CN107924023B - 具有用于增加的光束参数乘积的中心折射率受抑制的纤维 - Google Patents
具有用于增加的光束参数乘积的中心折射率受抑制的纤维 Download PDFInfo
- Publication number
- CN107924023B CN107924023B CN201680043132.XA CN201680043132A CN107924023B CN 107924023 B CN107924023 B CN 107924023B CN 201680043132 A CN201680043132 A CN 201680043132A CN 107924023 B CN107924023 B CN 107924023B
- Authority
- CN
- China
- Prior art keywords
- fiber
- refractive index
- parameter product
- beam parameter
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000013307 optical fiber Substances 0.000 claims abstract description 33
- 230000003287 optical effect Effects 0.000 claims description 32
- 238000005253 cladding Methods 0.000 claims description 23
- 230000008878 coupling Effects 0.000 claims description 7
- 238000010168 coupling process Methods 0.000 claims description 7
- 238000005859 coupling reaction Methods 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 description 7
- 230000005855 radiation Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000005383 fluoride glass Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 150000004770 chalcogenides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003121 nonmonotonic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- -1 sapphire Chemical compound 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
- G02B6/03605—Highest refractive index not on central axis
- G02B6/03611—Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
Abstract
本发明提供了一种方法,包括:生成具有初始光束参数乘积(bpp)的多模激光束,并将所述多模激光束引导到纤维的输入端,以便在所述纤维的输出处产生具有最终bpp的输出光束,所述最终bpp大于所述初始bpp。另一种方法包括:测量与从激光源产生并从输出纤维输出端发射的多模激光束相关联的基础bpp,确定所述多模激光束的bpp增加,并且选择具有输入端和输出端的bpp增加光纤,使得耦合到所述输入端的具有所述基础bpp的所述多模激光束在与所述确定的bpp增加相对应的所述bpp增加光纤的所述输出端处具有输出bpp。
Description
相关专利申请的交叉引用
本申请要求2015年7月8日提交的美国临时申请62/190,047的权益,该申请以引用方式并入本文。
技术领域
该领域涉及激光系统中的光纤。
背景技术
在许多激光系统应用中,卓越的激光性能往往需要卓越的激光束质量。虽然通常需要对应于最高可实现光束质量的高斯光束分布,但是激光加工和材料加工中的许多应用可从具有其他形状的光束分布受益。此外,激光加工供应链的各个步骤可以从具有可预测的光束质量中受益。尽管用于最大化激光束质量的方法已经受到很多关注,但是仍然缺乏用于制造具有特定的降低光束质量的激光的方法。因此,需要克服这些缺陷的解决方案。
发明内容
根据一方面,一种方法包括:生成具有初始光束参数乘积的多模激光束,并将多模激光束引导到纤维的输入端,以便在纤维的输出处产生具有最终光束参数乘积的输出光束,该最终光束参数乘积大于初始光束参数乘积。
根据另一方面,一种装置包括:激光源,其被定位成产生具有相关联的光束参数乘积的激光束;输出纤维,其光学耦合到该激光源并且具有限定输出光芯直径的折射率,并且被定位成从激光源接收激光束;以及光学参数乘积增加纤维,其芯直径等于输出光芯直径,并且光学耦合到输出纤维,以便接收来自输出纤维的激光束,并将激光束的光束参数乘积增加到选定的值。
根据另一方面,一种方法包括:测量与从激光源产生并从输出纤维输出端发射的多模激光束相关联的基础光束参数乘积;确定多模激光束的光束参数乘积增加;并且选择具有输入端和输出端的光束参数乘积增加光纤,使得耦合到输入端的具有基础光束参数乘积的多模激光束在与所确定的光束参数乘积增加相对应的光束参数乘积增加光纤的输出端处具有输出光束参数乘积。
在一些示例中,多模纤维包括中心芯和位于中心芯周围的外部芯,其中与外部芯相关联的折射率大于中心芯的折射率。包层位于中心芯周围,其中包层的折射率小于与外部芯相关联的折射率并且小于与中心芯相关联的折射率。在一些示例中,内部芯限定少数模芯。在其他示例中,外部芯包括与至少第一折射率和第二折射率相关联的部分,其中所述第一折射率和所述第二折射率中的一者或两者大于芯的折射率。
从下面参照附图进行的详细描述中,所公开技术的前述和其他目的、特征和优点将变得更加明显。
附图说明
图1是代表性的激光装置的示意图。
图2是增加多模激光束的光束参数乘积(bpp)的代表性方法的流程图。
图3是将多模激光束bpp增加到选定的bpp或bpp范围的代表性方法的流程图。
图4示出了可以增加bpp的代表性纤维的八个代表性折射率分布(即作为径向坐标的函数的折射率)。在这些示例中,折射率分布是径向对称的,并且为了便于说明,仅标记了折射率分布的一部分。
图5A是代表性光束强度分布和相关联的折射率分布。
图5B是对应于图5A的光束强度分布的横截面图。
具体实施方式
如在本申请和权利要求书中所使用的,除非上下文另有明确指出,否则单数形式的词语“一个”、“一种”和“该”包括复数形式。此外,术语“包括”表示“包含”。此外,术语“耦合”不排除耦合项之间中间元件的存在。
在此描述的系统、装置和方法不应被解释为以任何方式进行限制。相反,本公开涉及各种公开的实施方案的所有新颖的和非显而易见的特征和方面,单独地以及彼此的各种组合和子组合。所公开的系统、方法和装置不限于任何特定方面或特征或其组合,所公开的系统、方法和装置也不要求存在任何一个或多个特定优点或解决问题。任何操作理论都是为了便于解释,但所公开的系统、方法和装置不限于这种操作理论。
尽管为了便于表示,以特定的先后顺序描述了某些公开的方法的操作,但是应该理解的是,除非在下文中通过特定语言要求特定的顺序,否则这种描述的方式包含重新安排。例如,顺序描述的操作在一些情况下可以被重新安排或同时执行。而且,为了简单起见,附图可能没有示出所公开的系统、方法和装置可与其他系统、方法和装置结合使用的各种方式。此外,该描述有时使用术语诸如“产生”和“提供”来描述所公开的方法。这些术语是对所执行的实际操作的高度抽象。对应于这些术语的实际操作将根据具体实施而有所不同,并且容易被本领域的普通技术人员识别。
在一些示例中,值、过程或装置被称为“最低”、“最佳”、“最小”等。应该理解,这样的描述旨在表示可以对许多所使用的功能替代项进行选择,并且这样的选择不需要更好、更小或以其他方式优于其他选择。参照“上方”、“下方”、“上”、“下”等指示的方向来描述示例。这些术语用于方便描述,但并不意味着任何特定的空间取向。
如本文所用,光学辐射是指波长介于约100nm与10μm之间,并且典型地介于约500nm与2μm之间的电磁辐射。基于可用激光二极管源和光纤的示例通常与约800nm和1700nm之间的波长相关联。在一些示例中,传播的光学辐射被称为具有直径、不对称快轴和慢轴、光束横截面积以及光束散度的一条或多条光束,所述项可取决于光束波长和用于光束成形的光学系统。为了方便,在一些示例中,光学辐射被称为光,并且不需要在可见波长。
参照光纤来描述代表性实施方案,但是也可以使用具有正方形、矩形、多边形、卵形、椭圆形或其他横截面的其他类型的光波导管。光纤典型地由掺杂(或不掺杂)的二氧化硅(玻璃)形成,以便提供预定的折射率或折射率差。在一些示例中,纤维或其他波导管由其他材料制成,诸如氟锆酸盐、氟铝酸盐、氟化物或磷酸盐玻璃、硫属化合物玻璃或诸如蓝宝石的晶体材料,具体取决于所感兴趣的波长。二氧化硅和氟化物玻璃的折射率通常约为1.5,但是诸如硫属化合物的其他材料的折射率可以是3或更大。在其他示例中,光纤可以部分地由塑料所构成。在典型示例中,诸如纤维芯的掺杂波导管芯提供响应于泵浦的光学增益,并且芯和包层近似同心。在其他示例中,芯和包层中的一个或多个是偏心的,并且在一些示例中,芯和包层取向和/或位移沿波导管长度而变化。
如本文所用,数值孔径(NA)是指相对于光学波导管所限定的传播轴的最大入射角,传播光学辐射被大体上限制在该传播轴。在光纤中,纤维芯和纤维包层可以具有相关联的NA,通常分别由芯和包层或相邻包层之间的折射率差所限定。尽管以此NA传播的光学辐射通常被很好地限制,但是相关联的电磁场诸如消逝场通常延伸到相邻的包层中。在一些示例中,芯NA与芯/内部包层或内部芯/外部芯折射率差相关联,并且包层NA与内部包层/外部包层折射率差相关联。对于具有芯折射率n芯和包层折射率n包层的光纤,光纤芯NA为对于具有内部芯和与内部芯相邻的外部芯的光纤,包层NA为其中n内部和n外部分别是内部包层和外部包层的折射率。如上所述的光束也可以称为具有与光束角半径相关联的光束NA。尽管下面描述了多芯阶跃折射率光纤,但是也可以使用梯度折射率设计。一些示例包括支持少数模式的纤维,可被称为“少数模”纤维。这样的纤维具有定义为V=2·π·a·NA/λ的归一化频率参数(V数),其中λ是真空波长,“a”是纤维芯半径,并且NA是数值孔径。对于较大的V数,纤维支持的模式“M”的总数“t”约为M=4·V2/π2+2。对于单模纤维,V小于约2.405。如本文所用,少数模纤维被定义为V数小于约5、10或20的纤维。
在本文公开的一些示例中,波导管芯诸如光纤芯可以掺杂诸如Nd、Yb、Ho、Er的稀土元素,或者其他有源掺杂物或其组合。这种有源掺杂的芯可响应于光学或其他泵浦而提供光学增益。如下所述,具有这种有源掺杂物的波导管可用于形成光学放大器,或者如果提供有合适的光学反馈诸如反射层、反射镜、布拉格光栅或其他反馈机构,则这种波导管可以产生激光发射。可以将光泵浦辐射布置成在波导管中相对发射的激光束或放大光束的传播方向同向传播和/或对向传播。在进一步的示例中,可以在波导管芯中掺入一种或多种无源掺杂物诸如Ge、P、Al、F1和B,以增加、减小或保持折射率。
激光束参数乘积(bpp)通常等于激光束腰的半径与激光束发散的半角的乘积。激光束的bpp与相应的理想高斯光束的bpp之比提供了M2光束质量值,用于比较不同光束。示例性的激光束通常包含多个横向光学模式。这种多模(或少数模)光束通常具有大于约2的M2值,而单模光束通常具有小于约2的M2值。在一些示例中,单模光束和多模光束分别具有小于或大于约1.8、1.6、1.5、1.4或更低值的M2值。在典型示例中,多模光束在一个或多个横向光学模式中至少具有很大一部分多模光束的能量含量高于基本LP01模式。尽管可以使用其他归一化或平均化选项,但通常从中心到光束具有光束峰值强度的1/e2值的位置测量光束半径。发散角通常在远场中确定,诸如从光束焦点的几个瑞利长度。
参照图1,激光装置100包括激光源102、输出纤维104、光束参数乘积增加光纤106和递送纤维108。激光源102产生耦合到输出纤维104中的激光束103,以便在输出纤维104的输出端提供输出光束105,该输出光束具有特定的基础光束参数乘积(bpp)或在特定的光束参数乘积范围内。来自输出纤维104的输出光束105耦合到bpp增加光纤106的输入端。输出光束105通过bpp增加光纤106传播,并且在bpp增加光纤106的输出端提供最终bpp,该最终bpp大于输出纤维104的输出端的基础bpp,以便形成bpp增加的输出光束107。Bpp增加的输出光束107耦合到递送纤维108中,并且递送纤维108被定位成将bpp增加的输出光束107递送到目标。在一个示例中,输出光束具有为1.07的M2。在约1080nm的工作波长处的对应基础bpp约为0.37mm·mrad。在传播通过bpp增加光纤106之后,bpp增加的输出光束107具有大约0.49mm·mrad的最终bpp。
在代表性示例中,输出纤维104是阶跃折射率纤维,并且bpp增加光纤106是无源抑制中心折射率纤维,其包括具有选定折射率的中心芯区域和围绕中心芯区域的至少一个外部芯区域,该外部芯区域具有比中心芯区域更高的折射率。通常,输出纤维104芯的直径基本上等于bpp增加光纤106和递送纤维108的芯直径。Bpp增加光纤106的输入端接合到输出纤维104的输出端,并且bpp增加光纤106的输出端接合到递送纤维108的输入端。典型的接合方法包括熔接或纤维端接。在典型示例中,与在bpp增加光纤106的输入端和输出端处通过接头传播光束相关联的耦合损耗小于约5%、2%、1%、0.5%或0.1%。当被引导向某个目标或集中在某个目标时,输出光束105传播通过bpp增加光纤106为bpp增加的输出光束107提供了例如环形或环状的横向强度分布。在一些示例中,横向强度分布包括在bpp增加的输出光束107周向边缘处强度的急剧减小。虽然其他斜降也是可能的,但示例性斜降包括:在光束半径R的5%上,降低对应于最大光束强度IMAX的90%;在光束半径的10%上,降低80%;或者在光束半径的20%上,降低60%。在大功率激光材料加工例如金属切割中,这样的强度下降可以提供有利的结果,诸如更平滑的切割表面。在进一步的示例中,bpp增加光纤106可以是与递送纤维108相同的纤维。
在图2中,方法200包括:在202处,生成具有初始bpp的多模光束,并且在204处,将多模光束引导至光纤的输入端,该光纤被定位成在光纤的输出处产生多模输出光束,该多模输出光束具有大于初始bpp的最终bpp。通过使光束传播通过光纤,光纤通常将对应的初始bpp增加到最终bpp。在代表性示例中,多模输出光束通过光纤无源地传播。可以改变纤维长度以便调节相应的bpp增加。可以改变纤维折射率以便同样调节相应的bpp增加。用于增加bpp的合适的折射率分布包括:包含中心区域的分布,该中心区域具有相对相邻侧边区域较低的折射率。可以相对初始bpp选择与通过光纤的传播相关联的最终bpp,使得最终bpp在所选值的bpp容差(约±25%、±10%、±5%、±2%、±1%)内。在206处,具有增加的bpp的多模输出光束被引导到递送纤维,使得多模输出光束可被递送到目标。在典型示例中,多模输出光束具有1-100kW的平均光功率,并且增加多模输出光束的bpp的传播还重新形成了横向强度分布,使得多模输出光束包括强度比具有高斯分布的光束下降更加剧烈的侧边区域。
参照图3,方法300包括:在302处,测量与从相应激光源产生的多模激光束相关联的基础bpp。可以通过将光功率测量或检测仪器(诸如光束分析仪)定位在多模激光的路径上来测量基础bpp,所述多模激光从与激光源相关联的输出纤维的输出端发射。在304处,为多模激光束确定从基本bpp到最终bpp的bpp增加。在306处,选择bpp增加纤维,该纤维基于所测量的基础bpp在bpp增加纤维的输出端为多模激光束提供相应的最终bpp。在一些示例中,多个bpp增加纤维盒可以包括单独的bpp增加纤维,该纤维对应于特定的bpp增加。基于所测量的bpp差异和/或基本bpp和最终bpp,以及其他纤维或系统规格(例如,芯直径、系统功率),可以从多个盒中选择合适的bpp增加纤维。也可根据光束焦点处或附近的合适光束强度分布来选择bpp增加纤维。例如,可以通过选择多个不同的bpp增加纤维中的一个来实现确定的bpp增加,每个bpp增加纤维为对应的多模激光束提供了不同的选定光束强度分布,该多模激光束被引导通过bpp增加纤维。
在308处,选定的bpp增加纤维的输入端被接合到发射多模激光束的输出纤维的输出端。在310处,bpp增加纤维的输出端被接合到递送纤维的输入端。在代表性示例中,输出纤维、bpp增加纤维和递送纤维的芯直径相等,并且与通过熔接接头传播的多模激光束相关联的复合接头损耗小于约5%、2%、1%、0.1%或更低值,所述熔接接头将bpp增加纤维光学耦合到输出纤维,并且耦合到递送纤维。Bpp增加纤维和递送纤维可被定位成将bpp增加的多模激光束引导至目标或耦合光学器件,该耦合光学器件又将多模激光束引导至目标。尽管bpp增加纤维和递送纤维可以弯曲或盘绕,但在典型的激光装置示例中,多模激光束被引导至目标而没有显著的弯曲。在安装到台架或扫描装置的激光头中,bpp增加纤维和递送纤维的接合处通常不涉及显著的弯曲。因此,对于产生所选择的横向强度分布的bpp增加纤维,通常避免与此类弯曲相关联的光学损耗。这样的损耗避免允许此类bpp增加纤维的实际使用,并且还允许选择横向强度分布,而无需额外的光学器件来修改多模激光束的横向强度分布。
