CN110747361A - Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring - Google Patents
Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring Download PDFInfo
- Publication number
- CN110747361A CN110747361A CN201911139880.XA CN201911139880A CN110747361A CN 110747361 A CN110747361 A CN 110747361A CN 201911139880 A CN201911139880 A CN 201911139880A CN 110747361 A CN110747361 A CN 110747361A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- composite material
- melt
- aluminum
- mechanical stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 59
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- 238000010907 mechanical stirring Methods 0.000 title claims abstract description 27
- 239000010936 titanium Substances 0.000 title claims abstract description 18
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 31
- 239000010439 graphite Substances 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 15
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 238000002604 ultrasonography Methods 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 6
- 239000011812 mixed powder Substances 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 claims description 28
- 150000003839 salts Chemical class 0.000 claims description 21
- 239000006184 cosolvent Substances 0.000 claims description 15
- 239000000843 powder Substances 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 11
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- -1 potassium fluoroborate Chemical compound 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 238000007654 immersion Methods 0.000 claims description 5
- 238000005054 agglomeration Methods 0.000 abstract description 10
- 230000002776 aggregation Effects 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract description 3
- 229910001092 metal group alloy Inorganic materials 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
- C22C1/1047—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
- C22C1/1052—Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites by mixing and casting metal matrix composites with reaction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0073—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明涉及金属合金材料制备领域,公开了基于超声和机械搅拌的硼化钛增强铝基复合材料制备方法,将氟钛酸钾、氟硼酸钾反应盐粉末、氟铝酸钠粉末通过机械搅拌充分混合干燥备用;铝合金铸锭放入石墨坩埚内,加热至铝熔体的温度稳定在800~850℃,将干燥好的混合粉末加入至铝熔体中,并进行机械搅拌,待复合材料温度冷却至720℃时,撇去浮渣,浇入到石墨模具中冷却;将冷却的样品重新放入石墨坩埚内,用电阻炉加热至融化,同时加入高能超声辐射杆至混合熔体中对混合熔体进行超声处理,待超声处理时间结束,将混合熔体浇注至石墨模具,并立即用液氮冷却样品,以此获得的纳米硼化钛增强铝基复合材料中的纳米TiB2颗粒分布均匀,无团聚现象。
The invention relates to the field of metal alloy material preparation, and discloses a method for preparing a titanium boride reinforced aluminum-based composite material based on ultrasound and mechanical stirring. Mixing and drying for standby use; the aluminum alloy ingot is placed in a graphite crucible, heated until the temperature of the aluminum melt is stable at 800-850 ° C, and the dried mixed powder is added to the aluminum melt, and mechanically stirred, until the temperature of the composite material is When cooled to 720°C, skim off the scum, pour it into a graphite mold to cool; put the cooled sample back into the graphite crucible, heat it with a resistance furnace until it melts, and add a high-energy ultrasonic radiation rod to the mixed melt for mixing. The melt was ultrasonically treated, and after the ultrasonic treatment time was over, the mixed melt was poured into a graphite mold, and the sample was immediately cooled with liquid nitrogen, so that the nano - TiB particles in the obtained nano-TiB reinforced aluminum matrix composite material were uniformly distributed. , without agglomeration.
Description
技术领域technical field
本发明涉及金属合金材料制备领域,具体涉及基于超声和机械搅拌的硼化钛增强铝基复合材料制备方法。The invention relates to the field of metal alloy material preparation, in particular to a method for preparing a titanium boride reinforced aluminum matrix composite material based on ultrasound and mechanical stirring.
背景技术Background technique
陶瓷颗粒增强型铝基复合材料具有高比模量、高硬度、高耐磨型等优点而被广泛应用于航空航天、汽车制造等领域。因硼化钛(TiB2)具备高硬度、高热稳定、耐蚀性,不与铝熔体发生界面反应,化学稳定性好等特点,成为颗粒增强型铝基复合材料研究中的热点。TiB2纳米颗粒通过与合金基体紧密结合,能够明显改善基体的弹性模量、屈服强度、耐磨性等性能。Ceramic particle-reinforced aluminum matrix composites have the advantages of high specific modulus, high hardness and high wear resistance, and are widely used in aerospace, automobile manufacturing and other fields. Titanium boride (TiB 2 ) has the characteristics of high hardness, high thermal stability, corrosion resistance, no interfacial reaction with aluminum melt, and good chemical stability, so it has become a hot spot in the research of particle-reinforced aluminum matrix composites. TiB 2 nanoparticles can significantly improve the elastic modulus, yield strength, wear resistance and other properties of the matrix by being closely combined with the alloy matrix.
