CN105679679B - A kind of preparation method of GaN base notched gates MISFET - Google Patents
A kind of preparation method of GaN base notched gates MISFET Download PDFInfo
- Publication number
- CN105679679B CN105679679B CN201610168348.0A CN201610168348A CN105679679B CN 105679679 B CN105679679 B CN 105679679B CN 201610168348 A CN201610168348 A CN 201610168348A CN 105679679 B CN105679679 B CN 105679679B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- gate
- preparation
- algan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
Landscapes
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供一种半导体器件制备技术,具体涉及一种GaN基凹槽栅MISFET的制备方法,包括下述步骤:首先提供进行凹槽制备所需的AlGaN/GaN异质结材料,在所述材料表面沉积一层介质层作为掩膜层,采用光刻显影技术及湿法腐蚀去除栅极区域介质层,实现对掩膜层的图形化,利用GaN材料生长反应的逆过程将栅极区域AlGaN去除而获得凹槽,通过在位沉积一层高质量AlN薄层,再制备沉积栅介质层,并覆盖源、漏、栅电极,最终形成AlN/栅介质层堆叠结构的凹槽栅MISFET。本发明工艺简单,可以很好地解决传统干法或者湿法刻蚀凹槽时对栅极区域造成的损伤,可形成高质量的MIS界面以提升凹槽栅MISFET的器件性能,如降低栅极漏电流和导通电阻以及改善阈值电压稳定性等。
The present invention provides a semiconductor device preparation technology, in particular to a method for preparing a GaN-based groove gate MISFET, comprising the following steps: firstly provide an AlGaN/GaN heterojunction material required for groove preparation, and in the material A layer of dielectric layer is deposited on the surface as a mask layer, and the dielectric layer in the gate area is removed by photolithography and development technology and wet etching to realize the patterning of the mask layer, and the AlGaN in the gate area is removed by using the reverse process of the growth reaction of GaN material To obtain grooves, a thin layer of high-quality AlN is deposited in-situ, and then a gate dielectric layer is prepared to cover the source, drain, and gate electrodes, and finally a groove-gate MISFET with a stacked structure of AlN/gate dielectric layer is formed. The invention has a simple process, can well solve the damage to the gate area caused by traditional dry or wet etching of the groove, and can form a high-quality MIS interface to improve the device performance of the groove gate MISFET, such as reducing the gate Leakage current and on-resistance and improved threshold voltage stability, etc.
Description
技术领域technical field
本发明涉及半导体器件的技术领域,更具体地,涉及一种GaN基凹槽栅MISFET的制备方法。The present invention relates to the technical field of semiconductor devices, and more specifically, to a method for preparing a GaN-based groove gate MISFET.
背景技术Background technique
氮化镓(GaN)材料具有禁带宽度大、击穿电场强度高、电子饱和漂移速度大、热导率高等优点,十分适合制作大功率、高频、高温电力电子器件。在电力电子应用领域,为了满足失效安全,场效应晶体管(FET)器件必须实现常关型(又称增强型)工作,而且在某些场合阈值电压需要至少为4-5V。而对于常规的AlGaN/GaN异质结场效应晶体管(HFET),由于界面高浓度、高迁移率的二维电子气(2DEG)的存在,即使在外加栅压为零时,器件也处于开启状态(常开型器件)。为了解决这些问题,采用MIS结构的绝缘栅场效应晶体管(MISFET)是一条有效的技术路线。Gallium nitride (GaN) material has the advantages of large band gap, high breakdown electric field strength, high electron saturation drift velocity, high thermal conductivity, etc., and is very suitable for making high-power, high-frequency, high-temperature power electronic devices. In the field of power electronics applications, in order to meet the fail-safe requirements, field-effect transistor (FET) devices must achieve normally-off (also known as enhanced) operation, and in some cases the threshold voltage needs to be at least 4-5V. For the conventional AlGaN/GaN heterojunction field effect transistor (HFET), due to the existence of two-dimensional electron gas (2DEG) with high concentration and high mobility at the interface, the device is still in the on state even when the external gate voltage is zero. (normally open device). In order to solve these problems, an insulated gate field effect transistor (MISFET) using MIS structure is an effective technical route.