参照图4,示出了不同bpp增加纤维的横截面的几个折射率分布(即作为径向坐标的函数的折射率)。该折射率分布通常关于bpp增加纤维的中心轴对称,但应理解,也可以使用不对称分布。在分布400中,中心芯区域402具有折射率n中心,并且外部芯区域404包括凸起部分406,该部分具有大于n中心的n侧边折射率。具有折射率n包层的包层区域408被定位成与中心和外部芯区域402、404径向相邻。在典型示例中,中心芯区域402的n中心与凸起部分406的n侧边之间的折射率差异与多模光束的bpp增加相关联,该多模光束通过具有折射率分布(诸如折射率分布400)的bpp增加纤维进行耦合。可以在不改变折射率n侧边的情况下降低折射率n中心,可以在不改变n中心的情况下增加侧边,并且可以在降低n中心的同时增加n侧边。
在分布410中,中心芯区域412具有折射率n中心,并且外部芯区域414包括凸起部分416,该部分具有大于n中心的n侧边1折射率。外部芯区域414还包括外部部分418,该部分具有小于n中心的折射率n侧边2。在分布420中,中心芯区域422具有折射率n中心,并且外部芯区域424。外部芯区域424包括:凸起部分426,该凸起部分具有大于n中心的折射率n侧边1;以及另一个凸起部分428,该凸起部分具有小于n侧边1但大于n中心的折射率n侧边2。
在分布430中,中心芯区域432具有折射率n中心,且外部芯区域434具有从内部折射率n侧边1线性可变的折射率,该内部折射率线性地减小到外部折射率n侧边2,并且该外部折射率大于n中心。在一些示例中,内部折射率n侧边1可以线性增加至外部折射率n侧边2。在另一个分布440中,中心芯区域442具有折射率n中心,并且外部芯区域444包括沿径向间隔且相继凸起的部分446、447、448,每个部分具有对应的折射率n侧边1、n侧边2、n侧边3。在分布450中,中心芯区域452具有折射率n中心,并且外部芯区域454包括多个凸起部分456,每个部分具有折射率n侧边。凸起部分456可以等间隔或以可变间隔隔开,并且凸起部分456的最外部分可以与带包层458的外部芯区域454的边界重合。
在分布460中,中心芯区域462具有折射率n中心,并且外部芯区域464具有可变折射率n侧边(R),该折射率具有圆形形状或其他连续或不连续的折射率变化。可变折射率n侧边也可具有圆形以外的形状,诸如椭圆、正弦曲线、单调、非单调等。中心芯区域462的折射率n中心也是可变的。在分布470中,中心芯区域472包括具有折射率n中心1的中心凸起部分474和具有折射率n中心2的相邻下部476,并且该折射率低于n中心1。外部芯区域478具有大于n中心1和n中心2的折射率n侧边。应该理解,图4所示分布的各种折射率形状和分布特征可以组合形成其他分布。
参照图5A,曲线描绘了从光纤的中心光轴502延伸的折射率分布500的一部分,其中光纤芯的折射率约为1.4530。在距离中心光轴502约5μm处,芯的折射率阶跃增加504至约1.4535,其延伸到距离中心光轴502约14.5μm处的芯边界506。在芯处或附近的近场横向强度光束分布508的一部分覆盖在折射率分布500上。横向强度光束分布508包括具有比相邻侧边部分512更低强度的中心部分510。侧边部分512在芯边界506外的消逝尾中迅速减小到零强度。图5B示出了对应于图5A的近场横向强度光束分布508。
鉴于所公开的技术的原理可以应用于许多可能的实施方案,应当认识到,所示出的实施方案仅仅是所公开的技术的优选示例,而不应被视为限制范围。例如,bpp增加纤维可以与其他纤维一起使用或不与其他纤维一起使用,并且可以类似地配置光纤以外的光学波导管以增加bpp。相反,所公开的技术的范围由以下权利要求限定。因此,我们要求落在该范围内以及符合这些权利要求精神的一切内容的所有权。
Claims (25)
1.一种激光束生成方法,包括:
生成具有初始光束参数乘积的多模激光束;以及
将所述多模激光束引导到光束参数乘积(bpp)增加纤维的输入端,以便在所述光束参数乘积增加纤维的输出处产生具有最终光束参数乘积的输出光束,基于所述光束参数乘积增加纤维的所选折射率分布,所述最终光束参数乘积大于所述初始光束参数乘积。
2.根据权利要求1所述的方法,其中所述初始光束参数乘积被增加到所述最终光束参数乘积,使得所述最终光束参数乘积处于所选最终光束参数乘积值的±5%的容差内。
3.根据权利要求1所述的方法,其中与所述光束参数乘积增加纤维相关联的所述多模激光束的耦合损耗小于约1%。
4.根据权利要求3所述的方法,其中所述耦合损耗小于约0.2%。
5.根据权利要求1所述的方法,其中所述光束参数乘积增加纤维的所述折射率分布包括在纤维芯的中心区域中的折射率,所述折射率低于所述纤维芯的外部区域中的折射率。
6.根据权利要求1所述的方法,其中在与纤维中心折射率相关联的所述光束参数乘积增加纤维的中心区域中的所述输出光束的近场横向强度低于在与纤维外部折射率相关联的所述光束参数乘积增加纤维的外部区域中的所述输出光束的近场横向强度。
7.根据权利要求1所述的方法,其中所述光束参数乘积增加纤维是无源纤维。
8.根据权利要求1所述的方法,还包括将具有所述最终光束参数乘积的所述多模激光束引导至递送纤维的输入,所述递送纤维被定位成将所述输出光束引导至目标。
9.一种激光束生成装置,包括:
激光源,所述激光源被定位成产生激光束并且具有相关联的光束参数乘积;
输出纤维,所述输出纤维光学耦合到所述激光源并且具有限定输出纤维芯直径的折射率,并且被定位成从所述激光源接收所述激光束;以及
光学参数乘积(bpp)增加纤维,所述光学参数乘积增加纤维具有与所述输出纤维芯直径相对应的芯直径,并且光学耦合到所述输出纤维,以便接收来自所述输出纤维的所述激光束,并基于所述光束参数乘积增加纤维的折射率分布将所述激光束的所述光束参数乘积增加到选定的值。
10.根据权利要求9所述的装置,还包括递送纤维,所述递送纤维光学耦合到所述光束参数乘积增加纤维,并且被定位成将具有增加的光束参数乘积的激光束引导至目标。
11.根据权利要求10所述的装置,其中与耦合所述光束参数乘积增加光纤、所述输出纤维和所述递送纤维相关联的耦合损耗小于约1%。
12.根据权利要求9所述的装置,其中所述光束参数乘积增加纤维是无源纤维。
13.根据权利要求9所述的装置,其中所述折射率分布包括所述光束参数乘积增加纤维的中心芯区域折射率,所述中心芯区域折射率小于所述光束参数乘积增加纤维的外部芯区域折射率。
14.根据权利要求9所述的装置,其中所述光束参数乘积增加光纤被定位成提供具有环形横向强度分布的发射的激光束。
15.一种激光束调节方法,包括:
测量与从激光源产生并从输出纤维输出端发射的多模激光束相关联的基础光束参数乘积;
确定所述多模激光束的光束参数乘积增加;以及
选择具有输入端和输出端并具有与将输入光束的光束参数乘积增加预定量相关联的折射率分布的光束参数乘积增加光纤,使得耦合到所述输入端的具有所述基础光束参数乘积的所述多模激光束在与所述确定的光束参数乘积增加相对应的所述光束参数乘积增加光纤的所述输出端处具有输出光束参数乘积。
16.根据权利要求15所述的方法,还包括:
将所述光束参数乘积增加光纤的所述输入端接合到所述输出纤维的所述输出端。
17.根据权利要求16所述的方法,还包括:
将所述光束参数乘积增加光纤的所述输出端接合到递送光纤的输入端。
18.根据权利要求17所述的方法,其中与将所述光束参数乘积增加光纤的所述输入端接合到所述输出纤维的所述输出端,以及将所述光束参数乘积增加光纤的所述输出端接合到所述递送纤维的所述输入端相关联的所述多模激光束的耦合损耗小于约1%。
19.根据权利要求15所述的方法,其中所述光束参数乘积增加光纤的所述折射率分布具有小于芯外部折射率的芯中心折射率。
20.根据权利要求15所述的方法,其中所述确定的光束参数乘积增加处于所述基础光束参数乘积的约1%与200%之间。
21.一种多模纤维,包括:
中心芯;
位于所述中心芯周围的外部芯,其中与所述外部芯相关联的折射率大于所述中心芯的折射率;以及
位于所述中心芯周围的包层,所述包层具有的折射率小于与所述外部芯相关联的所述折射率并且小于与所述中心芯相关联的所述折射率,
其中,所述中心芯、所述外部芯、所述包层以及所述中心芯、所述外部芯、所述包层对应的折射率被配置为,相对于在所述多模纤维的输入端接收的输入光束的光束参数乘积,增加从所述多模纤维的输出端发射的输出光束的光束参数乘积。
22.根据权利要求21所述的多模纤维,其中所述中心芯限定少数模芯。
23.根据权利要求21所述的多模纤维,其中所述外部芯包括与至少第一折射率和第二折射率相关联的部分,其中所述第一折射率和所述第二折射率的至少一者大于所述中心芯的所述折射率。
24.根据权利要求21所述的多模纤维,其中所述外部芯包括与至少第一折射率和第二折射率相关联的部分,其中所述第一折射率和所述第二折射率大于所述中心芯的所述折射率。
25.根据权利要求24所述的多模纤维,其中所述中心芯的所述折射率与所述外部芯的所述折射率之间的差异被选择成产生具有环形横向强度分布的输出光束,所述环形横向强度分布包括外边缘处的强度下降,所述强度下降对应于光束强度在光束半径的20%下降60%。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562190047P | 2015-07-08 | 2015-07-08 | |
US62/190,047 | 2015-07-08 | ||
PCT/US2016/041526 WO2017008022A1 (en) | 2015-07-08 | 2016-07-08 | Fiber with depressed central index for increased beam parameter product |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107924023A CN107924023A (zh) | 2018-04-17 |
CN107924023B true CN107924023B (zh) | 2020-12-01 |
Family
ID=57686092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680043132.XA Expired - Fee Related CN107924023B (zh) | 2015-07-08 | 2016-07-08 | 具有用于增加的光束参数乘积的中心折射率受抑制的纤维 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10520671B2 (zh) |
CN (1) | CN107924023B (zh) |
WO (1) | WO2017008022A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
US10310201B2 (en) | 2014-08-01 | 2019-06-04 | Nlight, Inc. | Back-reflection protection and monitoring in fiber and fiber-delivered lasers |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
WO2017008022A1 (en) | 2015-07-08 | 2017-01-12 | Nlight, Inc. | Fiber with depressed central index for increased beam parameter product |
EP3353584B1 (en) | 2015-09-24 | 2020-06-10 | NLIGHT, Inc. | Beam parameter product (bpp) control by varying fiber-to-fiber angle |
US11179807B2 (en) | 2015-11-23 | 2021-11-23 | Nlight, Inc. | Fine-scale temporal control for laser material processing |
EP3380266B1 (en) | 2015-11-23 | 2021-08-11 | NLIGHT, Inc. | Fine-scale temporal control for laser material processing |
US10730785B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Optical fiber bending mechanisms |
JP7186695B2 (ja) | 2016-09-29 | 2022-12-09 | エヌライト,インコーポレーテッド | 調節可能なビーム特性 |
US10673199B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based saturable absorber |
US10673198B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-coupled laser with time varying beam characteristics |
US10673197B2 (en) | 2016-09-29 | 2020-06-02 | Nlight, Inc. | Fiber-based optical modulator |
US10732439B2 (en) | 2016-09-29 | 2020-08-04 | Nlight, Inc. | Fiber-coupled device for varying beam characteristics |
US12237642B2 (en) * | 2018-12-03 | 2025-02-25 | Ipg Photonics Corporation | Ultrahigh power fiber laser system with controllable output beam intensity profile |
US10935720B2 (en) * | 2019-04-29 | 2021-03-02 | Ii-Vi Delaware, Inc. | Laser beam product parameter adjustments |
US11592612B2 (en) * | 2020-12-30 | 2023-02-28 | Lumentum Operations Llc | In-fiber offset to annulus converter |
CN114280721B (zh) * | 2021-12-31 | 2023-04-07 | 长飞光纤光缆股份有限公司 | 一种反高斯型传能光纤及其应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5903696A (en) * | 1995-04-21 | 1999-05-11 | Ceramoptec Industries Inc | Multimode optical waveguides, waveguide components and sensors |
CN1584644A (zh) * | 2004-06-02 | 2005-02-23 | 中国科学院上海光学精密机械研究所 | 光束整形光纤 |
CN1327254C (zh) * | 1998-11-26 | 2007-07-18 | 住友电气工业株式会社 | 光纤以及包含该光纤的传光系统 |
CN102782540A (zh) * | 2010-02-24 | 2012-11-14 | 康宁股份有限公司 | 三层包覆光纤和具有三层包覆光纤的装置 |
CN103056513A (zh) * | 2012-12-14 | 2013-04-24 | 武汉锐科光纤激光器技术有限责任公司 | 一种激光加工系统 |
CN104136952A (zh) * | 2011-12-09 | 2014-11-05 | Jds尤尼弗思公司 | 改变激光束的光束参数积 |
Family Cites Families (368)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3388461A (en) | 1965-01-26 | 1968-06-18 | Sperry Rand Corp | Precision electrical component adjustment method |
GB1502127A (en) | 1975-01-27 | 1978-02-22 | Xerox Corp | Geometrical transformations in optics |
US4252403A (en) | 1979-11-06 | 1981-02-24 | International Telephone And Telegraph Corporation | Coupler for a graded index fiber |
US4266851A (en) | 1979-11-06 | 1981-05-12 | International Telephone And Telegraph Corporation | Coupler for a concentric core optical fiber |
US4475789A (en) | 1981-11-09 | 1984-10-09 | Canadian Patents & Development Limited | Optical fiber power tap |
US4475027A (en) | 1981-11-17 | 1984-10-02 | Allied Corporation | Optical beam homogenizer |
US4713518A (en) | 1984-06-08 | 1987-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device manufacturing methods |
US4953947A (en) | 1986-08-08 | 1990-09-04 | Corning Incorporated | Dispersion transformer having multichannel fiber |
