CN105428412A - Algan/gan heterojunction field effect transistor and preparation method thereof - Google Patents
Algan/gan heterojunction field effect transistor and preparation method thereof Download PDFInfo
- Publication number
- CN105428412A CN105428412A CN201510981887.1A CN201510981887A CN105428412A CN 105428412 A CN105428412 A CN 105428412A CN 201510981887 A CN201510981887 A CN 201510981887A CN 105428412 A CN105428412 A CN 105428412A
- Authority
- CN
- China
- Prior art keywords
- layer
- type gan
- algan
- effect transistor
- gan layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 238000002353 field-effect transistor method Methods 0.000 title 1
- 230000004888 barrier function Effects 0.000 claims abstract description 41
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 36
- 230000005669 field effect Effects 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000005516 engineering process Methods 0.000 claims description 22
- 229910001020 Au alloy Inorganic materials 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 17
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 7
- 230000004308 accommodation Effects 0.000 claims description 6
- 238000005566 electron beam evaporation Methods 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 5
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 4
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 3
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 3
- 229910001260 Pt alloy Inorganic materials 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910017083 AlN Inorganic materials 0.000 claims description 2
- 229910004140 HfO Inorganic materials 0.000 claims description 2
- 229910004541 SiN Inorganic materials 0.000 claims description 2
- 238000001312 dry etching Methods 0.000 claims description 2
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 7
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 229910002601 GaN Inorganic materials 0.000 description 117
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 117
- 230000005684 electric field Effects 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 241000972782 Electrona Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/477—Vertical HEMTs or vertical HHMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/252—Source or drain electrodes for field-effect devices for vertical or pseudo-vertical devices
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明涉及一种AlGaN/GaN异质结场效应晶体管及其制备方法。该场效应晶体管包括栅极、源极、漏极、衬底、外延结构以及绝缘介质层,所述漏极、衬底、外延结构依次层叠设置;所述外延结构包括依次层叠设置的n型GaN层、垂直超结层、沟道层以及势垒层,其中,所述垂直超结层包括交替排列的轻掺杂p型GaN层和重掺杂n型GaN层,所述重掺杂n型GaN层的厚度较所述轻掺杂p型GaN层小,所述沟道层和势垒层层叠于所述轻掺杂的p型GaN层之上。该场效应晶体管,结构简单,避免了复杂的器件工艺造成的器件性能劣化,稳定性有保障,同时实现了器件正向较强的电流传输能力,以及反向高耐压特性。
The invention relates to an AlGaN/GaN heterojunction field effect transistor and a preparation method thereof. The field effect transistor includes a gate, a source, a drain, a substrate, an epitaxial structure, and an insulating dielectric layer, and the drain, the substrate, and the epitaxial structure are stacked in sequence; the epitaxial structure includes n-type GaN stacked in sequence layer, a vertical superjunction layer, a channel layer, and a barrier layer, wherein the vertical superjunction layer includes alternately arranged lightly doped p-type GaN layers and heavily doped n-type GaN layers, and the heavily doped n-type The thickness of the GaN layer is smaller than that of the lightly doped p-type GaN layer, and the channel layer and barrier layer are stacked on the lightly doped p-type GaN layer. The field effect transistor has a simple structure, avoids device performance degradation caused by complicated device processes, and ensures stability, and simultaneously realizes strong forward current transmission capability of the device and high reverse withstand voltage characteristics.
Description
技术领域technical field
本发明涉及半导体器件,特别是涉及AlGaN/GaN异质结场效应晶体管及其制备方法。The invention relates to a semiconductor device, in particular to an AlGaN/GaN heterojunction field effect transistor and a preparation method thereof.
背景技术Background technique
现代社会中,电力电子技术不断跟新发展,稳压器、整流器、逆变器等电力电子器件在日常生活中应用越来越广泛,涉及高压供电、电能管理、工厂自动化、机动车能源分配管理等诸多领域。二极管和开关器件是电力电子应用领域中不可或缺的组成部分。近年来,具有高频、大电流、低功耗特性的肖特基二极管以其独特的性能优势越来越引人注目。In modern society, power electronics technology continues to keep up with new developments, and power electronic devices such as voltage regulators, rectifiers, and inverters are more and more widely used in daily life, involving high-voltage power supply, power management, factory automation, and energy distribution management for motor vehicles. and many other fields. Diodes and switching devices are an integral part of power electronics applications. In recent years, Schottky diodes with high frequency, high current and low power consumption have attracted more and more attention due to their unique performance advantages.
传统的功率型肖特基二极管主要是在硅(Si)基材料上制作。硅材料发展历史悠久,硅单晶制备成本低、硅器件加工工艺成熟,因此硅基肖特基二极管的发展也是最为成熟的。但是,由于禁带宽度、电子迁移率等材料特性的限制,硅基功率肖特基二极管的性能已经接近其理论极限,不能满足当今高频、高功率、高耐温的需求。硅基肖特基二极管耐压低、电流输运能力有限、在高温条件下对系统散热要求苛刻,这造成了器件体积重量大、能耗大,不利于电力电子系统向集成化、小型化、节能化发展。Traditional power Schottky diodes are mainly fabricated on silicon (Si)-based materials. The development of silicon materials has a long history, the cost of silicon single crystal preparation is low, and the processing technology of silicon devices is mature. Therefore, the development of silicon-based Schottky diodes is also the most mature. However, due to the limitation of material properties such as bandgap width and electron mobility, the performance of silicon-based power Schottky diodes is close to its theoretical limit, which cannot meet the current needs of high frequency, high power, and high temperature resistance. Silicon-based Schottky diodes have low withstand voltage, limited current transport capacity, and strict heat dissipation requirements for the system under high temperature conditions. Energy-saving development.
