matrix composites are mainly micron-sized particles. Although micron-sized particles can significantly improve the strength and elastic modulus of composite materials, they will reduce plasticity and toughness at the same time, and the high-temperature performance is not significantly improved, which greatly limits its application in some high-end fields. Nano-ceramic particles reinforced metal matrix composites have high specific strength, low density, high hardness, good thermal stability and good wear resistance, etc., and are widely used in structural and functional parts, such as Aerospace, automobile manufacturing and other fields. And for ceramic-metal composites, a relatively low content of ceramic particles can achieve a good strengthening effect, which also makes the preparation process simple and the cost easy to control. In addition, nanoparticles can also serve as the heterogeneous core of α-Al, promote the nucleation of α-Al, and refine the structure of aluminum alloy. Nano-TiB 2 ceramic particles in endogenous nano-TiB 2 ceramic-aluminum composites, as a nanoscale reinforcement phase, can strengthen aluminum alloys through fine-grain strengthening, Orowan strengthening, pinning grain boundaries, and thermal mismatch strengthening. . A large number of experimental results show that when the content of ceramic particles is the same, the finer the particle size, the better the improvement of the material properties. Since the smaller the size of the nanoparticles, the better the effect of improving the yield strength, tensile strength, and elongation of the composite material, so it is necessary to consider a method of refining the nanoparticles; by adding a certain mass fraction of alloy elements, in different On the basis of generating other intermediate products, the size of nanoparticles is further reduced.

发明内容Contents of the invention

本发明的目的是提供一种细化陶铝复合材料中内生纳米TiB2颗粒的方法。The purpose of the present invention is to provide a method for refining endogenous nano- TiB2 particles in ceramic-aluminum composite materials.

本发明的目的可以通过以下技术方案实现:The purpose of the present invention can be achieved through the following technical solutions:

一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:A kind of endogenous nanometer TiB in thinning pottery-aluminum composite The method of particle , comprises the following steps:

(1)硼粉球磨预处理:将硼粉放入球磨罐中,用球磨机将硼粉以200~300r/min的速度球磨处理1~3h;(1) Boron powder ball milling pretreatment: put boron powder into a ball mill tank, and use a ball mill to mill the boron powder at a speed of 200-300r/min for 1-3 hours;

(2)含有细化元素的Al-Ti-B-M反应体系的混合制备,具体如下:(2) The mixed preparation of the Al-Ti-B-M reaction system containing refinement elements is as follows:

(2a)称取粒度13~48μm的铝粉、球磨处理后粒度为0.5~1μm的硼粉、粒度为13~45μm的钛粉、粒度为45μm的铜粉以及粒度为45μm的镁粉备用;(2a) Weigh aluminum powder with a particle size of 13-48 μm, boron powder with a particle size of 0.5-1 μm after ball milling, titanium powder with a particle size of 13-45 μm, copper powder with a particle size of 45 μm and magnesium powder with a particle size of 45 μm for subsequent use;

(2b)将铝粉、钛粉、硼粉、铜粉、镁粉按以下几种配比配制成100g混合粉末制成Al-Ti-B-M压坯,其中,M代表铜粉、镁粉,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2;铝粉的含量为65~85wt.%;钛粉含量为6.88~20.64wt.%;硼粉含量为3.12~9.36wt.%铜粉的含量为0~5wt.%,镁粉的含量为0~5wt.%,上述各组分具体如下;(2b) Aluminum powder, titanium powder, boron powder, copper powder, and magnesium powder are formulated into 100g mixed powder according to the following proportions to make Al-Ti-B-M compact, wherein, M represents copper powder, magnesium powder, and Ti The /B mass ratio is 2.22:1; the Ti/B molar ratio is 1:2; the content of aluminum powder is 65-85wt.%; the content of titanium powder is 6.88-20.64wt.%; the content of boron powder is 3.12-9.36wt. The content of % copper powder is 0~5wt.%, the content of magnesium powder is 0~5wt.%, above-mentioned each component is specific as follows;

①Al-Ti-B–Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为10wt.%,体系中铜元素的含量为5wt.%,其中,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2;体系中铝粉、钛粉、硼粉、铜粉、镁粉各自重量分别为:铝粉:85克;钛粉:6.88克;硼粉:3.12克;铜粉:5克;镁粉:0克;配制成100克混合粉末;①In the Al-Ti-B–Cu system, the mass fraction of nano-TiB 2 ceramic particles produced by the reaction is 10wt.%, and the content of copper element in the system is 5wt.%. Among them, the mass ratio of Ti/B is 2.22:1; Ti/B The molar ratio is 1:2; the respective weights of aluminum powder, titanium powder, boron powder, copper powder, and magnesium powder in the system are: aluminum powder: 85 grams; titanium powder: 6.88 grams; boron powder: 3.12 grams; copper powder: 5 grams; magnesium powder: 0 grams; formulated into 100 grams of mixed powder;

②Al-Ti-B–Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为20wt.%,体系中铜元素的含量为5wt.%,其中,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2;体系中铝粉、钛粉、硼粉、铜粉、镁粉各自重量分别为:铝粉:75克;钛粉:13.77克;硼粉:6.23克;铜粉:5克;镁粉:0克;配制成100克混合粉末;②In the Al-Ti-B–Cu system, the mass fraction of nano-TiB 2 ceramic particles produced by the reaction is 20wt.%, and the content of copper element in the system is 5wt.%. Among them, the mass ratio of Ti/B is 2.22:1; Ti/B The molar ratio is 1:2; the respective weights of aluminum powder, titanium powder, boron powder, copper powder, and magnesium powder in the system are: aluminum powder: 75 grams; titanium powder: 13.77 grams; boron powder: 6.23 grams; copper powder: 5 grams; magnesium powder: 0 grams; formulated into 100 grams of mixed powder;

③Al-Ti-B–Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为30wt.%,体系中铜元素的含量为5wt.%,其中,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2;体系中铝粉、钛粉、硼粉、铜粉、镁粉各自重量分别为:铝粉:65克;钛粉:20.64克;硼粉:9.36克;铜粉:5克;镁粉:0克;配制成100克混合粉末;③In the Al-Ti-B–Cu system, the mass fraction of nano-TiB 2 ceramic particles produced by the reaction is 30wt.%, and the content of copper element in the system is 5wt.%. Among them, the mass ratio of Ti/B is 2.22:1; Ti/B The molar ratio is 1:2; the respective weights of aluminum powder, titanium powder, boron powder, copper powder and magnesium powder in the system are: aluminum powder: 65 grams; titanium powder: 20.64 grams; boron powder: 9.36 grams; copper powder: 5 grams; magnesium powder: 0 grams; formulated into 100 grams of mixed powder;

④Al-Ti-B-Mg体系中反应生成纳米TiB2陶瓷颗粒的质量分数为20wt.%,体系中镁元素的含量为5wt.%,其中,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2;体系中铝粉、钛粉、硼粉、铜粉、镁粉各自重量分别为:铝粉:75克;钛粉:13.77克;硼粉:6.23克;铜粉:0克;镁粉:5克;配制成100克混合粉末;④In the Al-Ti-B-Mg system, the mass fraction of nano -TiB2 ceramic particles produced by the reaction is 20wt.%, and the content of magnesium element in the system is 5wt.%. Among them, the mass ratio of Ti/B is 2.22:1; Ti/B The molar ratio is 1:2; the respective weights of aluminum powder, titanium powder, boron powder, copper powder, and magnesium powder in the system are: aluminum powder: 75 grams; titanium powder: 13.77 grams; boron powder: 6.23 grams; copper powder: 0 grams; magnesium powder: 5 grams; formulated into 100 grams of mixed powder;

(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化:(3) Ball milling homogenization of Al-Ti-B-M reaction system containing refining elements and densification of powder compacts:

(3a)将将步骤(2)中配制好的不同组分的粉料与氧化锆磨球放入混料机中,罐中盛有直径分别为5mm、7mm、11mm、15mm、20mm、22mm的ZrO2球,每种10个,ZrO2球质量共800g;混料机以30~60r/min的速度均匀混合8~32h;其中氧化锆磨球和混合粉末的质量比是8:1;(3a) Put the powders and zirconia grinding balls of different components prepared in step (2) into the mixer, and the tanks are filled with 5mm, 7mm, 11mm, 15mm, 20mm, and 22mm diameters respectively. ZrO 2 balls, 10 of each type, the total mass of ZrO 2 balls is 800g; the mixer is uniformly mixed at a speed of 30-60r/min for 8-32h; the mass ratio of zirconia grinding balls to mixed powder is 8:1;

(3b)将球磨混料的粉料取出,将球磨混好的粉料用铝箔包好,在液压机上冷压制成Φ30圆柱形压坯,高35~45mm;致密度为60~75%;(3b) Take out the ball-milled powder, wrap the ball-milled powder with aluminum foil, and cold-press it on a hydraulic press to make a Φ30 cylindrical compact with a height of 35-45mm and a density of 60-75%;

(4)压坯原位反应制备并细化处理TiB2颗粒:(4) Preparation and refinement of TiB 2 particles by in-situ reaction of the green compact:

(4a)用石墨纸将步骤(3b)中制得的Φ30圆柱形压坯包裹好放入到石墨模具中;(4a) Wrap the Φ30 cylindrical compact made in step (3b) with graphite paper and put it into a graphite mould;

(4b)将石墨模具和Φ30圆柱形压坯放入到真空热爆炉中,关闭炉门,后抽真空至炉内压力低于10Pa;(4b) Put the graphite mold and Φ30 cylindrical compact into the vacuum thermal explosion furnace, close the furnace door, and then evacuate until the pressure in the furnace is lower than 10Pa;

(4c)开始加热,加热速度设置为25~40K/min;加热升温至1183K,然后将温度降到1073K后保温10min,保温过程中同时对圆柱形压坯施加轴向25~55MPa压力,保压时间20~60s;反应后并经轴向压力致密化的圆柱形陶铝复合材料随炉在真空中冷却至室温。(4c) Start heating, and set the heating rate to 25-40K/min; heat up to 1183K, then lower the temperature to 1073K and keep warm for 10 minutes. During the heat-keeping process, apply an axial pressure of 25-55MPa to the cylindrical compact at the same time, and keep the pressure The time is 20-60s; after the reaction, the cylindrical ceramic-aluminum composite material densified by axial pressure is cooled to room temperature in vacuum with the furnace.