然而大量研究表明,通过传统的外加法制备,TiB2纳米颗粒与铝熔体的润湿性很差,很难进入铝熔体内部;通过原位法制备的TiB2纳米颗粒在铝熔体中存在颗粒团聚,颗粒产量低等问题,这对铝基复合材料的性能提升产生了不利的影响。However, a large number of studies have shown that TiB 2 nanoparticles have poor wettability with the aluminum melt prepared by the traditional external addition method, and it is difficult to enter the interior of the aluminum melt; TiB 2 nanoparticles prepared by the in situ method are in the aluminum melt. There are problems such as particle agglomeration and low particle yield, which adversely affect the performance improvement of aluminum matrix composites.
发明内容SUMMARY OF THE INVENTION
基于以上问题,本发明提供基于超声和机械搅拌的硼化钛增强铝基复合材料制备方法,先将反应盐和助溶剂粉末均匀混合,然后将反应盐及助溶剂粉末加入至铝熔体中,同时采用搅拌器,以机械搅拌的方式增加熔融状态的反应盐与铝熔体的接触面积,加快反应速率,促进反应进行,提高反应物产量,然后撇去浮渣浇注至模具冷却;将冷却后的样品再进行重熔,并采用高能超声辐射杆对重熔后的混合熔体进行超声处理,然后浇注至模具并用液氮冷却,最终获得纳米硼化钛增强铝基复合材料中的纳米TiB2颗粒分布均匀,无团聚现象。Based on the above problems, the present invention provides a method for preparing a titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring. First, the reaction salt and the cosolvent powder are uniformly mixed, and then the reaction salt and the cosolvent powder are added to the aluminum melt. At the same time, a stirrer is used to increase the contact area between the molten reaction salt and the aluminum melt by mechanical stirring, so as to speed up the reaction rate, promote the reaction, and increase the yield of reactants. The sample was remelted again, and the remelted mixed melt was ultrasonically treated with a high-energy ultrasonic radiation rod, then poured into a mold and cooled with liquid nitrogen to finally obtain nano-TiB 2 in nano-titanium boride reinforced aluminum matrix composites. The particles are evenly distributed and there is no agglomeration.
为解决以上技术问题,本发明采用的技术方案是:For solving the above technical problems, the technical scheme adopted in the present invention is:
基于超声和机械搅拌的硼化钛增强铝基复合材料制备方法,包括如下步骤:The preparation method of titanium boride reinforced aluminum matrix composite material based on ultrasonic and mechanical stirring includes the following steps:
S1:称取一定质量的铝合金铸锭备用;S1: Weigh a certain quality of aluminum alloy ingots for use;
S2:按在增强铝基复合材料中预生成3vol%的TiB2颗粒称取氟钛酸钾、氟硼酸钾反应盐粉末,助溶剂氟铝酸钠粉末的质量为氟钛酸钾、氟硼酸钾两种反应盐总质量的10%,通过机械搅拌充分混合,在200~300℃的干燥炉内干燥1~2h备用;S2: Weigh out the potassium fluorotitanate and potassium fluoroborate reaction salt powders according to the pre-generated 3vol % TiB particles in the reinforced aluminum matrix composite material, and the mass of the cosolvent sodium fluoroaluminate powder is potassium fluorotitanate, potassium fluoroborate 10% of the total mass of the two reaction salts are fully mixed by mechanical stirring, and dried in a drying oven at 200-300°C for 1-2 hours for use;
S3:将称取好的铝合金铸锭放入石墨坩埚内,用电阻炉加热,待铝熔体的温度稳定在800~850℃,将干燥好的混合粉末加入至铝熔体中,并进行机械搅拌,待复合材料温度冷却至720℃时,撇去浮渣,浇入到300℃预热处理的石墨模具中并冷却;S3: Put the weighed aluminum alloy ingot into a graphite crucible, and heat it with a resistance furnace. After the temperature of the aluminum melt is stabilized at 800-850°C, the dried mixed powder is added to the aluminum melt, and the Mechanical stirring, when the temperature of the composite material is cooled to 720 °C, skim off the scum, pour it into a graphite mold preheated at 300 °C and cool;
S4:将冷却的样品重新放入石墨坩埚内,用电阻炉加热至720℃融化形成混合熔体,加入高能超声辐射杆至混合熔体中,控制超声频率为18~20KHz、功率为1~2KW、振幅为10~15μm,超声辐射杆浸入深度为15~25mm,超声处理时间为30~240s;S4: Put the cooled sample back into the graphite crucible, heat it with a resistance furnace to 720°C to melt to form a mixed melt, add a high-energy ultrasonic radiation rod to the mixed melt, and control the ultrasonic frequency to be 18-20KHz and the power to be 1-2KW , the amplitude is 10 ~ 15μm, the immersion depth of the ultrasonic radiation rod is 15 ~ 25mm, and the ultrasonic treatment time is 30 ~ 240s;
S5:待超声处理时间结束,将混合熔体浇注至300℃预热的石墨模具,利用液氮冷却,获得最终的纳米硼化钛增强铝基复合材料。S5: After the ultrasonic treatment time is over, the mixed melt is poured into a graphite mold preheated at 300° C., and cooled with liquid nitrogen to obtain the final nano-titanium boride reinforced aluminum matrix composite material.