RU2021881C1 (ru) | 1986-10-17 | 1994-10-30 | Борд оф Риджентс, Дзе Юниверсити оф Тексас Систем | Способ изготовления детали и устройство для его осуществления |
US4863538A (en) | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
US5008555A (en) | 1988-04-08 | 1991-04-16 | Eaton Leonard Technologies, Inc. | Optical probe with overlapping detection fields |
US5082349A (en) | 1988-04-25 | 1992-01-21 | The Board Of Trustees Of The Leland Stanford Junior University | Bi-domain two-mode single crystal fiber devices |
DE3833992A1 (de) | 1988-10-06 | 1990-04-12 | Messerschmitt Boelkow Blohm | Bestrahlungseinrichtung |
JPH0748330B2 (ja) | 1989-02-21 | 1995-05-24 | 帝国通信工業株式会社 | フレキシブル基板内蔵の電子部品樹脂モールドケース及びその製造方法 |
US5153773A (en) | 1989-06-08 | 1992-10-06 | Canon Kabushiki Kaisha | Illumination device including amplitude-division and beam movements |
DE59007714D1 (de) | 1989-08-14 | 1994-12-22 | Ciba Geigy Ag | Lichtwellenleitersteckverbindung. |
JPH03216287A (ja) | 1990-01-19 | 1991-09-24 | Fanuc Ltd | レーザ切断加工方法 |
US5231464A (en) | 1990-03-26 | 1993-07-27 | Research Development Corporation Of Japan | Highly directional optical system and optical sectional image forming apparatus employing the same |
RU2008742C1 (ru) | 1991-03-04 | 1994-02-28 | Рыков Вениамин Васильевич | Способ легирования полупроводников |
GB9106874D0 (en) | 1991-04-02 | 1991-05-22 | Lumonics Ltd | Optical fibre assembly for a laser system |
US6569382B1 (en) | 1991-11-07 | 2003-05-27 | Nanogen, Inc. | Methods apparatus for the electronic, homogeneous assembly and fabrication of devices |
US5252991A (en) | 1991-12-17 | 1993-10-12 | Hewlett-Packard Company | Media edge sensor utilizing a laser beam scanner |
DE4200587C1 (en) | 1992-01-11 | 1993-04-01 | Schott Glaswerke, 6500 Mainz, De | Light wave applicator for cutting and coagulating biological tissue - applies laser beam via flexible optical fibre having non-constant refractive index profile along its cross=section |
US5475415A (en) | 1992-06-03 | 1995-12-12 | Eastman Kodak Company | Optical head and printing system forming interleaved output laser light beams |
JP2962937B2 (ja) | 1992-07-14 | 1999-10-12 | キヤノン株式会社 | 文字処理装置及び方法 |
RU2111520C1 (ru) | 1993-07-21 | 1998-05-20 | Фирма "Самсунг Электроникс Ко., Лтд." | Оптический процессор с бустерным выходом |
US5427733A (en) | 1993-10-20 | 1995-06-27 | United Technologies Corporation | Method for performing temperature-controlled laser sintering |
US5393482A (en) | 1993-10-20 | 1995-02-28 | United Technologies Corporation | Method for performing multiple beam laser sintering employing focussed and defocussed laser beams |
JP3531199B2 (ja) | 1994-02-22 | 2004-05-24 | 三菱電機株式会社 | 光伝送装置 |
US5656186A (en) | 1994-04-08 | 1997-08-12 | The Regents Of The University Of Michigan | Method for controlling configuration of laser induced breakdown and ablation |
US5523543A (en) | 1994-09-09 | 1996-06-04 | Litel Instruments | Laser ablation control system and method |
US5509597A (en) | 1994-10-17 | 1996-04-23 | Panasonic Technologies, Inc. | Apparatus and method for automatic monitoring and control of a soldering process |
DE4437284A1 (de) | 1994-10-18 | 1996-04-25 | Eos Electro Optical Syst | Verfahren zum Kalibrieren einer Steuerung zur Ablenkung eines Laserstrahls |
US5566196A (en) | 1994-10-27 | 1996-10-15 | Sdl, Inc. | Multiple core fiber laser and optical amplifier |
US5748824A (en) | 1995-11-17 | 1998-05-05 | Corning Incorporated | Positive dispersion optical waveguide |
US5932119A (en) | 1996-01-05 | 1999-08-03 | Lazare Kaplan International, Inc. | Laser marking system |
US5909306A (en) | 1996-02-23 | 1999-06-01 | President And Fellows Of Harvard College | Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation |
US5745284A (en) | 1996-02-23 | 1998-04-28 | President And Fellows Of Harvard College | Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation |
US5761234A (en) | 1996-07-09 | 1998-06-02 | Sdl, Inc. | High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems |
US5864430A (en) | 1996-09-10 | 1999-01-26 | Sandia Corporation | Gaussian beam profile shaping apparatus, method therefor and evaluation thereof |
US5986807A (en) | 1997-01-13 | 1999-11-16 | Xerox Corporation | Single binary optical element beam homogenizer |
EP1433761B1 (en) | 1997-02-14 | 2006-08-02 | Nippon Telegraph and Telephone Corporation | Optical amplifier |
JPH10321502A (ja) | 1997-05-16 | 1998-12-04 | Nikon Corp | 荷電粒子線投影方法 |
DE19723269A1 (de) | 1997-06-03 | 1998-12-10 | Heidelberger Druckmasch Ag | Festkörperlaser mit einer oder mehreren Pumplichtquellen |
JPH11780A (ja) | 1997-06-10 | 1999-01-06 | Ishikawajima Harima Heavy Ind Co Ltd | レーザ・ウォータジェット複合切断装置 |
EP1970756A3 (en) | 1997-06-18 | 2014-08-27 | Nippon Telegraph and Telephone Corporation | Optical pulse source and applications |
US5818630A (en) | 1997-06-25 | 1998-10-06 | Imra America, Inc. | Single-mode amplifiers and compressors based on multi-mode fibers |
DE19746171C2 (de) | 1997-10-18 | 2001-05-17 | Deutsche Telekom Ag | Vorrichtung zum Auskoppeln von Signalen aus einem Lichtwellenleiter |
KR100355122B1 (ko) | 1997-12-26 | 2002-10-11 | 미쓰비시덴키 가부시키가이샤 | 레이저 가공장치 |
WO1999045419A1 (en) | 1998-03-04 | 1999-09-10 | Sdl, Inc. | Optical couplers for multimode fibers |
US6490376B1 (en) | 1998-09-17 | 2002-12-03 | Metrologic Instruments, Inc. | Skew processing of raster scan images |
US6310995B1 (en) | 1998-11-25 | 2001-10-30 | University Of Maryland | Resonantly coupled waveguides using a taper |
CA2353466A1 (en) | 1998-12-02 | 2000-06-08 | Edward F. Murphy | A detachable plug-in pump card assembly |
US6483973B1 (en) | 1999-04-09 | 2002-11-19 | Fitel Usa Corp. | Cladding member for optical fibers and optical fibers formed with the cladding member |
TW482705B (en) | 1999-05-28 | 2002-04-11 | Electro Scient Ind Inc | Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias |
US6839163B1 (en) | 1999-09-01 | 2005-01-04 | Avanex Corporation | Apparatus and method for making an optical fiber amplifier |
NO994363L (no) | 1999-09-09 | 2001-03-12 | Optomed As | Fiberoptisk probe for temperaturmÕlinger i biologiske media |
US6362004B1 (en) | 1999-11-09 | 2002-03-26 | Packard Biochip Technologies, Llc | Apparatus and method for using fiducial marks on a microarray substrate |
CA2293132C (en) | 1999-12-24 | 2007-03-06 | Jocelyn Lauzon | Triple-clad rare-earth doped optical fiber and applications |
US7068900B2 (en) | 1999-12-24 | 2006-06-27 | Croteau Andre | Multi-clad doped optical fiber |
US6330382B1 (en) | 2000-01-19 | 2001-12-11 | Corning Incorporated | Mode conditioning for multimode fiber systems |
US7098084B2 (en) | 2000-03-08 | 2006-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6496301B1 (en) | 2000-03-10 | 2002-12-17 | The United States Of America As Represented By The Secretary Of The Navy | Helical fiber amplifier |
US6559585B2 (en) | 2000-05-26 | 2003-05-06 | Kabushiki Kaisha Toshiba | Color cathode ray tube |
US6477307B1 (en) | 2000-10-23 | 2002-11-05 | Nufern | Cladding-pumped optical fiber and methods for fabricating |
US7193771B1 (en) | 2001-01-04 | 2007-03-20 | Lockheed Martin Coherent Technologies, Inc. | Power scalable optical systems for generating, transporting, and delivering high power, high quality laser beams |
JP2002214460A (ja) | 2001-01-19 | 2002-07-31 | Japan Aviation Electronics Industry Ltd | 光導波路デバイスおよびその製造方法 |
CN1489712A (zh) | 2001-01-25 | 2004-04-14 | �ź㴫 | 具有定制色散分布的光子晶体光波导 |
EP1364237A4 (en) | 2001-01-25 | 2006-03-22 | Omniguide Inc | LOW-LOW PHOTONIC CRYSTAL WAVE LADDER WITH GREAT CORE RADIUS |
US6563981B2 (en) | 2001-01-31 | 2003-05-13 | Omniguide Communications | Electromagnetic mode conversion in photonic crystal multimode waveguides |