GaN基凹槽栅MISFET器件在保留接入区2DEG浓度(不牺牲器件导通特性)的前提下,降低甚至完全去除零偏压时栅极下方的2DEG,且能采用MIS结构栅极而实现了高阈值电压。但是,传统的凹槽制备是采用感应耦合等离子体(ICP)或反应离子刻蚀(RIE)设备对栅极下方的AlGaN势垒层进行刻蚀。由于等离子体的使用会对沟道区域的晶格造成损伤,进而影响MIS界面的可靠性和稳定性。此外,AlGaN和GaN材料的选择刻蚀比率较小,因此较难实现刻蚀的自停止,工艺重复性较差。这两点限制该混合型MISFET的沟道迁移率的提升,从而增加了器件的导通电阻。On the premise of retaining the 2DEG concentration in the access region (without sacrificing the conduction characteristics of the device), the GaN-based recessed gate MISFET device can reduce or even completely eliminate the 2DEG under the gate at zero bias, and can use the MIS structure gate to realize high threshold voltage. However, the conventional groove preparation is to etch the AlGaN barrier layer under the gate using inductively coupled plasma (ICP) or reactive ion etching (RIE) equipment. The use of plasma will cause damage to the crystal lattice in the channel region, thereby affecting the reliability and stability of the MIS interface. In addition, the selective etching ratio of AlGaN and GaN materials is small, so it is difficult to realize the self-stop of etching, and the process repeatability is poor. These two points limit the improvement of the channel mobility of the hybrid MISFET, thereby increasing the on-resistance of the device.
数字湿法刻蚀利用多次氧化及化学溶液腐蚀可以获得工艺可控的常关型凹槽栅MISFET器件,且能有效去除等离子损伤。然而凹槽边缘不齐整、栅极区域有尖锥状AlGaN残留、GaN沟道层的表面亦能观测到大量的刻蚀孔洞。采用选择区域外延技术制备凹槽亦可以去除栅极区域的等离子损伤,改善了MIS界面特性,但是外延工艺较复杂。因此有必要寻求一种选择区域生长界面保护方法,以克服传统工艺中的缺点,从而获得更高的迁移率及阈值电压。由于GaN基材料的外延是在其合成速率略大于分解速率的准平衡状态下实现,因此,在化学气相沉积系统中只有氮气,氢气或者氮气和氢气的混合气体而没有生长源时,可以通过调节生长参数使得GaN基材料的分解速率略大于合成速率,从而在掩膜的辅助下将栅极区域的AlGaN外延层沿着生长反应的逆过程进行逐层分解,获得凹槽。Digital wet etching uses multiple oxidations and chemical solution etching to obtain process-controllable normally-off recessed gate MISFET devices, and can effectively remove plasma damage. However, the edge of the groove is not neat, the gate region has a tapered AlGaN residue, and a large number of etching holes can also be observed on the surface of the GaN channel layer. Using selective area epitaxy to prepare grooves can also remove plasma damage in the gate region and improve the MIS interface characteristics, but the epitaxy process is more complicated. Therefore, it is necessary to seek a selective region growth interface protection method to overcome the shortcomings of the traditional process, so as to obtain higher mobility and threshold voltage. Since the epitaxy of GaN-based materials is realized in a quasi-equilibrium state where the synthesis rate is slightly greater than the decomposition rate, when there is only nitrogen, hydrogen or a mixed gas of nitrogen and hydrogen in the chemical vapor deposition system without a growth source, it can be adjusted by adjusting The growth parameters make the decomposition rate of the GaN-based material slightly higher than the synthesis rate, so that the AlGaN epitaxial layer in the gate region is decomposed layer by layer along the reverse process of the growth reaction with the assistance of the mask to obtain grooves.