为了突破硅材料的自身限制,人们开始寻找具有更优性能的材料,以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料进入了人们视野。它们具有优异的物理和化学性质,如禁带宽度大、击穿电场强度高、饱和电子漂移速度大、抗辐射能力强、化学稳定性好等,特别适合制作高耐压、高耐温、高频、大功率肖特基二极管器件。GaN材料另一突出的特点就是利用自身的极化效应,如图1所示,在非掺杂的AlGaN/GaN就可以形成电子面密度达到1013cm-2量级的高浓度二维电子气(2DEG:Two-dimensionalelectrongas)。2DEG面密度大、在沟道二维平面内迁移率高,利用这一特性制作的横向导通的GaN肖特基二极管是目前最常见的,也是最有潜力的外延结构形式。In order to break through the limitations of silicon materials, people began to look for materials with better performance, and the third-generation wide-bandgap semiconductor materials represented by gallium nitride (GaN) and silicon carbide (SiC) entered people's field of vision. They have excellent physical and chemical properties, such as large band gap, high breakdown electric field strength, high saturated electron drift velocity, strong radiation resistance, good chemical stability, etc., especially suitable for making high withstand voltage, high temperature, high frequency, high power Schottky diode devices. Another prominent feature of GaN materials is the use of their own polarization effects. As shown in Figure 1, undoped AlGaN/GaN can form a high-concentration two - dimensional electron gas (2DEG : Two-dimensional electronas). 2DEG has a large area density and high mobility in the two-dimensional plane of the channel. The lateral conduction GaN Schottky diode made by using this characteristic is currently the most common and most potential epitaxial structure form.
在传统AlGaN/GaN场效应晶体管中,由于器件导通层在半导体外延结构的表面,当器件属于关断工作状态时,器件的电场分布过于集中在外延层表面,限制了器件耐压特性。因此,如何提升该器件结构的耐压特性成为目前亟需解决的技术难点之一。In traditional AlGaN/GaN field effect transistors, since the device conduction layer is on the surface of the semiconductor epitaxial structure, when the device is in the off state, the electric field distribution of the device is too concentrated on the surface of the epitaxial layer, which limits the withstand voltage characteristics of the device. Therefore, how to improve the withstand voltage characteristics of the device structure has become one of the technical difficulties that need to be solved urgently.
超结技术(SuperJunction)是来源于Si基的功率绝缘栅场效应晶体管(MOSFET),外延层中的n型柱和p型柱通过电荷补偿原理将外延层中载流子浓度提高1个量级的同时,在反向耗尽状态下,实现电场在外延层中的分布接近处处相等的理想状态,使得外延层耐压能力的最优化。Superjunction technology (SuperJunction) is a power insulated gate field effect transistor (MOSFET) derived from Si base. The n-type column and p-type column in the epitaxial layer increase the carrier concentration in the epitaxial layer by an order of magnitude through the principle of charge compensation. At the same time, in the reverse depletion state, the ideal state where the distribution of the electric field in the epitaxial layer is close to equal is realized, so that the withstand voltage capability of the epitaxial layer is optimized.
在GaN材料中,也有类似的思想,如图2所示,现有技术提出了一种基于超结结构的AlGaN/GaN异质结场效应晶体管。该发明的关键技术是通过离子注入的手段,在n型GaN层上形成p型GaN,从而实现超结结构(如图2中所示44)。通过超结结构建立的电场垂直于栅极和漏极之间建立的电场,改变了电场的空间分布,降低了外延层中的电场最大值,因此相应提升了击穿电压。但目前现有科技文献中还没有该器件的制作数据报道,足以说明要实现这一器件的工艺难度之大。另外,通过离子注入手段实现p-GaN将严重劣化外延层的晶体质量及外延层表面平整度,在此基础上再生长形成的AlGaN/GaN异质结界面特性也会同时劣化,降低了2DEG的导通能力,从而影响到器件的电流传输能力及稳定性。In GaN materials, there is also a similar idea. As shown in FIG. 2 , the prior art proposes an AlGaN/GaN heterojunction field effect transistor based on a superjunction structure. The key technology of this invention is to form p-type GaN on the n-type GaN layer by means of ion implantation, so as to realize a super junction structure (as shown in Fig. 2 44). The electric field established by the superjunction structure is perpendicular to the electric field established between the gate and the drain, which changes the spatial distribution of the electric field and reduces the maximum value of the electric field in the epitaxial layer, thereby increasing the breakdown voltage accordingly. However, there is no report on the production data of this device in the existing scientific and technological literature, which is enough to show that the process of realizing this device is very difficult. In addition, the realization of p-GaN by means of ion implantation will seriously degrade the crystal quality of the epitaxial layer and the surface flatness of the epitaxial layer. On this basis, the characteristics of the AlGaN/GaN heterojunction interface formed by re-growth will also deteriorate at the same time, reducing the 2DEG. Conduction capability, which affects the current transmission capability and stability of the device.
基于超结结构的垂直导通AlGaN/GaN异质结场效应晶体管结构也有类似器件的报道,如图3所示。但该现有技术的原则上只是提出了一种理论设计结构,并没有说明具体的器件实现制作方法。该器件结构外延工艺难度同样很大,难以指导实际器件研发生产,与此同时,该结构中的栅极肖特基金属在反向高压情况下易击穿,影响了器件耐压性能的提升There are also reports of similar devices for the vertical conduction AlGaN/GaN heterojunction field effect transistor structure based on the superjunction structure, as shown in Figure 3. However, in principle, this prior art only proposes a theoretical design structure, and does not specify a specific method for realizing the device. The epitaxial process of the device structure is also very difficult, and it is difficult to guide the development and production of the actual device. At the same time, the gate Schottky metal in the structure is easy to break down under reverse high voltage, which affects the improvement of the withstand voltage performance of the device.
从上述现有技术方案的研究分析,从横向导通结构到垂直导通结构,超结的应用都体现出来,但是没有形成比较易产业化生产的技术方案。主要的缺点有:1、工艺对晶体质量损伤较大,通过离子注入工艺实现的超结结构,由于十分靠近氮化镓异质结有源区,对器件的电流传输能力影响较大,在提升耐压的同时,牺牲了较大器件的输出特性;2、器件结构复杂,实际器件工艺实施难度较大,不利于产业化推广。From the research and analysis of the above-mentioned existing technical solutions, the application of super junction is reflected from the horizontal conduction structure to the vertical conduction structure, but there is no technical solution that is relatively easy for industrial production. The main disadvantages are: 1. The process has great damage to the crystal quality. The superjunction structure realized by the ion implantation process is very close to the GaN heterojunction active region, which has a great impact on the current transmission capability of the device. At the same time of withstand voltage, the output characteristics of larger devices are sacrificed; 2. The device structure is complex, and the actual device process is difficult to implement, which is not conducive to industrialization.
发明内容Contents of the invention
基于此,有必要提供一种AlGaN/GaN异质结场效应晶体管及其制备方法。Based on this, it is necessary to provide an AlGaN/GaN heterojunction field effect transistor and a preparation method thereof.