进一步地,超声辐射杆一端接入超声波换能器,另一端浸入石墨坩埚内的混合熔体中;所述换能器与超声波电源电性连接。Further, one end of the ultrasonic radiation rod is connected to the ultrasonic transducer, and the other end is immersed in the mixed melt in the graphite crucible; the transducer is electrically connected to the ultrasonic power source.
进一步地,铝合金铸锭为2Al4铝合金。Further, the aluminum alloy ingot is 2Al4 aluminum alloy.
进一步地,步骤S3中控制反应盐及助溶剂的加入时间为15~25s,在反应盐及助溶剂加入时采用搅拌器进行机械搅拌,搅拌速度为150rpm,搅拌时间为30min。Further, in step S3, the addition time of the reaction salt and the cosolvent is controlled to be 15 to 25s, and a stirrer is used for mechanical stirring when the reaction salt and the cosolvent are added, the stirring speed is 150rpm, and the stirring time is 30min.
进一步地,石墨坩埚内设置有用于测量混合熔体温度的热电偶,所述热电偶的信号输出端与数据采集器电性连接,所述数据采集器与计算机终端通讯连接。Further, a thermocouple for measuring the temperature of the mixed melt is arranged in the graphite crucible, and the signal output end of the thermocouple is electrically connected to a data collector, and the data collector is communicatively connected to a computer terminal.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1)先将反应盐和助溶剂粉末均匀混合,然后将反应盐及助溶剂粉末加入至铝熔体中,同时采用搅拌器,以机械搅拌的方式增加熔融状态的反应盐与铝熔体的接触面积,加快反应速率,促进反应进行,提高反应物产量,然后撇去浮渣浇注至模具冷却;将冷却后的样品再进行重熔,并采用高能超声辐射杆对重熔后的混合熔体进行超声处理,然后浇注至模具并用液氮冷却,最终获得纳米硼化钛增强铝基复合材料中的纳米TiB2颗粒分布均匀,无团聚现象。1) First uniformly mix the reaction salt and the cosolvent powder, then add the reaction salt and the cosolvent powder into the aluminum melt, and at the same time use a stirrer to increase the contact between the molten state of the reaction salt and the aluminum melt by mechanical stirring area, speed up the reaction rate, promote the reaction, increase the yield of reactants, and then skim off the scum and pour into the mold to cool; remelt the cooled sample, and use a high-energy ultrasonic radiation rod to remelt the mixed melt. Ultrasonic treatment, followed by casting into a mold and cooling with liquid nitrogen, finally obtained nano-TiB 2 particles in the nano-TiB-reinforced aluminum matrix composite with uniform distribution and no agglomeration.
2)本发明得到的铝基复合材料微观组织中细小的网状Cu2Al相分布在铝基中,纳米TiB2颗粒分布均匀,无团聚现象;此工艺安全可靠,经济高效,操作简单。 2 ) The fine network Cu2Al phase in the microstructure of the aluminum matrix composite material obtained by the present invention is distributed in the aluminum matrix, and the nano - TiB2 particles are evenly distributed without agglomeration; the process is safe, reliable, cost-effective and simple to operate.