发明内容Contents of the invention
本发明为克服上述现有技术所述的至少一种缺陷,提供一种GaN基凹槽栅MISFET的制备方法,可以很好地解决传统干法或者湿法刻蚀凹槽时对栅极区域造成的损伤,可形成高质量的MIS界面以提升凹槽栅MISFET的器件性能。In order to overcome at least one defect described in the above-mentioned prior art, the present invention provides a method for preparing a GaN-based groove gate MISFET, which can well solve the problem caused by the traditional dry or wet etching of the groove on the gate region. The damage can form a high-quality MIS interface to improve the device performance of the groove gate MISFET.
为解决上述技术问题,本发明采用的技术方案是:一种GaN基凹槽栅MISFET的制备方法,其中,利用GaN材料生长反应的逆过程将栅极区域AlGaN去除而获得凹槽,并通过在位沉积AlN薄层提升MIS界面质量;具体包含以下步骤:In order to solve the above-mentioned technical problems, the technical solution adopted by the present invention is: a method for preparing a GaN-based groove gate MISFET, wherein the groove is obtained by removing AlGaN in the gate region by using the reverse process of the GaN material growth reaction, and by Depositing a thin layer of AlN to improve the quality of the MIS interface; specifically includes the following steps:
S1、在衬底上生长应力缓冲层;S1, growing a stress buffer layer on the substrate;
S2、在应力缓冲层上生长GaN外延层;S2, growing a GaN epitaxial layer on the stress buffer layer;
S3、在GaN外延层(3)上生长AlGaN势垒层;S3, growing an AlGaN barrier layer on the GaN epitaxial layer (3);
S4、在AlGaN势垒层上沉积一层SiO2,作为掩膜层;S4, depositing a layer of SiO 2 on the AlGaN barrier layer as a mask layer;
S5、通过光刻及湿法腐蚀的方法,去除栅极区域的掩膜层;S5, removing the mask layer in the gate area by photolithography and wet etching;
S6、去除栅极区域的AlGaN势垒层;S6, removing the AlGaN barrier layer in the gate region;
S7、在位生长AlN薄层;S7, growing AlN thin layer in situ;
S8、沉积栅极绝缘介质层;S8, depositing a gate insulating dielectric layer;
S9、干法刻蚀完成器件隔离,同时刻蚀出源极和漏极欧姆接触区域;S9, complete device isolation by dry etching, and simultaneously etch out source and drain ohmic contact regions;
S10、在源极和漏极区域蒸镀上源极和漏极欧姆接触金属;S10, evaporating source and drain ohmic contact metals on the source and drain regions;
S11、在凹槽处介质层上栅极区域蒸镀栅极金属。S11, evaporating gate metal on the gate region on the dielectric layer at the groove.
具体的,所述的步骤S6中,利用GaN材料生长反应的逆过程将栅极区域AlGaN去除而获得凹槽;所述的步骤S7中,在位沉积AlN薄层提升MIS界面质量。Specifically, in the step S6, the AlGaN in the gate region is removed by using the reverse process of the GaN material growth reaction to obtain the groove; in the step S7, a thin layer of AlN is deposited in situ to improve the quality of the MIS interface.
所述的衬底为 Si 衬底、蓝宝石衬底、碳化硅衬底、GaN自支撑衬底中的任一种。The substrate is any one of Si substrate, sapphire substrate, silicon carbide substrate and GaN self-supporting substrate.
所述的应力缓冲层为AlN、AlGaN、GaN的任一种或组合;应力缓冲层厚度为10 nm~100 μm。The stress buffer layer is any one or combination of AlN, AlGaN, GaN; the thickness of the stress buffer layer is 10 nm-100 μm.
所述的GaN外延层为非故意掺杂的GaN外延层或掺杂的高阻GaN外延层,所述掺杂高阻层的掺杂元素为碳或铁;GaN外延层厚度为100 nm~100 μm。The GaN epitaxial layer is an unintentionally doped GaN epitaxial layer or a doped high-resistance GaN epitaxial layer, and the doping element of the doped high-resistance layer is carbon or iron; the thickness of the GaN epitaxial layer is 100 nm to 100 nm. μm.
所述的外延层为AlGaN势垒层,AlGaN势垒层厚度为5-50 nm,且铝组分浓度可变化。The epitaxial layer is an AlGaN barrier layer, the thickness of the AlGaN barrier layer is 5-50 nm, and the concentration of aluminum components can be changed.