一种AlGaN/GaN异质结场效应晶体管,包括栅极、源极、漏极、衬底、外延结构以及绝缘介质层,所述漏极、衬底、外延结构依次层叠设置;An AlGaN/GaN heterojunction field effect transistor, comprising a gate, a source, a drain, a substrate, an epitaxial structure, and an insulating dielectric layer, wherein the drain, the substrate, and the epitaxial structure are sequentially stacked;
所述外延结构包括依次层叠设置的n型GaN层、垂直超结层、沟道层以及势垒层,其中,所述垂直超结层包括交替排列的轻掺杂p型GaN层和重掺杂n型GaN层,所述重掺杂n型GaN层的厚度较所述轻掺杂p型GaN层小,所述沟道层和势垒层层叠于所述轻掺杂的p型GaN层之上;The epitaxial structure includes n-type GaN layers, vertical superjunction layers, channel layers, and barrier layers stacked in sequence, wherein the vertical superjunction layer includes alternately arranged lightly doped p-type GaN layers and heavily doped n-type GaN layer, the thickness of the heavily doped n-type GaN layer is smaller than that of the lightly doped p-type GaN layer, and the channel layer and barrier layer are stacked between the lightly doped p-type GaN layer superior;
所述源极设置于所述外延结构的侧面,且一端延伸至所述势垒层的上表面,另一端延伸至所述轻掺杂p型GaN层;The source is disposed on the side of the epitaxial structure, and one end extends to the upper surface of the barrier layer, and the other end extends to the lightly doped p-type GaN layer;
所述绝缘介质层设置于所述重掺杂n型GaN层之上,且端部延伸至所述势垒层,由此阻挡导通时电子的流失,该绝缘介质层可与器件本身所需的钝化层同时制备;The insulating dielectric layer is arranged on the heavily doped n-type GaN layer, and the end extends to the barrier layer, thereby blocking the loss of electrons during conduction. The insulating dielectric layer can be compatible with the device itself. The passivation layer is prepared at the same time;
所述栅极设置于所述绝缘介质层之上,且端部延伸至所述势垒层的上表面。The gate is arranged on the insulating dielectric layer, and the end extends to the upper surface of the barrier layer.
其中,本发明所述衬底可以为n掺杂的低阻硅、碳化硅或氮化镓等,但并不局限于上述材料,只要能完成GaN外延材料生长、形成低阻导通的衬底材料都可以使用在本发明结构中。Among them, the substrate of the present invention can be n-doped low-resistance silicon, silicon carbide or gallium nitride, etc., but it is not limited to the above-mentioned materials, as long as the growth of GaN epitaxial materials can be completed and a low-resistance conduction substrate can be formed. Any material can be used in the structure of the present invention.
在其中一个实施例中,所述轻掺杂p型GaN层的厚度范围在1μm~10μm,所述重掺杂n型GaN层的厚度较所述轻掺杂p型GaN层的厚度小100nm~1μm。In one embodiment, the thickness of the lightly doped p-type GaN layer ranges from 1 μm to 10 μm, and the thickness of the heavily doped n-type GaN layer is 100 nm to 100 nm smaller than the thickness of the lightly doped p-type GaN layer. 1 μm.
所述轻掺杂p型GaN层的功能为电子阻挡层,器件处于反向耐压工作状态时与重掺杂n型GaN层形成相互耗尽层的超结结构,所述重掺杂n型GaN层在器件导通时作为电子的导通沟道,器件关断时与轻掺杂p型GaN层形成相互耗尽层的超结结构,其生长厚度根据轻掺杂p型GaN层的厚度调控。The function of the lightly doped p-type GaN layer is an electron blocking layer. When the device is in the reverse withstand voltage working state, it forms a superjunction structure of mutual depletion layers with the heavily doped n-type GaN layer. The heavily doped n-type GaN layer The GaN layer acts as a conduction channel for electrons when the device is turned on, and forms a superjunction structure of mutual depletion layers with the lightly doped p-type GaN layer when the device is turned off, and its growth thickness depends on the thickness of the lightly doped p-type GaN layer regulation.
在其中一个实施例中,所述轻掺杂p型GaN层的掺杂浓度为1016~1017cm-3,所述重掺杂n型GaN层的掺杂浓度为1017~1019cm-3。In one embodiment, the doping concentration of the lightly doped p-type GaN layer is 10 16 to 10 17 cm -3 , and the doping concentration of the heavily doped n-type GaN layer is 10 17 to 10 19 cm -3 .
在其中一个实施例中,所述n型GaN层为轻掺杂n型GaN层,掺杂浓度为1016~1017cm-3,厚度范围在1μm~20μm。轻掺杂n型GaN层的生长一方面提高上层GaN外延层晶体质量,另一方面可形成垂直导通时的电子漂移区。In one embodiment, the n-type GaN layer is a lightly doped n-type GaN layer with a doping concentration of 10 16 to 10 17 cm -3 and a thickness ranging from 1 μm to 20 μm. The growth of the lightly doped n-type GaN layer improves the crystal quality of the upper GaN epitaxial layer on the one hand, and on the other hand can form an electron drift region during vertical conduction.
在其中一个实施例中,所述绝缘介质层的材料为SiO2、SiN、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx、HfSiON中的任意一种或任意几种组合,厚度为1nm~100nm。In one embodiment, the material of the insulating dielectric layer is any one of SiO 2 , SiN, Al 2 O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfO x , HfSiON One or any combination of several, the thickness is 1nm to 100nm.
在其中一个实施例中,所述沟道层为非掺杂的GaN层,厚度为1nm~500nm,由此形成高质量平坦的GaN沟道层以利于2DEG导通;所述势垒层为非掺杂的AlGaN、AlN、AlInN层或其组合,厚度为1nm~50nm,可以调控不同组合厚度及组分以在势垒层/沟道层界面形成高浓度、高迁移率的2DEG。In one embodiment, the channel layer is a non-doped GaN layer with a thickness of 1 nm to 500 nm, thereby forming a high-quality flat GaN channel layer to facilitate 2DEG conduction; the barrier layer is a non-doped GaN layer. Doped AlGaN, AlN, AlInN layers or their combinations have a thickness of 1nm to 50nm, and the thickness and composition of different combinations can be adjusted to form high-concentration and high-mobility 2DEG at the barrier layer/channel layer interface.