3)对复合材料进行力学性能检测,与普通方法制备的复合材料相比,经过本专利的技术方案制备的复合材料的性能有极大的提升,其屈服强度、抗拉强度和硬度分别提高了54%、21%和27%,同时磨损质量减少了37%,耐磨性提高。3) The mechanical properties of the composite material are tested. Compared with the composite material prepared by the ordinary method, the performance of the composite material prepared by the technical solution of this patent is greatly improved, and its yield strength, tensile strength and hardness are respectively improved. 54%, 21% and 27%, while the wear quality is reduced by 37% and the wear resistance is improved.
附图说明Description of drawings
图1为本发明制备TiB2/2A14铝基复合材料的机械搅拌示意图;Fig. 1 is the schematic diagram of mechanical stirring for preparing TiB 2 /2A14 aluminum matrix composite material according to the present invention;
图2为本发明制备TiB2/2A14铝基复合材料的超声处理示意图;FIG. 2 is a schematic diagram of ultrasonic treatment for preparing TiB 2 /2A14 aluminum matrix composite material according to the present invention;
图3为本发明制备TiB2/2A14铝基复合材料的微观组织;Fig. 3 is the microstructure of the TiB 2 /2A14 aluminum matrix composite material prepared by the present invention;
其中,1、搅拌器;2、石墨坩埚;3、反应盐;4、铝熔体;5、混合熔体;6、电阻炉;7、超声波电源;8、换能器;9、超声辐射杆;10、热电偶;11、数据采集器;12、计算机终端。Among them, 1, stirrer; 2, graphite crucible; 3, reaction salt; 4, aluminum melt; 5, mixed melt; 6, resistance furnace; 7, ultrasonic power supply; 8, transducer; 9, ultrasonic radiation rod ; 10. Thermocouple; 11. Data collector; 12. Computer terminal.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。In order to make the purpose, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below in conjunction with the examples. limit.
实施例1:Example 1:
参见图1和图2,基于超声和机械搅拌的硼化钛增强铝基复合材料制备方法,包括如下步骤:Referring to Fig. 1 and Fig. 2, the preparation method of titanium boride reinforced aluminum matrix composite material based on ultrasonic and mechanical stirring includes the following steps:
S1:称取一定质量的铝合金铸锭备用;S1: Weigh a certain quality of aluminum alloy ingots for use;
S2:按在增强铝基复合材料中预生成3vol%的TiB2颗粒称取氟钛酸钾、氟硼酸钾反应盐3粉末,助溶剂氟铝酸钠粉末的质量为氟钛酸钾、氟硼酸钾两种反应盐3总质量的10%,通过机械搅拌充分混合,在200~300℃的干燥炉内干燥1~2h备用;S2: Weigh the potassium fluorotitanate and potassium fluoroborate reaction salt 3 powders according to the pre-generated 3vol% TiB particles in the reinforced aluminum matrix composite material, and the mass of the cosolvent sodium fluoroaluminate powder is potassium fluorotitanate,
S3:将称取好的铝合金铸锭放入石墨坩埚2内,用电阻炉6加热,待铝熔体4的温度稳定在800~850℃,将干燥好的混合粉末加入至铝熔体4中,并进行机械搅拌,待复合材料温度冷却至720℃时,撇去浮渣,浇入到300℃预热处理的石墨模具中并冷却;S3: Put the weighed aluminum alloy ingot into the
S4:将冷却的样品重新放入石墨坩埚2内,用电阻炉6加热至720℃融化形成混合熔体5,加入高能超声辐射杆9至混合熔体5中,控制超声频率为18~20KHz、功率为1~2KW、振幅为10~15μm,超声辐射杆9浸入深度为15~25mm,超声处理时间为30~240s;S4: Put the cooled sample into the
