CN102709320B - GaN-based MISFET device with vertical conduction and its manufacturing method - Google Patents
GaN-based MISFET device with vertical conduction and its manufacturing method Download PDFInfo
- Publication number
- CN102709320B CN102709320B CN201210033746.3A CN201210033746A CN102709320B CN 102709320 B CN102709320 B CN 102709320B CN 201210033746 A CN201210033746 A CN 201210033746A CN 102709320 B CN102709320 B CN 102709320B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- grid
- misfet device
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 238000005530 etching Methods 0.000 claims abstract description 7
- 230000004888 barrier function Effects 0.000 claims description 35
- 230000012010 growth Effects 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 229910001020 Au alloy Inorganic materials 0.000 claims description 10
- 229910002704 AlGaN Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 238000001312 dry etching Methods 0.000 claims description 5
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 4
- 229910004205 SiNX Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 2
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 2
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims 4
- 238000001704 evaporation Methods 0.000 claims 4
- 238000001259 photo etching Methods 0.000 claims 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims 1
- 102000013275 Somatomedins Human genes 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 239000012212 insulator Substances 0.000 claims 1
- 230000034655 secondary growth Effects 0.000 abstract description 17
- 238000005516 engineering process Methods 0.000 abstract description 15
- 239000000758 substrate Substances 0.000 abstract description 12
- 230000005669 field effect Effects 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 229910002601 GaN Inorganic materials 0.000 abstract 5
- 238000009413 insulation Methods 0.000 abstract 4
- 238000005036 potential barrier Methods 0.000 abstract 3
- 230000000873 masking effect Effects 0.000 abstract 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 238000000206 photolithography Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000005533 two-dimensional electron gas Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 229910004140 HfO Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及半导体器件领域,具体涉及一种纵向导通的GaN基MISFET器件及其制作方法。 The invention relates to the field of semiconductor devices, in particular to a vertically conducting GaN-based MISFET device and a manufacturing method thereof.
背景技术 Background technique
以GaN为代表的第三代宽禁带半导体材料具有宽禁带、高击穿电场强度、高饱和电子漂移速度、高热导率、异质界面二维电子气浓度高等优良的材料性能特点,相比于Si材料,GaN更加适合制作大功率高容量、高开关速度的电力电子器件。与传统Si器件相比,GaN器件能承载更高的功率密度,具有更高的能量转换效率,可以使整个系统的体积和重量减少,从而降低系统成本。 The third-generation wide-bandgap semiconductor materials represented by GaN have excellent material performance characteristics such as wide bandgap, high breakdown electric field strength, high saturation electron drift velocity, high thermal conductivity, and high concentration of two-dimensional electron gas at the heterogeneous interface. Compared with Si materials, GaN is more suitable for making power electronic devices with high power, high capacity and high switching speed. Compared with traditional Si devices, GaN devices can carry higher power density and have higher energy conversion efficiency, which can reduce the volume and weight of the entire system, thereby reducing system cost.
目前从GaN异质结构的电力电子器件实现的器件结构上来看,主要分为侧向导通器件以及纵向导通器件。 At present, from the perspective of the device structure realized by GaN heterostructure power electronic devices, it is mainly divided into lateral conduction devices and vertical conduction devices.
由于初期GaN外延生长的衬底材料主要是绝缘蓝宝石衬底以及高阻Si衬底,所以目前的HFET器件基本都为侧向导通器件。侧向导通器件直接利用AlGaN/GaN异质结2DEG沟道作为器件导通沟道,在相对低的工作电压下能实现快速开启、关断和低导通电阻;但是在高电压的工作环境下,由于栅、漏极之间电场相对集中,尤其容易在栅极边缘形成电场集边效应,器件易击穿。通过增大栅漏间距,来实现高的器件击穿电压,但与此同时,也增大了器件的导通电阻,降低了芯片的利用效率。表面钝化工艺、电极场板工艺等技术的采用可以在一定程度上缓解上述矛盾,但是对于侧向结构器件电场分布不均而限制了器件耐压特性的缺点没有本质上的改变。 Since the substrate materials for initial GaN epitaxial growth are mainly insulating sapphire substrates and high-resistance Si substrates, the current HFET devices are basically lateral conduction devices. The lateral conduction device directly uses the AlGaN/GaN heterojunction 2DEG channel as the device conduction channel, which can achieve fast turn-on, turn-off and low on-resistance under relatively low operating voltage; but in a high-voltage operating environment , due to the relative concentration of the electric field between the gate and the drain, it is especially easy to form an electric field edge effect at the edge of the gate, and the device is easy to break down. By increasing the gate-to-drain distance, a high device breakdown voltage is achieved, but at the same time, the on-resistance of the device is also increased, which reduces the utilization efficiency of the chip. The use of surface passivation technology, electrode field plate technology and other technologies can alleviate the above contradictions to a certain extent, but there is no essential change in the shortcomings of the uneven electric field distribution of lateral structure devices that limit the withstand voltage characteristics of devices.