所述的AlGaN势垒层材料还可以为AlInN、InGaN、AlInGaN、AlN中的一种或任意几种的组合。The AlGaN barrier layer material can also be one of AlInN, InGaN, AlInGaN, AlN or any combination of several.
所述的AlGaN势垒层与GaN层之间还可以插入AlN薄层,厚度为0-10 nm。A thin AlN layer can also be inserted between the AlGaN barrier layer and the GaN layer, with a thickness of 0-10 nm.
所述的外延层为高质量的AlN层,厚度为0-10 nm;所述绝缘介质层为Al2O3、HfO2、SiO2或SiN等,厚度为1-100 nm;形成AlN/介质层堆叠结构。The epitaxial layer is a high-quality AlN layer with a thickness of 0-10 nm; the insulating dielectric layer is Al 2 O 3 , HfO 2 , SiO 2 or SiN, etc., with a thickness of 1-100 nm; the AlN/dielectric Layer stack structure.
所述的源极和漏极材料为Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/TiN合金;栅极材料为Ni/Au合金、Pt/Al合金、Pd/Au合金或TiN/Ti/Au合金;The source and drain materials are Ti/Al/Ni/Au alloy, Ti/Al/Ti/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/Ti/TiN alloy; the gate material is Ni/Au alloy, Pt/Al alloy, Pd/Au alloy or TiN/Ti/Au alloy;
所述步骤S1中的应力缓冲层、步骤S2中的GaN外延层、步骤S3中的AlGaN外延层及步骤S7中的AlN薄层的生长方法为金属有机化学气相沉积法或分子束外延法等高质量成膜方法;所述步骤S4中掩膜层的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法;所述步骤S6的凹槽刻蚀方法是在金属有机化学气相沉积系统中利用氮气,氢气或者氮气和氢气的混合气体使AlGaN外延层逐层分解。The stress buffer layer in step S1, the GaN epitaxial layer in step S2, the AlGaN epitaxial layer in step S3, and the AlN thin layer in step S7 are grown by metal organic chemical vapor deposition or molecular beam epitaxy. Quality film forming method; the growth method of the mask layer in the step S4 is plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition or magnetron sputtering; the groove etching in the step S6 The method is to decompose the AlGaN epitaxial layer layer by layer by using nitrogen gas, hydrogen gas or a mixed gas of nitrogen gas and hydrogen gas in a metal organic chemical vapor deposition system.
另外,也可以利用下述方法步骤表达本发明。Alternatively, the invention may be expressed by means of the method steps described below.
利用GaN材料生长反应的逆过程将栅极区域AlGaN去除而获得凹槽,并通过在位沉积AlN薄层提升MIS界面质量。具体包含以下步骤:The reverse process of GaN material growth reaction is used to remove the AlGaN in the gate region to obtain grooves, and the quality of the MIS interface is improved by in-situ deposition of a thin layer of AlN. Specifically include the following steps:
1. 提供需要进行凹槽栅极刻蚀的AlGaN/GaN异质结材料;1. Provide AlGaN/GaN heterojunction materials that require grooved gate etching;
2. 在所述材料上沉积一介质层,形成掩膜层;2. Depositing a dielectric layer on the material to form a mask layer;
3. 在所述掩膜层上利用光刻显影技术,显露出栅极区域;3. Using photolithography and developing technology on the mask layer to reveal the gate region;
4. 使用化学溶液去除栅极区域的掩膜材料,保留其他区域的掩膜材料,实现掩膜层图形化;4. Use a chemical solution to remove the mask material in the gate area, retain the mask material in other areas, and realize the patterning of the mask layer;
5. 在所述掩膜图形的辅助下,实现凹槽刻蚀。5. With the aid of the mask pattern, realize groove etching.
6. 在所述掩膜图形的辅助下,在凹槽区域在位生长一层AlN薄层。6. With the aid of the mask pattern, a thin layer of AlN is grown in-situ in the groove area.