在其中一个实施例中,所述漏极和源极的材料分别任选自Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金;所述栅极的材料为Ni/Au合金、Pt/Au合金或Pd/Au合金。In one of the embodiments, the materials of the drain electrode and the source electrode are respectively selected from Ti/Al/Ni/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/Ti/Au alloy; The pole material is Ni/Au alloy, Pt/Au alloy or Pd/Au alloy.
在其中一个实施例中,所述垂直超结层包括两个轻掺杂p型GaN层,以及位于两个轻掺杂p型GaN层之间的重掺杂n型GaN层,所述源极对称设置于所述外延结构相对的两侧面,且一端延伸至所述势垒层的上表面,另一端延伸至所述轻掺杂p型GaN层。In one of the embodiments, the vertical super junction layer includes two lightly doped p-type GaN layers, and a heavily doped n-type GaN layer located between the two lightly doped p-type GaN layers, and the source It is symmetrically arranged on two opposite sides of the epitaxial structure, and one end extends to the upper surface of the barrier layer, and the other end extends to the lightly doped p-type GaN layer.
本发明还提供所述的AlGaN/GaN异质结场效应晶体管的制备方法,包括如下步骤:The present invention also provides the preparation method of the AlGaN/GaN heterojunction field effect transistor, comprising the following steps:
(1)在所述衬底上通过外延生长技术依次生长所述n型GaN层、轻掺杂p型GaN层、沟道层以及势垒层;(1) sequentially growing the n-type GaN layer, lightly doped p-type GaN layer, channel layer and barrier layer on the substrate by epitaxial growth technology;
(2)通过湿法或干法腐蚀技术对所述轻掺杂p型GaN层、沟道层以及势垒层进行刻蚀,形成由所述势垒层的上表面连通至所述n型GaN层的凹槽,以及,用于容纳所述源极的容纳区域,其中所述凹糟的刻蚀深度要求达到所述n型GaN层,而所述源极的容纳区域要求达到所述轻掺杂p型GaN层;(2) Etching the lightly doped p-type GaN layer, channel layer, and barrier layer by wet or dry etching technology to form a connection between the upper surface of the barrier layer and the n-type GaN layer. The groove of the layer, and the accommodating area for accommodating the source, wherein the etching depth of the recess needs to reach the n-type GaN layer, and the accommodating area of the source needs to reach the lightly doped Doped p-type GaN layer;
(3)于所述容纳区域以及所述势垒层的上表面制作掩膜,再于所述凹槽中通过选择区域外延生长技术生长所述重掺杂n型GaN层;(3) making a mask on the upper surface of the accommodation region and the barrier layer, and then growing the heavily doped n-type GaN layer in the groove by a selective area epitaxial growth technique;
(4)去除所述掩膜,利用光刻技术和电子束蒸发技术,在所述容纳区域形成所述源极,在所述衬底的下表面形成所述漏极,该源极可呈台阶形设置,以便与所述轻掺杂p型GaN层形成更好的接触;(4) Remove the mask, use photolithography and electron beam evaporation techniques to form the source in the accommodation area, and form the drain on the lower surface of the substrate, and the source may be stepped shape, so as to form better contact with the lightly doped p-type GaN layer;
(5)利用介质层生长技术,在所述重掺杂n型GaN层的上表面沉积绝缘介质层,并使所述绝缘介质层的端部延伸至所述势垒层,再利用光刻技术和电子束蒸发技术在所述绝缘介质层上形成所述栅极,即可。(5) Using dielectric layer growth technology, deposit an insulating dielectric layer on the upper surface of the heavily doped n-type GaN layer, and extend the end of the insulating dielectric layer to the barrier layer, and then use photolithography Forming the gate on the insulating dielectric layer using electron beam evaporation technology is sufficient.
所述介质层生长技术可为物理气相法(PVD)、等离子增强化学气相沉积法(PECVD)、磁控溅射法或原子层沉积法(ALD)。The dielectric layer growth technique may be physical vapor phase (PVD), plasma enhanced chemical vapor deposition (PECVD), magnetron sputtering or atomic layer deposition (ALD).
在其中一个实施例中,步骤(1)所述外延生长技术和步骤(3)所述选择区域外延生长技术均为金属有机化学气相沉积法(MOCVD)或分子束外延法(MBE)。In one embodiment, both the epitaxial growth technique in step (1) and the selective area epitaxial growth technique in step (3) are metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE).
本发明的原理及优点如下:Principle of the present invention and advantage are as follows:
本发明的所述的AlGaN/GaN异质结场效应晶体管,合理设置器件结构,当器件处于开态工作状态下,栅极施加正向电压,此时绝缘介质与非掺杂的GaN沟道层和轻掺杂p型GaN层的接触界面上形成n型电子积累层和反型层,源极的电子通过沟道层中的2DEG沟道、n型电子积累层和反型层注入到重掺杂n型GaN层,并通过轻掺杂n型GaN层最终达到漏极,实现器件导通,器件的电流传输能力强且稳定。According to the AlGaN/GaN heterojunction field effect transistor of the present invention, the device structure is reasonably set. When the device is in the open working state, the gate is applied with a forward voltage. At this time, the insulating medium and the non-doped GaN channel layer The n-type electron accumulation layer and the inversion layer are formed on the contact interface with the lightly doped p-type GaN layer, and the source electrons are injected into the heavily doped The doped n-type GaN layer, and finally reaches the drain through the lightly doped n-type GaN layer, so that the device is turned on, and the current transmission capability of the device is strong and stable.
而当器件处于关态工作状态下时,栅极肖特基施加反向电压,栅极下方导电沟道阻断,此时,外延层中的轻掺杂p型GaN层、重掺杂n型GaN层形成的超结结构形成耗尽区域,从超结理论可知,超结建立的电场垂直于漏极和栅极之间的电场,使得外延层中的电场更加均匀,降低了电场峰值,实现晶体管的高耐压特性。When the device is in the off state, the gate Schottky applies a reverse voltage, and the conductive channel under the gate is blocked. At this time, the lightly doped p-type GaN layer and the heavily doped n-type GaN layer in the epitaxial layer The superjunction structure formed by the GaN layer forms a depletion region. According to the superjunction theory, the electric field established by the superjunction is perpendicular to the electric field between the drain and the gate, which makes the electric field in the epitaxial layer more uniform and reduces the peak value of the electric field. High withstand voltage characteristics of transistors.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提出了一种结构创新的基于超结结构的垂直导通高耐压AlGaN/GaN异质结场场效应晶体管,避免了复杂的器件工艺造成的器件性能劣化,稳定性有保障。The present invention proposes an innovative superjunction structure-based vertical conduction high withstand voltage AlGaN/GaN heterojunction field effect transistor, which avoids device performance degradation caused by complicated device technology and ensures stability.