优选的,步骤(2)中的Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为10wt.%,体系中铜元素的含量为5wt.%,其中,Ti/B质量比为2.22:1;Ti/B摩尔比为1:2。Preferably, in the Al-Ti-B-Cu system in step (2), the reaction generates nano-TiB 2 The mass fraction of ceramic particles is 10wt.%, and the content of copper element in the system is 5wt.%, wherein, Ti/B mass The ratio is 2.22:1; the Ti/B molar ratio is 1:2.

该发明的有益效果在于:本发明中的细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:(1)硼粉球磨预处理;(2)含有细化元素的Al-Ti-B-M反应体系的混合制备;(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化;(4)压坯原位反应制备并细化处理TiB2颗粒。本发明通过在反应体系内加入一定质量分数的合金元素将TiB2颗粒反应制备和细化一步完成,进一步减小纳米颗粒的尺寸。本发明中的合金元素添加细化陶铝复合材料中内生纳米TiB2颗粒可以用于陶瓷颗粒的细化和尺寸控制,有利于制备纳米尺寸TiB2颗粒,TiB2颗粒是铝合金重要的细化剂和强化剂,纳米尺寸TiB2颗粒可大幅提高合金组织的细化效果,大幅减少TiB2颗粒使用量,降低细化铝合金的成本,具有重要的实际应用价值。The beneficial effects of the invention are: the method of endogenous nano- TiB2 particles in the refinement pottery-aluminum composite material in the present invention comprises the following steps: (1) boron powder ball milling pretreatment; (2) Al- Mixed preparation of Ti-BM reaction system; (3) Al-Ti-BM reaction system containing refining elements for ball milling homogenization and powder compact compaction; (4) In-situ reaction preparation and refinement treatment of TiB 2 particles. The invention completes the reaction preparation and refinement of TiB2 particles in one step by adding a certain mass fraction of alloy elements in the reaction system, and further reduces the size of nano particles. The addition of alloying elements in the present invention refines the endogenous nano- TiB2 particles in the ceramic-aluminum composite material, which can be used for the refinement and size control of ceramic particles, which is beneficial to the preparation of nano-sized TiB2 particles. TiB2 particles are important fine particles of aluminum alloys. Nano-sized TiB2 particles can greatly improve the refining effect of the alloy structure, greatly reduce the amount of TiB2 particles used, and reduce the cost of refining aluminum alloys, which has important practical application value.

附图说明Description of drawings

图1为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Fig. 1 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 10wt.%, in the system When the content of copper element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图2为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 2 is that the mass fraction of the nanometer TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 10wt.%, in the system When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图3为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图;Fig. 3 is that the mass fraction of the nano-TiB 2 ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 20wt.%. When the content of copper element is 5wt.%, the X-ray diffraction pattern of the ceramic-aluminum composite containing endogenous nano- TiB2 particle that makes;

图4为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 4 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 20wt.%, in the system When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图5为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Fig. 5 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 30wt.%, in the system When the content of copper element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图6为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 6 is that the mass fraction of the nano-TiB 2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Cu system is 30wt.%. When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图7为Al-Ti-B-Mg体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Figure 7 shows that the mass fraction of nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Mg system is 20wt.%. When the content of magnesium element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图8为Al-Ti-B-Mg体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Figure 8 shows that the mass fraction of nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Mg system is 20wt.%. When the content of magnesium element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

具体实施方式Detailed ways

为使本发明实现的技术手段、创新特征、达成目的易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, innovative features, and goals achieved by the present invention easy to understand, the present invention will be further described below in conjunction with specific embodiments.

实施例1:Example 1:

本实施例中的一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:A kind of refinement in the ceramic aluminum composite material in the present embodiment endogenous nanometer TiB 2The method for particle, comprises the following steps:

(1)硼粉球磨预处理:将硼粉放入球磨罐中,用球磨机将硼粉以300r/min的速度球磨处理1h;(1) Boron powder ball milling pretreatment: put boron powder into a ball mill tank, and use a ball mill to mill the boron powder at a speed of 300r/min for 1 hour;

(2)含有细化元素的Al-Ti-B-M反应体系的混合制备:(2) Mixing preparation of Al-Ti-B-M reaction system containing refinement elements:

(2a)称取一定量所需的粒度13μm的铝粉,球磨处理后粒度为0.5μm的硼粉以及粒度为13μm的钛粉,粒度为45μm的铜粉备用;(2a) Weighing a certain amount of required aluminum powder with a particle size of 13 μm, boron powder with a particle size of 0.5 μm and titanium powder with a particle size of 13 μm after ball milling, and copper powder with a particle size of 45 μm for subsequent use;

(2b)将铝粉、钛粉、硼粉、铜粉按以下几种配比配制成100g混合粉末制成Al-Ti-B-Cu试样:其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1,Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%:体系中铝粉、钛粉、硼粉、铜粉各自重量分别为:铝粉:85克;钛粉:6.88克;硼粉:3.12克;铜粉:5克;配制成100克混合粉末;(2b) Aluminum powder, titanium powder, boron powder, and copper powder are formulated into 100g of mixed powder according to the following ratios to make Al-Ti-B-Cu sample: wherein the Al-Ti-B-Cu system reacts to form The mass fraction of nanometer TiB2 ceramic particles (Ti/B mass ratio is 2.22:1, Ti/B molar ratio is 1:2) is 10wt.%, and the content of copper element in the system is 5wt.%.In the system, aluminum powder, The respective weights of titanium powder, boron powder, and copper powder are: aluminum powder: 85 grams; titanium powder: 6.88 grams; boron powder: 3.12 grams; copper powder: 5 grams; mixed into 100 grams of powder;

(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化:(3) Ball milling homogenization of Al-Ti-B-M reaction system containing refining elements and densification of powder compacts:

(3a)将将将步骤(2)中配制好的不同组分的粉料与氧化锆磨球放入混料机中,罐中盛有直径分别为5mm、7mm、11mm、15mm、20mm、22mm的ZrO2球,每种10个,ZrO2球质量共800g。混料机以60r/min的速度均匀混合8h;其中氧化锆磨球和混合粉末的质量比是8:1;(3a) Put the powders and zirconia balls of different components prepared in step (2) into the mixer, and the tanks are filled with 5mm, 7mm, 11mm, 15mm, 20mm, and 22mm diameters respectively. ZrO 2 balls, 10 of each kind, the total mass of ZrO 2 balls is 800g. The mixer is uniformly mixed at a speed of 60r/min for 8 hours; the mass ratio of zirconia balls to mixed powder is 8:1;

(3b)将球磨混料的粉料取出,将球磨混好的粉料用铝箔包好,在液压机上冷压制成Φ30圆柱形压坯,高45mm;致密度为60%;(3b) Take out the powder material mixed by ball mill, wrap the powder material mixed by ball mill with aluminum foil, and cold press it on a hydraulic press to make a Φ30 cylindrical compact with a height of 45mm; the density is 60%;

(4)压坯原位反应制备并细化处理TiB2颗粒:(4) Preparation and refinement of TiB 2 particles by in-situ reaction of the green compact:

(4a)用石墨纸将步骤(3)中制得的Φ30圆柱形压坯包裹好放入到石墨模具中;(4a) wrap the Φ30 cylindrical compact made in step (3) with graphite paper and put it into a graphite mould;

(4b)将石墨模具和Φ30圆柱形压坯放入到真空热爆炉中,关闭炉门,后抽真空至炉内压力低于10Pa;(4b) Put the graphite mold and Φ30 cylindrical compact into the vacuum thermal explosion furnace, close the furnace door, and then evacuate until the pressure in the furnace is lower than 10Pa;

(4c)开始加热,加热速度设置为40K/min;加热升温至1183K,然后将温度降到1073K后保温10min,保温过程中同时对圆柱形压坯施加轴向55MPa压力,保压时间20s;反应后并经轴向压力致密化的圆柱形陶铝复合材料随炉在真空中冷却至室温。(4c) Start heating, and set the heating rate to 40K/min; heat up to 1183K, then lower the temperature to 1073K and keep warm for 10 minutes. During the keep warm process, apply an axial pressure of 55MPa to the cylindrical compact at the same time, and hold the pressure for 20s; Afterwards, the cylindrical ceramic-aluminum composite material densified by axial pressure is cooled to room temperature in vacuum with the furnace.

其中,步骤(2)中以铝粉、钛粉、硼粉、铜粉按配比配制成的Al-Ti-B-Cu试样,其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为10wt.%,体系中铜元素的含量为5wt.%:Wherein, in the step (2), the Al-Ti-B-Cu sample prepared by proportioning with aluminum powder, titanium powder, boron powder and copper powder, wherein the reaction in the Al-Ti-B-Cu system generates nanometer TiB ceramics The mass fraction of particles is 10wt.%, and the content of copper element in the system is 5wt.%:

当Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射如图1所示,所制备的含有内生纳米TiB2颗粒的陶瓷铝复合主要由TiB2陶瓷相和α-Al相组成,制得的TiB2颗粒尺寸最小,其平均尺寸为106.5nm。未加入Cu元素时,TiB2纳米颗粒含量为10wt.%的颗粒平均尺寸为177.9nm,加入5wt.%Cu元素后相比于未添加Cu元素时TiB2陶瓷颗粒的尺寸减小了40%,TiB2纳米颗粒得到了显著细化;如图2所示。When the mass fraction of the nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Cu system is 10wt.%, the copper element in the system %, the X-ray diffraction of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is shown in Figure 1, and the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is mainly composed of TiB 2 Composed of ceramic phase and α-Al phase, the prepared TiB 2 particle size is the smallest, with an average size of 106.5nm. When no Cu element was added, the average particle size of the TiB 2 nanoparticle content of 10wt.% was 177.9nm. After adding 5wt.% Cu element, the size of TiB 2 ceramic particles was reduced by 40% compared with that without Cu element. The TiB2 nanoparticles were significantly refined; as shown in Fig. 2.