为了实现GaN基电子器件在高压情况下工作,纵向导通器件是比较理想的技术方案。而对于纵向导通器件,近年来,随着GaN同质衬底的发展,GaN异质结构垂直纵向导通器件也相继报道。 In order to realize the operation of GaN-based electronic devices under high voltage conditions, vertical conduction devices are an ideal technical solution. As for vertical conduction devices, in recent years, with the development of GaN homogeneous substrates, GaN heterostructure vertical vertical conduction devices have also been reported one after another.
纵向导通的电力电子器件结构,其实是目前Si材料高压MOS器件常采用的结构,在纵向导通Si功率器件中,形成源、漏极的N型掺杂层中间以P型掺杂层隔开,源、栅极和漏极分别位于器件上下极,漏极与栅极间的PN结可以承受高工作电压。当栅极加正压,绝缘栅极与P型层接触面形成电子反型层时,器件导通。这种器件结构相对于上述平面结构器件的好处就是,器件电流纵向分布于器件内,电场分布更加均匀,有效提高器件击穿电压。 The vertical conduction power electronic device structure is actually the structure commonly used in Si material high-voltage MOS devices at present. In the vertical conduction Si power device, the N-type doped layer forming the source and drain is separated by a P-type doped layer. Open, the source, gate and drain are respectively located on the upper and lower poles of the device, and the PN junction between the drain and the gate can withstand high operating voltage. When the positive voltage is applied to the gate, and the contact surface between the insulating gate and the P-type layer forms an electron inversion layer, the device is turned on. Compared with the above-mentioned planar structure device, the advantage of this device structure is that the device current is distributed vertically in the device, the electric field distribution is more uniform, and the breakdown voltage of the device is effectively improved.
GaN大功率电力电子器件在向大功率应用扩展的技术发展路线也类似于Si材料电力电子器件,即由侧向导通器件向纵向导通器件的转变。随着GaN同质外延技术的不断成熟以及GaN衬底制作成本的降低,为实现在GaN衬底上制作纵向导通电子器件提供了有力支持。同质GaN衬底与异质外延衬底相比,优势明显。与GaN外延层晶格匹配,相对于异质外延衬底,提高了GaN外延层晶体质量的同时,简化生长工艺,避免生长复杂的应力缓冲层。同质外延的主要优点还体现在:1)没有晶格失配;2)热导率高,热失配小;3)电导率高,漏电流小,简化器件工艺。 The technical development route of GaN high-power power electronic devices expanding to high-power applications is also similar to Si material power electronic devices, that is, the transformation from lateral conduction devices to vertical conduction devices. With the continuous maturity of GaN homoepitaxial technology and the reduction of GaN substrate manufacturing cost, it provides strong support for the realization of vertical conduction electronic devices on GaN substrates. Compared with heterogeneous epitaxial substrates, homogeneous GaN substrates have obvious advantages. The lattice matching with the GaN epitaxial layer improves the crystal quality of the GaN epitaxial layer, simplifies the growth process, and avoids the growth of a complex stress buffer layer, compared with the heterogeneous epitaxial substrate. The main advantages of homoepitaxial are: 1) no lattice mismatch; 2) high thermal conductivity, small thermal mismatch; 3) high electrical conductivity, small leakage current, and simplified device process.