S5:待超声处理时间结束,将混合熔体5浇注至300℃预热的石墨模具,利用液氮冷却,获得最终的纳米硼化钛增强铝基复合材料。S5: After the ultrasonic treatment time is over, pour the mixed
在本实施例中,氟钛酸钾(K2TiF6)、氟硼酸钾(KBF4),助溶剂氟铝酸钠(Na3AlF6)粉末的品质均为化学纯级,在铝熔体4中发生如下原位化学反应:In this embodiment, the powders of potassium fluorotitanate (K 2 TiF 6 ), potassium fluoroborate (KBF 4 ), and sodium fluoroaluminate (Na 3 AlF 6 ) as co-solvents are all chemically pure grades. The following in situ chemical reactions occur in 4:
3K2TiF6+6KBF4+10Al→3TiB2+9KAlF4+K3AlF6 3K 2 TiF 6 +6KBF 4 +10Al→3TiB 2 +9KAlF 4 +K 3 AlF 6
通过该反应可以生成纳米级、表面无污染的TiB2颗粒,极大地改善了纳米颗粒与铝熔体4的润湿性,利于颗粒与基体的界面结合。高能超声在铝熔体4中产生的空化效应与声流效应可以促进颗粒的润湿,打散颗粒的团聚,对颗粒的均匀分布有极大的帮助。使用液氮冷却,能够获得超声作用下,颗粒均匀分布的铝基复合材料,避免了由于传统冷却方式下,重力对颗粒沉降导致颗粒再次团聚的现象。本实施例得到的铝基复合材料微观组织中细小的网状Cu2Al相分布在铝基中,纳米TiB2颗粒分布均匀,无团聚现象。此工艺安全可靠,经济高效,操作简单。Through this reaction, nano-scale TiB 2 particles with no pollution on the surface can be generated, which greatly improves the wettability of the nanoparticles and the aluminum melt 4 and facilitates the interface bonding between the particles and the matrix. The cavitation effect and acoustic flow effect produced by high-energy ultrasound in the aluminum melt 4 can promote the wetting of the particles, break up the agglomeration of the particles, and greatly help the uniform distribution of the particles. Using liquid nitrogen cooling can obtain aluminum-based composite materials with uniform distribution of particles under the action of ultrasound, avoiding the phenomenon of particle re-agglomeration caused by the sedimentation of particles due to gravity under the traditional cooling method. The fine network Cu 2 Al phase in the microstructure of the aluminum matrix composite material obtained in this example is distributed in the aluminum matrix, and the nano-TiB 2 particles are uniformly distributed and have no agglomeration phenomenon. This process is safe, reliable, cost-effective and simple to operate.
本实施例在步骤S3中控制反应盐3及助溶剂的加入时间为15~25s,在反应盐3及助溶剂加入时采用搅拌器1进行机械搅拌,搅拌速度为150rpm,搅拌时间为30min。In this embodiment, in step S3, the addition time of the reaction salt 3 and the co-solvent is controlled to be 15 to 25s, and the stirrer 1 is used for mechanical stirring when the reaction salt 3 and the co-solvent are added, the stirring speed is 150 rpm, and the stirring time is 30 min.
超声辐射杆9一端接入超声波换能器8,另一端浸入石墨坩埚2内的混合熔体5中;所述换能器8与超声波电源7电性连接。超声波电源7为换能器8提供工作电流,换能器8将电能转换成超声波振动的机械能,超声辐射杆9浸入复合熔体中后,复合熔体中的纳米TiB2颗粒在超声波处理下在铝熔体4中均匀分散,无团聚现象产生。One end of the