实施例2:Example 2:

本实施例中的一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:A kind of refinement in the ceramic aluminum composite material in the present embodiment endogenous nanometer TiB 2The method for particle, comprises the following steps:

(1)硼粉球磨预处理:将硼粉放入球磨罐中,用球磨机将硼粉以200r/min的速度球磨处理3h;(1) Boron powder ball milling pretreatment: put boron powder in a ball mill tank, and use a ball mill to mill the boron powder at a speed of 200r/min for 3 hours;

(2)含有细化元素的Al-Ti-B-M反应体系的混合制备:(2) Mixing preparation of Al-Ti-B-M reaction system containing refinement elements:

(2a)称取一定量所需的粒度48μm的铝粉,球磨处理后粒度为1μm的硼粉以及粒度为45μm的钛粉,粒度为45μm的铜粉备用;(2a) Weighing a certain amount of required aluminum powder with a particle size of 48 μm, boron powder with a particle size of 1 μm and titanium powder with a particle size of 45 μm after ball milling, and copper powder with a particle size of 45 μm for subsequent use;

(2b)将铝粉、钛粉、硼粉、铜粉按以下几种配比配制成100g混合粉末制成Al-Ti-B-Cu试样:其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1,Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%:体系中铝粉、钛粉、硼粉、铜粉各自重量分别为:铝粉:75克;钛粉:13.77克;硼粉:6.23克;铜粉:5克;配制成100克混合粉末;(2b) Aluminum powder, titanium powder, boron powder, and copper powder are formulated into 100g of mixed powder according to the following ratios to make Al-Ti-B-Cu sample: wherein the Al-Ti-B-Cu system reacts to form The mass fraction of nano -TiB2 ceramic particles (Ti/B mass ratio is 2.22:1, Ti/B molar ratio is 1:2) is 20wt.%, and the content of copper element in the system is 5wt.%.In the system, aluminum powder, The respective weights of titanium powder, boron powder and copper powder are: aluminum powder: 75 grams; titanium powder: 13.77 grams; boron powder: 6.23 grams; copper powder: 5 grams; mixed into 100 grams of powder;

(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化:(3) Ball milling homogenization of Al-Ti-B-M reaction system containing refining elements and densification of powder compacts:

(3a)将步骤(2)中配制好的不同组分的粉料与氧化锆磨球放入混料机中,罐中盛有直径分别为5mm、7mm、11mm、15mm、20mm、22mm的ZrO2球,每种10个,ZrO2球质量共800g。混料机以30r/min的速度均匀混合32h;其中氧化锆磨球和混合粉末的质量比是8:1;(3a) Put the powders and zirconia balls of different components prepared in step (2) into the mixer, and the tanks are filled with ZrO powders with diameters of 5mm, 7mm, 11mm, 15mm, 20mm, and 22mm respectively. 2 balls, 10 of each kind, the total mass of ZrO 2 balls is 800g. The mixer is uniformly mixed at a speed of 30r/min for 32h; the mass ratio of zirconia balls to mixed powder is 8:1;

(3b)将球磨混料的粉料取出,将球磨混好的粉料用铝箔包好,在液压机上冷压制成Φ30圆柱形压坯,高40mm;致密度为65%;(3b) Take out the powder material mixed by the ball mill, wrap the powder material mixed by the ball mill with aluminum foil, and cold press it into a Φ30 cylindrical compact with a height of 40mm; the density is 65%;

(4)压坯原位反应制备并细化处理TiB2颗粒:(4) Preparation and refinement of TiB 2 particles by in-situ reaction of the green compact:

(4a)用石墨纸将步骤(3)中制得的Φ30圆柱形压坯包裹好放入到石墨模具中;(4a) wrap the Φ30 cylindrical compact made in step (3) with graphite paper and put it into a graphite mould;

(4b)将石墨模具和Φ30圆柱形压坯放入到真空热爆炉中,关闭炉门,后抽真空至炉内压力低于10Pa;(4b) Put the graphite mold and Φ30 cylindrical compact into the vacuum thermal explosion furnace, close the furnace door, and then evacuate until the pressure in the furnace is lower than 10Pa;

(4c)开始加热,加热速度设置为35K/min;加热升温至1183K,然后将温度降到1073K后保温10min,保温过程中同时对圆柱形压坯施加轴向40MPa压力,保压时间32s;反应后并经轴向压力致密化的圆柱形陶铝复合材料随炉在真空中冷却至室温。(4c) Start heating, and set the heating rate to 35K/min; heat up to 1183K, then lower the temperature to 1073K and keep warm for 10 minutes. During the keep warm process, apply axial 40MPa pressure to the cylindrical compact at the same time, and the holding time is 32s; Afterwards, the cylindrical ceramic-aluminum composite material densified by axial pressure is cooled to room temperature in vacuum with the furnace.

其中,步骤(2)中以铝粉、钛粉、硼粉、铜粉按配比配制成的Al-Ti-B-Cu试样,其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为20wt.%,体系中铜元素的含量为5wt.%:Wherein, in the step (2), the Al-Ti-B-Cu sample prepared by proportioning with aluminum powder, titanium powder, boron powder and copper powder, wherein the reaction in the Al-Ti-B-Cu system generates nanometer TiB ceramics The mass fraction of particles is 20wt.%, and the content of copper element in the system is 5wt.%:

当Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射如图3所示,所制备的含有内生纳米TiB2颗粒的陶瓷铝复合主要由TiB2陶瓷相和α-Al相组成,制得的TiB2颗粒尺寸较小,其平均尺寸为146nm。未加入Cu元素时,TiB2纳米颗粒含量为20wt.%的颗粒平均尺寸为340.6nm,加入5wt.%Cu元素后相比于未添加Cu元素时TiB2陶瓷颗粒的尺寸减小了57%,TiB2纳米颗粒得到了显著细化,如图4所示。When the mass fraction of the nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Cu system is 20wt.%, the copper element in the system When the content is 5wt.%, the X-ray diffraction of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is shown in Figure 3, and the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is mainly composed of TiB 2 Composed of ceramic phase and α-Al phase, the prepared TiB 2 particle size is small, and its average size is 146nm. When no Cu element was added, the average particle size of the TiB 2 nanoparticle content of 20wt.% was 340.6nm. After adding 5wt.% Cu element, the size of TiB 2 ceramic particles was reduced by 57% compared with that without Cu element. The TiB2 nanoparticles were significantly refined, as shown in Fig. 4.

实施例3:Example 3:

本实施例中的一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:A kind of refinement in the ceramic aluminum composite material in the present embodiment endogenous nanometer TiB 2The method for particle, comprises the following steps:

(1)硼粉球磨预处理:将硼粉放入球磨罐中,用球磨机将硼粉以300r/min的速度球磨处理1h;(1) Boron powder ball milling pretreatment: put boron powder into a ball mill tank, and use a ball mill to mill the boron powder at a speed of 300r/min for 1 hour;

(2)含有细化元素的Al-Ti-B-M反应体系的混合制备:(2) Mixing preparation of Al-Ti-B-M reaction system containing refinement elements:

(2a)称取一定量所需的粒度13μm的铝粉,球磨处理后粒度为0.5μm的硼粉以及粒度为25μm的钛粉,粒度为45μm的铜粉备用;(2a) Weighing a certain amount of required aluminum powder with a particle size of 13 μm, boron powder with a particle size of 0.5 μm and titanium powder with a particle size of 25 μm after ball milling, and copper powder with a particle size of 45 μm for subsequent use;

(2b)将铝粉、钛粉、硼粉、铜粉按以下几种配比配制成100g混合粉末制成Al-Ti-B-Cu试样:其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%:体系中铝粉、钛粉、硼粉、铜粉各自重量分别为:铝粉:65克;钛粉:20.64克;硼粉:9.36克;铜粉:5克;配制成100克混合粉末;(2b) Aluminum powder, titanium powder, boron powder, and copper powder are formulated into 100g of mixed powder according to the following ratios to make Al-Ti-B-Cu sample: wherein the Al-Ti-B-Cu system reacts to form The mass fraction of nano TiB 2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) is 30wt.%, and the content of copper element in the system is 5wt.%.In the system, aluminum powder, The respective weights of titanium powder, boron powder, and copper powder are: aluminum powder: 65 grams; titanium powder: 20.64 grams; boron powder: 9.36 grams; copper powder: 5 grams; mixed into 100 grams of powder;

(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化:(3) Ball milling homogenization of Al-Ti-B-M reaction system containing refining elements and densification of powder compacts:

(3a)将步骤(2)中配制好的不同组分的粉料与氧化锆磨球放入混料机中,罐中盛有直径分别为5mm、7mm、11mm、15mm、20mm、22mm的ZrO2球,每种10个,ZrO2球质量共800g。混料机以40r/min的速度均匀混合24h;其中氧化锆磨球和混合粉末的质量比是8:1;(3a) Put the powders and zirconia balls of different components prepared in step (2) into the mixer, and the tanks are filled with ZrO powders with diameters of 5mm, 7mm, 11mm, 15mm, 20mm, and 22mm respectively. 2 balls, 10 of each kind, the total mass of ZrO 2 balls is 800g. The mixer is uniformly mixed at a speed of 40r/min for 24 hours; the mass ratio of zirconia balls to mixed powder is 8:1;

(3b)将球磨混料的粉料取出,将球磨混好的粉料用铝箔包好,在液压机上冷压制成Φ30圆柱形压坯,高40mm;致密度为65%;(3b) Take out the powder material mixed by the ball mill, wrap the powder material mixed by the ball mill with aluminum foil, and cold press it into a Φ30 cylindrical compact with a height of 40mm; the density is 65%;

(4)压坯原位反应制备并细化处理TiB2颗粒:(4) Preparation and refinement of TiB 2 particles by in-situ reaction of the green compact:

(4a)用石墨纸将步骤(3)中制得的Φ30圆柱形压坯包裹好放入到石墨模具中;(4a) wrap the Φ30 cylindrical compact made in step (3) with graphite paper and put it into a graphite mould;

(4b)将石墨模具和Φ30圆柱形压坯放入到真空热爆炉中,关闭炉门,后抽真空至炉内压力低于10Pa;(4b) Put the graphite mold and Φ30 cylindrical compact into the vacuum thermal explosion furnace, close the furnace door, and then evacuate until the pressure in the furnace is lower than 10Pa;

(4c)开始加热,加热速度设置为25K/min;加热升温至1183K,然后将温度降到1073K后保温10min,保温过程中同时对圆柱形压坯施加轴向25MPa压力,保压时间60s;反应后并经轴向压力致密化的圆柱形陶铝复合材料随炉在真空中冷却至室温;(4c) Start heating, and set the heating rate to 25K/min; heat up to 1183K, then lower the temperature to 1073K and keep warm for 10 minutes, and apply axial 25MPa pressure to the cylindrical compact at the same time during the heat preservation process, and the holding time is 60s; Afterwards, the cylindrical ceramic-aluminum composite material densified by axial pressure is cooled to room temperature in vacuum with the furnace;

其中,步骤(2)中以铝粉、钛粉、硼粉、铜粉按配比配制成的Al-Ti-B-Cu试样,其中Al-Ti-B-Cu体系中反应生成纳米TiB2陶瓷颗粒的质量分数为30wt.%,体系中铜元素的含量为5wt.%:Wherein, in the step (2), the Al-Ti-B-Cu sample prepared by proportioning with aluminum powder, titanium powder, boron powder and copper powder, wherein the reaction in the Al-Ti-B-Cu system generates nanometer TiB ceramics The mass fraction of particles is 30wt.%, and the content of copper element in the system is 5wt.%:

当Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射如图5所示,所制备的含有内生纳米TiB2颗粒的陶瓷铝复合主要由TiB2陶瓷相和α-Al相组成,制得的TiB2颗粒平均尺寸为304nm。未加入Cu元素时,TiB2纳米颗粒含量为30wt.%的颗粒平均尺寸为422.7nm,加入5wt.%Cu元素后相比于未添加Cu元素时TiB2陶瓷颗粒的尺寸减小了28%,TiB2纳米颗粒得到了细化,如图6所示。When the mass fraction of the nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Cu system is 30wt.%, the copper element in the system When the content is 5wt.%, the X-ray diffraction of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is shown in Figure 5, and the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is mainly composed of TiB 2 Composed of ceramic phase and α-Al phase, the average size of the prepared TiB 2 particles is 304nm. When no Cu element was added, the average particle size of the TiB 2 nanoparticles with a content of 30wt.% was 422.7nm. After adding 5wt.% Cu element, the size of TiB 2 ceramic particles was reduced by 28% compared with that without Cu element. The TiB2 nanoparticles were refined, as shown in Fig. 6.