同质衬底实现的纵向导通器件较侧向导通器件:1)提高了单位面积芯片功率, 增大了芯片利用效率;2)电极有效接触面积大,纵向方向电流扩展面积大,实现高功率,大电流输出密度;3)位错密度低,能有效降低器件栅极漏电流,提升材料载流子迁移率,增大器件击穿电压,减少电流崩塌效应;4)同时在大功率工作环境下,器件自生大量热,同质外延热导性能优异,利于器件散热。 Compared with the lateral conduction device, the vertical conduction device realized by the homogeneous substrate: 1) It improves the chip power per unit area and increases the chip utilization efficiency; 2) The effective contact area of the electrode is large, and the current expansion area in the longitudinal direction is large, achieving high power , high current output density; 3) low dislocation density, which can effectively reduce device gate leakage current, improve material carrier mobility, increase device breakdown voltage, and reduce current collapse effect; 4) at the same time in high-power working environment Under this condition, the device generates a large amount of heat by itself, and the homoepitaxial thermal conductivity is excellent, which is beneficial to the heat dissipation of the device.
GaN同质衬底纵向导通结构的场效应晶体管已展开了一些研究。在最新的研究成果中,Toyota公司的Masakazu KANECHIKA等人,通过在GaN自支撑衬底上制作了耗尽型的垂直电流通道电子器件(Current Aperture Vertical Electron Transistor),器件实现了阈值电压-16V,导通电阻为2.6mΩ·cm2;参见文献Masakazu KANECHIKA,Masahiro SUGIMOTO et al. A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor; Japanese Journal of Applied Physics, Vol.46, No.21,pp. L503–L505,2007。另外加州大学Srabanti Chowdhury, Brian L. Swenson等人,在类似的结构上,利用氟离子处理技术实现了阈值电压为0.6V的增强型垂直器件(CAVET);参见文献Srabanti Chowdhury, Brian L. Swenson et al. Enhancement and Depletion Mode AlGaN/GaN CAVET With Mg-Ion-Implanted GaN as Current Blocking Layer; IEEE ELECTRON DEVICE LETTERS, VOL.29, NO.6, 2008。 GaN homogeneous substrate vertical conduction structure of the field effect transistor has launched some research. In the latest research results, Masakazu KANECHIKA of Toyota Corporation and others fabricated a depletion-type vertical current channel electronic device (Current Aperture Vertical Electron Transistor) on a GaN self-supporting substrate, and the device achieved a threshold voltage of -16V. The on-resistance is 2.6mΩ cm2; see literature Masakazu KANECHIKA, Masahiro SUGIMOTO et al. A Vertical Insulated Gate AlGaN/GaN Heterojunction Field-Effect Transistor; Japanese Journal of Applied Physics, Vol.46, No.21, pp. L503– L505, 2007. In addition, Srabanti Chowdhury, Brian L. Swenson et al. of the University of California, on a similar structure, used fluorine ion processing technology to realize an enhanced vertical device (CAVET) with a threshold voltage of 0.6V; see the literature Srabanti Chowdhury, Brian L. Swenson et al. al. Enhancement and Depletion Mode AlGaN/GaN CAVET With Mg-Ion-Implanted GaN as Current Blocking Layer; IEEE ELECTRON DEVICE LETTERS, VOL.29, NO.6, 2008.
从最新的研究成果来看,基于AlGaN/GaN的异质结和绝缘栅极结构的垂直导通结构MISFET可以实现低导通电阻,高电压,大导通电流等特性,而采用P型电流阻挡层技术对上方的GaN晶格质量有明显的降低作用,这会导致沟道迁移率降低从而影响器件性能,同时,P型电子阻挡层技术对P型阻挡层上方GaN沟道中的二维电子气有耗尽作用,从而使得二维电子气浓度降低,进一步影响器件的导通性能。 According to the latest research results, the vertical conduction structure MISFET based on AlGaN/GaN heterojunction and insulated gate structure can achieve low on-resistance, high voltage, large conduction current and other characteristics, while the P-type current blocking layer technology has a significant effect on reducing the quality of the upper GaN lattice, which will lead to a decrease in channel mobility and thus affect device performance. There is a depletion effect, which reduces the concentration of the two-dimensional electron gas and further affects the conduction performance of the device.
发明内容 Contents of the invention
本发明解决的技术问题是克服现有技术的不足,提供一种工艺简单、稳定性更高的GaN纵向导通的MISFET器件及其制作方法。 The technical problem solved by the invention is to overcome the deficiencies of the prior art, and provide a GaN vertical conduction MISFET device with simple process and higher stability and a manufacturing method thereof.