本实施例中的石墨坩埚2内设置有用于测量混合熔体5温度的热电偶10,热电偶10的信号输出端与数据采集器11电性连接,所述数据采集器11与计算机终端12通讯连接。通过热电偶10实施采集加热、搅拌及超声波处理过程中熔体的温度,通过数据采集器11处理并转换成温度值并传递至计算机终端12进行显示,便于操作人员了解制备过程中的温度,以进行相应的记录与控制。The
实施例2:Example 2:
参见图1和图2,首先称取500g的2A14铝合金铸锭,并将称取好的2A14铝合金铸锭放入石墨坩埚2内,用电阻炉6加热至融化,同时依据原位反应方程式,按预生成3vol%的TiB2颗粒称取氟钛酸钾(K2TiF6)、氟硼酸钾(KBF4)反应盐3粉末分别为88.33g、92.75g,则助溶剂氟铝酸钠(Na3AlF6)的质量为18.11g。通过机械搅拌充分混合后在200℃的干燥炉内干燥2h,待铝熔体4的温度稳定在820℃时,将干燥好的混合粉末加入至铝熔体4中,加入时间为15s,在加入过程中引入机械搅拌,搅拌转速为150rpm,搅拌时间为30min;待复合材料温度冷却至720℃时,撇去浮渣,浇入到300℃预热处理的石墨模具中冷却。将冷却的样品重新放入石墨坩埚2内,用电阻炉6加热至720℃融化形成混合熔体5,加入高能超声至混合熔体5中,超声频率为20KHz,功率为1KW,振幅为12μm,超声辐射杆9浸入深度为20mm,超声处理时间为90s,待超声处理时间结束,将混合熔体5浇注至300℃预热的石墨模具并用液氮冷却,获得最终的纳米硼化钛增强铝基复合材料。Referring to Fig. 1 and Fig. 2, first take by weighing the 2A14 aluminum alloy ingot of 500g, and the 2A14 aluminum alloy ingot that is weighed is put into the
实施例3:Example 3:
参见图1-3,首先称取550g的2A14铝合金铸锭,并将称取好的2A14铝合金铸锭放入石墨坩埚2内,用电阻炉6加热至融化,同时依据原位反应方程式,按预生成3vol%的TiB2颗粒称取氟钛酸钾(K2TiF6)、氟硼酸钾(KBF4)反应盐3粉末分别为97.17g、102.03g,则助溶剂氟铝酸钠(Na3AlF6)的质量为19.92g。通过机械搅拌充分混合后在300℃的干燥炉内干燥1h,待铝熔体4的温度稳定在830℃时,将干燥好的混合粉末加入至铝熔体4中,加入时间为20s,在加入过程中引入机械搅拌,搅拌转速为150rpm,搅拌时间为30min;待复合材料温度冷却至720℃时,撇去浮渣,浇入到300℃预热处理的石墨模具中冷却。将冷却的样品重新放入石墨坩埚2内,用电阻炉6加热至720℃融化形成混合熔体5,加入高能超声至混合熔体5中,超声频率为19KHz,功率为2KW,振幅为15μm,超声辐射杆9浸入深度为25mm,超声处理时间为120s,待超声处理时间结束,将混合熔体5浇注至300℃预热的石墨模中并用液氮冷却,获得最终的纳米硼化钛增强铝基复合材料。Referring to Fig. 1-3, first take by weighing the 2A14 aluminum alloy ingot of 550g, and put the 2A14 aluminum alloy ingot that has been weighed into the
铸态的TiB2/2A14铝基复合材料的微观组织,据图3可知,铝基复合材料组织中未出现粗大的树枝状初生晶,初生α-Al相在TiB2颗粒和超声空化效应下,得到明显细化。在超声空化和超声声流的协同作用下,复合材料中未出现明显的颗粒团聚,TiB2颗粒均匀地分布于组织中。The microstructure of the as-cast TiB 2 /2A14 aluminum matrix composite material, according to Figure 3, there are no coarse dendritic primary crystals in the structure of the aluminum matrix composite material, and the primary α-Al phase is under the effect of TiB 2 particles and ultrasonic cavitation. , was significantly refined. Under the synergistic effect of ultrasonic cavitation and ultrasonic acoustic flow, there is no obvious particle agglomeration in the composite, and the TiB particles are uniformly distributed in the tissue.
通过对本实施例获得的复合材料进行力学性能检测,与普通方法制备的复合材料相比,经过本技术方案制备的复合材料的性能有极大的提升,其屈服强度、抗拉强度和硬度分别提高了54%、21%和27%,同时磨损质量减少了37%,耐磨性提高。By testing the mechanical properties of the composite material obtained in this example, compared with the composite material prepared by the common method, the performance of the composite material prepared by this technical solution is greatly improved, and its yield strength, tensile strength and hardness are respectively improved. 54%, 21% and 27%, while the wear quality is reduced by 37% and the wear resistance is improved.