进一步的,所述的步骤1中,所述的衬底是具有不同成分的多层外延层衬底。Further, in the step 1, the substrate is a multi-layer epitaxial layer substrate with different compositions.
所述的步骤2中,介质层是通过等离子体增强化学气相沉积或原子层沉积或物理气相沉积或者磁控溅射形成。所述介质层为SiO2或者SiN。In said step 2, the dielectric layer is formed by plasma enhanced chemical vapor deposition or atomic layer deposition or physical vapor deposition or magnetron sputtering. The dielectric layer is SiO 2 or SiN.
所述的步骤3中,所述光刻胶为正性或负性光刻胶。In the step 3, the photoresist is positive or negative photoresist.
所述的步骤4中,所述介质层去除使用的化学溶液是氢氟酸水溶液或者氢氟酸和氟化铵的混合溶液。In the step 4, the chemical solution used for removing the medium layer is an aqueous solution of hydrofluoric acid or a mixed solution of hydrofluoric acid and ammonium fluoride.
所述的步骤5中,所述凹槽刻蚀为金属有机化学气相沉积法或分子束外延法。反应气体为H2、N2、或者H2与N2的混合气体。In the step 5, the groove etching is metal organic chemical vapor deposition or molecular beam epitaxy. The reaction gas is H 2 , N 2 , or a mixed gas of H 2 and N 2 .
所述的步骤6中,所述AlN薄层的在位生长方法为金属有机化学气相沉积法或分子束外延法。In the step 6, the in-situ growth method of the AlN thin layer is metal organic chemical vapor deposition or molecular beam epitaxy.
与现有技术相比,有益效果是:本发明提供一种GaN基凹槽栅MISFET的制备方法,由于利用GaN材料生长反应的逆过程将栅极区域AlGaN去除而获得凹槽,可以很好地解决传统干法或者湿法刻蚀凹槽时对栅极区域造成的损伤。该方法不需要使用化学溶剂,可以避免凹槽栅区域的腐蚀孔洞及湿法刻蚀残留物。此外,通过在位形成高质量AlN薄层可进一步改善MIS界面质量及凹槽栅MISFET的器件性能。Compared with the prior art, the beneficial effect is: the present invention provides a method for preparing a GaN-based grooved gate MISFET, since the gate region AlGaN is removed by using the reverse process of the GaN material growth reaction to obtain the groove, which can be well Solve the damage to the gate area caused by conventional dry or wet etching of grooves. The method does not need to use chemical solvents, and can avoid corrosion holes and wet etching residues in the groove gate area. In addition, the quality of the MIS interface and the device performance of the recess gate MISFET can be further improved by forming a high-quality AlN thin layer in situ.
附图说明Description of drawings
图1-11为本发明实施例1的器件制作方法工艺示意图。1-11 are process schematic diagrams of the device manufacturing method in Embodiment 1 of the present invention.
图12为本发明实施例2的器件结构示意图。FIG. 12 is a schematic diagram of the device structure of Embodiment 2 of the present invention.
图13为本发明实施例3的器件结构示意图。FIG. 13 is a schematic diagram of the device structure of Embodiment 3 of the present invention.
图14为本发明实施例4的器件结构示意图。FIG. 14 is a schematic diagram of the device structure of Embodiment 4 of the present invention.
图15为本发明实施例5的器件结构示意图。FIG. 15 is a schematic diagram of the device structure of Embodiment 5 of the present invention.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent; in order to better illustrate this embodiment, certain components in the accompanying drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art It is understandable that some well-known structures and descriptions thereof may be omitted in the drawings. The positional relationship described in the drawings is for illustrative purposes only, and should not be construed as a limitation on this patent.