US6711918B1 (en) | 2001-02-06 | 2004-03-30 | Sandia National Laboratories | Method of bundling rods so as to form an optical fiber preform |
US20020110328A1 (en) | 2001-02-14 | 2002-08-15 | Bischel William K. | Multi-channel laser pump source for optical amplifiers |
US6542665B2 (en) | 2001-02-17 | 2003-04-01 | Lucent Technologies Inc. | GRIN fiber lenses |
US6426840B1 (en) | 2001-02-23 | 2002-07-30 | 3D Systems, Inc. | Electronic spot light control |
US6724528B2 (en) | 2001-02-27 | 2004-04-20 | The United States Of America As Represented By The Secretary Of The Navy | Polarization-maintaining optical fiber amplifier employing externally applied stress-induced birefringence |
JP3399434B2 (ja) | 2001-03-02 | 2003-04-21 | オムロン株式会社 | 高分子成形材のメッキ形成方法と回路形成部品とこの回路形成部品の製造方法 |
EP1238745A3 (en) | 2001-03-07 | 2004-06-30 | Nec Corporation | Galvanometer controller and laser machining apparatus |
US6972268B2 (en) | 2001-03-29 | 2005-12-06 | Gsi Lumonics Corporation | Methods and systems for processing a device, methods and systems for modeling same and the device |
US20020168139A1 (en) | 2001-03-30 | 2002-11-14 | Clarkson William Andrew | Optical fiber terminations, optical couplers and optical coupling methods |
US6556340B1 (en) | 2001-04-06 | 2003-04-29 | Onetta, Inc. | Optical amplifiers and upgrade modules |
EP1393105A4 (en) | 2001-04-12 | 2006-03-22 | Omniguide Inc | FIBER WAVEGUIDES WITH HIGH CONTRAST INDEX AND APPLICATIONS |
US7009140B2 (en) | 2001-04-18 | 2006-03-07 | Cymer, Inc. | Laser thin film poly-silicon annealing optical system |
US6597829B2 (en) | 2001-04-27 | 2003-07-22 | Robert H. Cormack | 1xN optical fiber switch |
US6831934B2 (en) | 2001-05-29 | 2004-12-14 | Apollo Instruments, Inc. | Cladding pumped fiber laser |
EP1421419B1 (en) | 2001-07-12 | 2007-09-12 | OCG Technology Licensing, LLC | Optical fiber |
EP1421365A1 (en) | 2001-07-19 | 2004-05-26 | Tufts University | Optical array device and methods of use thereof for screening, analysis and manipulation of particles |
WO2003019111A1 (en) | 2001-08-23 | 2003-03-06 | Zygo Corporation | Dynamic interferometric controlling direction of input beam |
KR100439088B1 (ko) | 2001-09-14 | 2004-07-05 | 한국과학기술원 | 상호 자기 정렬된 다수의 식각 홈을 가지는 광결합 모듈및 그 제작방법 |
US6866429B2 (en) | 2001-09-26 | 2005-03-15 | Np Photonics, Inc. | Method of angle fusion splicing silica fiber with low-temperature non-silica fiber |
JP2003129862A (ja) | 2001-10-23 | 2003-05-08 | Toshiba Corp | タービン翼の製造方法 |
US6825974B2 (en) | 2001-11-06 | 2004-11-30 | Sandia National Laboratories | Linearly polarized fiber amplifier |
TW200304175A (en) | 2001-11-12 | 2003-09-16 | Sony Corp | Laser annealing device and thin-film transistor manufacturing method |
AU2002366156A1 (en) | 2001-11-16 | 2003-06-10 | Optical Power Systems Inc. | Multi-wavelength raman fiber laser |
AU2002366163A1 (en) | 2001-11-19 | 2003-06-10 | Chiral Photonics, Inc. | Chiral fiber laser apparatus and method |
US6819815B1 (en) | 2001-12-12 | 2004-11-16 | Calient Networks | Method and apparatus for indirect adjustment of optical switch reflectors |
JP2003200286A (ja) | 2001-12-28 | 2003-07-15 | Fujitsu Ltd | レーザマイクロスポット溶接装置 |
EP1340583A1 (en) | 2002-02-20 | 2003-09-03 | ALSTOM (Switzerland) Ltd | Method of controlled remelting of or laser metal forming on the surface of an article |
US6768577B2 (en) | 2002-03-15 | 2004-07-27 | Fitel Usa Corp. | Tunable multimode laser diode module, tunable multimode wavelength division multiplex raman pump, and amplifier, and a system, method, and computer program product for controlling tunable multimode laser diodes, raman pumps, and raman amplifiers |
US7116887B2 (en) | 2002-03-19 | 2006-10-03 | Nufern | Optical fiber |
US6700161B2 (en) | 2002-05-16 | 2004-03-02 | International Business Machines Corporation | Variable resistor structure and method for forming and programming a variable resistor for electronic circuits |
US7067763B2 (en) | 2002-05-17 | 2006-06-27 | Gsi Group Corporation | High speed, laser-based marking method and system for producing machine readable marks on workpieces and semiconductor devices with reduced subsurface damage produced thereby |
US6816662B2 (en) | 2002-09-19 | 2004-11-09 | 3M Innovative Properties Company | Article for cleaving and polishing optical fiber ends |
ITMI20022328A1 (it) | 2002-10-31 | 2004-05-01 | Carlo Nobili S P A Rubinetterie | Cartuccia di miscelazione per rubinetti miscelatori monoleva |
DE10352590A1 (de) | 2002-11-12 | 2004-05-27 | Toptica Photonics Ag | Verfahren zum Herstellen einer optischen Faser mit einer Auskoppelstelle für Streulicht, Verwendung einer optischen Faser und Vorrichtung zum Überwachen von in einer optischen Faser geführter Lichtleistung |
AU2003295929A1 (en) | 2002-11-22 | 2004-06-18 | Omniguide, Inc. | Dielectric waveguide and method of making the same |
AU2003281985A1 (en) | 2002-11-23 | 2004-06-18 | Crystal Fibre A/S | Splicing and connectorization of photonic crystal fibres |
US7099535B2 (en) | 2002-12-31 | 2006-08-29 | Corning Incorporated | Small mode-field fiber lens |
JP4505190B2 (ja) | 2003-03-27 | 2010-07-21 | 新日本製鐵株式会社 | レーザ切断装置 |
DE20320269U1 (de) | 2003-03-28 | 2004-04-15 | Raylase Ag | Optisches System zur variablen Fokussierung eines Lichtstrahls |
US6963062B2 (en) | 2003-04-07 | 2005-11-08 | Eksigent Technologies, Llc | Method for multiplexed optical detection including a multimode optical fiber in which propagation modes are coupled |
US7050660B2 (en) | 2003-04-07 | 2006-05-23 | Eksigent Technologies Llc | Microfluidic detection device having reduced dispersion and method for making same |
US7064912B2 (en) | 2003-04-17 | 2006-06-20 | Nidec Sankyo Corporation | Lens driving apparatus, thin camera, and a cellular phone having a thin camera |
DE10321102A1 (de) | 2003-05-09 | 2004-12-02 | Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg | Aufteilungsvorrichtung für Lichtstrahlen |
US6801550B1 (en) | 2003-05-30 | 2004-10-05 | Bae Systems Information And Electronic Systems Integration Inc. | Multiple emitter side pumping method and apparatus for fiber lasers |
US20050041697A1 (en) | 2003-06-12 | 2005-02-24 | Martin Seifert | Portable laser |
US6970624B2 (en) | 2003-06-13 | 2005-11-29 | Furukawa Electric North America | Cladding pumped optical fiber gain devices |
US7170913B2 (en) | 2003-06-19 | 2007-01-30 | Multiwave Photonics, Sa | Laser source with configurable output beam characteristics |
GB0314817D0 (en) | 2003-06-25 | 2003-07-30 | Southampton Photonics Ltd | Apparatus for providing optical radiation |
JP2005046247A (ja) | 2003-07-31 | 2005-02-24 | Topcon Corp | レーザ手術装置 |
US7151787B2 (en) | 2003-09-10 | 2006-12-19 | Sandia National Laboratories | Backscatter absorption gas imaging systems and light sources therefore |
US7738514B2 (en) | 2003-12-04 | 2010-06-15 | Optical Air Data Systems, Llc | Very high power pulsed fiber laser |
GB0328370D0 (en) | 2003-12-05 | 2004-01-14 | Southampton Photonics Ltd | Apparatus for providing optical radiation |
JP4555582B2 (ja) | 2004-02-03 | 2010-10-06 | Hoya株式会社 | レンズ移動機構 |
US7527977B1 (en) | 2004-03-22 | 2009-05-05 | Sandia Corporation | Protein detection system |
US7349123B2 (en) | 2004-03-24 | 2008-03-25 | Lexmark International, Inc. | Algorithms and methods for determining laser beam process direction position errors from data stored on a printhead |
US7486705B2 (en) | 2004-03-31 | 2009-02-03 | Imra America, Inc. | Femtosecond laser processing system with process parameters, controls and feedback |
US7167622B2 (en) | 2004-04-08 | 2007-01-23 | Omniguide, Inc. | Photonic crystal fibers and medical systems including photonic crystal fibers |
US7231122B2 (en) | 2004-04-08 | 2007-06-12 | Omniguide, Inc. | Photonic crystal waveguides and systems using such waveguides |
JP4544904B2 (ja) | 2004-04-28 | 2010-09-15 | オリンパス株式会社 | 光学系 |