通过创新性的选择区域二次外延生长重掺杂的n型GaN层电子导通通道,与一次外延生长的轻掺杂p型GaN层直接形成超结结构,免去了后期离子注入工艺,将对异质结中2DEG的影响降低到最小;同时,通过合理设置各电极的位置,不同于传统器件的平面电极,源极欧姆电极接触连接在外延结构中的势垒层至轻掺杂p型GaN层,连接有源区及外延层中的超结结构,同时满足了正向导通和反向工作时的超结耗尽需求。由此实现了器件正向较强的电流传输能力,以及反向高耐压特性。Through the innovative selective area secondary epitaxial growth of heavily doped n-type GaN layer electronic conduction channels, and the lightly doped p-type GaN layer of primary epitaxial growth directly form a super junction structure, eliminating the need for post-ion implantation process, the The influence on 2DEG in the heterojunction is minimized; at the same time, by reasonably setting the position of each electrode, different from the planar electrode of the traditional device, the source ohmic electrode is connected to the barrier layer in the epitaxial structure to the lightly doped p-type The GaN layer connects the active region and the superjunction structure in the epitaxial layer, and simultaneously meets the superjunction depletion requirements for forward conduction and reverse operation. In this way, the strong forward current transmission capability of the device and the reverse high withstand voltage characteristics of the device are realized.
附图说明Description of drawings
图1为AlGaN/GaN外延结构(左图)及能带、电子浓度分布图(右图);Figure 1 is the AlGaN/GaN epitaxial structure (left picture) and energy band, electron concentration distribution diagram (right picture);
图2为现有的基于超结结构的AlGaN/GaN异质结场效应晶体管结构示意图;FIG. 2 is a schematic structural diagram of an existing AlGaN/GaN heterojunction field effect transistor based on a superjunction structure;
图3为基于超结结构的垂直导通AlGaN/GaN异质结场效应晶体管结构示意图;Fig. 3 is a schematic diagram of the structure of a vertical conduction AlGaN/GaN heterojunction field effect transistor based on a superjunction structure;
图4为本发明一实施例所述AlGaN/GaN异质结场效应晶体管结构示意图;4 is a schematic structural diagram of an AlGaN/GaN heterojunction field effect transistor according to an embodiment of the present invention;
图5为本发明一实施例所述AlGaN/GaN异质结场效应晶体的制作方法中经步骤(1)所得结构示意图;Fig. 5 is a schematic diagram of the structure obtained through step (1) in the method for manufacturing the AlGaN/GaN heterojunction field-effect crystal according to an embodiment of the present invention;
图6为本发明一实施例所述AlGaN/GaN异质结场效应晶体的制作方法中经步骤(2)所得结构示意图;Fig. 6 is a schematic diagram of the structure obtained through step (2) in the manufacturing method of the AlGaN/GaN heterojunction field-effect crystal according to an embodiment of the present invention;
图7为本发明一实施例所述AlGaN/GaN异质结场效应晶体的制作方法中经步骤(3)所得结构示意图,其中,Fig. 7 is a schematic diagram of the structure obtained through step (3) in the method for manufacturing the AlGaN/GaN heterojunction field-effect crystal according to an embodiment of the present invention, wherein,
1-衬底;2-n型GaN层;3-轻掺杂p型GaN层;4-沟道层;5-势垒层;6-2DEG沟道;7-重掺杂n型GaN层;8-源极;9-绝缘介质层;10-栅极;11-漏极;12-凹槽;13-容纳区域。1-substrate; 2-n-type GaN layer; 3-lightly doped p-type GaN layer; 4-channel layer; 5-barrier layer; 6-2DEG channel; 7-heavily doped n-type GaN layer; 8-source; 9-insulating dielectric layer; 10-gate; 11-drain; 12-groove; 13-accommodating area.
具体实施方式detailed description
以下结合具体实施例对本发明的AlGaN/GaN异质结场效应晶体管及其制备方法作进一步详细的说明。The AlGaN/GaN heterojunction field effect transistor and its preparation method of the present invention will be further described in detail below in conjunction with specific examples.
实施例Example
本实施例一种AlGaN/GaN异质结场效应晶体管,如图4所示,包括栅极10、源极8、漏极11、衬底1、外延结构以及绝缘介质层9,所述漏极11、衬底1、外延结构依次层叠设置;An AlGaN/GaN heterojunction field effect transistor in this embodiment, as shown in FIG. 11. The substrate 1 and the epitaxial structure are stacked in sequence;
所述外延结构包括依次层叠设置的n型GaN层2、垂直超结层、沟道层4以及势垒层5,其中,所述垂直超结层包括两个轻掺杂p型GaN层3,以及位于两个轻掺杂p型GaN层3之间的重掺杂n型GaN层7,所述轻掺杂p型GaN层3的厚度为1μm~10μm,掺杂浓度为1016~1017cm-3,所述重掺杂n型GaN层7的厚度较所述轻掺杂p型GaN层3小100nm~1μm,掺杂浓度为1017~1019cm-3,所述沟道层4和势垒层5层叠于所述轻掺杂的p型GaN层之上;The epitaxial structure includes an n-type GaN layer 2, a vertical superjunction layer, a channel layer 4 and a barrier layer 5 stacked in sequence, wherein the vertical superjunction layer includes two lightly doped p-type GaN layers 3, and a heavily doped n-type GaN layer 7 located between the two lightly doped p-type GaN layers 3, the thickness of the lightly doped p-type GaN layer 3 is 1 μm-10 μm, and the doping concentration is 10 16 -10 17 cm -3 , the thickness of the heavily doped n-type GaN layer 7 is 100 nm to 1 μm smaller than that of the lightly doped p-type GaN layer 3 , and the doping concentration is 10 17 to 10 19 cm -3 , the channel layer 4 and barrier layer 5 are stacked on the lightly doped p-type GaN layer;
该衬底1为n掺杂的低阻硅、碳化硅或氮化镓;漏极11的材料任选自Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金;The substrate 1 is n-doped low-resistance silicon, silicon carbide or gallium nitride; the material of the drain 11 is selected from Ti/Al/Ni/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/ Ti/Au alloy;