实施例4:Example 4:

本实施例中的一种细化陶铝复合材料中内生纳米TiB2颗粒的方法,包括以下步骤:A kind of refinement in the ceramic aluminum composite material in the present embodiment endogenous nanometer TiB 2The method for particle, comprises the following steps:

(1)硼粉球磨预处理:将硼粉放入球磨罐中,用球磨机将硼粉以200r/min的速度球磨处理3h;(1) Boron powder ball milling pretreatment: put boron powder in a ball mill tank, and use a ball mill to mill the boron powder at a speed of 200r/min for 3 hours;

(2)含有细化元素的Al-Ti-B-M反应体系的混合制备:(2) Mixing preparation of Al-Ti-B-M reaction system containing refinement elements:

(2a)称取一定量所需的粒度45μm的铝粉,球磨处理后粒度为1μm的硼粉以及粒度为45μm的钛粉,粒度为45μm的镁粉备用;(2a) Weighing a certain amount of required aluminum powder with a particle size of 45 μm, boron powder with a particle size of 1 μm and titanium powder with a particle size of 45 μm after ball milling, and magnesium powder with a particle size of 45 μm for subsequent use;

(2b)将铝粉、钛粉、硼粉、镁粉按以下几种配比配制成100g混合粉末制成Al-Ti-B-Mg压坯:其中Al-Ti-B-Mg体系中反应生成纳米陶瓷颗粒(Ti/B质量比为2.22:1,Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%:体系中铝粉、钛粉、硼粉、镁粉各自重量分别为:铝粉:75克;钛粉:13.77克;硼粉:6.23克;镁粉:5克;配制成100克混合粉末;(2b) Aluminum powder, titanium powder, boron powder, and magnesium powder are formulated into 100g of mixed powder according to the following proportions to make Al-Ti-B-Mg compact: wherein the Al-Ti-B-Mg system reacts to form The mass fraction of nano-ceramic particles (Ti/B mass ratio is 2.22:1, Ti/B molar ratio is 1:2) is 20wt.%, and the content of magnesium in the system is 5wt.%. Aluminum powder and titanium powder in the system , boron powder, and magnesium powder are respectively weighted as follows: aluminum powder: 75 grams; titanium powder: 13.77 grams; boron powder: 6.23 grams; magnesium powder: 5 grams; mixed with 100 grams of powder;

(3)含有细化元素的Al-Ti-B-M反应体系球磨均匀化及粉体压坯致密化:(3) Ball milling homogenization of Al-Ti-B-M reaction system containing refining elements and densification of powder compacts:

(3a)将步骤(2)配制好的不同组分的粉料与氧化锆磨球放入混料机中,罐中盛有直径分别为5mm、7mm、11mm、15mm、20mm、22mm的ZrO2球,每种10个,ZrO2球质量共800g。混料机以45r/min的速度均匀混合20h;其中氧化锆磨球和混合粉末的质量比是8:1;(3a) Put the powders and zirconia balls of different components prepared in step (2) into the mixer, and the tank is filled with ZrO2 with diameters of 5mm, 7mm, 11mm, 15mm, 20mm, and 22mm respectively Balls, 10 of each kind, the ZrO 2 balls have a total mass of 800g. The mixer is uniformly mixed at a speed of 45r/min for 20h; the mass ratio of zirconia balls to mixed powder is 8:1;

(3b)将球磨混料的粉料取出,将球磨混好的粉料用铝箔包好,在液压机上冷压制成Φ30圆柱形压坯,高35mm;致密度为75%;(3b) Take out the powder material mixed by ball mill, wrap the powder material mixed by ball mill with aluminum foil, and cold press it into a Φ30 cylindrical compact with a height of 35mm; the density is 75%;

(4)压坯原位反应制备并细化处理TiB2颗粒:(4) Preparation and refinement of TiB 2 particles by in-situ reaction of the green compact:

(4a)用石墨纸将步骤(3)中制得的Φ30圆柱形压坯包裹好放入到石墨模具中;(4a) wrap the Φ30 cylindrical compact made in step (3) with graphite paper and put it into a graphite mould;

(4b)将石墨模具和Φ30圆柱形压坯放入到真空热爆炉中,关闭炉门,后抽真空至炉内压力低于10Pa;(4b) Put the graphite mold and Φ30 cylindrical compact into the vacuum thermal explosion furnace, close the furnace door, and then evacuate until the pressure in the furnace is lower than 10Pa;

(4c)开始加热,加热速度设置为35K/min;加热升温至1183K,然后将温度降到1073K后保温10min,保温过程中同时对圆柱形压坯施加轴向45MPa压力,保压时间25s;反应后并经轴向压力致密化的圆柱形陶铝复合材料随炉在真空中冷却至室温;(4c) Start heating, and set the heating rate to 35K/min; heat up to 1183K, then lower the temperature to 1073K and keep warm for 10 minutes. During the keep warm process, apply axial 45MPa pressure to the cylindrical compact at the same time, and hold the pressure for 25s; Afterwards, the cylindrical ceramic-aluminum composite material densified by axial pressure is cooled to room temperature in vacuum with the furnace;

其中,步骤(2)中以铝粉、钛粉、硼粉、镁粉按一定配比配制成的Al-Ti-B-Mg试样,其中Al-Ti-B-Mg体系中反应生成的纳米陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%:Among them, the Al-Ti-B-Mg sample prepared by aluminum powder, titanium powder, boron powder, and magnesium powder in a certain proportion in step (2), wherein the nano The mass fraction of ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) is 20wt.%, and the content of magnesium element in the system is 5wt.%:

当Al-Ti-B-Mg体系内生成的纳米陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射如图7所示,所制备的含有内生纳米TiB2颗粒的陶瓷铝复合主要由TiB2陶瓷相和α-Al相组成,制得的TiB2颗粒平均尺寸为280.4nm;未加镁元素时,TiB2纳米颗粒含量为20wt.%的颗粒平均尺寸为340.6nm,加入5wt.%Mg元素后相比于未添加Mg元素时TiB2陶瓷颗粒的尺寸减小了17.7%,如图8所示。When the mass fraction of the nano ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Mg system is 20wt.%, the content of magnesium element in the system When it is 5wt.%, the X-ray diffraction of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is shown in Figure 7, and the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles is mainly composed of TiB 2 ceramic phase and α-Al phase, the average particle size of the prepared TiB 2 is 280.4nm; when no magnesium element is added, the average particle size of the TiB 2 nanoparticle content is 20wt.% is 340.6nm, and the phase after adding 5wt.% Mg element The size of the TiB2 ceramic particles was reduced by 17.7% compared to that without adding Mg element, as shown in Fig. 8.

针对上述实施例材料进行X射线分析测试以及颗粒尺寸形貌分析,获得以下数据:Carry out X-ray analysis test and particle size morphology analysis for above-mentioned embodiment material, obtain following data:

图1为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Fig. 1 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 10wt.%, in the system When the content of copper element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图2为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为10wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 2 is that the mass fraction of the nanometer TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 10wt.%, in the system When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图3为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图;Fig. 3 is that the mass fraction of the nano-TiB 2 ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 20wt.%. When the content of copper element is 5wt.%, the X-ray diffraction pattern of the ceramic-aluminum composite containing endogenous nano- TiB2 particle that makes;

图4为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 4 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 20wt.%, in the system When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图5为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Fig. 5 is that the mass fraction of the nano- TiB ceramic particle (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) that generates in Al-Ti-B-Cu system is 30wt.%, in the system When the content of copper element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图6为Al-Ti-B-Cu体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为30wt.%,体系中铜元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Fig. 6 is that the mass fraction of the nano-TiB 2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Cu system is 30wt.%. When the content of copper element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

图7为Al-Ti-B-Mg体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的X射线衍射图。Figure 7 shows that the mass fraction of nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Mg system is 20wt.%. When the content of magnesium element is 5wt.%, the X-ray diffraction pattern of the prepared ceramic-aluminum composite containing endogenous nano-TiB 2 particles.

图8为Al-Ti-B-Mg体系内生成的纳米TiB2陶瓷颗粒(Ti/B质量比为2.22:1;Ti/B摩尔比为1:2)的质量分数为20wt.%,体系中镁元素的含量为5wt.%时,制得的含有内生纳米TiB2颗粒的陶瓷铝复合的尺寸形貌分析。Figure 8 shows that the mass fraction of nano- TiB2 ceramic particles (Ti/B mass ratio is 2.22:1; Ti/B molar ratio is 1:2) generated in the Al-Ti-B-Mg system is 20wt.%. When the content of magnesium element is 5wt.%, the size and morphology analysis of the ceramic-aluminum composite containing endogenous nano-TiB 2 particles is prepared.

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, and it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.