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above is an embodiment of the present invention. The above examples and the specific parameters in the examples are only to clearly describe the invention verification process, not to limit the scope of patent protection of the present invention. The scope of patent protection of the present invention is still based on the claims. Equivalent structural changes made in the contents of the description shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911139880.XA CN110747361A (en) | 2019-11-20 | 2019-11-20 | Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911139880.XA CN110747361A (en) | 2019-11-20 | 2019-11-20 | Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110747361A true CN110747361A (en) | 2020-02-04 |
Family
ID=69283787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911139880.XA Pending CN110747361A (en) | 2019-11-20 | 2019-11-20 | Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110747361A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111979441A (en) * | 2020-08-03 | 2020-11-24 | 中信戴卡股份有限公司 | Preparation method of aluminum-based composite material |
CN112195358A (en) * | 2020-10-14 | 2021-01-08 | 广东省科学院材料与加工研究所 | Aluminum-based alloy, aluminum-based composite material, and preparation method and application thereof |
CN112301298A (en) * | 2020-09-22 | 2021-02-02 | 哈尔滨工业大学(威海) | A kind of light-weight, heat-resistant and high-stiffness multi-element reinforced aluminum matrix composite material and preparation method thereof |
CN112708804A (en) * | 2020-12-18 | 2021-04-27 | 江苏大学 | Graphene and in-situ nanoparticle reinforced aluminum-based composite material and preparation method thereof |
CN113084396A (en) * | 2021-04-09 | 2021-07-09 | 北京诺飞新能源科技有限责任公司 | Preparation method of anti-crack aluminum alloy welding wire |
CN113504155A (en) * | 2021-05-27 | 2021-10-15 | 郑州大学 | Device and method for detecting particle wettability in water by ultrasonic waves |
CN114015906A (en) * | 2021-11-03 | 2022-02-08 | 大连理工大学 | Nano ceramic composite 6201 aluminum alloy, ultrasonic-assisted low-temperature synthesis method and application thereof |
CN114807659A (en) * | 2022-05-05 | 2022-07-29 | 湖南江滨机器(集团)有限责任公司 | Aluminum-based composite material containing titanium diboride and niobium diboride, preparation method thereof and diesel engine piston |
CN115449657A (en) * | 2022-09-29 | 2022-12-09 | 昆明冶金研究院有限公司 | A preparation method of Al-Ti-B alloy with effective control of TiB2 particle size and distribution range |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1958816A (en) * | 2006-11-29 | 2007-05-09 | 吉林大学 | Technique for preparing composite material of aluminum based surface enhanced by inner generated grains through powered supresonic method |
CN104313384A (en) * | 2014-09-30 | 2015-01-28 | 南昌大学 | A kind of preparation method of in-situ Al3Ti intermetallic compound particle reinforced aluminum matrix composite material |
CN106244866A (en) * | 2016-09-20 | 2016-12-21 | 桂林理工大学 | A kind of preparation method of nano TiN reinforced aluminum matrix composites |
CN108070733A (en) * | 2017-06-12 | 2018-05-25 | 吉林大学 | A kind of novel nano titanium boride pottery aluminium combined wire wire rod |
CN110004333A (en) * | 2019-01-28 | 2019-07-12 | 中信戴卡股份有限公司 | A method of improving aluminum matrix composite enhances particle dispersing uniformity |
CN110257655A (en) * | 2019-07-05 | 2019-09-20 | 西安交通大学 | A kind of high diffusive distribution nano titanium diboride particle enhanced aluminum-based composite material and preparation method thereof |
-
2019
- 2019-11-20 CN CN201911139880.XA patent/CN110747361A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1958816A (en) * | 2006-11-29 | 2007-05-09 | 吉林大学 | Technique for preparing composite material of aluminum based surface enhanced by inner generated grains through powered supresonic method |
CN104313384A (en) * | 2014-09-30 | 2015-01-28 | 南昌大学 | A kind of preparation method of in-situ Al3Ti intermetallic compound particle reinforced aluminum matrix composite material |
CN106244866A (en) * | 2016-09-20 | 2016-12-21 | 桂林理工大学 | A kind of preparation method of nano TiN reinforced aluminum matrix composites |
CN108070733A (en) * | 2017-06-12 | 2018-05-25 | 吉林大学 | A kind of novel nano titanium boride pottery aluminium combined wire wire rod |
CN110004333A (en) * | 2019-01-28 | 2019-07-12 | 中信戴卡股份有限公司 | A method of improving aluminum matrix composite enhances particle dispersing uniformity |
CN110257655A (en) * | 2019-07-05 | 2019-09-20 | 西安交通大学 | A kind of high diffusive distribution nano titanium diboride particle enhanced aluminum-based composite material and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
张士林等: "《简明铝合金手册》", 28 February 2001, 上海:上海科学技术文献出版社 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111979441A (en) * | 2020-08-03 | 2020-11-24 | 中信戴卡股份有限公司 | Preparation method of aluminum-based composite material |