实施例1Example 1
如图11所示为本实施例的器件结构示意图,其结构由下往上依次包括衬底1,应力缓冲层2,GaN外延层3,AlGaN势垒层4,反应刻蚀形成凹槽,在位生长AlN薄层5,栅极绝缘介质层6,两端形成源极7和漏极8,凹槽沟道处的绝缘层6上沉积栅极9。As shown in Figure 11, it is a schematic diagram of the device structure of this embodiment, and its structure includes a substrate 1, a stress buffer layer 2, a GaN epitaxial layer 3, and an AlGaN barrier layer 4 from bottom to top, and grooves are formed by reactive etching. A thin AlN layer 5 is grown, a gate insulating dielectric layer 6 is formed, a source 7 and a drain 8 are formed at both ends, and a gate 9 is deposited on the insulating layer 6 at the groove channel.
上述GaN基凹槽栅MISFET的器件场效应晶体管的制作方法如图1-图11所示,包括以下步骤:The manufacturing method of the device field effect transistor of the above-mentioned GaN-based grooved gate MISFET is shown in Figure 1-Figure 11, including the following steps:
S1、利用金属有机化学气相沉积方法,在Si衬底1上生长一层应力缓冲层2,如图1所示;S1, using a metal organic chemical vapor deposition method to grow a layer of stress buffer layer 2 on the Si substrate 1, as shown in Figure 1;
S2、利用金属有机化学气相沉积方法,在应力缓冲层2上生长GaN外延层3,如图2所示;S2. Using a metal organic chemical vapor deposition method to grow a GaN epitaxial layer 3 on the stress buffer layer 2, as shown in FIG. 2 ;
S3、利用金属有机化学气相沉积方法,在GaN外延层3上生长AlGaN势垒层4,如图3所示;S3. Using a metal organic chemical vapor deposition method, grow an AlGaN barrier layer 4 on the GaN epitaxial layer 3, as shown in FIG. 3 ;
S4、通过等离子体增强化学气相沉积一层SiO2,作为掩膜层10,如图4所示;S4. Deposit a layer of SiO 2 by plasma-enhanced chemical vapor phase as the mask layer 10, as shown in FIG. 4 ;
S5、通过光刻方法选择区域刻蚀,去掉栅极区域的掩膜层10,如图5所示;S5, select area etching by photolithography method, remove the mask layer 10 in the gate area, as shown in Figure 5;
S6、利用金属有机化学气相沉积方法,通过GaN材料生长反应的逆过程形成凹槽栅极,如图6所示;S6, using a metal organic chemical vapor deposition method to form a grooved gate through the reverse process of the GaN material growth reaction, as shown in FIG. 6 ;
S7、利用金属有机化学气相沉积方法,在位生长一层高质量的AlN薄层5,如图7所示;S7. Using a metal-organic chemical vapor deposition method to grow a high-quality AlN thin layer 5 in situ, as shown in FIG. 7 ;
S8、去除掩膜层10,利用原子层沉积方法,形成AlN/Al2O3介质层6堆叠结构,如图8所示;S8. Remove the mask layer 10, and form a stacked structure of AlN/Al 2 O 3 dielectric layer 6 by using an atomic layer deposition method, as shown in FIG. 8 ;
S9、利用ICP完成器件隔离,同时刻蚀出源极和漏极欧姆接触区域,如图9所示;S9. Use ICP to complete device isolation, and simultaneously etch the source and drain ohmic contact regions, as shown in FIG. 9 ;
S10、在源极和漏极区域蒸镀上Ti/Al/Ni/Au合金作为源极7和漏极8的欧姆接触金属,如图10所示;S10, Ti/Al/Ni/Au alloy is vapor-deposited on the source and drain regions as the ohmic contact metal of the source 7 and the drain 8, as shown in FIG. 10 ;
S11、在凹槽栅极区域的绝缘层上蒸镀Ni/Au合金作为栅极9金属,如图11所示。S11. Evaporate Ni/Au alloy on the insulating layer in the recessed gate area as the gate 9 metal, as shown in FIG. 11 .
至此,完成了整个器件的制备过程。图11即为实施例1的器件结构示意图。So far, the entire fabrication process of the device is completed. FIG. 11 is a schematic diagram of the device structure of Embodiment 1.