Claims (2)

1. a kind of interior raw nanometer TiB in refinement pottery aluminium composite material2The method of particle, it is characterised in that:Comprise the following steps:
(1) boron powder ball milling pretreatment:Boron powder is put into ball grinder, with ball mill by boron powder with the speed of 200~300r/min 1~3h of ball-milling treatment;
(2) Al-Ti-B-M reaction systems containing Refining Elements are mixed with, specific as follows:
(2a) weighs the boron powder that granularity after the aluminium powder of 13~48 μm of granularity, ball-milling treatment is 0.5~1 μm, granularity is 13~45 μm Titanium valve, the copper powder that granularity is 45 μm and magnesium powder that granularity is 45 μm it is spare;
Al-Ti- is made by following several 100g mixed-powders that are configured in aluminium powder, titanium valve, boron powder, copper powder, magnesium powder by (2b) B-M green compacts, wherein, M represents copper powder, magnesium powder, and Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2;The content of aluminium powder is 65 ~85wt.%;Titanium powder content is 6.88~20.64wt.%;Boron powder content be the content of 3.12~9.36wt.% copper powders be 0~ 5wt.%, the content of magnesium powder is 0~5wt.%, and above-mentioned each component is specific as follows;
1. reaction generation nanometer TiB in Al-Ti-B-Cu systems2The mass fraction of ceramic particle is 10wt.%, copper in system Content for 5wt.%, wherein, Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2;Aluminium powder in system, titanium valve, boron powder, Each weight is respectively for copper powder, magnesium powder:Aluminium powder:85 grams;Titanium valve:6.88 gram;Boron powder:3.12 gram;Copper powder:5 grams;Magnesium powder:0 gram; It is configured to 100 grams of mixed-powders;
2. reaction generation nanometer TiB in Al-Ti-B-Cu systems2The mass fraction of ceramic particle is 20wt.%, copper in system Content for 5wt.%, wherein, Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2;Aluminium powder in system, titanium valve, boron powder, Each weight is respectively for copper powder, magnesium powder:Aluminium powder:75 grams;Titanium valve:13.77 grams;Boron powder:6.23 gram;Copper powder:5 grams;Magnesium powder:0 gram; It is configured to 100 grams of mixed-powders;
3. reaction generation nanometer TiB in Al-Ti-B-Cu systems2The mass fraction of ceramic particle is 30wt.%, copper in system Content for 5wt.%, wherein, Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2;Aluminium powder in system, titanium valve, boron powder, Each weight is respectively for copper powder, magnesium powder:Aluminium powder:65 grams;Titanium valve:20.64 grams;Boron powder:9.36 gram;Copper powder:5 grams;Magnesium powder:0 gram; It is configured to 100 grams of mixed-powders;
4. reaction generation nanometer TiB in Al-Ti-B-Mg systems2The mass fraction of ceramic particle is 20wt.%, magnesium elements in system Content for 5wt.%, wherein, Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2;Aluminium powder in system, titanium valve, boron powder, Each weight is respectively for copper powder, magnesium powder:Aluminium powder:75 grams;Titanium valve:13.77 grams;Boron powder:6.23 gram;Copper powder:0 gram;Magnesium powder:5 grams; It is configured to 100 grams of mixed-powders;
(3) the Al-Ti-B-M reaction systems ball milling containing Refining Elements and the densification of powder green compact:
The powder of prepared different component in step (2) and zirconium oxide balls will be put into batch mixer by (3a), be filled in tank Diameter is respectively the ZrO of 5mm, 7mm, 11mm, 15mm, 20mm, 22mm2Ball, each 10, ZrO2The common 800g of ball quality;Batch mixer 8~32h is uniformly mixed with the speed of 30~60r/min;The mass ratio of wherein zirconium oxide balls and mixed-powder is 8:1;
(3b) takes out the powder of ball mill mixing, and the mixed powder of ball milling is wrapped with aluminium foil, and Φ is made in cold pressing on a hydraulic press 30 cylindrical green compacts, high 35~45mm;Consistency is 60~75%;
(4) green compact reaction in-situ prepares simultaneously micronization processes TiB2Particle:
30 cylindrical green compacts of Φ obtained in step (3b) with graphite paper are wrapped and are put into graphite jig by (4a);
Graphite jig and 30 cylindrical green compacts of Φ are put into vacuum thermal explosion stove by (4b), close fire door, after be evacuated in stove Pressure is less than 10Pa;
(4c) is begun to warm up, and firing rate is arranged to 25~40K/min;1183K is heated to, is then reduced the temperature to It keeps the temperature 10min after 1073K, applies axial 25~55MPa pressure in insulating process to cylindrical green compact simultaneously, the dwell time 20~ 60s;Cylindrical pottery aluminium composite material after reaction and through axial compressive force densification is cooled to room temperature in a vacuum with stove.
2. interior raw nanometer TiB in refinement pottery aluminium composite material according to claim 12The method of particle, it is characterised in that: Reaction generation nanometer TiB in Al-Ti-B-Cu systems in the step 22The mass fraction of ceramic particle be 10wt.%, system The content of middle copper is 5wt.%, wherein, Ti/B mass ratioes are 2.22:1;Ti/B molar ratios are 1:2.
CN201711274156.9A 2017-06-12 2017-12-06 Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle Pending CN108085575A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710436504.1A CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN2017104365041 2017-06-12

Publications (1)

Publication Number Publication Date
CN108085575A true CN108085575A (en) 2018-05-29

Family

ID=60024113

Family Applications (19)

Application Number Title Priority Date Filing Date
CN201710436504.1A Pending CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN201711273943.1A Active CN108070733B (en) 2017-06-12 2017-12-06 A new type of nanometer boride titanium-ceramic-aluminum composite welding wire
CN201711273936.1A Active CN108103346B (en) 2017-06-12 2017-12-06 Aluminum alloy welding wire containing trace nano particles and preparation method thereof
CN201711274044.3A Active CN107955889B (en) 2017-06-12 2017-12-06 A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles
CN201711273967.7A Active CN108080811B (en) 2017-06-12 2017-12-06 A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles
CN201711274094.1A Active CN108018444B (en) 2017-06-12 2017-12-06 A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material
CN201711273929.1A Active CN108103345B (en) 2017-06-12 2017-12-06 Contains trace nano NbB2Granular aluminum alloy welding wire rod
CN201711273961.XA Active CN107955888B (en) 2017-06-12 2017-12-06 A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy
CN201711273930.4A Pending CN108103332A (en) 2017-06-12 2017-12-06 A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing
CN201711274059.XA Active CN108018443B (en) 2017-06-12 2017-12-06 Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method
CN201711273983.6A Active CN108018442B (en) 2017-06-12 2017-12-06 Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles
CN201711273970.9A Active CN108103338B (en) 2017-06-12 2017-12-06 Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy
CN201711273941.2A Active CN108080815B (en) 2017-06-12 2017-12-06 Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof
CN201711273950.1A Pending CN108060314A (en) 2017-06-12 2017-12-06 One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle
CN201711274134.2A Active CN108085528B (en) 2017-06-12 2017-12-06 A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy
CN201711273974.7A Pending CN108103368A (en) 2017-06-12 2017-12-06 The tough as-cast aluminum alloy of novel high-strength and preparation method
CN201711274156.9A Pending CN108085575A (en) 2017-06-12 2017-12-06 Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle
CN201711273901.8A Pending CN107952948A (en) 2017-06-12 2017-12-06 As-cast aluminum alloy wheel hub low-pressure casting preparation method
CN201711415938.XA Active CN108165793B (en) 2017-06-12 2017-12-25 A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material

Family Applications Before (16)

Application Number Title Priority Date Filing Date
CN201710436504.1A Pending CN107254610A (en) 2017-06-12 2017-06-12 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN201711273943.1A Active CN108070733B (en) 2017-06-12 2017-12-06 A new type of nanometer boride titanium-ceramic-aluminum composite welding wire
CN201711273936.1A Active CN108103346B (en) 2017-06-12 2017-12-06 Aluminum alloy welding wire containing trace nano particles and preparation method thereof
CN201711274044.3A Active CN107955889B (en) 2017-06-12 2017-12-06 A Method of Strengthening Aluminum Alloy Using Endogenous Nano-TiB2 Particles
CN201711273967.7A Active CN108080811B (en) 2017-06-12 2017-12-06 A kind of aluminum alloy welding wire containing micro-nano TiC-TiB2 particles
CN201711274094.1A Active CN108018444B (en) 2017-06-12 2017-12-06 A preparation method of in-situ endogenous nanometer NbB2 pottery-aluminum composite material
CN201711273929.1A Active CN108103345B (en) 2017-06-12 2017-12-06 Contains trace nano NbB2Granular aluminum alloy welding wire rod
CN201711273961.XA Active CN107955888B (en) 2017-06-12 2017-12-06 A micro-nano TiC-TiB2 particle refiner and refinement method for aluminum alloy
CN201711273930.4A Pending CN108103332A (en) 2017-06-12 2017-12-06 A kind of method of the high tough as-cast aluminum alloy of low temperature stabilization processing
CN201711274059.XA Active CN108018443B (en) 2017-06-12 2017-12-06 Nanometer TiB for aluminum alloy organization's refinement2Grain refiner and thinning method
CN201711273983.6A Active CN108018442B (en) 2017-06-12 2017-12-06 Preparation method of high-performance aluminum alloy reinforced by micro-nano hybrid TiC-TiB2 particles
CN201711273970.9A Active CN108103338B (en) 2017-06-12 2017-12-06 Endogenous micro-nano hybrid dual-phase ceramic particle strengthener and method for strengthening aluminum alloy
CN201711273941.2A Active CN108080815B (en) 2017-06-12 2017-12-06 Nano ceramic aluminum composite aluminum alloy welding wire and preparation method thereof
CN201711273950.1A Pending CN108060314A (en) 2017-06-12 2017-12-06 One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle
CN201711274134.2A Active CN108085528B (en) 2017-06-12 2017-12-06 A method for in-situ endogenous nano-NbB2 particle refinement and strengthening of aluminum alloy
CN201711273974.7A Pending CN108103368A (en) 2017-06-12 2017-12-06 The tough as-cast aluminum alloy of novel high-strength and preparation method

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201711273901.8A Pending CN107952948A (en) 2017-06-12 2017-12-06 As-cast aluminum alloy wheel hub low-pressure casting preparation method
CN201711415938.XA Active CN108165793B (en) 2017-06-12 2017-12-25 A kind of preparation method of endogenous nano-sized particle reinforced aluminum alloy material

Country Status (1)

Country Link
CN (19) CN107254610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439942A (en) * 2018-12-27 2019-03-08 吉林大学 A kind of preparation method of the pottery aluminium composite material based on interior raw nano TiC xNy particle
CN109628788A (en) * 2018-12-27 2019-04-16 吉林大学 A kind of method that multiphase ceramic confusion prepares high elastic modulus high-strength aluminum alloy