为解决上述技术问题,本发明采用的技术方案如下: In order to solve the problems of the technologies described above, the technical scheme adopted in the present invention is as follows:
一种纵向导通的GaN基MISFET器件,包括栅极、源极、漏极、绝缘层、导电GaN衬底和形成于导电GaN衬底上的外延层,所述外延层由下往上依次包括第一n型轻掺杂GaN层,二次生长掩膜介质层,非掺杂GaN层和异质结势垒层,所述外延层中部形成凹槽沟道,凹槽沟道和异质结构势垒层的表面覆盖绝缘层,栅极覆盖于绝缘层上的凹槽沟道处,刻蚀绝缘层两端形成源极区域,源极区域处蒸镀欧姆金属形成与异质结势垒层接触的源极,漏极置于导电GaN衬底背面。 A GaN-based MISFET device with vertical conduction, comprising a gate, a source, a drain, an insulating layer, a conductive GaN substrate, and an epitaxial layer formed on the conductive GaN substrate, and the epitaxial layer sequentially includes from bottom to top The first n-type lightly doped GaN layer, the secondary growth mask dielectric layer, the non-doped GaN layer and the heterojunction barrier layer, the groove channel is formed in the middle of the epitaxial layer, the groove channel and the heterostructure The surface of the barrier layer is covered with an insulating layer, the gate is covered at the groove channel on the insulating layer, the source region is formed by etching both ends of the insulating layer, and the source region is evaporated to form an ohmic metal and a heterojunction barrier layer The contacted source and drain are placed on the back of the conductive GaN substrate.
所述第一n型轻掺杂GaN层的厚度为1-50μm。 The thickness of the first n-type lightly doped GaN layer is 1-50 μm.
所述二次生长掩膜介质层为SiO2、SiNx、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx或HfSiON,绝缘层厚度为1-100nm。 The secondary growth mask dielectric layer is SiO 2 , SiNx, Al 2 O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfOx or HfSiON, and the thickness of the insulating layer is 1-100 nm.
所述非掺杂GaN层的厚度为10-500nm。 The thickness of the non-doped GaN layer is 10-500nm.
所述异质结构势垒层材料包括以下的一种或多种的组合:AlGaN、AlInN、AlInGaN及AlN;异质结构势垒层厚度为1-50nm。 The material of the heterostructure barrier layer includes one or more combinations of the following: AlGaN, AlInN, AlInGaN and AlN; the thickness of the heterostructure barrier layer is 1-50nm.
所述绝缘层材料为SiO2、SiNx、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx或HfSiON,绝缘层厚度为1-100nm;源极和漏极材料从以下一组材料中选出,该组材料包括但不限于:Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金、Ti/Al/Mo/Au合金;栅极材料从以下一组材料中选出,该组材料包括但不限于:Ni/Au合金、Pt/Al合金、Pd/Au合金。 The material of the insulating layer is SiO 2 , SiNx, Al 2 O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfOx or HfSiON, and the thickness of the insulating layer is 1-100 nm; the source and drain The material is selected from the following group of materials, which includes but not limited to: Ti/Al/Ni/Au alloy, Ti/Al/Ti/Au alloy, Ti/Al/Mo/Au alloy; the gate material is selected from the following Selected from a group of materials, the group of materials includes but not limited to: Ni/Au alloy, Pt/Al alloy, Pd/Au alloy.
同时,本发明还提供了一种垂直结构的GaN基MISFET器件的制作方法,其包括以下步骤: At the same time, the present invention also provides a method for fabricating a GaN-based MISFET device with a vertical structure, which includes the following steps:
在导电GaN衬底上生长第一n型轻掺杂GaN层; growing a first n-type lightly doped GaN layer on a conductive GaN substrate;
在第一n型轻掺杂GaN层上形成二次生长掩膜介质层; forming a secondary growth mask dielectric layer on the first n-type lightly doped GaN layer;
采用光刻技术,选择性刻蚀二次生长掩膜介质层,去除栅极区域的二次生长掩膜介质层; Using photolithography technology to selectively etch the secondary growth mask dielectric layer to remove the secondary growth mask dielectric layer in the gate region;
在刻蚀后的器件上选择栅极区域侧向外延生长非掺杂GaN层; Laterally grow a non-doped GaN layer on the selective gate region of the etched device;
在非掺杂GaN层上生长异质结构势垒层; Growing a heterostructure barrier layer on the undoped GaN layer;
在异质结势垒层生长介质层,作为干法刻蚀的掩膜层; Growing a dielectric layer on the heterojunction barrier layer as a mask layer for dry etching;
采用光刻技术,选择区域刻蚀栅极区域的掩膜层;利用干法刻蚀在栅极区域刻蚀出凹槽沟道; Use photolithography technology to selectively etch the mask layer of the gate area; use dry etching to etch groove channels in the gate area;
在显露出的由凹槽沟道表面和异质结构势垒层表面构成的接触界面沉积绝缘物质,作为栅极的绝缘层; Depositing an insulating substance on the exposed contact interface composed of the surface of the groove channel and the surface of the heterostructure barrier layer, as the insulating layer of the gate;
采用光刻技术,在绝缘层表面刻蚀出源极欧姆接触区域,在源极区域蒸镀上源极欧姆接触金属,在导电GaN衬底表面蒸镀上欧姆接触金属漏极; Using photolithography technology, the source ohmic contact area is etched on the surface of the insulating layer, the source ohmic contact metal is evaporated on the source area, and the ohmic contact metal drain is evaporated on the conductive GaN substrate surface;
在栅极绝缘层上蒸镀栅极。 Evaporate the gate on the gate insulating layer.