US7317857B2 (en) | 2004-05-03 | 2008-01-08 | Nufem | Optical fiber for delivering optical energy to or from a work object |
CA2568791A1 (en) | 2004-06-01 | 2005-12-15 | Trumpf Photonics Inc. | Optimum matching of the output of a two-dimensional laser array stack to an optical fiber |
US7146073B2 (en) | 2004-07-19 | 2006-12-05 | Quantronix Corporation | Fiber delivery system with enhanced passive fiber protection and active monitoring |
US20060024001A1 (en) | 2004-07-28 | 2006-02-02 | Kyocera Corporation | Optical fiber connected body with mutually coaxial and inclined cores, optical connector for forming the same, and mode conditioner and optical transmitter using the same |
JP4293098B2 (ja) | 2004-09-15 | 2009-07-08 | セイコーエプソン株式会社 | レーザー加工方法、レーザー加工装置、電子機器 |
US8834457B2 (en) | 2004-09-22 | 2014-09-16 | Cao Group, Inc. | Modular surgical laser systems |
JP2006098085A (ja) | 2004-09-28 | 2006-04-13 | Toyota Motor Corp | 肉盛層の組織予測方法 |
JP4599553B2 (ja) | 2004-10-01 | 2010-12-15 | 国立大学法人北海道大学 | レーザ加工方法および装置 |
TWI456658B (zh) | 2004-11-05 | 2014-10-11 | Creator Technology Bv | 圖樣化有機材料以同時形成絕緣體及半導體之方法及藉該方法形成之裝置 |
JP2006171348A (ja) | 2004-12-15 | 2006-06-29 | Nippon Steel Corp | 半導体レーザ装置 |
JP4328724B2 (ja) | 2005-01-17 | 2009-09-09 | 富士通株式会社 | 光波形測定装置および光波形測定方法 |
ATE457070T1 (de) | 2005-03-18 | 2010-02-15 | Univ Danmarks Tekniske | Optisches manipulationssystem mit mehreren optischen fallen |
KR101284201B1 (ko) | 2005-05-02 | 2013-07-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 레이저 조사 장치 및 레이저 조사 방법 |
US7569331B2 (en) | 2005-06-01 | 2009-08-04 | Hewlett-Packard Development Company, L.P. | Conductive patterning |
WO2007013608A1 (ja) | 2005-07-28 | 2007-02-01 | Matsushita Electric Industrial Co., Ltd. | レーザ光源およびディスプレイ装置 |
US7391561B2 (en) | 2005-07-29 | 2008-06-24 | Aculight Corporation | Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method |
US7674719B2 (en) | 2005-08-01 | 2010-03-09 | Panasonic Corporation | Via hole machining for microwave monolithic integrated circuits |
US7218440B2 (en) | 2005-08-25 | 2007-05-15 | Northrop Grumman Corporation | Photonic bandgap fiber for generating near-diffraction-limited optical beam comprising multiple coaxial wavelengths |
US7626138B2 (en) | 2005-09-08 | 2009-12-01 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
US9138913B2 (en) | 2005-09-08 | 2015-09-22 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
EP1767743A1 (de) | 2005-09-26 | 2007-03-28 | Siemens Aktiengesellschaft | Verfahren zum Herstellen eines zu beschichtenden Gasturbinen-Bauteils mit freigelegten Öffnungen, Vorrichtung zur Durchführung des Verfahrens und beschichtbare Turbinenschaufel mit Filmkühlöffnungen |
US20070075060A1 (en) | 2005-09-30 | 2007-04-05 | Shedlov Matthew S | Method of manufacturing a medical device from a workpiece using a pulsed beam of radiation or particles having an adjustable pulse frequency |
US7463805B2 (en) | 2005-10-20 | 2008-12-09 | Corning Incorporated | High numerical aperture optical fiber |
US7551813B2 (en) | 2005-11-03 | 2009-06-23 | Gennadii Ivtsenkov | Simplified fiber-optic switch for all-optical fiber-optic lines |
US7099533B1 (en) | 2005-11-08 | 2006-08-29 | Chenard Francois | Fiber optic infrared laser beam delivery system |
US8071912B2 (en) | 2005-11-16 | 2011-12-06 | Technolines, Lp | Engineered wood fiber product substrates and their formation by laser processing |
US8728387B2 (en) | 2005-12-06 | 2014-05-20 | Howmedica Osteonics Corp. | Laser-produced porous surface |
US7920767B2 (en) | 2005-12-27 | 2011-04-05 | Ofs Fitel, Llc | Suppression of higher-order modes by resonant coupling in bend-compensated optical fibers |
US7783149B2 (en) | 2005-12-27 | 2010-08-24 | Furukawa Electric North America, Inc. | Large-mode-area optical fibers with reduced bend distortion |
US7764854B2 (en) | 2005-12-27 | 2010-07-27 | Ofs Fitel Llc | Optical fiber with specialized index profile to compensate for bend-induced distortions |
CA2533674A1 (en) | 2006-01-23 | 2007-07-23 | Itf Technologies Optiques Inc./Itf Optical Technologies Inc. | Optical fiber component package for high power dissipation |
FR2897007B1 (fr) | 2006-02-03 | 2008-04-11 | Air Liquide | Procede de coupage avec un laser a fibre avec controle des parametres du faisceau |
US7537395B2 (en) | 2006-03-03 | 2009-05-26 | Lockheed Martin Corporation | Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method |
US7835608B2 (en) | 2006-03-21 | 2010-11-16 | Lockheed Martin Corporation | Method and apparatus for optical delivery fiber having cladding with absorbing regions |
US7628865B2 (en) | 2006-04-28 | 2009-12-08 | Asml Netherlands B.V. | Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus |
WO2007148127A2 (en) | 2006-06-23 | 2007-12-27 | Gsi Group Limited | Fibre laser system |
US7257293B1 (en) | 2006-07-14 | 2007-08-14 | Furukawa Electric North America, Inc. | Fiber structure with improved bend resistance |
US7880961B1 (en) | 2006-08-22 | 2011-02-01 | Sandia Corporation | Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation |
US7674999B2 (en) | 2006-08-23 | 2010-03-09 | Applied Materials, Inc. | Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system |
JP2008068270A (ja) | 2006-09-12 | 2008-03-27 | Disco Abrasive Syst Ltd | レーザー加工装置 |
GB0623835D0 (en) | 2006-11-29 | 2007-01-10 | Cascade Technologies Ltd | Multi mode fibre perturber |
KR100872281B1 (ko) | 2006-12-15 | 2008-12-05 | 삼성전기주식회사 | 나노와이어 구조체를 이용한 반도체 발광소자 및 그제조방법 |
ITMI20070150A1 (it) | 2007-01-31 | 2008-08-01 | Univ Pavia | Metodo e dispositivo ottico per la manipolazione di una particella |
US7526166B2 (en) | 2007-01-31 | 2009-04-28 | Corning Incorporated | High numerical aperture fiber |
EP1974848B1 (de) | 2007-03-30 | 2008-11-19 | Innolas GmbH | System und zugehöriges Verfahren zum Korrigieren einer Laserstrahlablenkeinheit |
JP4674696B2 (ja) | 2007-04-03 | 2011-04-20 | 日本特殊陶業株式会社 | スパークプラグの製造方法 |
US20100163537A1 (en) | 2007-04-04 | 2010-07-01 | Mitsubishi Electric Corporation | Apparatus and method for laser machining |
WO2008133242A1 (ja) | 2007-04-25 | 2008-11-06 | Fujikura Ltd. | 希土類添加コア光ファイバ |
JP5489392B2 (ja) | 2007-05-09 | 2014-05-14 | オリンパス株式会社 | 光学系評価装置、光学系評価方法および光学系評価プログラム |
JP5124225B2 (ja) | 2007-05-15 | 2013-01-23 | 株式会社フジクラ | 光ファイバ融着接続構造 |
US8404160B2 (en) | 2007-05-18 | 2013-03-26 | Applied Nanotech Holdings, Inc. | Metallic ink |
JP4297952B2 (ja) | 2007-05-28 | 2009-07-15 | 三菱電機株式会社 | レーザ加工装置 |
DE102007063066A1 (de) | 2007-05-31 | 2008-12-24 | Lpi Light Power Instruments Gmbh | Verfahren und Vorrichtung zur Charakterisierung einer Probe mit zwei oder mehr optischen Fallen |
IN2010KN00199A (zh) | 2007-07-16 | 2015-08-28 | Coractive High Tech Inc | |
US7876495B1 (en) | 2007-07-31 | 2011-01-25 | Lockheed Martin Corporation | Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers |
US7924500B1 (en) | 2007-07-21 | 2011-04-12 | Lockheed Martin Corporation | Micro-structured fiber profiles for mitigation of bend-loss and/or mode distortion in LMA fiber amplifiers, including dual-core embodiments |
JP2009032910A (ja) | 2007-07-27 | 2009-02-12 | Hitachi Cable Ltd | 光ファイバレーザ用光ファイバ及びその製造方法、並びに光ファイバレーザ |
KR100906287B1 (ko) | 2007-08-22 | 2009-07-06 | 광주과학기술원 | 측면 조영이 가능한 광섬유 프로브 및 광섬유 프로브 제조방법 |
WO2009026520A1 (en) | 2007-08-23 | 2009-02-26 | 3D Systems, Inc. | Automatic geometric calibration using laser scanning reflectometry |
US8027557B2 (en) | 2007-09-24 | 2011-09-27 | Nufern | Optical fiber laser, and components for an optical fiber laser, having reduced susceptibility to catastrophic failure under high power operation |
US7593435B2 (en) | 2007-10-09 | 2009-09-22 | Ipg Photonics Corporation | Powerful fiber laser system |
WO2009053856A1 (en) | 2007-10-23 | 2009-04-30 | Koninklijke Philips Electronics N.V. | Device, method and system for lighting |