实施例2Example 2
如图12所示为本实施例的器件结构示意图,其与实施例1结构区别仅在于:实施例2中凹槽栅极是通过外延生长逆反应刻蚀获得,但是没有在位生长的高质量AlN薄层。Figure 12 is a schematic diagram of the device structure of this embodiment, which differs from that of Embodiment 1 only in that the recessed gate in Embodiment 2 is obtained by epitaxial growth and reverse reactive etching, but there is no in-situ grown high-quality AlN TLC.
实施例3Example 3
如图13所示为本实施例的器件结构示意图,其与实施例1结构区别仅在于:实施例1中整个栅极区域AlGaN势垒层被刻蚀去除而形成凹槽。导电沟道产生在AlN/介质层与GaN外延层之间。而该实施例中,可通过控制刻蚀时间而保留一定厚度的AlGaN势垒层,由于沟道在异质结界面具有更高的二维电子气浓度,能提高沟道迁移率及输出电流。FIG. 13 is a schematic diagram of the device structure of this embodiment, which differs from the structure of Embodiment 1 only in that in Embodiment 1, the AlGaN barrier layer in the entire gate region is etched away to form grooves. A conductive channel is created between the AlN/dielectric layer and the GaN epitaxial layer. In this embodiment, a certain thickness of the AlGaN barrier layer can be retained by controlling the etching time, and the channel mobility and output current can be improved because the channel has a higher two-dimensional electron gas concentration at the heterojunction interface.
实施例4Example 4
如图14所示为本实施例的器件结构示意图,其与实施例1及例3结构区别仅在于:该实施例中,可通过控制刻蚀时间将整个AlGaN势垒层去除并在GaN外延层中过刻蚀一定厚度。导电沟道产生在AlN/介质层与GaN外延层之间。Figure 14 is a schematic diagram of the device structure of this embodiment, which differs from the structure of Embodiment 1 and Example 3 only in that in this embodiment, the entire AlGaN barrier layer can be removed by controlling the etching time and the GaN epitaxial layer A certain thickness is overetched. A conductive channel is created between the AlN/dielectric layer and the GaN epitaxial layer.
实施例5Example 5
如图15所示为本实施例的器件结构示意图,其与实施例1区别在于:实施例1为横向导通型MISFET,实施例4为纵向导通型器件。具体而言,实施例4的GaN外延层为n型掺杂外延层,衬底材料为低阻硅、GaN重掺杂自支撑衬底等。FIG. 15 is a schematic diagram of the device structure of this embodiment, which is different from Embodiment 1 in that Embodiment 1 is a lateral conduction type MISFET, and Embodiment 4 is a vertical conduction type device. Specifically, the GaN epitaxial layer in Example 4 is an n-type doped epitaxial layer, and the substrate material is low-resistance silicon, GaN heavily doped free-standing substrate, and the like.
实施例6Example 6
本实施例与实施例1结构区别仅在于:本实施例通过外延生长逆反应刻蚀获得凹槽栅极后,在位生长高质量SiN薄层,厚度为0-10 nm。The structural difference between this embodiment and Embodiment 1 is only that in this embodiment, a high-quality SiN thin layer is grown in-situ with a thickness of 0-10 nm after the recessed gate is obtained by epitaxial growth and reverse reactive etching.