该n型GaN层2为轻掺杂n型GaN层,掺杂浓度控制为1016~1017cm-3,厚度范围控制在1μm~20μm,一方面可以提高上层GaN外延层晶体质量,另一方面可形成垂直导通时的电子漂移区,提高电流正向传输能力;The n-type GaN layer 2 is a lightly doped n-type GaN layer, the doping concentration is controlled to be 10 16 to 10 17 cm -3 , and the thickness range is controlled to be 1 μm to 20 μm. On the one hand, the crystal quality of the upper GaN epitaxial layer can be improved, and on the other hand, On the one hand, it can form an electron drift region during vertical conduction, and improve the forward transmission capability of current;
该沟道层4为非掺杂的GaN层,厚度为在1nm~500nm之间,由此形成高质量平坦的GaN沟道层以利于2DEG沟道6导通;势垒层5为非掺杂的AlGaN、AlN、AlInN层或其组合,厚度为1nm~50nm,可以调控不同组合厚度及组分以在势垒层5/沟道层4界面形成高浓度、高迁移率的2DEG;The channel layer 4 is a non-doped GaN layer with a thickness between 1nm and 500nm, thereby forming a high-quality flat GaN channel layer to facilitate the conduction of the 2DEG channel 6; the barrier layer 5 is non-doped AlGaN, AlN, AlInN layers or combinations thereof, with a thickness of 1nm to 50nm, can control the thickness and composition of different combinations to form high-concentration and high-mobility 2DEG at the barrier layer 5/channel layer 4 interface;
所述源极8对称设置于所述外延结构相对的两侧面,且呈台阶状,一端延伸至所述势垒层5的上表面,另一端延伸至所述轻掺杂p型GaN层3,材料选自Ti/Al/Ni/Au合金、Ti/Al/Mo/Au合金或Ti/Al/Ti/Au合金;The source electrode 8 is arranged symmetrically on two opposite sides of the epitaxial structure, and is stepped, with one end extending to the upper surface of the barrier layer 5 and the other end extending to the lightly doped p-type GaN layer 3, The material is selected from Ti/Al/Ni/Au alloy, Ti/Al/Mo/Au alloy or Ti/Al/Ti/Au alloy;
所述绝缘介质层9设置于所述重掺杂n型GaN层7之上,且端部至少延伸至所述势垒层5,所述绝缘介质层9的材料为SiO2、SiN、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx、HfSiON中的任意一种或任意几种组合,厚度为1nm~100nm。由此阻挡导通时沟道层4以及轻掺杂p型GaN层3和重掺杂n型GaN层7中电子通过栅极10流失,在本实施例中该绝缘介质层9与器件本身所需的钝化层同时制备,延伸至覆盖所述势垒层5上需钝化的表面;The insulating dielectric layer 9 is disposed on the heavily doped n-type GaN layer 7, and the end portion extends at least to the barrier layer 5, and the insulating dielectric layer 9 is made of SiO 2 , SiN, Al 2 Any one or any combination of O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfO x , HfSiON, with a thickness of 1 nm to 100 nm. This prevents the channel layer 4 and the lightly doped p-type GaN layer 3 and the heavily doped n-type GaN layer 7 from losing electrons through the gate 10 during conduction. In this embodiment, the insulating dielectric layer 9 and the device itself The required passivation layer is prepared simultaneously, extending to cover the surface to be passivated on the barrier layer 5;
所述栅极10设置于所述绝缘介质层9之上,且端部延伸至所述势垒层5的上表面,材料为Ni/Au合金、Pt/Au合金或Pd/Au合金。The gate 10 is disposed on the insulating dielectric layer 9 , and its end extends to the upper surface of the barrier layer 5 , and the material is Ni/Au alloy, Pt/Au alloy or Pd/Au alloy.
当器件处于开态工作状态下,栅极10肖特基施加正向电压,此时绝缘介质层9与非掺杂的GaN沟道层4和轻掺杂p型GaN层3的接触界面上形成n型电子积累层和反型层,源极8的电子通过沟道层4中的2DEG沟道6、n型电子积累层和反型层注入到重掺杂n型GaN层7,并通过轻掺杂n型GaN层最终达到漏极11,实现器件导通,器件的电流传输能力强且稳定。When the device is in the on-state working state, the gate 10 Schottky applies a forward voltage, and at this time the insulating dielectric layer 9 is formed on the contact interface between the non-doped GaN channel layer 4 and the lightly doped p-type GaN layer 3 The n-type electron accumulation layer and the inversion layer, the electrons of the source 8 are injected into the heavily doped n-type GaN layer 7 through the 2DEG channel 6 in the channel layer 4, the n-type electron accumulation layer and the inversion layer, and are injected into the heavily doped n-type GaN layer 7 through the light The doped n-type GaN layer finally reaches the drain 11 to realize the conduction of the device, and the current transmission capability of the device is strong and stable.
而当器件处于关态工作状态下时,栅极10肖特基施加反向电压,栅极10下方导电沟道阻断,此时,外延层中的轻掺杂p型GaN层3、重掺杂n型GaN层7形成的超结结构形成耗尽区域,从超结理论可知,超结建立的电场垂直于漏极11和栅极10之间的电场,使得外延层中的电场更加均匀,降低了电场峰值,实现晶体管的高耐压特性。And when the device is in the off-state working state, the gate 10 Schottky applies a reverse voltage, and the conductive channel under the gate 10 is blocked. At this time, the lightly doped p-type GaN layer 3 in the epitaxial layer, the heavily doped The superjunction structure formed by the n-type GaN layer 7 forms a depletion region. It can be seen from the superjunction theory that the electric field established by the superjunction is perpendicular to the electric field between the drain 11 and the gate 10, making the electric field in the epitaxial layer more uniform, The peak value of the electric field is reduced, and the high withstand voltage characteristic of the transistor is realized.