DE102007052657B4 (de) | 2007-11-05 | 2010-03-11 | Raylase Ag | Linsenvorrichtung mit einer verschiebbaren Linse und Laserscannersystem |
TWI352215B (en) | 2007-11-21 | 2011-11-11 | Ind Tech Res Inst | Beam shaping module |
RU2365476C1 (ru) | 2007-11-26 | 2009-08-27 | Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" | Устройство многопозиционной лазерной обработки |
JP5201975B2 (ja) | 2007-12-14 | 2013-06-05 | 株式会社キーエンス | レーザ加工装置、レーザ加工方法 |
US7957438B2 (en) | 2007-12-17 | 2011-06-07 | Jds Uniphase Corporation | Method and device for monitoring light |
BY12235C1 (zh) | 2007-12-18 | 2009-08-30 | ||
US7982161B2 (en) | 2008-03-24 | 2011-07-19 | Electro Scientific Industries, Inc. | Method and apparatus for laser drilling holes with tailored laser pulses |
JP2009248157A (ja) | 2008-04-08 | 2009-10-29 | Miyachi Technos Corp | レーザ加工方法及びレーザ加工装置 |
US20090314752A1 (en) | 2008-05-14 | 2009-12-24 | Applied Materials, Inc. | In-situ monitoring for laser ablation |
US8135275B2 (en) | 2008-05-29 | 2012-03-13 | Heismann Fred L | Measuring chromatic dispersion in an optical wavelength channel of an optical fiber link |
JP2010015135A (ja) | 2008-06-03 | 2010-01-21 | Hitachi Cable Ltd | 光ファイバ固定溝付き光導波路基板およびその製造方法、その製造方法に用いる型、ならびに、その光導波路基板を含む光電気混載モジュール |
GB2460648A (en) | 2008-06-03 | 2009-12-09 | M Solv Ltd | Method and apparatus for laser focal spot size control |
TWI374398B (en) | 2008-06-16 | 2012-10-11 | Univ Nat Cheng Kung | Method and apparatus for forming 3-d image |
JP5795531B2 (ja) | 2008-06-20 | 2015-10-14 | ザ ジェネラル ホスピタル コーポレイション | フューズドファイバオプティックカプラ構造、及びその使用方法 |
JP2011525706A (ja) | 2008-06-25 | 2011-09-22 | コラクティヴ ハイ−テック インコーポレイティド | 高出力光ファイバ部材用エネルギ放散パッケージ |
US8139951B2 (en) | 2008-06-26 | 2012-03-20 | Igor Samartsev | Fiber-optic long-haul transmission system |
IT1391337B1 (it) | 2008-08-07 | 2011-12-05 | Univ Roma | Sistema integrato di localizzazione radioelettrica basato su forma d'onda rumorose |
JP5126365B2 (ja) | 2008-08-07 | 2013-01-23 | 富士通株式会社 | フィルム基材の加工方法及びフィルム基材の加工装置 |
US8873134B2 (en) | 2008-08-21 | 2014-10-28 | Nlight Photonics Corporation | Hybrid laser amplifier system including active taper |
US9158070B2 (en) | 2008-08-21 | 2015-10-13 | Nlight Photonics Corporation | Active tapers with reduced nonlinearity |
US8711471B2 (en) | 2008-08-21 | 2014-04-29 | Nlight Photonics Corporation | High power fiber amplifier with stable output |
FR2935916B1 (fr) | 2008-09-12 | 2011-08-26 | Air Liquide | Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser |
KR20100045675A (ko) | 2008-10-24 | 2010-05-04 | 삼성전자주식회사 | 표시 장치 |
WO2010059595A2 (en) | 2008-11-19 | 2010-05-27 | Applied Materials, Inc. | Laser-scribing tool architecture |
CN102281984B (zh) | 2008-11-21 | 2015-12-16 | 普雷茨特两合公司 | 用于监视要在工件上实施的激光加工过程的方法和装置以及具有这种装置的激光加工头 |
US8270786B2 (en) | 2008-11-21 | 2012-09-18 | Ofs Fitel, Llc | Optical fiber mode couplers |
US8317413B2 (en) | 2008-11-25 | 2012-11-27 | Gooch and Hoosego PLC | Packaging for fused fiber devices for high power applications |
US7839901B2 (en) | 2008-12-03 | 2010-11-23 | Ipg Photonics Corporation | High power fiber laser system with cladding light stripper |
SG173479A1 (en) | 2009-02-02 | 2011-09-29 | Mitaka Koki Kk | Method for noncontact measurement of surface shape and device thereof |
US8526110B1 (en) | 2009-02-17 | 2013-09-03 | Lockheed Martin Corporation | Spectral-beam combining for high-power fiber-ring-laser systems |
WO2010100270A1 (en) | 2009-03-06 | 2010-09-10 | Micronic Laser Systems Ab | Method and apparatus for statistical illumination |
US8275007B2 (en) | 2009-05-04 | 2012-09-25 | Ipg Photonics Corporation | Pulsed laser system with optimally configured saturable absorber |
TWI594828B (zh) | 2009-05-28 | 2017-08-11 | 伊雷克托科學工業股份有限公司 | 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法 |
DE102009026526A1 (de) | 2009-05-28 | 2010-12-02 | Robert Bosch Gmbh | Lasereinrichtung |
DE102009027348A1 (de) | 2009-06-30 | 2011-01-05 | Trumpf Laser Gmbh + Co. Kg | Optische Strahlweiche |
US8593725B2 (en) | 2009-08-04 | 2013-11-26 | Jds Uniphase Corporation | Pulsed optical source |
US20110080476A1 (en) | 2009-10-02 | 2011-04-07 | Lasx Industries, Inc. | High Performance Vision System for Part Registration |
US8755649B2 (en) | 2009-10-19 | 2014-06-17 | Lockheed Martin Corporation | In-line forward/backward fiber-optic signal analyzer |
CN101733561B (zh) | 2009-11-04 | 2012-04-11 | 中国科学院长春光学精密机械与物理研究所 | 激光修调薄膜电阻中快速精确调整焦面的方法 |
US8251475B2 (en) | 2009-12-14 | 2012-08-28 | Eastman Kodak Company | Position detection with two-dimensional sensor in printer |
EP2518772A4 (en) | 2009-12-21 | 2016-09-07 | Sharp Kk | ACTIVE MATRIX SUBSTRATE, DISPLAY PANEL AND PROCESS FOR PREPARING AN ACTIVE MATRIX SUBSTRATE |
EP2521138A4 (en) | 2009-12-28 | 2015-11-25 | Toray Industries | CONDUCTIVE COATED ELEMENT AND TOUCH SCREEN THEREWITH |
EP2531322A1 (en) | 2010-02-04 | 2012-12-12 | Echelon Laser Systems, Lp | Laser etching system and method |
CN102281811B (zh) | 2010-03-03 | 2014-04-02 | 东洋制罐集团控股株式会社 | 侧方射出装置及其制造方法 |
US20110305250A1 (en) | 2010-03-05 | 2011-12-15 | TeraDiode, Inc. | Wavelength beam combining based pulsed lasers |
GB201004544D0 (en) | 2010-03-18 | 2010-05-05 | J P Imaging Ltd | Improvements in or relating to printing |
CN102844942B (zh) | 2010-03-30 | 2015-06-10 | 株式会社藤仓 | 光强度监控电路以及光纤激光器系统 |
KR20110109771A (ko) | 2010-03-31 | 2011-10-06 | 광주과학기술원 | Ito필름 패터닝 방법, 가요성 표시장치 제조 방법 및 가요성 표시장치 |
JP2011215286A (ja) | 2010-03-31 | 2011-10-27 | Brother Industries Ltd | 走査光学装置 |
US8243764B2 (en) | 2010-04-01 | 2012-08-14 | Tucker Derek A | Frequency conversion of a laser beam using a partially phase-mismatched nonlinear crystal |
DE102010003750A1 (de) | 2010-04-08 | 2011-10-13 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren und Anordnung zum Verändern der Strahlprofilcharakteristik eines Laserstrahls mittels einer Mehrfachclad-Faser |
WO2011130131A1 (en) | 2010-04-12 | 2011-10-20 | Lockheed Martin Corporation | Beam diagnostics and feedback system and method for spectrally beam-combined lasers |
KR101403739B1 (ko) | 2010-04-16 | 2014-06-03 | 샤프 가부시키가이샤 | 표시장치 |
WO2011146407A2 (en) | 2010-05-16 | 2011-11-24 | Fianium, Inc. | Tunable pulse width laser |
JP4882027B2 (ja) | 2010-05-28 | 2012-02-22 | 信越ポリマー株式会社 | 透明導電膜及びこれを用いた導電性基板 |
US20110297229A1 (en) | 2010-06-02 | 2011-12-08 | University Of Delaware | Integrated concentrating photovoltaics |
US8254417B2 (en) | 2010-06-14 | 2012-08-28 | Ipg Photonics Corporation | Fiber laser system with controllably alignable optical components thereof |
WO2012002086A1 (en) | 2010-06-28 | 2012-01-05 | Sumitomo Electric Industries, Ltd. | Laser apparatus |
US8027555B1 (en) | 2010-06-30 | 2011-09-27 | Jds Uniphase Corporation | Scalable cladding mode stripper device |
US8509577B2 (en) | 2010-07-02 | 2013-08-13 | St. Jude Medical, Inc. | Fiberoptic device with long focal length gradient-index or grin fiber lens |
WO2012016146A1 (en) | 2010-07-30 | 2012-02-02 | The Board Of Trustees Of The Leland Stanford Junior University | Conductive films |
CN201783759U (zh) | 2010-08-24 | 2011-04-06 | 上海市激光技术研究所 | 光纤激光或碟片激光动态聚焦扫描点轨迹加工系统 |
US8740432B2 (en) * | 2010-08-25 | 2014-06-03 | Colorado State University Research Foundation | Transmission of laser pulses with high output beam quality using step-index fibers having large cladding |
KR101405414B1 (ko) | 2010-08-26 | 2014-06-11 | 한국전자통신연구원 | 광섬유 커플러, 그의 제조방법 및 능동 광모듈 |
JP5694711B2 (ja) | 2010-09-09 | 2015-04-01 | 株式会社アマダミヤチ | Mopa方式ファイバレーザ加工装置及び励起用レーザダイオード電源装置 |
US8433161B2 (en) | 2010-09-21 | 2013-04-30 | Textron Systems Corporation | All glass fiber laser cladding mode stripper |
US8554037B2 (en) | 2010-09-30 | 2013-10-08 | Raydiance, Inc. | Hybrid waveguide device in powerful laser systems |
JP2012096286A (ja) | 2010-10-07 | 2012-05-24 | Sumitomo Heavy Ind Ltd | レーザ照射装置、レーザ照射方法、及び絶縁膜形成装置 |