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254610A (en) * 2017-06-12 2017-10-17 吉林大学 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN108500234B (en) * 2018-03-19 2020-01-31 中信戴卡股份有限公司 Manufacturing process of aluminum alloy wheels
CN108424341B (en) * 2018-05-04 2021-01-26 北京理工大学 A kind of preparation method of medicine type cover with high activity Ti/2B nano powder material added
CN108504885A (en) * 2018-05-15 2018-09-07 深圳市奥力压铸五金制品有限公司 The preparation method and alusil alloy of alusil alloy
CN108817734B (en) * 2018-05-25 2020-04-24 迈特李新材料(广州)有限公司 Metal-based nanocomposite welding wire and preparation method thereof
CN108531788B (en) * 2018-05-29 2019-10-11 东北轻合金有限责任公司 A kind of manufacturing method of space flight silicon aluminum alloy welding wire wire rod
CN108754242B (en) * 2018-06-15 2020-02-07 淮阴工学院 In-situ endogenetic ceramic phase synergistic reinforced aluminum-based composite material and forming method thereof
CN110052615A (en) * 2018-08-10 2019-07-26 南方科技大学 Method for preparing high-strength aluminum alloy by selective laser melting
CN109136608B (en) * 2018-08-22 2020-06-09 北京理工大学 A preparation method of TiB whisker reinforced titanium matrix composite material with controllable orientation
CN109023084A (en) * 2018-09-07 2018-12-18 吉林大学 A kind of micro nano-TiC particle strengthens steel and preparation method thereof
CN109023153A (en) * 2018-09-07 2018-12-18 吉林大学 Micro nano-TiC particle Strengthening and Toughening forging hot die steel in a kind of original position and preparation method thereof
CN109055860A (en) * 2018-09-07 2018-12-21 吉林大学 One specific admixture scale TiCN and TiB2Particle Strengthening and Toughening low-alloy steel and preparation method thereof
CN109207758B (en) * 2018-10-20 2021-05-04 苏州安路特汽车部件有限公司 Aluminum alloy workpiece smelting and casting process
CN109295351B (en) * 2018-10-31 2020-11-10 浙江万丰摩轮有限公司 Die-casting aluminum alloy and preparation method and application thereof
CN109439948A (en) * 2018-12-20 2019-03-08 中国兵器科学研究院宁波分院 A kind of nanometer fining agent and preparation method thereof for aluminium alloy
CN109628787B (en) * 2018-12-27 2020-05-08 吉林大学 Preparation method of Al-Cu-Mg-Si alloy plate reinforced by in-situ micro-nano particles in melt
CN109536769A (en) * 2018-12-27 2019-03-29 吉林大学 Two-way vertical controlled rolling trace Ti C-TiB2The preparation method of REINFORCED Al-Si-Mg sheet alloy
CN109468485A (en) * 2018-12-27 2019-03-15 吉林大学 A kind of preparation method of nanometer endogenous TiC particle reinforced aluminum alloy sheet
CN109554571B (en) * 2018-12-27 2019-10-22 吉林大学 A preparation method of micro-TiC reinforced Al-Cu-Mg alloy plate by bidirectional vertical controlled rolling
CN109439973B (en) * 2018-12-27 2020-08-14 吉林大学 Aluminum-silicon alloy based on multiphase mixed scale ceramic particles and preparation method thereof
CN109680180A (en) * 2018-12-27 2019-04-26 吉林大学青岛汽车研究院 A method of strengthening Al-Zn-Mg-Cu aluminum alloy extrusion section bar
CN109439952B (en) * 2018-12-27 2021-04-16 吉林大学 A kind of preparation method of micro-nano hybrid scale multiphase ceramic particles
CN109554570B (en) * 2018-12-27 2020-07-31 吉林大学青岛汽车研究院 Method for strengthening aluminum alloy by in-situ multiphase mixed scale ceramic in melt
CN109396422B (en) * 2018-12-27 2019-09-27 吉林大学 A kind of method evenly dispersed in the pre-dispersed complementary melt of nano particle in parcel
CN109609798B (en) * 2018-12-27 2020-03-20 吉林大学 Controlled rolling preparation method of trace micro-nano hybrid particle reinforced Al-Cu-Mg-Si plate
CN109609814B (en) * 2018-12-27 2020-03-20 吉林大学 High-strength aluminum alloy with high elastic modulus mixed with double-scale ceramic particles and preparation method thereof
CN109570497A (en) * 2018-12-27 2019-04-05 吉林大学青岛汽车研究院 Raw multiple dimensioned pottery aluminium composite material of multiphase and preparation method thereof in one kind
CN109439951B (en) * 2018-12-27 2020-07-03 吉林大学 A method for strengthening aluminum-silicon alloy based on multiphase hybrid-scale ceramic particle strengthener
CN109576525A (en) * 2018-12-27 2019-04-05 吉林大学 A method of strengthening 7075 aluminum alloy rolled plates
CN109554572B (en) * 2018-12-27 2020-03-20 吉林大学 Multi-scale ceramic particle-mixed high-elasticity-modulus high-strength aluminum alloy and preparation method thereof
CN109811161B (en) * 2019-02-27 2021-04-16 北京工业大学 A kind of large volume fraction nanoscale Al-TiB2 master alloy and preparation method thereof
CN109778020A (en) * 2019-03-11 2019-05-21 江苏华企铝业科技股份有限公司 The high-densit aluminum titanium alloy ingot of high-purity and its manufacturing method
CN109881050A (en) * 2019-03-25 2019-06-14 滨州戴森车轮科技有限公司 A kind of wheel hub and its processing technology for improving the wheel hub paint film adhesion
JP6794604B1 (en) * 2019-04-19 2020-12-02 住友電工ハードメタル株式会社 Cutting tools
US20210046553A1 (en) * 2019-04-19 2021-02-18 Sumitomo Electric Hardmetal Corp. Cutting tool
CN110181193B (en) * 2019-05-17 2021-01-08 江西理工大学 A new type of Al-Mg-Ti alloy welding wire and its preparation method
CN110205527B (en) * 2019-06-28 2020-05-05 江西理工大学 Al-Mg-Si alloy wire for additive manufacturing and preparation method thereof
CN110129640B (en) * 2019-06-28 2020-05-05 江西理工大学 7000 series aluminum alloy wire for additive manufacturing and preparation method thereof
CN110205511A (en) * 2019-06-28 2019-09-06 江西理工大学 A kind of high-strength Al-Si alloy welding wire and preparation method thereof
CN110184492B (en) * 2019-06-28 2020-07-03 江西理工大学 TiB2Particle reinforced aluminum-based composite material and preparation method thereof
CN110306083B (en) * 2019-07-24 2022-03-01 上海交通大学 High-strength and tough aluminum-silicon-based composite welding wire and preparation method thereof
CN110512125B (en) * 2019-08-30 2020-09-22 中国航发北京航空材料研究院 Preparation method of diameter aluminum-lithium alloy wire for additive manufacturing
CN110560957B (en) * 2019-09-03 2021-07-30 北京工业大学 A micro-nano particle reinforced aluminum alloy flux-cored filler wire for welding 7075 aluminum alloy
CN110625297B (en) * 2019-09-19 2021-02-12 北京科技大学 Preparation method of high-strength and high-toughness steel welding wire containing nano particles
CN110656264A (en) * 2019-11-05 2020-01-07 东北轻合金有限责任公司 Manufacturing method of aluminum alloy wire for protective fence
CN110747361A (en) * 2019-11-20 2020-02-04 中南大学 Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring
CN111101026A (en) * 2019-12-06 2020-05-05 江苏理工学院 Preparation method of high-strength high-toughness aluminum-based composite material
CN111097911B (en) * 2019-12-12 2022-04-26 南方科技大学 Ceramic-metal composite foam material and preparation method thereof
CN111304562A (en) * 2019-12-14 2020-06-19 江苏时代华宜电子科技有限公司 High-modulus cast ceramic-aluminum high-purity material and preparation method thereof
CN111057906A (en) * 2019-12-30 2020-04-24 苏州再超冶金制品有限公司 Nano ceramic powder reinforced alloy composite material and preparation method thereof
CN111139385B (en) * 2019-12-31 2021-06-15 上海交通大学 A kind of aluminum alloy welding wire containing ceramic particles and its preparation method and application
CN111112875B (en) * 2019-12-31 2021-09-28 上海交通大学 Aluminum alloy welding wire containing TiB2 particles and preparation method thereof
CN111690857A (en) * 2020-05-13 2020-09-22 宁波华源精特金属制品有限公司 Engine connecting rod
CN111411270B (en) * 2020-05-21 2021-03-19 滨州渤海活塞有限公司 Method for changing morphology of ferrosilicon phase in aluminum alloy
CN111850351A (en) * 2020-07-01 2020-10-30 吉林大学 A method for preparing high elongation cast-rolled Al-Mn series aluminum alloy slab
CN111809075B (en) * 2020-07-03 2021-07-06 西安石油大学 A kind of Ti coating Ti3AlC2 particle reinforced Al-based internal combustion engine piston connecting rod and its manufacturing method
CN112264732B (en) * 2020-10-16 2023-11-14 大连理工大学 Welding wire for copper/steel dissimilar welding, preparation method of welding wire and copper/steel dissimilar welding method
CN112210694B (en) * 2020-10-21 2022-04-19 吉林大学 Nanoparticle toughened ZTC4 titanium alloy and preparation method thereof
CN112251646A (en) * 2020-10-21 2021-01-22 吉林大学 Titanium alloy powder of endogenous nano composite ceramic particles and preparation method and application thereof
CN112593110B (en) * 2020-12-11 2021-09-10 迈特李新材料(深圳)有限公司 Preparation method of nano-carbide reinforced aluminum matrix composite welding wire
CN112746195B (en) * 2020-12-30 2022-02-01 吉林大学 Recession-resistant refiner, preparation method and application thereof, aluminum alloy and refining method thereof
CN113042748B (en) * 2021-03-09 2022-10-11 中北大学 Method for preparing high-strength high-elongation Al-Cu-Mg alloy by SLM
CN113084395B (en) * 2021-03-25 2022-09-13 山东滨州华创金属有限公司 A kind of preparation method of aluminum alloy welding wire and the prepared aluminum alloy welding wire
CN113106276B (en) * 2021-04-10 2022-03-01 中北大学 A kind of preparation method of multi-component synergistically strengthened aluminum matrix composite material
CN113210573B (en) * 2021-04-20 2024-04-05 扬州戴卡轮毂制造有限公司 Aluminum alloy hub and multi-field coupling casting forming and grain refinement method thereof
CN113414365A (en) * 2021-05-14 2021-09-21 江苏大学 Aluminum alloy hub blank manufacturing equipment and working method thereof
CN113416861A (en) * 2021-05-17 2021-09-21 江苏大学 Preparation method of micro-nano dual-scale TiC particle reinforced aluminum matrix composite material
CN113373367A (en) * 2021-06-04 2021-09-10 江西理工大学 Aluminum intermediate alloy containing multi-scale mixed particles and preparation method thereof
CN113385855A (en) * 2021-06-09 2021-09-14 江西理工大学 Multi-scale particle modified Al-Mg alloy welding wire and preparation method thereof
CN113373355A (en) * 2021-06-09 2021-09-10 江西理工大学 Multi-scale particle modified 7000 series alloy wire and preparation method thereof
CN113737037A (en) * 2021-09-17 2021-12-03 苏州明志科技股份有限公司 Method for refining aluminum alloy grains
CN113909454A (en) * 2021-10-09 2022-01-11 大冶市东晟机械制造有限公司 Low-pressure casting process for rear hub of alloy automobile
CN113909733B (en) * 2021-10-11 2023-06-09 河北科技大学 A kind of aluminum-magnesium alloy welding wire for arc fuse additive manufacturing and preparation method thereof
CN114350993B (en) * 2021-12-30 2023-04-07 安徽科蓝特铝业有限公司 Production process of high-strength aluminum alloy applied to bicycle frame
CN114790522A (en) * 2022-04-29 2022-07-26 山东裕航特种合金装备有限公司 Preparation method of electronic material containing nano ceramic aluminum alloy material
CN114908266B (en) * 2022-05-12 2023-09-22 昆明理工大学 A method of preparing aluminum-based composite material wire for 3D printing
CN114703390B (en) * 2022-06-06 2022-09-09 中国航发北京航空材料研究院 A kind of refining agent and its combined on-line casting aluminum alloy refining and purification method with argon
CN115159450B (en) * 2022-07-03 2024-02-23 复旦大学 NbB-based 2 Catalytic lifting of MgH 2 Method for hydrogen storage performance
CN115070038B (en) * 2022-07-21 2022-11-04 西安稀有金属材料研究院有限公司 In-situ mixed dual-phase ceramic reinforced iron-based composite material and preparation method thereof
CN115430843B (en) * 2022-08-16 2024-10-18 上海交通大学 Diphase particle reinforced additive aluminum alloy and preparation method thereof
CN115740832B (en) * 2022-10-18 2023-11-07 江苏鑫华能环保工程股份有限公司 Carbon fiber reinforced magnesium alloy welding material and preparation method thereof
CN115896524B (en) * 2022-11-19 2024-03-08 吉林大学 Method for improving segregation and strength of cast superalloy through micro-nano particles
CN116179884B (en) * 2022-12-28 2024-06-25 吉林大学 A method for preparing titanium-coated NbB2 nanoparticle-reinforced TiAl alloy by vacuum induction melting
CN116179883B (en) * 2022-12-28 2024-06-25 吉林大学 A method for preparing nano NbB2 particle reinforced NiAl alloy
CN116240443B (en) * 2022-12-28 2024-06-25 吉林大学 Nano-ceramic particle reinforced stainless steel and preparation method thereof