此外,需要说明的是,以上实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。In addition, it should be noted that the drawings of the above embodiments are only for illustrative purposes, and thus are not necessarily drawn to scale.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610168348.0A CN105679679B (en) | 2016-03-23 | 2016-03-23 | A kind of preparation method of GaN base notched gates MISFET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610168348.0A CN105679679B (en) | 2016-03-23 | 2016-03-23 | A kind of preparation method of GaN base notched gates MISFET |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105679679A CN105679679A (en) | 2016-06-15 |
CN105679679B true CN105679679B (en) | 2018-06-05 |
Family
ID=56215139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610168348.0A Active CN105679679B (en) | 2016-03-23 | 2016-03-23 | A kind of preparation method of GaN base notched gates MISFET |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105679679B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106298887B (en) * | 2016-09-30 | 2023-10-10 | 中山大学 | Preparation method of groove gate MOSFET with high threshold voltage and high mobility |
CN110875382A (en) * | 2018-08-29 | 2020-03-10 | 苏州捷芯威半导体有限公司 | Semiconductor device and method of manufacturing the same |
US11978791B2 (en) | 2019-11-26 | 2024-05-07 | Enkris Semiconductor, Inc. | Semiconductor structures and manufacturing methods thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006185964A (en) * | 2004-12-24 | 2006-07-13 | Eudyna Devices Inc | Manufacturing method of semiconductor device |
JP2010232610A (en) * | 2009-03-30 | 2010-10-14 | Oki Electric Ind Co Ltd | Semiconductor device and method of manufacturing the same |
CN102368501A (en) * | 2011-10-20 | 2012-03-07 | 中山大学 | GaN based enhanced MOSHFET device and preparation method thereof |
-
2016
- 2016-03-23 CN CN201610168348.0A patent/CN105679679B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006185964A (en) * | 2004-12-24 | 2006-07-13 | Eudyna Devices Inc | Manufacturing method of semiconductor device |
JP2010232610A (en) * | 2009-03-30 | 2010-10-14 | Oki Electric Ind Co Ltd | Semiconductor device and method of manufacturing the same |
CN102368501A (en) * | 2011-10-20 | 2012-03-07 | 中山大学 | GaN based enhanced MOSHFET device and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Enhancement-Mode AlGaN/GaN HEMTs with High Linearity Fabricated by Hydrogen Plasma Treatment;Bin Lu et.al;《Device Research Conference》;20091215;第59-60页 * |
Performance Enhancement of Normally-Off Al2O3/AlN/GaN MOS-Channel-HEMTs with an ALD-Grown AlN Interfacial Layer;shengzhou liu et.al;《Power Semiconductor Devices & IC"s (ISPSD)》;20140717;第362-365页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105679679A (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102368501B (en) | A kind of preparation method of GaN base enhancement type MOSHFET device | |
CN106298887B (en) | Preparation method of groove gate MOSFET with high threshold voltage and high mobility | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN107946358A (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and its manufacturing method | |
JP2016139781A (en) | Enhancement-type high electron mobility transistor and method of manufacturing the same | |
CN102709320B (en) | GaN-based MISFET device with vertical conduction and its manufacturing method | |
CN107768252A (en) | A kind of normally-off GaN base MOSFET structure of the high conduction property of high threshold voltage and preparation method thereof | |
CN104638010B (en) | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof | |
CN105336789A (en) | GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor | |
CN109560120B (en) | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof | |
CN107706241A (en) | A kind of normally-off GaNMOSFET structures at high quality MOS interfaces and preparation method thereof | |
CN107742644A (en) | A high-performance normally-off GaN field-effect transistor and its preparation method | |
CN104393037B (en) | Sub-micron gate length GaN HEMT device and preparation method thereof | |
CN116169169A (en) | Enhanced GaN HEMTs with low gate leakage current and its preparation method | |
CN107785435A (en) | A kind of low on-resistance MIS notched gates GaN base transistors and preparation method | |
CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
CN105679679B (en) | A kind of preparation method of GaN base notched gates MISFET | |
CN216250739U (en) | Gallium nitride transistor with high conduction capability | |
CN114725022A (en) | A kind of preparation method of CMOS inverter based on GaOx-GaN | |
CN206441733U (en) | A kind of high threshold voltage high mobility notched gates MOSFET structure | |
CN110808211A (en) | Slanted gate structure gallium oxide field effect transistor and preparation method thereof | |
CN209487514U (en) | A GaN MISFET device with high-quality gate interface | |
CN207966998U (en) | A kind of normally-off GaN base MOSFET structure of the high conduction property of high threshold voltage | |
CN117954321A (en) | A gallium nitride HEMT based on laser annealing process and preparation method thereof | |
CN207664049U (en) | A kind of normally-off GaNMOSFET structures at the interfaces high quality MOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211115 Address after: 201210 room 507-2, building 3, No. 111, Xiangke Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai Patentee after: Shanghai xinyuanji Semiconductor Technology Co., Ltd Address before: 510275 No. 135, Xingang West Road, Guangzhou, Guangdong Patentee before: Sun Yat-sen University |