CN112301298A (en) * | 2020-09-22 | 2021-02-02 | 哈尔滨工业大学(威海) | A kind of light-weight, heat-resistant and high-stiffness multi-element reinforced aluminum matrix composite material and preparation method thereof |
CN112195358A (en) * | 2020-10-14 | 2021-01-08 | 广东省科学院材料与加工研究所 | Aluminum-based alloy, aluminum-based composite material, and preparation method and application thereof |
CN112708804A (en) * | 2020-12-18 | 2021-04-27 | 江苏大学 | Graphene and in-situ nanoparticle reinforced aluminum-based composite material and preparation method thereof |
CN112708804B (en) * | 2020-12-18 | 2022-02-15 | 江苏大学 | Graphene and in situ nanoparticles reinforced aluminum matrix composite material and preparation method |
CN113084396A (en) * | 2021-04-09 | 2021-07-09 | 北京诺飞新能源科技有限责任公司 | Preparation method of anti-crack aluminum alloy welding wire |
CN113504155A (en) * | 2021-05-27 | 2021-10-15 | 郑州大学 | Device and method for detecting particle wettability in water by ultrasonic waves |
CN114015906A (en) * | 2021-11-03 | 2022-02-08 | 大连理工大学 | Nano ceramic composite 6201 aluminum alloy, ultrasonic-assisted low-temperature synthesis method and application thereof |
CN114015906B (en) * | 2021-11-03 | 2022-05-13 | 大连理工大学 | A kind of nano-ceramic composite 6201 aluminum alloy, its ultrasonic-assisted low-temperature synthesis method and use |
CN114807659A (en) * | 2022-05-05 | 2022-07-29 | 湖南江滨机器(集团)有限责任公司 | Aluminum-based composite material containing titanium diboride and niobium diboride, preparation method thereof and diesel engine piston |
CN114807659B (en) * | 2022-05-05 | 2023-04-18 | 湖南江滨机器(集团)有限责任公司 | Aluminum-based composite material containing titanium diboride and niobium diboride, preparation method thereof and diesel engine piston |
CN115449657A (en) * | 2022-09-29 | 2022-12-09 | 昆明冶金研究院有限公司 | A preparation method of Al-Ti-B alloy with effective control of TiB2 particle size and distribution range |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110747361A (en) | Preparation method of titanium boride reinforced aluminum-based composite material based on ultrasonic and mechanical stirring | |
CN111206166B (en) | Preparation method of in-situ ternary nanoparticle reinforced aluminum matrix composite | |
CN104451236B (en) | A kind of in-situ preparation method of nano ZrB2 particle reinforced aluminum matrix composite | |
CN102108455A (en) | Preparation method of aluminum-base composite material | |
CN108085549A (en) | A kind of method that ultrasonic wave auxiliary mechanical agitation prepares new magnesium-based composite material | |
CN102703738A (en) | Preparation method of Al-Ti-B-C quaternary grain refiner | |
CN101177742A (en) | Method for in-situ preparation of TiBO2 reinforced magnesium-based composite material | |
CN101892404A (en) | A kind of preparation method of zinc-titanium master alloy | |
CN109355520B (en) | A kind of Al-Ti-C-B master alloy and preparation method thereof | |
CN107034374B (en) | A kind of method that villiaumite reaction method prepares Al-5Ti-1B intermediate alloy | |
CN1605641A (en) | Method for preparation of aluminum scandium alloy by alumino-thermic reduction method | |
CN107190161A (en) | A kind of Al TiB of large volume fraction2Pure phase intermediate alloy and preparation method | |
CN114990390B (en) | Preparation method of in-situ synthesized binary nanoparticle reinforced aluminum matrix composite | |
CN109518040B (en) | Method for continuously preparing Al-Ti-B grain refiner by ultrasonic treatment | |
CN104962772B (en) | One kind prepares situ Al3The method of Ti particle REINFORCED Al Si Cu composites | |
CN101591737A (en) | A zinc-aluminum-titanium-carbon master alloy refiner and its preparation method and application | |
CN107400805B (en) | A kind of aluminium strontium tungsten intermediate alloy and preparation method thereof | |
CN111020300B (en) | Preparation method of thermal cracking resistant binary nanoparticle reinforced aluminum matrix composite | |
CN101892406A (en) | A preparation method of aluminum matrix composite material with uniform fine equiaxed grains | |
CN107012354B (en) | A kind of preparation method of Al-Si9Cu1 particulate reinforced composite | |
CN114015906B (en) | A kind of nano-ceramic composite 6201 aluminum alloy, its ultrasonic-assisted low-temperature synthesis method and use | |
CN107988499B (en) | Method for preparing aluminum-erbium master alloy by molten salt thermal reduction method | |
CN102121076B (en) | Method for synthetizing particle reinforced metal matrix composite material in pulsed electric field | |
CN112522533B (en) | Method for preparing in-situ nanoparticle reinforced aluminum matrix composite at low temperature | |
CN114427048B (en) | Aluminum-based grain refiner containing high-entropy boride and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200204 |