CN116200625B (en) * 2022-12-28 2024-06-25 吉林大学 Nanoparticle modified aluminum alloy and preparation method thereof
CN116159995B (en) * 2023-03-02 2023-11-17 阳江普利餐厨用品有限公司 Powder material for metal additive and application thereof in production of cladding coating
CN116334459B (en) * 2023-03-15 2025-02-28 北京工业大学 A micro-nano particle reinforced aluminum wire based on electroplasticity and a preparation method thereof
CN116716508B (en) * 2023-06-12 2024-11-22 昆明理工大学 A TiB2/TiC ceramic reinforced aluminum alloy matrix composite piston and preparation method thereof
CN116925837A (en) * 2023-07-19 2023-10-24 浙江理工大学嵊州创新研究院有限公司 Preparation method of composite nano lubricating oil for steel-steel friction pair
CN116752018B (en) * 2023-08-21 2023-12-05 小米汽车科技有限公司 Heat treatment-free die-cast aluminum alloy material and preparation method thereof, automobile structural parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254610A (en) * 2017-06-12 2017-10-17 吉林大学 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE32239T1 (en) * 1983-11-29 1988-02-15 Alcan Int Ltd ALUMINUM REDUCTION CELLS.
US4690796A (en) * 1986-03-13 1987-09-01 Gte Products Corporation Process for producing aluminum-titanium diboride composites
JPS63312923A (en) * 1987-06-17 1988-12-21 Agency Of Ind Science & Technol Wire preform material for carbon fiber reinforced aluminum composite material
US4909842A (en) * 1988-10-21 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Grained composite materials prepared by combustion synthesis under mechanical pressure
US5104456A (en) * 1990-02-15 1992-04-14 Colorado School Of Mines Process for optimizing titanium and zirconium additions to aluminum welding consumables
US5256368A (en) * 1992-07-31 1993-10-26 The United States Of America As Represented By The Secretary Of The Interior Pressure-reaction synthesis of titanium composite materials
JP3417217B2 (en) * 1996-06-07 2003-06-16 トヨタ自動車株式会社 Method for producing titanium carbide particle-dispersed metal matrix composite material
JPH10219312A (en) * 1997-02-10 1998-08-18 Toyota Motor Corp Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
NO990813L (en) * 1999-02-19 2000-08-21 Hydelko Ks Alloy for grain refinement of aluminum alloys
CN1079443C (en) * 1999-06-24 2002-02-20 东南大学 Titanium carbide reinforced antiwear aluminium alloy and its preparing process
CN1161483C (en) * 2001-03-23 2004-08-11 中国科学院金属研究所 A high-strength in-situ aluminum matrix composite
US6899844B2 (en) * 2001-04-25 2005-05-31 Taiho Kogyo Co., Ltd. Production method of aluminum alloy for sliding bearing
ATE422000T1 (en) * 2001-07-25 2009-02-15 Showa Denko Kk ALUMINUM ALLOY HAVING EXCELLENT MACHINABILITY AND ALUMINUM ALLOY MATERIAL AND PRODUCTION PROCESS THEREOF
CN1228464C (en) * 2003-06-20 2005-11-23 吉林大学 Method for preparing two-phase granular mixed reinforced magnesium alloy based composite material
CN1250760C (en) * 2003-10-30 2006-04-12 上海交通大学 Method for preparing aluminium based composite material intensified by interlarding in situ
CN1298877C (en) * 2004-03-11 2007-02-07 山东理工大学 Method for manufacturing ceramic particle reinforced aluminium-based nano composite material
CN100422368C (en) * 2004-07-05 2008-10-01 北京有色金属研究总院 In situ formed TiC reinforced Al-Fe-V-Si series heat resistant aluminium alloy material and its preparation method
FR2875153B1 (en) * 2004-09-10 2008-02-01 Pechiney Aluminium SUPPORT WIRE FOR WELDING ALUMINUM ALLOYS
CN100396650C (en) * 2006-10-30 2008-06-25 陕西科技大学 Method for preparing Ti2AlC ceramic material
CN100443605C (en) * 2006-12-28 2008-12-17 上海交通大学 Preparation Method of Particle Hybrid Reinforced Aluminum Matrix Composite
CN100460136C (en) * 2007-01-30 2009-02-11 山东大学 Filler metal particles for welding and preparation method thereof
CN101214540A (en) * 2008-01-07 2008-07-09 吉林大学 Method for preparing TiC/TiB2 biphase ceramic granule partial reinforced manganese steel composite material
CN101758203B (en) * 2008-11-12 2013-04-03 郑东海 Process for smelting and lower-pressure casting of aluminum alloy wheel hub
CN101775514A (en) * 2009-11-11 2010-07-14 昆明理工大学 Method for preparing (TiB2+TiC) dispersion-strengthening copper-based composites by adopting self-propagating high-temperature synthesis
CN101775513B (en) * 2009-11-11 2012-05-30 昆明理工大学 Method for preparing (TiB2+TiC) dispersion strengthened copper matrix composites by mechanical alloying
CN101876017B (en) * 2009-12-15 2012-02-29 哈尔滨工业大学 Preparation method of nano ceramic particle reinforced aluminum foam matrix composite
CN101760674B (en) * 2010-02-05 2012-11-07 哈尔滨工业大学 Roll forming technique of board made of NiAl-based composite material
CN102260814B (en) * 2011-07-26 2013-01-09 吉林大学 In situ nano TiC ceramic particle reinforced aluminum based composite material and preparation method thereof
CN103842534A (en) * 2011-09-19 2014-06-04 美铝有限责任公司 Improved aluminum casting alloys containing vanadium
CN102366828B (en) * 2011-10-10 2016-12-21 陈丹红 A kind of low-pressure casting method of aluminium alloy automobile hub
CN102430757A (en) * 2011-11-25 2012-05-02 天津大学 A method for preparing TiB2/TiC ultrafine powder for surface spraying of engine piston rings by high-energy ball milling
CN102584242B (en) * 2012-02-28 2013-08-14 吉林大学 High-temperature high-pressure preparation method for titanium diboride
CN102644010B (en) * 2012-04-11 2014-06-18 北京工业大学 Al-Ti-B-Er refiner and preparation method thereof
CN102747254B (en) * 2012-07-27 2013-10-16 哈尔滨工业大学 Preparation process of reinforced intragranular aluminum matrix composites with nano ceramic particles added externally
CN102787252B (en) * 2012-08-14 2014-05-21 大连理工大学 Method for In Situ Preparation of TiB2 Reinforced Aluminum Matrix Composite
CN102839306B (en) * 2012-09-17 2014-05-07 东北轻合金有限责任公司 Manufacturing method of aluminum alloy welding wire for aerospace
CN102876919B (en) * 2012-09-27 2014-05-21 南京航空航天大学 In-situ synthesis of TiC particle reinforced titanium aluminum alloy material and its preparation method
KR20140063024A (en) * 2012-11-16 2014-05-27 현대자동차주식회사 Aluminum wheel and method for producing the same
CN103192064A (en) * 2013-04-25 2013-07-10 丹阳百斯特新型合金科技有限公司 Al-Ti-B-C refiner and preparation method
CN103266243A (en) * 2013-06-06 2013-08-28 中南林业科技大学 High performance aluminum alloy for low pressure casting of minicar structural member and preparation method of high performance aluminum alloy
CN104372207B (en) * 2013-08-12 2016-06-22 大力神铝业股份有限公司 A kind of soldering 4004 aluminium alloys
CN103572111A (en) * 2013-11-20 2014-02-12 江苏江旭铸造集团有限公司 High-strength and toughness cast aluminum alloy
CN103817495B (en) * 2014-03-05 2016-06-08 浙江巨科实业股份有限公司 Manufacturing method of aluminum alloy hub
CN104263988B (en) * 2014-05-04 2016-08-24 昆明理工大学 A kind of preparation method of TiB2 particle reinforced aluminum foam/aluminum alloy
CN104120291B (en) * 2014-07-22 2017-06-13 上海交通大学 A kind of TiC, TiB2The preparation method of particle enhanced nickel base composite material
CN104209498B (en) * 2014-07-24 2017-02-15 昆明理工大学 Preparing method of interface modification layer of ceramic particle enhanced metal base composite material
CN104264001B (en) * 2014-09-16 2016-08-17 广东新劲刚新材料科技股份有限公司 In-situ synthesized particle reinforced aluminum matrix composite material and preparation method thereof
CN104372208B (en) * 2014-10-28 2019-03-29 赵遵成 A kind of endogenetic particle hybrid reinforced aluminum-matrix composite material and preparation method thereof
CN104532068B (en) * 2014-12-15 2016-08-17 河海大学 Nano TiC ceramic particle reinforced aluminium base composite material and preparation method thereof
CN104532044B (en) * 2014-12-18 2017-01-25 兰州理工大学 Low-cost and high-efficiency Al-Ti-C-Ce refining agent and preparation method thereof
CN105671350A (en) * 2015-03-19 2016-06-15 中信戴卡股份有限公司 Aluminum alloy refiner, preparation method therefor and use thereof
CN104789811B (en) * 2015-04-03 2016-09-28 昆明冶金研究院 A kind of preparation method of Al-Ti-B intermediate alloy
CN104946920B (en) * 2015-06-17 2017-01-11 广东省材料与加工研究所 Preparation method of grain refiner
CN105002407A (en) * 2015-08-13 2015-10-28 枞阳县金源汽车零部件有限公司 Aluminum profile for automobile wheels and preparation method of aluminum profile
CN105149590A (en) * 2015-08-28 2015-12-16 苏州莱特复合材料有限公司 Powder metallurgy gear and manufacturing method thereof
CN105132733B (en) * 2015-09-29 2017-10-13 华中科技大学 A kind of method for preparing nanoparticle reinforced aluminum-based composite
CN105525157A (en) * 2016-02-17 2016-04-27 苏州华冲精密机械有限公司 Aluminum alloy automobile hub casting process
CN105689687A (en) * 2016-03-01 2016-06-22 刘加兴 High-pressure and low-pressure casting process and equipment for aluminum alloy casting products
CN105734387B (en) * 2016-03-17 2018-02-23 中南大学 A kind of TiB2Based ceramic metal and preparation method thereof
CN105728734B (en) * 2016-03-24 2017-10-20 西安工业大学 High-strength superfine ultra-fine(TixBy‑TiC)/ 7075Al composites and preparation method thereof
CN105779831B (en) * 2016-05-25 2017-08-29 桂林航天工业学院 Aero-Space aluminium alloy welding wire and preparation method thereof
CN105886847A (en) * 2016-06-01 2016-08-24 上海交通大学 High-temperature-resistant ceramic nanoparticle reinforced aluminum alloy and preparation method and application thereof
CN105886853A (en) * 2016-06-01 2016-08-24 上海交通大学 Nano ceramic particle reinforced aluminum silicon alloy, preparation method and application thereof
CN106086538A (en) * 2016-06-21 2016-11-09 上海交通大学 High-temperature resistant nano ceramic particle strengthens hypoeutectic al-si alloy and casting method thereof
CN105908024A (en) * 2016-06-21 2016-08-31 上海交通大学 High-temperature-resistant nano ceramic particle reinforced cocrystallized Al-Si alloy and casting method thereof
CN106086488B (en) * 2016-07-15 2017-09-22 南南铝业股份有限公司 Subway station furred ceiling aluminium alloy and preparation method thereof
CN105970037B (en) * 2016-07-15 2017-09-22 南南铝业股份有限公司 Overpass aluminium alloy and preparation method thereof
CN106271189B (en) * 2016-08-24 2018-09-14 上海交通大学 A kind of preparation method of welding wire or welding rod with small grains tissue
CN106086546B (en) * 2016-08-26 2017-08-25 山东金马汽车装备科技有限公司 The low-pressure casting process of aluminium alloy wheel hub
CN106756352B (en) * 2016-11-22 2018-04-06 昆明理工大学 Raw Cr in one kind2B and MgO diphase particles strengthen the preparation method of magnesium-based composite material
CN106756264B (en) * 2016-11-24 2019-06-21 湖南江滨机器(集团)有限责任公司 A kind of aluminum matrix composite, preparation method and its application
CN106591618A (en) * 2016-12-06 2017-04-26 昆明理工大学 Preparation method of endogenous double-phase particle enhanced aluminum-based composite material
CN106756319A (en) * 2016-12-13 2017-05-31 中国科学院金属研究所 A kind of aluminium alloy and aluminum matrix composite for preparing high-strength high-plastic aluminum matrix composite
CN107043901B (en) * 2017-02-23 2019-01-08 吉林大学 Basalt fibre and ceramic particle mix aluminium drill pipe material and preparation method thereof
CN107419126B (en) * 2017-07-04 2019-04-02 北京理工大学 A kind of TiB-TiB2The fast preparation method of-Al composite ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107254610A (en) * 2017-06-12 2017-10-17 吉林大学 Raw nano-sized particles reinforced aluminium alloy material preparation method in a kind of
CN108060314A (en) * 2017-06-12 2018-05-22 吉林大学 One kind contains interior raw nanometer TiB2The compound preparation method of aluminium of making pottery of particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
武晓霞等: "原位自生TiB2颗粒增强铝基复合材料及其研究现状", 《中原工学院学报》 *
胡威: ""内生TiC颗粒对TiC/7075Al复合材料组织及性能的影响", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439942A (en) * 2018-12-27 2019-03-08 吉林大学 A kind of preparation method of the pottery aluminium composite material based on interior raw nano TiC xNy particle
CN109628788A (en) * 2018-12-27 2019-04-16 吉林大学 A kind of method that multiphase ceramic confusion prepares high elastic modulus high-strength aluminum alloy