上述的AlGaN/GaN异质结场效应晶体管的制备方法,包括如下步骤:The method for preparing the above-mentioned AlGaN/GaN heterojunction field effect transistor comprises the following steps:
(1)在所述衬底1上通过金属有机化学气相沉积法依次生长所述n型GaN层2、轻掺杂p型GaN层3、沟道层4以及势垒层5,如图5所示;(1) On the substrate 1, the n-type GaN layer 2, the lightly doped p-type GaN layer 3, the channel layer 4 and the barrier layer 5 are sequentially grown by metal-organic chemical vapor deposition, as shown in FIG. 5 Show;
(2)通过湿法腐蚀技术对所述轻掺杂p型GaN层3、沟道层4以及势垒层5进行刻蚀,形成由所述势垒层5的上表面连通至所述n型GaN层2的凹槽12,以及,用于容纳所述源极8的容纳区域13,其中所述凹糟的刻蚀深度要求达到所述n型GaN层2,而所述源极8的容纳区域13要求达到所述轻掺杂p型GaN层3,如图6所示;(2) Etching the lightly doped p-type GaN layer 3, channel layer 4, and barrier layer 5 by wet etching technology to form the upper surface of the barrier layer 5 connected to the n-type The groove 12 of the GaN layer 2, and the accommodating region 13 for accommodating the source 8, wherein the etching depth of the recess is required to reach the n-type GaN layer 2, and the accommodating of the source 8 The region 13 is required to reach the lightly doped p-type GaN layer 3, as shown in FIG. 6;
(3)于所述容纳区域13以及所述势垒层5的上表面制作掩膜,再于所述凹槽12中通过金属有机化学气相沉积法选择区域外延生长所述重掺杂n型GaN层7,如图7所示,其中掩膜未标示;(3) Fabricate a mask on the upper surface of the accommodation region 13 and the barrier layer 5, and then epitaxially grow the heavily doped n-type GaN in the groove 12 by metal-organic chemical vapor deposition method Layer 7, as shown in Figure 7, wherein the mask is not marked;
(4)去除所述掩膜,利用光刻技术和电子束蒸发技术,在所述容纳区域形成所述源极8,在所述衬底1的下表面形成所述漏极11,该源极8可呈台阶形设置,以便与所述轻掺杂p型GaN层3形成更好的接触;(4) Remove the mask, use photolithography technology and electron beam evaporation technology to form the source 8 in the accommodation area, and form the drain 11 on the lower surface of the substrate 1, the source 8 can be arranged in a step shape, so as to form better contact with the lightly doped p-type GaN layer 3;
(5)利用物理气相法介质层生长技术,在所述重掺杂n型GaN层7的上表面沉积绝缘介质层9,并使所述绝缘介质层9的端部延伸至所述势垒层5,再利用光刻技术和电子束蒸发技术在所述绝缘介质层9上形成所述栅极10,即得所述AlGaN/GaN异质结场效应晶体管。(5) Deposit an insulating dielectric layer 9 on the upper surface of the heavily doped n-type GaN layer 7 by using physical vapor phase dielectric layer growth technology, and extend the end of the insulating dielectric layer 9 to the barrier layer 5. Forming the gate 10 on the insulating dielectric layer 9 by using photolithography technology and electron beam evaporation technology to obtain the AlGaN/GaN heterojunction field effect transistor.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510981887.1A CN105428412A (en) | 2015-12-22 | 2015-12-22 | Algan/gan heterojunction field effect transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510981887.1A CN105428412A (en) | 2015-12-22 | 2015-12-22 | Algan/gan heterojunction field effect transistor and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105428412A true CN105428412A (en) | 2016-03-23 |
Family
ID=55506479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510981887.1A Pending CN105428412A (en) | 2015-12-22 | 2015-12-22 | Algan/gan heterojunction field effect transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105428412A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106057868A (en) * | 2016-08-09 | 2016-10-26 | 电子科技大学 | Longitudinal super-junction enhanced MIS HEMT device |
CN106783612A (en) * | 2016-12-15 | 2017-05-31 | 中国科学院微电子研究所 | Enhanced GaN-based power transistor device and manufacturing method thereof |
CN107731889A (en) * | 2016-08-12 | 2018-02-23 | 比亚迪股份有限公司 | High electron mobility semiconductor device and preparation method thereof |
CN107768440A (en) * | 2016-08-18 | 2018-03-06 | 罗伯特·博世有限公司 | HEMT and the electron concentration for adjusting HEMT method |
CN107968120A (en) * | 2016-10-19 | 2018-04-27 | 晶能光电(江西)有限公司 | A kind of GaN base electronic device vertical chip |
CN108054208A (en) * | 2017-12-19 | 2018-05-18 | 中国电子产品可靠性与环境试验研究所 | Lateral type gallium nitride-based field effect transistor and preparation method thereof |
CN108493234A (en) * | 2018-05-10 | 2018-09-04 | 广东省半导体产业技术研究院 | A kind of gallium oxide vertical field-effect transistor of fin raceway groove and preparation method thereof |
CN110747506A (en) * | 2019-10-22 | 2020-02-04 | 华南理工大学 | Transition metal doped InxGa1-xN nano column and preparation method and application thereof |
CN111722075A (en) * | 2020-06-30 | 2020-09-29 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Test structure and characterization method for latent track characterization of GaN-based HEMT devices |
CN113030802A (en) * | 2021-02-23 | 2021-06-25 | 南京邮电大学 | High-sensitivity magnetic field sensor based on CAVET-like transistor structure |
CN113270492A (en) * | 2021-05-13 | 2021-08-17 | 重庆邮电大学 | Trench type GaN insulated gate bipolar transistor |
CN118763105A (en) * | 2024-09-05 | 2024-10-11 | 深圳市港祥辉电子有限公司 | A groove-type GaN MIS-HEMT vertical device and its preparation method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1790714A (en) * | 2004-12-13 | 2006-06-21 | 株式会社电装 | Semiconductor device and method of manufacturing the same |
CN101060132A (en) * | 2006-04-19 | 2007-10-24 | 丰田自动车株式会社 | Semiconductor device and manufacturing method thereof |
JP2008270310A (en) * | 2007-04-17 | 2008-11-06 | Toyota Central R&D Labs Inc | Group III nitride compound semiconductor vertical transistor and manufacturing method thereof |
US20090315037A1 (en) * | 2007-02-27 | 2009-12-24 | Fujitsu Limited | Compound semiconductor device and its manufacture method |
CN102623349A (en) * | 2006-01-31 | 2012-08-01 | 株式会社电装 | Semiconductor device with super junction structure and manufacturing method thereof |
CN102915928A (en) * | 2011-08-01 | 2013-02-06 | 三星电子株式会社 | Method of manufacturing power device |
CN103579343A (en) * | 2012-08-07 | 2014-02-12 | 力士科技股份有限公司 | A super junction trench metal oxide semiconductor field effect transistor and its manufacturing method |
CN103608923A (en) * | 2011-06-20 | 2014-02-26 | 加利福尼亚大学董事会 | Current aperture vertical electron transistors |