本发明的制作方法,直接采用二次生长掩膜介质层作为电流阻挡层,并选择栅极区域刻蚀,并在刻蚀区域生长非掺杂GaN层,直到非掺杂GaN层厚度超过介质层厚度,此时非掺杂GaN层开始在二次生长掩膜介质层上方生长直到铺平至一定厚度。采用侧向外延生长技术可以在电流阻挡层上获得高质量的非掺杂GaN层。从而有效降低上方外延层晶格质量,增大接入区二维电子气迁移率,有效降低导通电阻,并能实现栅极垂直导电沟道自然形成,提高器件栅极阈值电压,简化器件工艺,提高了器件可靠性和重复性。 In the manufacturing method of the present invention, the secondary growth mask dielectric layer is directly used as the current blocking layer, and the gate area is etched selectively, and a non-doped GaN layer is grown in the etched region until the thickness of the non-doped GaN layer exceeds the dielectric layer At this time, the non-doped GaN layer begins to grow on the secondary growth mask dielectric layer until it is flattened to a certain thickness. A high-quality non-doped GaN layer can be obtained on the current blocking layer by using lateral epitaxial growth technology. Thus effectively reducing the lattice quality of the upper epitaxial layer, increasing the two-dimensional electron gas mobility in the access region, effectively reducing the on-resistance, and realizing the natural formation of the gate vertical conductive channel, increasing the device gate threshold voltage, and simplifying the device process , improving device reliability and repeatability.
所述步骤中的第一n型轻掺杂GaN层、步骤非掺杂GaN层、步骤中异质结势垒层的生长方法包括但不限于金属有机化学气相沉积法或分子束外延法。 The steps The first n-type lightly doped GaN layer in the step Non-doped GaN layer, step The growth method of the heterojunction barrier layer includes but not limited to metal organic chemical vapor deposition or molecular beam epitaxy.
所述步骤中的二次生长掩膜介质层以及步骤中的绝缘层的生长方法包括但不限于等离子体增强化学气相沉积法、原子沉积法、物理气相沉积法或磁控溅射法。 The steps The secondary growth mask dielectric layer and steps in The growth methods of the insulating layer include but are not limited to plasma enhanced chemical vapor deposition, atomic deposition, physical vapor deposition or magnetron sputtering.
本发明器件的另一种结构是:在所述二次生长掩膜介质层被刻蚀完后,先在凹槽区域生长P型GaN层,直到生长接近两边二次生长掩膜介质层高度时,立刻切换生长条件,进行非掺杂GaN层的生长,这样将有效改善纵向沟道导通电压,提高整个器件阈值电压。 Another structure of the device of the present invention is: after the secondary growth mask dielectric layer is etched, first grow a P-type GaN layer in the groove area until the growth is close to the height of the secondary growth mask dielectric layer on both sides , switch the growth conditions immediately, and grow the non-doped GaN layer, which will effectively improve the vertical channel conduction voltage and increase the threshold voltage of the entire device.