FI125306B (fi) | 2010-10-21 | 2015-08-31 | Rofin Sinar Laser Gmbh | Paketoitu kuituoptinen komponentti ja menetelmä sen valmistamiseksi |
JP4667535B1 (ja) * | 2010-11-02 | 2011-04-13 | 株式会社フジクラ | 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器 |
JP5921564B2 (ja) | 2010-12-03 | 2016-05-24 | オーエフエス ファイテル,エルエルシー | 曲げ補償付き大モード面積光ファイバ |
US9507084B2 (en) | 2010-12-03 | 2016-11-29 | Ofs Fitel, Llc | Single-mode, bend-compensated, large-mode-area optical fibers designed to accomodate simplified fabrication and tighter bends |
US9375974B2 (en) | 2010-12-09 | 2016-06-28 | Edison Welding Institute, Inc. | Polygonal laser scanner and imaging system for coating removal |
US20120148823A1 (en) | 2010-12-13 | 2012-06-14 | Innovation & Infinity Global Corp. | Transparent conductive structure and method of making the same |
US20120156458A1 (en) | 2010-12-16 | 2012-06-21 | Innovation & Infinity Global Corp. | Diffusion barrier structure, transparent conductive structure and method for making the same |
US10095016B2 (en) | 2011-01-04 | 2018-10-09 | Nlight, Inc. | High power laser system |
US8835804B2 (en) | 2011-01-04 | 2014-09-16 | Nlight Photonics Corporation | Beam homogenizer |
KR101180289B1 (ko) | 2011-01-13 | 2012-09-07 | 연세대학교 산학협력단 | 하이브리드 광결정광섬유 및 이의 제조방법. |
CN102176104B (zh) | 2011-01-18 | 2013-02-27 | 南京大学 | 可调谐时域双光脉冲发生方法与发生器 |
RU2553796C2 (ru) | 2011-01-28 | 2015-06-20 | Аркам Аб | Способ изготовления трехмерного тела |
US9014220B2 (en) | 2011-03-10 | 2015-04-21 | Coherent, Inc. | High-power CW fiber-laser |
WO2012141847A1 (en) | 2011-04-15 | 2012-10-18 | Bae Systems Information And Electronic Systems Integration Inc. | Integrated parameter monitoring in a fiber laser/amplifier |
GB2490354A (en) * | 2011-04-28 | 2012-10-31 | Univ Southampton | Laser with axially-symmetric beam profile |
DE102011075213B4 (de) | 2011-05-04 | 2013-02-21 | Trumpf Laser Gmbh + Co. Kg | Laserbearbeitungssystem mit einem in seiner Brillanz einstellbaren Bearbeitungslaserstrahl |
US8974900B2 (en) | 2011-05-23 | 2015-03-10 | Carestream Health, Inc. | Transparent conductive film with hardcoat layer |
US9175183B2 (en) | 2011-05-23 | 2015-11-03 | Carestream Health, Inc. | Transparent conductive films, methods, and articles |
US9170367B2 (en) | 2011-06-16 | 2015-10-27 | Lawrence Livermore National Security, Llc | Waveguides having patterned, flattened modes |
JP5688333B2 (ja) | 2011-06-23 | 2015-03-25 | 富士フイルム株式会社 | ポリマーフィルム、位相差フィルム、偏光板、液晶表示装置、Rth発現剤及びメロシアニン系化合物 |
CN103229370B (zh) | 2011-06-29 | 2015-06-10 | 松下电器产业株式会社 | 光纤维激光器 |
US20130005139A1 (en) | 2011-06-30 | 2013-01-03 | Guardian Industries Corp. | Techniques for manufacturing planar patterned transparent contact and/or electronic devices including same |
US8537871B2 (en) | 2011-07-11 | 2013-09-17 | Nlight Photonics Corporation | Fiber cladding light stripper |
US8804233B2 (en) | 2011-08-09 | 2014-08-12 | Ofs Fitel, Llc | Fiber assembly for all-fiber delivery of high energy femtosecond pulses |
FR2980277B1 (fr) | 2011-09-20 | 2013-10-11 | Commissariat Energie Atomique | Fibre optique microstructuree a grand coeur et a mode fondamental aplati, et procede de conception de celle ci, application a la microfabrication par laser |
EP2587564A1 (en) | 2011-10-27 | 2013-05-01 | Merck Patent GmbH | Selective etching of a matrix comprising silver nanowires or carbon nanotubes |
DE102011119319A1 (de) | 2011-11-24 | 2013-05-29 | Slm Solutions Gmbh | Optische Bestrahlungsvorrichtung für eine Anlage zur Herstellung von dreidimensionalen Werkstücken durch Bestrahlen von Pulverschichten eines Rohstoffpulvers mit Laserstrahlung |
RU2572900C1 (ru) | 2011-11-29 | 2016-01-20 | Конинклейке Филипс Н.В. | Волновод |
US9339890B2 (en) | 2011-12-13 | 2016-05-17 | Hypertherm, Inc. | Optimization and control of beam quality for material processing |
WO2013090759A1 (en) | 2011-12-14 | 2013-06-20 | Ofs Fitel, Llc | Bend compensated filter fiber |
US9322989B2 (en) | 2011-12-14 | 2016-04-26 | Ofs Fitel, Llc | Optical fiber with distributed bend compensated filtering |
EP2795747B1 (en) | 2011-12-19 | 2019-06-26 | IPG Photonics Corporation | High power single mode fiber pump laser system at 980 nm. |
CN104094362B (zh) | 2011-12-21 | 2017-01-18 | 3M创新有限公司 | 基于银纳米线的透明导电涂层的激光图案化 |
US9911550B2 (en) | 2012-03-05 | 2018-03-06 | Apple Inc. | Touch sensitive device with multiple ablation fluence values |
JP5216151B1 (ja) | 2012-03-15 | 2013-06-19 | 株式会社フジクラ | 光ファイバコンバイナ、及び、それを用いたレーザ装置 |
US9200899B2 (en) | 2012-03-22 | 2015-12-01 | Virtek Vision International, Inc. | Laser projection system and method |
CN102621628A (zh) * | 2012-03-22 | 2012-08-01 | 华中科技大学 | 一种环形掺杂层光纤、其制备方法及包含该光纤的激光器 |
CN104169763B (zh) | 2012-03-28 | 2017-05-10 | 株式会社藤仓 | 光纤光学系统及其制造方法 |
US8947768B2 (en) | 2012-05-14 | 2015-02-03 | Jds Uniphase Corporation | Master oscillator—power amplifier systems |
RU2528287C2 (ru) | 2012-05-15 | 2014-09-10 | Открытое Акционерное Общество "Научно-Исследовательский Институт Технического Стекла" | Способ лазерной резки хрупких неметаллических материалов и устройство для его осуществления |
US8953914B2 (en) | 2012-06-26 | 2015-02-10 | Corning Incorporated | Light diffusing fibers with integrated mode shaping lenses |
US8849078B2 (en) * | 2012-09-24 | 2014-09-30 | Ipg Photonics Corporation | High power laser system with multiport circulator |
CA2887052C (en) | 2012-10-12 | 2020-07-07 | Thorlabs, Inc. | Compact, low dispersion, and low aberration adaptive optics scanning system |
DE102012219074A1 (de) | 2012-10-19 | 2014-04-24 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Laserschneidmaschine und Verfahren zum Schneiden von Werkstücken unterschiedlicher Dicke |
JP6342912B2 (ja) | 2012-11-08 | 2018-06-13 | ディーディーエム システムズ, インコーポレイテッド | 金属構成要素の加法的製造および修復 |
US10314745B2 (en) | 2012-11-30 | 2019-06-11 | Amo Development, Llc | Automatic centration of a surgical pattern on the apex of a curved patient interface |
US8948218B2 (en) | 2012-12-19 | 2015-02-03 | Ipg Photonics Corporation | High power fiber laser system with distributive mode absorber |
EP2938498B1 (en) | 2012-12-28 | 2020-07-08 | Shenzhen Pu Ying Innovation Technology Corporation Limited | Multi-purpose printer |
GB2511923B (en) | 2013-01-28 | 2018-10-03 | Lumentum Operations Llc | A cladding light stripper and method of manufacturing |
US9842665B2 (en) | 2013-02-21 | 2017-12-12 | Nlight, Inc. | Optimization of high resolution digitally encoded laser scanners for fine feature marking |
KR101974163B1 (ko) | 2013-02-21 | 2019-09-02 | 엔라이트 인크. | 비침습적 레이저 패터닝 |
CN105026971B (zh) | 2013-02-28 | 2019-02-19 | Ipg光子公司 | 低模式大功率光纤合束器 |
CN105188993A (zh) | 2013-03-15 | 2015-12-23 | 麦特法布公司 | 用于增材制造装置的料盒和方法 |
SG11201507650UA (en) | 2013-03-15 | 2015-10-29 | Rolls Royce Corp | Repair of gas turbine engine components |
WO2014145862A2 (en) | 2013-03-15 | 2014-09-18 | Nlight Photonics Corporation | Spun non-circular and non-elliptical fibers and apparatuses utilizing the same |
CN103173760A (zh) | 2013-03-18 | 2013-06-26 | 张翀昊 | 利用第二道激光束提高3d打印金属件的致密性的方法 |
DE102013205029A1 (de) | 2013-03-21 | 2014-09-25 | Siemens Aktiengesellschaft | Verfahren zum Laserschmelzen mit mindestens einem Arbeitslaserstrahl |
EP2784045A1 (en) | 2013-03-29 | 2014-10-01 | Osseomatrix | Selective laser sintering/melting process |
US8988669B2 (en) | 2013-04-23 | 2015-03-24 | Jds Uniphase Corporation | Power monitor for optical fiber using background scattering |
CA2910559C (en) | 2013-04-29 | 2021-06-01 | Mark S. Zediker | Devices, systems, and methods for three-dimensional printing |
US10663370B2 (en) | 2013-05-06 | 2020-05-26 | Vrije Universiteit Brussel | Effective structural health monitoring |
TWI543830B (zh) | 2013-05-10 | 2016-08-01 | 財團法人工業技術研究院 | 視覺誤差校正方法 |
US9496683B1 (en) | 2013-05-17 | 2016-11-15 | Nlight, Inc. | Wavelength locking multi-mode diode lasers with core FBG |