CN104051540A (en) * | 2014-07-03 | 2014-09-17 | 肖胜安 | Superjunction device and method of manufacturing the same |
-
2015
- 2015-12-22 CN CN201510981887.1A patent/CN105428412A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1790714A (en) * | 2004-12-13 | 2006-06-21 | 株式会社电装 | Semiconductor device and method of manufacturing the same |
CN102623349A (en) * | 2006-01-31 | 2012-08-01 | 株式会社电装 | Semiconductor device with super junction structure and manufacturing method thereof |
CN101060132A (en) * | 2006-04-19 | 2007-10-24 | 丰田自动车株式会社 | Semiconductor device and manufacturing method thereof |
US20090315037A1 (en) * | 2007-02-27 | 2009-12-24 | Fujitsu Limited | Compound semiconductor device and its manufacture method |
JP2008270310A (en) * | 2007-04-17 | 2008-11-06 | Toyota Central R&D Labs Inc | Group III nitride compound semiconductor vertical transistor and manufacturing method thereof |
CN103608923A (en) * | 2011-06-20 | 2014-02-26 | 加利福尼亚大学董事会 | Current aperture vertical electron transistors |
CN102915928A (en) * | 2011-08-01 | 2013-02-06 | 三星电子株式会社 | Method of manufacturing power device |
CN103579343A (en) * | 2012-08-07 | 2014-02-12 | 力士科技股份有限公司 | A super junction trench metal oxide semiconductor field effect transistor and its manufacturing method |
CN104051540A (en) * | 2014-07-03 | 2014-09-17 | 肖胜安 | Superjunction device and method of manufacturing the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106057868A (en) * | 2016-08-09 | 2016-10-26 | 电子科技大学 | Longitudinal super-junction enhanced MIS HEMT device |
CN107731889A (en) * | 2016-08-12 | 2018-02-23 | 比亚迪股份有限公司 | High electron mobility semiconductor device and preparation method thereof |
CN107768440A (en) * | 2016-08-18 | 2018-03-06 | 罗伯特·博世有限公司 | HEMT and the electron concentration for adjusting HEMT method |
CN107968120A (en) * | 2016-10-19 | 2018-04-27 | 晶能光电(江西)有限公司 | A kind of GaN base electronic device vertical chip |
CN106783612A (en) * | 2016-12-15 | 2017-05-31 | 中国科学院微电子研究所 | Enhanced GaN-based power transistor device and manufacturing method thereof |
CN108054208A (en) * | 2017-12-19 | 2018-05-18 | 中国电子产品可靠性与环境试验研究所 | Lateral type gallium nitride-based field effect transistor and preparation method thereof |
CN108493234A (en) * | 2018-05-10 | 2018-09-04 | 广东省半导体产业技术研究院 | A kind of gallium oxide vertical field-effect transistor of fin raceway groove and preparation method thereof |
CN110747506A (en) * | 2019-10-22 | 2020-02-04 | 华南理工大学 | Transition metal doped InxGa1-xN nano column and preparation method and application thereof |
CN111722075A (en) * | 2020-06-30 | 2020-09-29 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Test structure and characterization method for latent track characterization of GaN-based HEMT devices |
CN111722075B (en) * | 2020-06-30 | 2022-10-18 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | Test structure for latent track characterization of GaN-based HEMT device and characterization method |
CN113030802A (en) * | 2021-02-23 | 2021-06-25 | 南京邮电大学 | High-sensitivity magnetic field sensor based on CAVET-like transistor structure |
CN113270492A (en) * | 2021-05-13 | 2021-08-17 | 重庆邮电大学 | Trench type GaN insulated gate bipolar transistor |
CN118763105A (en) * | 2024-09-05 | 2024-10-11 | 深圳市港祥辉电子有限公司 | A groove-type GaN MIS-HEMT vertical device and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105428412A (en) | Algan/gan heterojunction field effect transistor and preparation method thereof | |
CN107851663B (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN102184956B (en) | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof | |
CN102709320B (en) | GaN-based MISFET device with vertical conduction and its manufacturing method | |
CN107482059B (en) | A GaN heterojunction longitudinal reverse conduction field effect transistor | |
CN102856374B (en) | GaN enhanced MIS-HFET device and preparation method of same | |
CN104617160B (en) | Schottky diode and its manufacture method | |
CN104465748B (en) | A kind of enhanced HEMT device of GaN base and preparation method thereof | |
CN107393890B (en) | Graphene buried heat dissipation layer and longitudinal channel GaN MISFET cell structure and preparation method | |
CN106158948B (en) | III-nitride enhanced HEMT device and manufacturing method thereof | |
CN108054208B (en) | Transverse gallium nitride-based field effect transistor and manufacturing method thereof | |
CN108028273A (en) | The method of semiconductor device and manufacture semiconductor device | |
US20170033098A1 (en) | GaN-BASED SCHOTTKY DIODE RECTIFIER | |
CN111370470B (en) | Gallium nitride MIS gate-controlled hybrid channel power field effect transistor and method of making the same | |
JP2018022851A (en) | Semiconductor device and manufacturing method of the same | |
CN101477951B (en) | An enhanced AlGaN/GaN field effect transistor and its manufacturing method | |
CN111081763B (en) | Normally-off HEMT device with honeycomb groove barrier layer structure below field plate and preparation method thereof | |
CN104332504A (en) | GaN-based heterojunction schottky diode device and preparing method thereof | |
CN107978642A (en) | A kind of GaN base heterojunction diode and preparation method thereof | |
CN104681620B (en) | A kind of GaN normally-off MISFET devices longitudinally turned on and preparation method thereof | |
CN107195674B (en) | GaN HEMT cell structure with graphene buried source electrode and longitudinal grid electrode and preparation method | |
CN112054056B (en) | High electron mobility transistor with grid electrostatic protection structure and manufacturing method | |
CN107170821A (en) | Floating type leakage field plate current apertures device and preparation method thereof | |
CN115910782A (en) | Method for manufacturing normally-off high electron mobility transistor | |
KR101952175B1 (en) | Nitride semiconductor device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160323 |