与现有技术相比,本发明的技术方案,直接利用绝缘介质掩膜层作为二次选择生长掩膜层。通过生长高质量的侧向外延非掺杂GaN层,实现其上面高质量,低导通电阻的接入区,避免了使用P型阻挡层从而因P型杂质扩散导致的接入区GaN晶格质量较低的影响, 实现了栅极垂直导电沟道的自然形成,制备出了纵向导通的MISFET器件。 Compared with the prior art, the technical scheme of the present invention directly uses the insulating dielectric mask layer as the secondary selective growth mask layer. By growing a high-quality lateral epitaxial non-doped GaN layer, a high-quality, low-on-resistance access region is realized, avoiding the GaN lattice in the access region caused by the diffusion of P-type impurities due to the use of a P-type barrier layer Due to the influence of lower quality, the natural formation of the vertical conductive channel of the gate is realized, and a vertical conduction MISFET device is prepared.
附图说明 Description of drawings
图1-10为本发明实施例1的器件制备方法工艺示意图; 1-10 is a schematic diagram of the device preparation method of Embodiment 1 of the present invention;
图11-13为本发明实施例2的器件结构示意图; 11-13 are schematic diagrams of the device structure of Embodiment 2 of the present invention;
图14 为实施例2成品结构示意图。 Fig. 14 is the structural representation of the finished product of embodiment 2.
具体实施方式 Detailed ways
下面结合附图对本发明的技术方案做进一步的说明。 The technical solution of the present invention will be further described below in conjunction with the accompanying drawings.
实施例1 Example 1
如图11所示为本实施例的器件结构示意图,包括栅极10、源极8、漏极9、绝缘层7、导电GaN衬底1和其上的外延层,所述外延层包括第一n型轻掺杂GaN层2、二次生长掩膜介质层3、非掺杂GaN层4以及异质结构势垒层5,所述非掺杂GaN层4中部形成用于实现栅极导电的凹槽沟道12,凹槽沟道12和异质结构势垒层5的表面覆盖绝缘层7,栅极10覆盖于绝缘层上的凹槽沟道12处,刻蚀绝缘层7两端形成源极区域,源极区域处蒸镀欧姆金属形成与异质结构势垒层5接触的源极8,漏极9置于导电GaN衬底背面。 As shown in Figure 11, it is a schematic diagram of the device structure of this embodiment, including a gate 10, a source 8, a drain 9, an insulating layer 7, a conductive GaN substrate 1 and an epitaxial layer thereon, and the epitaxial layer includes a first N-type lightly doped GaN layer 2, secondary growth mask dielectric layer 3, non-doped GaN layer 4 and heterostructure barrier layer 5, the middle part of the non-doped GaN layer 4 forms a barrier for gate conduction The grooved channel 12, the surface of the grooved channel 12 and the heterostructure barrier layer 5 cover the insulating layer 7, the gate 10 covers the grooved channel 12 on the insulating layer, and the two ends of the insulating layer 7 are etched to form In the source region, ohmic metal is evaporated on the source region to form the source 8 in contact with the heterostructure barrier layer 5, and the drain 9 is placed on the back of the conductive GaN substrate.
上述纵向导通的GaN基MISFET器件的制作方法如图1-10所示,包括以下步骤: The fabrication method of the GaN-based MISFET device with vertical conduction is shown in Figure 1-10, including the following steps:
利用分子束外延法在导电GaN衬底1上生长一层第一n型轻掺杂GaN层2,厚度1-50μm,如图1所示; A first n-type lightly doped GaN layer 2 is grown on the conductive GaN substrate 1 by molecular beam epitaxy, with a thickness of 1-50 μm, as shown in FIG. 1 ;
在第一n型轻掺杂GaN层2上,通过等离子体增强化学气相沉积法生长一层绝缘介质层作为二次生长掩膜介质层3,该二次生长掩膜介质层3厚度为50-500nm, 如图2所示; On the first n-type lightly doped GaN layer 2, an insulating dielectric layer is grown by plasma-enhanced chemical vapor deposition as the secondary growth mask dielectric layer 3, and the thickness of the secondary growth mask dielectric layer 3 is 50- 500nm, as shown in Figure 2;
采用光刻技术,选择性刻蚀二次生长掩膜介质层3,去除栅极区域的二次生长掩膜介质层;如图3所示; Using photolithography technology, selectively etching the secondary growth mask dielectric layer 3, and removing the secondary growth mask dielectric layer in the gate region; as shown in Figure 3;
在刻蚀后的器件上选择栅极区域侧向外延生长高质量非掺杂GaN层4,该非掺杂GaN层厚度为60-1000nm如图4所示; A high-quality non-doped GaN layer 4 is laterally epitaxially grown on the etched device by selecting the gate region, and the thickness of the non-doped GaN layer is 60-1000 nm as shown in FIG. 4 ;
在非掺杂GaN层4上生长异质结构势垒层5,该异质结构势垒层厚度为1-50nm,如图5所示; Growing a heterostructure barrier layer 5 on the non-doped GaN layer 4, the thickness of the heterostructure barrier layer is 1-50nm, as shown in FIG. 5;
在异质结势垒层生长一层介质层6,作为干法刻蚀的掩膜层;如图6所示; A layer of dielectric layer 6 is grown on the heterojunction barrier layer as a mask layer for dry etching; as shown in Figure 6;