DE102013215362B4 (de) | 2013-08-05 | 2015-09-03 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren, Computerprogrammprodukt und Vorrichtung zum Bestimmen einer Einschweißtiefe beim Laserschweißen |
US9128259B2 (en) * | 2013-08-16 | 2015-09-08 | Coherent, Inc. | Fiber-coupled laser with adjustable beam-parameter-product |
CN103490273A (zh) | 2013-10-10 | 2014-01-01 | 武汉锐科光纤激光器技术有限责任公司 | 一种高功率光纤传输系统 |
WO2015057720A1 (en) | 2013-10-14 | 2015-04-23 | Huawei Technologies Co., Ltd. | System and method for optical fiber |
CN103521920B (zh) | 2013-10-16 | 2015-09-30 | 江苏大学 | 一种无需吹送辅助气体的激光加工装置及方法 |
CN103606803A (zh) | 2013-11-07 | 2014-02-26 | 北京工业大学 | 一种用于高功率光纤激光器的光纤包层光剥离器 |
US9214781B2 (en) | 2013-11-21 | 2015-12-15 | Lockheed Martin Corporation | Fiber amplifier system for suppression of modal instabilities and method |
US10532556B2 (en) | 2013-12-16 | 2020-01-14 | General Electric Company | Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array |
US10328685B2 (en) | 2013-12-16 | 2019-06-25 | General Electric Company | Diode laser fiber array for powder bed fabrication or repair |
DE102013226298A1 (de) | 2013-12-17 | 2015-06-18 | MTU Aero Engines AG | Belichtung bei generativer Fertigung |
US9366887B2 (en) | 2014-02-26 | 2016-06-14 | TeraDiode, Inc. | Systems and methods for laser systems with variable beam parameter product utilizing thermo-optic effects |
WO2015130920A1 (en) | 2014-02-26 | 2015-09-03 | Bien Chann | Systems and methods for multiple-beam laser arrangements with variable beam parameter product |
US9435964B2 (en) * | 2014-02-26 | 2016-09-06 | TeraDiode, Inc. | Systems and methods for laser systems with variable beam parameter product |
US10343237B2 (en) | 2014-02-28 | 2019-07-09 | Ipg Photonics Corporation | System and method for laser beveling and/or polishing |
EP2921285B1 (en) | 2014-03-21 | 2018-05-02 | British Telecommunications public limited company | Printed apparatus comprising a 3D printed thermionic device and method and apparatus for its manufacture |
US20150283613A1 (en) | 2014-04-02 | 2015-10-08 | Arcam Ab | Method for fusing a workpiece |
JP2015206993A (ja) | 2014-04-09 | 2015-11-19 | 住友電気工業株式会社 | グレーティング製造装置およびグレーティング製造方法 |
US10069271B2 (en) | 2014-06-02 | 2018-09-04 | Nlight, Inc. | Scalable high power fiber laser |
US10618131B2 (en) | 2014-06-05 | 2020-04-14 | Nlight, Inc. | Laser patterning skew correction |
WO2015189883A1 (ja) | 2014-06-09 | 2015-12-17 | 株式会社日立製作所 | レーザ溶接方法 |
US9397466B2 (en) | 2014-07-11 | 2016-07-19 | Nlight, Inc. | High power chirally coupled core optical amplification systems and methods |
US10310201B2 (en) | 2014-08-01 | 2019-06-04 | Nlight, Inc. | Back-reflection protection and monitoring in fiber and fiber-delivered lasers |
US9638867B2 (en) | 2014-10-06 | 2017-05-02 | Corning Incorporated | Skew managed multi-core optical fiber interconnects |
US9634462B2 (en) | 2014-10-15 | 2017-04-25 | Nlight, Inc. | Slanted FBG for SRS suppression |
CA2964493A1 (en) | 2014-10-23 | 2016-04-28 | Coractive High-Tech Inc. | Optical fiber assembly with beam shaping component |
US10112262B2 (en) | 2014-10-28 | 2018-10-30 | General Electric Company | System and methods for real-time enhancement of build parameters of a component |
US20160187646A1 (en) | 2014-12-29 | 2016-06-30 | Jonathan S. Ehrmann | High-speed optical scanning systems and methods |
EP3045300A1 (en) | 2015-01-15 | 2016-07-20 | Airbus Operations GmbH | Stiffening component and method for manufacturing a stiffening component |
US9837783B2 (en) | 2015-01-26 | 2017-12-05 | Nlight, Inc. | High-power, single-mode fiber sources |
DE102015103127A1 (de) | 2015-03-04 | 2016-09-08 | Trumpf Laser- Und Systemtechnik Gmbh | Bestrahlungssystem für eine Vorrichtung zur generativen Fertigung |
US10050404B2 (en) | 2015-03-26 | 2018-08-14 | Nlight, Inc. | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss |
US9325151B1 (en) | 2015-03-27 | 2016-04-26 | Ofs Fitel, Llc | Systems and techniques for compensation for the thermo-optic effect in active optical fibers |
US9667025B2 (en) | 2015-04-06 | 2017-05-30 | Bae Systems Information And Electronic Systems Integration Inc. | System and method for increasing power emitted from a fiber laser |
RU2611738C2 (ru) | 2015-04-08 | 2017-02-28 | Иван Владимирович Мазилин | Способ нанесения и лазерной обработки теплозащитного покрытия (варианты) |
US11022760B2 (en) | 2015-04-29 | 2021-06-01 | Nlight, Inc. | Portable industrial fiber optic inspection scope |
WO2017008022A1 (en) | 2015-07-08 | 2017-01-12 | Nlight, Inc. | Fiber with depressed central index for increased beam parameter product |
CN104999670B (zh) | 2015-08-25 | 2017-05-10 | 长春理工大学 | 一种多光束激光干涉跨尺度3d打印系统及方法 |
EP3353584B1 (en) | 2015-09-24 | 2020-06-10 | NLIGHT, Inc. | Beam parameter product (bpp) control by varying fiber-to-fiber angle |
WO2017075234A1 (en) | 2015-10-30 | 2017-05-04 | Seurat Technologies, Inc. | Additive manufacturing system and method |
US9917410B2 (en) | 2015-12-04 | 2018-03-13 | Nlight, Inc. | Optical mode filter employing radially asymmetric fiber |
CN105383060B (zh) | 2015-12-07 | 2017-10-17 | 济南鲁洋科技有限公司 | 一种3d打印供料、助熔及助晶整平一体化装置 |
US10630040B2 (en) * | 2016-02-05 | 2020-04-21 | Nufern | Mode mixing optical fibers and methods and systems using the same |
US10153608B2 (en) | 2016-03-18 | 2018-12-11 | Nlight, Inc. | Spectrally multiplexing diode pump modules to improve brightness |
WO2017176862A1 (en) * | 2016-04-06 | 2017-10-12 | TeraDiode, Inc. | Optical fiber structures and methods for varying laser beam profile |
US10114172B2 (en) * | 2016-06-20 | 2018-10-30 | Ofs Fitel, Llc | Multimode beam combiner |
DE202016004237U1 (de) | 2016-08-17 | 2016-08-23 | Kredig GmbH | Positioniereinrichtung |
-
2016
- 2016-07-08 WO PCT/US2016/041526 patent/WO2017008022A1/en active Application Filing
- 2016-07-08 US US15/742,770 patent/US10520671B2/en not_active Expired - Fee Related
- 2016-07-08 CN CN201680043132.XA patent/CN107924023B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5903696A (en) * | 1995-04-21 | 1999-05-11 | Ceramoptec Industries Inc | Multimode optical waveguides, waveguide components and sensors |
CN1327254C (zh) * | 1998-11-26 | 2007-07-18 | 住友电气工业株式会社 | 光纤以及包含该光纤的传光系统 |
CN1584644A (zh) * | 2004-06-02 | 2005-02-23 | 中国科学院上海光学精密机械研究所 | 光束整形光纤 |
CN102782540A (zh) * | 2010-02-24 | 2012-11-14 | 康宁股份有限公司 | 三层包覆光纤和具有三层包覆光纤的装置 |
CN104136952A (zh) * | 2011-12-09 | 2014-11-05 | Jds尤尼弗思公司 | 改变激光束的光束参数积 |
CN103056513A (zh) * | 2012-12-14 | 2013-04-24 | 武汉锐科光纤激光器技术有限责任公司 | 一种激光加工系统 |
Also Published As
Publication number | Publication date |
---|---|
US20180203185A1 (en) | 2018-07-19 |
US10520671B2 (en) | 2019-12-31 |
CN107924023A (zh) | 2018-04-17 |
WO2017008022A1 (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107924023B (zh) | 具有用于增加的光束参数乘积的中心折射率受抑制的纤维 | |
US11811186B2 (en) | Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss | |
US10916908B2 (en) | High-power, single-mode fiber sources | |
US11719948B2 (en) | Beam parameter product (BPP) control by varying fiber-to-fiber angle | |
CN109642981B (zh) | 模式混合光纤以及使用其的方法和系统 | |
US8483533B1 (en) | Fiber-coupled laser diode illumination systems with stable beam propagation | |
JP5122990B2 (ja) | 異なるファイバを相互接続するための光ファイバ装置および方法 | |
CN109791252A (zh) | 可调整的光束特性 | |
JP2022191449A (ja) | モード混合光ファイバ、ならびにそれを用いた方法及びシステム | |
US20230333339A1 (en) | Material processing utilizing high-frequency beam shaping | |
US9494739B2 (en) | Cladding mode spatial filter | |
US20250076668A1 (en) | Selectable gaussian and ring beam characteristics | |
US20230275389A1 (en) | Single mode beam | |
US20250035871A1 (en) | All-fiber laser beam tuning by adjustment of angular intensity distribution | |
US20240393580A1 (en) | All fiber adjustable beam shaping |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201201 |