Also Published As

Publication number Publication date
CN108018442B (en) 2019-09-24
CN108103346A (en) 2018-06-01
CN108165793B (en) 2020-01-07
CN108103368A (en) 2018-06-01
CN107254610A (en) 2017-10-17
CN108018444A (en) 2018-05-11
CN107955888B (en) 2019-10-22
CN108080815A (en) 2018-05-29
CN108018443B (en) 2019-10-08
CN108103345B (en) 2020-03-13
CN108103338B (en) 2020-01-07
CN108080815B (en) 2020-10-02
CN108070733B (en) 2020-01-07
CN108018444B (en) 2019-10-18
CN108103346B (en) 2019-09-13
CN108018442A (en) 2018-05-11
CN107955889A (en) 2018-04-24
CN107955888A (en) 2018-04-24
CN108165793A (en) 2018-06-15
CN108103338A (en) 2018-06-01
CN108103345A (en) 2018-06-01
CN108080811B (en) 2020-05-08
CN108080811A (en) 2018-05-29
CN107955889B (en) 2019-08-27
CN108085528B (en) 2020-01-07
CN108018443A (en) 2018-05-11
CN108060314A (en) 2018-05-22
CN108103332A (en) 2018-06-01
CN108085528A (en) 2018-05-29
CN108070733A (en) 2018-05-25
CN107952948A (en) 2018-04-24

Similar Documents

Publication Publication Date Title
CN108085575A (en) Interior raw nanometer TiB in a kind of refinement pottery aluminium composite material2The method of particle
CN105648297B (en) A kind of additional nano ceramics mutually enhances toughening high-entropy alloy composite material and preparation method thereof
CN105543621B (en) Raw nano ceramics enhancing high-entropy alloy composite and preparation method in a kind of
CN103436728B (en) The preparation method of Strengthening and Toughening metal-base composites
CN108723371A (en) A kind of high-entropy alloy reinforced aluminum matrix composites and preparation method
CN113373335B (en) A kind of preparation method of high-strength titanium-based composite material
CN108950343A (en) A kind of WC based hard alloy material and preparation method thereof based on high-entropy alloy
CN100575517C (en) A kind of preparation method of particle reinforced titanium matrix composite material
CN109321767B (en) A method for preparing hybrid particle reinforced aluminum matrix composite material by composite strengthening method
CN110004348B (en) Graphene-reinforced high-entropy alloy composite material and preparation method thereof
CN104911381B (en) A kind of Ti2AlC/TiAl based composites and preparation method thereof
CN109609814B (en) High-strength aluminum alloy with high elastic modulus mixed with double-scale ceramic particles and preparation method thereof
CN109554572B (en) Multi-scale ceramic particle-mixed high-elasticity-modulus high-strength aluminum alloy and preparation method thereof
CN109112337B (en) Graphene and silicon carbide hybrid reinforced aluminum matrix composite material and preparation method thereof
CN110257684A (en) A kind of preparation process of FeCrCoMnNi high-entropy alloy-base composite material
CN109439940A (en) A kind of method that hot pressed sintering prepares particle enhanced aluminum-based composite material under air atmosphere
CN107513651B (en) A kind of preparation method of titanium particle reinforced magnesium matrix composite material
CN107502800B (en) A kind of preparation method of nanometer MgO particle reinforced magnesium matrix composite material
CN1445377A (en) Tungsten based composite material with granules of double carbide enhanced
CN111889685A (en) A powder metallurgy method for improving dispersibility and dispersion amount of reinforcement
CN106544549B (en) A preparation method of micro-nano dual-scale TiC particle reinforced aluminum matrix composites
CN109570497A (en) Raw multiple dimensioned pottery aluminium composite material of multiphase and preparation method thereof in one kind
CN1718792A (en) Preparation method of magnesium-based composite material reinforced with titanium particles
CN113798494A (en) A kind of TiB2 particle reinforced magnesium matrix composite material and preparation method thereof
CN109439951B (en) A method for strengthening aluminum-silicon alloy based on multiphase hybrid-scale ceramic particle strengthener

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180529

RJ01 Rejection of invention patent application after publication