采用光刻技术,选择区域刻蚀栅极区域的掩膜层;利用干法刻蚀在栅极区域刻蚀出凹槽,显露出由凹槽沟道表面和异质结构势垒层表面构成的绝缘层接触界面,如图7、图8所示; Use photolithography technology to selectively etch the mask layer of the gate area; use dry etching to etch a groove in the gate area, revealing the surface composed of the groove channel surface and the heterostructure barrier layer surface The contact interface of the insulating layer is shown in Figure 7 and Figure 8;
在接触界面沉积绝缘物质,作为栅极的绝缘层7,该绝缘层厚度为1-100nm,如图9所示; An insulating substance is deposited on the contact interface as the insulating layer 7 of the gate, and the thickness of the insulating layer is 1-100 nm, as shown in FIG. 9 ;
采用光刻技术,在绝缘层表面刻蚀出源极欧姆接触区域,在源极区域蒸镀上源极欧姆接触金属8,在导电GaN衬底表面蒸镀上漏极欧姆接触金属9,如图10所示; Using photolithography technology, the source ohmic contact area is etched on the surface of the insulating layer, the source ohmic contact metal 8 is evaporated on the source area, and the drain ohmic contact metal 9 is evaporated on the conductive GaN substrate surface, as shown in the figure as shown in 10;
在栅极绝缘层上蒸镀栅极金属10,如图11所示。至此,即完成了整个器件的制备过程。图8即为实施例1的器件结构示意图。 A gate metal 10 is evaporated on the gate insulating layer, as shown in FIG. 11 . So far, the fabrication process of the whole device is completed. FIG. 8 is a schematic diagram of the device structure of Embodiment 1.
实施例2 Example 2
如图14为本实施例的器件结构示意图,其与实施例1结构类似,区别仅在于在所述二次生长掩膜介质层3被刻蚀完后,先在凹槽区域生长P型GaN层11,直到生长接近两边绝缘介质掩膜层高度时,如图12所示,立刻切换生长条件,进行非掺杂GaN层4的生长,如图13所示。这样将有效改善纵向沟道导通电压,提高整个器件阈值电压。 Figure 14 is a schematic diagram of the device structure of this embodiment, which is similar to the structure of Embodiment 1, the only difference is that after the secondary growth mask dielectric layer 3 is etched, a P-type GaN layer is first grown in the groove region 11. When the growth is close to the height of the insulating dielectric mask layers on both sides, as shown in FIG. 12 , immediately switch the growth conditions to grow the non-doped GaN layer 4 , as shown in FIG. 13 . This will effectively improve the conduction voltage of the vertical channel and increase the threshold voltage of the entire device.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210033746.3A CN102709320B (en) | 2012-02-15 | 2012-02-15 | GaN-based MISFET device with vertical conduction and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210033746.3A CN102709320B (en) | 2012-02-15 | 2012-02-15 | GaN-based MISFET device with vertical conduction and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102709320A CN102709320A (en) | 2012-10-03 |
CN102709320B true CN102709320B (en) | 2014-09-24 |
Family
ID=46901968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210033746.3A Active CN102709320B (en) | 2012-02-15 | 2012-02-15 | GaN-based MISFET device with vertical conduction and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102709320B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108597985A (en) * | 2018-04-17 | 2018-09-28 | 中山大学 | A kind of laminated construction |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102881721B (en) * | 2012-10-26 | 2015-04-22 | 中山大学 | Mixed-structure field effect transistor and manufacturing method thereof |
DE102015116712B4 (en) * | 2015-10-01 | 2024-11-28 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | optoelectronic component |
CN107230628A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | Gallium nitride field effect transistor and its manufacture method |
CN107230721A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | Semiconductor devices and manufacture method |
CN105845724B (en) * | 2016-06-17 | 2019-03-29 | 电子科技大学 | A kind of vertical HEMT device of accumulation type |
CN108461535B (en) * | 2018-04-13 | 2024-04-26 | 广东省半导体产业技术研究院 | Micro-nano transistor and micro-nano transistor manufacturing method |
CN111863954A (en) * | 2019-04-26 | 2020-10-30 | 苏州晶湛半导体有限公司 | Enhanced device and method of making the same |
CN110120425B (en) * | 2019-05-22 | 2020-08-11 | 西安电子科技大学 | Vertical high-voltage MOSFET device and manufacturing method |
US11552189B2 (en) * | 2019-09-25 | 2023-01-10 | Stmicroelectronics S.R.L. | High electron mobility transistor (HEMT) devices and methods |
CN111211161A (en) * | 2020-01-15 | 2020-05-29 | 中山大学 | Bidirectional heat-dissipation longitudinal gallium nitride power transistor and preparation method thereof |
CN115101408B (en) * | 2022-06-28 | 2025-04-18 | 扬州扬杰电子科技股份有限公司 | A method for preparing a Si-based GaN-HEMT device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN102332469A (en) * | 2011-09-22 | 2012-01-25 | 中山大学 | Vertical conduction GaN normally-off MISFET device and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4916671B2 (en) * | 2005-03-31 | 2012-04-18 | 住友電工デバイス・イノベーション株式会社 | Semiconductor device |
JP5496635B2 (en) * | 2008-12-19 | 2014-05-21 | 住友電工デバイス・イノベーション株式会社 | Manufacturing method of semiconductor device |
JP2011035066A (en) * | 2009-07-30 | 2011-02-17 | Sumitomo Electric Ind Ltd | Nitride semiconductor element, and method of manufacturing nitride semiconductor element |
JP5299208B2 (en) * | 2009-10-09 | 2013-09-25 | 住友電気工業株式会社 | Semiconductor device and manufacturing method thereof |
-
2012
- 2012-02-15 CN CN201210033746.3A patent/CN102709320B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN102332469A (en) * | 2011-09-22 | 2012-01-25 | 中山大学 | Vertical conduction GaN normally-off MISFET device and manufacturing method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108597985A (en) * | 2018-04-17 | 2018-09-28 | 中山大学 | A kind of laminated construction |
Also Published As
Publication number | Publication date |
---|---|
CN102709320A (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102709320B (en) | GaN-based MISFET device with vertical conduction and its manufacturing method | |
CN102184956B (en) | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof | |
CN102368501B (en) | A kind of preparation method of GaN base enhancement type MOSHFET device | |
CN102332469B (en) | Vertical conduction GaN normally-off MISFET device and manufacturing method thereof | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN109560120B (en) | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof | |
CN102856374B (en) | GaN enhanced MIS-HFET device and preparation method of same | |
CN103858236A (en) | Method and system for a GaN vertical jfet utilizing a regrown gate | |
CN109873034B (en) | Normally-off HEMT power device for depositing polycrystalline AlN and preparation method thereof | |
CN105428412A (en) | Algan/gan heterojunction field effect transistor and preparation method thereof | |
CN104638010B (en) | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof | |
CN111370470B (en) | Gallium nitride MIS gate-controlled hybrid channel power field effect transistor and method of making the same | |
CN107393890A (en) | A kind of graphene buries heat dissipating layer and longitudinal channel GaN MISFET structure cells and preparation method | |
CN104681620B (en) | A kind of GaN normally-off MISFET devices longitudinally turned on and preparation method thereof | |
CN104332504A (en) | GaN-based heterojunction schottky diode device and preparing method thereof | |
CN108054208A (en) | Lateral type gallium nitride-based field effect transistor and preparation method thereof | |
CN107591444B (en) | Enhancement transistor and method of making the same | |
CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
CN216250739U (en) | Gallium nitride transistor with high conduction capability | |
CN112768508B (en) | Back gate full-control AlGaN/GaN heterojunction enhanced power HEMT device and preparation method thereof | |
CN114843337A (en) | Gallium nitride high electron mobility transistor with double-gate structure and manufacturing method thereof | |
CN105679679B (en) | A kind of preparation method of GaN base notched gates MISFET | |
CN210897283U (en) | Semiconductor device with a plurality of transistors | |
CN111739801A (en) | A kind of preparation method of SOI-based p-GaN enhancement mode GaN power switching device | |
KR20140013618A (en) | Nitride semiconductor device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |