CN109560120B - GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof - Google Patents
GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof Download PDFInfo
- Publication number
- CN109560120B CN109560120B CN201811368159.3A CN201811368159A CN109560120B CN 109560120 B CN109560120 B CN 109560120B CN 201811368159 A CN201811368159 A CN 201811368159A CN 109560120 B CN109560120 B CN 109560120B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- region
- growth
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/477—Vertical HEMTs or vertical HHMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明涉及一种选择区域生长凹槽垂直的GaN常关型MISFET器件及其制作方法,包括导电GaN衬底和外延层,外延层包括n型轻掺杂GaN层与本征GaN层和其上的选择区域生长的二次外延层,二次外延层自下至上为电子阻挡层、低压GaN层、非掺杂外延GaN层和异质结构势垒层,二次外延生长后形成凹槽沟道,凹槽沟道和异质结构势垒层的表面覆盖绝缘层,栅极覆盖于绝缘层上的凹槽沟道处,刻蚀绝缘层两端形成源极区域,刻蚀源极区域到p型阻挡层形成基区区域,基区区域处蒸镀欧姆金属形成与源极短接作用,源极区域蒸镀欧姆金属形成与异质结势垒层接触的源极,漏极欧姆接触金属置于导电GaN衬底背面。本发明提高了器件的开关控制能力,降低了器件的导通电阻,提升了器件的可靠性。
The invention relates to a GaN normally-off type MISFET device with vertical growth grooves in a selected region and a manufacturing method thereof, comprising a conductive GaN substrate and an epitaxial layer, and the epitaxial layer includes an n-type lightly doped GaN layer and an intrinsic GaN layer and a layer thereon. The secondary epitaxial layer grown in the selected region, the secondary epitaxial layer is the electron blocking layer, the low-voltage GaN layer, the undoped epitaxial GaN layer and the heterostructure barrier layer from bottom to top, and the groove channel is formed after the secondary epitaxial growth. , the surface of the groove channel and the heterostructure barrier layer is covered with an insulating layer, the gate is covered at the groove channel on the insulating layer, the source region is formed by etching both ends of the insulating layer, and the source region is etched to p The type barrier layer forms the base region, the ohmic metal is evaporated in the base region to form a short connection with the source, the ohmic metal is evaporated in the source region to form the source in contact with the heterojunction barrier layer, and the ohmic contact metal of the drain is placed. on the backside of the conductive GaN substrate. The invention improves the switch control ability of the device, reduces the on-resistance of the device, and improves the reliability of the device.
Description
技术领域technical field
本发明涉及半导体器件的技术领域,更具体地,涉及一种选择区域生长凹槽垂直的GaN常关型MISFET器件及其制作方法。The present invention relates to the technical field of semiconductor devices, and more particularly, to a GaN normally-off MISFET device with vertical growth grooves in selected regions and a manufacturing method thereof.
背景技术Background technique
GaN半导体材料具有禁带宽度大、击穿电场高、饱和电子漂移速度大和热导率高等优越的性能,以及在异质结界面存在高浓度和高电子迁移率的二维电子气(2DEG),与Si材料相比,其更加适合制备高功率大容量、高开关速度的电力电子器件,成为下一代功率开关器件的理想替代品。GaN semiconductor materials have the advantages of large band gap, high breakdown electric field, high saturation electron drift velocity and high thermal conductivity, as well as the existence of two-dimensional electron gas (2DEG) with high concentration and high electron mobility at the heterojunction interface, Compared with Si materials, it is more suitable for the preparation of power electronic devices with high power, large capacity and high switching speed, and becomes an ideal substitute for the next generation of power switching devices.
GaN功率开关器件从器件结构上来看分为横向导通器件和纵向导通器件。横向导通器件直接利用AlGaN/GaN异质结2DEG沟道作为器件导通沟道,其有源区集中在器件外延层表面,器件源极、栅极和漏极都设计在器件的同一平面上。这种设计结构是目前GaN基HFET器件常用的器件结构,在低压下器件能实现低导通电阻及高开关频率。但是,在高压工作环境下,横向导通GaN器件存在很大问题,如①在栅极边缘易形成电场集边效应,器件易击穿;②此外,由于异质结构势垒层表面缺陷态电离以及GaN外延层内受主陷阱电离等效应,会造成器件的电流崩塌,使器件性能劣化。纵向导通器件相对横向器件具有明显优势:①其源极位于异质结势垒层上,漏极位于导电衬底之下,利用栅极控制纵向的导电通道,提高了单位面积芯片功率,增大了芯片利用效率;②电流纵向分布于器件内,电场分布更加均匀,有效提高器件击穿电压;③其高场区域在材料内部,远离表面,从而可以弱化表面态的影响而减缓电流崩塌效应;因此,纵向导通GaN开关器件更加适合应用在大功率、高电压的工作环境中。GaN power switching devices are divided into lateral conduction devices and vertical conduction devices in terms of device structure. The lateral conduction device directly uses the AlGaN/GaN heterojunction 2DEG channel as the device conduction channel, and its active area is concentrated on the surface of the device epitaxial layer, and the source, gate and drain of the device are designed on the same plane of the device . This design structure is a commonly used device structure for GaN-based HFET devices at present, and the device can achieve low on-resistance and high switching frequency under low voltage. However, in the high-voltage working environment, lateral conduction GaN devices have great problems, such as (1) the electric field fringing effect is easily formed at the gate edge, and the device is easy to break down; (2) In addition, due to the ionization of defect states on the surface of the heterostructure barrier layer And the effects of acceptor trap ionization in the GaN epitaxial layer will cause the current collapse of the device and degrade the device performance. The vertical conduction device has obvious advantages over the lateral device: 1. Its source is located on the heterojunction barrier layer, and the drain is located under the conductive substrate. The gate is used to control the vertical conduction channel, which improves the power of the chip per unit area and increases the power of the device. The utilization efficiency of the chip is increased; ②The current is longitudinally distributed in the device, the electric field distribution is more uniform, and the breakdown voltage of the device is effectively improved; ③The high field area is inside the material, away from the surface, which can weaken the influence of the surface state and slow down the current collapse effect. Therefore, vertical conduction GaN switching devices are more suitable for application in high-power, high-voltage working environments.
目前,基于AlGaN/GaN的异质结和绝缘栅极结构的纵向导通结构MISFET可以实现低导通电阻,高电压,大导通电流等特性。目前的主流结构有三种,Fin FET、电子孔洞型、及凹槽型三种。其中电子孔洞型结构优势为沟道迁移率高,但是往往面临着电子阻挡层(p-GaN)Mg扩散的问题及不易实现常关型操作的问题。Fin FET可以在不引入Mg掺杂p-GaN时有效实现常关器件,但是该结构耐压性能和刻蚀导致的沟道迁移率低的问题急需解决。凹槽结构既可以通过厚漂移层实现高耐压、又为常关器件,是实现垂直型功率器件的潜在方案。但是仍然面临的问题如下:凹槽刻蚀损伤导致沟道迁移率低。电子阻挡层Mg扩散问题。选择区域生长法(SAG)通过二次外延生长的方式形成U型槽栅结构可以避免凹槽刻蚀损伤,在制备高性能横向导通常关型GaN场效应晶体管中取得了重大进展。然而利用该方案在制备垂直器件时面临如下问题:二次生长界面缺陷、电子阻挡层Mg扩散。At present, vertical conduction structure MISFETs based on AlGaN/GaN heterojunctions and insulated gate structures can achieve characteristics such as low on-resistance, high voltage, and large on-current. There are currently three mainstream structures, Fin FET, electronic hole type, and groove type. Among them, the electron hole structure has the advantage of high channel mobility, but it often faces the problem of Mg diffusion in the electron blocking layer (p-GaN) and the problem that it is difficult to achieve normally-off operation. Fin FET can effectively realize normally-off devices without introducing Mg-doped p-GaN, but the problems of the structure's withstand voltage performance and low channel mobility caused by etching need to be solved urgently. The groove structure can realize both high withstand voltage and normally-off devices through thick drift layers, and is a potential solution to realize vertical power devices. However, the problems still faced are as follows: groove etching damage results in low channel mobility. Electron blocking layer Mg diffusion problem. Selected area growth (SAG) can avoid groove etching damage by forming U-shaped trench gate structure by means of secondary epitaxial growth, and has made great progress in the preparation of high-performance lateral conduction normally-off GaN field effect transistors. However, using this scheme faces the following problems when preparing vertical devices: secondary growth interface defects, electron blocking layer Mg diffusion.
发明内容SUMMARY OF THE INVENTION
本发明为克服上述现有技术所述的至少一种缺陷,提供一种选择区域生长凹槽垂直的GaN常关型MISFET器件及其制作方法,制作的器件导通电阻低、阈值电压高、开关控制能力高、性能稳定可靠。In order to overcome at least one of the above-mentioned defects in the prior art, the present invention provides a GaN normally-off MISFET device with vertical growth grooves in a selected region and a manufacturing method thereof. High control ability, stable and reliable performance.
为解决上述技术问题,本发明采用的技术方案是:一种选择区域生长凹槽垂直的GaN常关型MISFET器件,该器件包括栅极、源极、漏极、绝缘层、导电GaN衬底和其上的外延层,所述外延层包括一次外延生长的n型轻掺杂GaN层与本征GaN层和其上的选择区域生长的二次外延层,所述二次外延层自下至上为电子阻挡层、低压GaN层、非掺杂GaN层和异质结构势垒层,二次外延生长后形成凹槽沟道,凹槽沟道和异质结构势垒层的表面覆盖绝缘层,栅极覆盖于绝缘层上的凹槽沟道处,刻蚀绝缘层两端形成源极区域,刻蚀源极区域到电子阻挡层形成基区区域,基区区域处蒸镀欧姆金属形成与源极短接作用,源极区域蒸镀欧姆金属形成与异质结势垒层接触的源极,漏极欧姆接触金属置于导电GaN衬底背面。In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: a GaN normally-off MISFET device with vertical grooves in selected regions, the device includes a gate electrode, a source electrode, a drain electrode, an insulating layer, a conductive GaN substrate and An epitaxial layer thereon, the epitaxial layer includes a primary epitaxially grown n-type lightly doped GaN layer and an intrinsic GaN layer and a secondary epitaxial layer grown in a selected region thereon, the secondary epitaxial layer from bottom to top is Electron blocking layer, low voltage GaN layer, undoped GaN layer and heterostructure barrier layer, groove channel is formed after secondary epitaxial growth, the surface of groove channel and heterostructure barrier layer is covered with insulating layer, gate The electrode covers the groove channel on the insulating layer, the source region is formed by etching both ends of the insulating layer, the source region is etched to the electron blocking layer to form the base region, and ohmic metal is evaporated at the base region to form and source Short-circuiting, ohmic metal is evaporated in the source region to form a source in contact with the heterojunction barrier layer, and the ohmic contact metal of the drain is placed on the backside of the conductive GaN substrate.
本发明改善现有技术方案中电子阻挡层的电子迁移率低的问题,并修复了两个界面:电子阻挡层与二次生长界面,电子阻挡层与沟道界面。通过一次外延生长低掺杂浓度本征GaN层,以改善二次外延界面实现高质量电子阻挡层的生长,从而提高器件的开关控制能力。在电流阻挡层及上层异质结沟道界面生长一层低压GaN层,这不仅有效抑制Mg高温扩散并可以改善p-GaN的表面,还提升异质结沟道电子迁移率。The invention improves the problem of low electron mobility of the electron blocking layer in the prior art solution, and repairs two interfaces: the electron blocking layer and the secondary growth interface, and the electron blocking layer and the channel interface. The low-doped intrinsic GaN layer is grown by primary epitaxy to improve the secondary epitaxy interface to realize the growth of high-quality electron blocking layer, thereby improving the switching control ability of the device. A low-voltage GaN layer is grown at the interface between the current blocking layer and the upper heterojunction channel, which not only effectively suppresses the high temperature diffusion of Mg and improves the surface of p-GaN, but also improves the electron mobility of the heterojunction channel.
进一步的,所述的凹槽呈V型或U结构。Further, the grooves are V-shaped or U-shaped.
进一步的,所述导电GaN衬底为重掺杂GaN衬底,所述导电GaN衬底也可以由低阻硅衬底或低阻碳化硅和导电缓冲层组成;所述重掺杂GaN衬底,其掺杂浓度在1018以上,在这个数值之下为轻掺杂;所述n型轻掺杂GaN层的厚度为1-50 μm。Further, the conductive GaN substrate is a heavily doped GaN substrate, and the conductive GaN substrate can also be composed of a low-resistance silicon substrate or a low-resistance silicon carbide and a conductive buffer layer; the heavily-doped GaN substrate , whose doping concentration is above 10 18 , and is lightly doped below this value; the thickness of the n-type lightly doped GaN layer is 1-50 μm.
进一步的,所述n型轻掺杂GaN层和二次外延层之间还含有n型重掺杂GaN层,其厚度为10-100 nm。Further, an n-type heavily doped GaN layer is also included between the n-type lightly doped GaN layer and the secondary epitaxial layer, the thickness of which is 10-100 nm.
进一步的,所述低压GaN层材料为低气压GaN,厚度为1-500 nm。Further, the material of the low-pressure GaN layer is low-pressure GaN, and the thickness is 1-500 nm.
进一步的,所述电子阻挡层材料为p型掺杂的GaN层或者掺杂高阻GaN层,亦可为p型掺杂的AlGaN层或者掺杂高阻AlGaN层,所述掺杂高阻层GaN层和AlGaN层的掺杂元素包括但不限于碳或铁,所述电子阻挡层厚度为10-500 nm;所述非掺杂GaN层的厚度为10 - 500nm;Further, the material of the electron blocking layer is a p-type doped GaN layer or a doped high-resistance GaN layer, and can also be a p-type doped AlGaN layer or a doped high-resistance AlGaN layer, and the doped high-resistance layer The doping elements of the GaN layer and the AlGaN layer include but are not limited to carbon or iron, the thickness of the electron blocking layer is 10-500 nm; the thickness of the undoped GaN layer is 10-500 nm;
进一步的,所述非掺杂GaN层与所述异质结构势垒层之间还生长一AlN层,所述AlN层厚度为1-10 nm。Further, an AlN layer is grown between the undoped GaN layer and the heterostructure barrier layer, and the thickness of the AlN layer is 1-10 nm.
进一步的,所述异质结构势垒层材料包括但不限于AlGaN、AlInN、InGaN、AlInGaN、AlN中的一种或任意几种的组合,所述异质结构势垒层厚度为5-50 nm。Further, the heterostructure barrier layer material includes but is not limited to one or any combination of AlGaN, AlInN, InGaN, AlInGaN, AlN, and the heterostructure barrier layer thickness is 5-50 nm .
进一步的,所述绝缘层材料包括但不限于SiO2、SiNx、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx或HfSiON中的一种或任意几种的堆叠组合,所述绝缘层厚度为1-100 nm;所述源极和漏极材料包括但不限于Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金或Ti/Al/Mo/Au合金,其他能够实现欧姆接触的各种金属或合金均可作为源极和漏极材料;所述栅极材料包括但不限于Ni/Au合金、Pt/Al合金或Pd/Au合金,其他能够实现高阈值电压的各种金属或合金均可作为栅极材料。Further, the insulating layer material includes but is not limited to one or any of SiO 2 , SiN x , Al 2 O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfO x or HfSiON Several stacking combinations, the thickness of the insulating layer is 1-100 nm; the source and drain materials include but are not limited to Ti/Al/Ni/Au alloy, Ti/Al/Ti/Au alloy or Ti/Al /Mo/Au alloy, other metals or alloys that can achieve ohmic contact can be used as source and drain materials; the gate materials include but are not limited to Ni/Au alloy, Pt/Al alloy or Pd/Au alloy , and other metals or alloys that can achieve high threshold voltage can be used as gate materials.
本发明还提供一种选择区域生长凹槽垂直的GaN常关型MISFET器件,包括以下步骤:The present invention also provides a GaN normally-off MISFET device with vertical grooves in the selected region, comprising the following steps:
S1、在导电GaN衬底上一次外延生长n型轻掺杂GaN层;本征GaN层;S1. One-time epitaxial growth of an n-type lightly doped GaN layer on a conductive GaN substrate; an intrinsic GaN layer;
S2、在本征GaN层上生长一层SiO2层,作为掩膜层;S2, growing a layer of SiO 2 on the intrinsic GaN layer as a mask layer;
S3、通过光刻的方法,保留形成栅极区域之上的掩膜层;S3, through the method of photolithography, the mask layer formed on the gate region is retained;
S4、选择区域二次外延生长电子阻挡层、低压GaN层、非掺杂GaN层和异质结构势垒层,形成凹槽栅极;S4, secondary epitaxial growth of an electron blocking layer, a low-voltage GaN layer, an undoped GaN layer and a heterostructure barrier layer in a selected area to form a groove gate;
S5、去除栅极区域之上的掩膜层;S5, removing the mask layer above the gate region;
S6、在异质结势垒层和凹槽部位沉积栅极的绝缘层;S6, depositing the insulating layer of the gate on the heterojunction barrier layer and the groove;
S7、干法刻蚀完成器件隔离,同时在绝缘层刻蚀出基极欧姆接触区域;并在基极区域蒸镀上基极欧姆接触金属S7. The device isolation is completed by dry etching, and the base ohmic contact area is etched on the insulating layer at the same time; and the base ohmic contact metal is evaporated on the base area
S8、在绝缘层刻蚀出源极欧姆接触区域;S8, etching the source ohmic contact region on the insulating layer;
S9、在源极区域蒸镀上源极欧姆接触金属,在导电GaN衬底背面蒸镀上漏极欧姆接触金属;S9, evaporating source ohmic contact metal on the source region, and evaporating drain ohmic contact metal on the backside of the conductive GaN substrate;
S10、在凹槽处绝缘层上栅极区域蒸镀栅极金属。S10, evaporating gate metal on the gate region on the insulating layer at the groove.
进一步的,所述步骤S1中的n型轻掺杂GaN层和本征GaN层和步骤S4中的电子阻挡层、低压GaN层、非掺杂GaN层及异质结构势垒层的生长方法为金属有机化学气相沉积法或分子束外延法;Further, the growth methods of the n-type lightly doped GaN layer and the intrinsic GaN layer in the step S1 and the electron blocking layer, the low-voltage GaN layer, the undoped GaN layer and the heterostructure barrier layer in the step S4 are as follows: Metal organic chemical vapor deposition or molecular beam epitaxy;
进一步的,所述步骤S2中掩膜层以及步骤S5中绝缘层的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法。Further, the growth methods of the mask layer in the step S2 and the insulating layer in the step S5 are plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition or magnetron sputtering.
与现有技术相比,有益效果是:该器件采用二次外延生长技术,在n型轻掺GaN层和本征GaN层上,二次外延生长电子阻挡层、低压GaN层、非掺杂GaN层以及异质结势垒层,利用低压GaN层,有效的提升了沟道迁移率,并通过二次外延原位生长了沟道侧壁,保护了p型层与mis界面和p型与其上异质结的界面质量,且起到降低电流阻挡层漏电的问题,同时采用一次生长本征GaN层完全降低了二次生长界面态问题及克服二次生长时背景掺杂的影响,这些改进一起提升了器件的阈值电压稳定性,和降低了各电极的漏电问题。Compared with the prior art, the beneficial effect is that the device adopts the secondary epitaxial growth technology, and on the n-type lightly doped GaN layer and the intrinsic GaN layer, the electron blocking layer, the low-voltage GaN layer and the undoped GaN layer are secondary epitaxially grown. layer and heterojunction barrier layer, the use of low-voltage GaN layer effectively improves the channel mobility, and the channel sidewall is grown in situ through secondary epitaxy, which protects the p-type layer and the mis interface and the p-type and upper layers. The interface quality of the heterojunction can reduce the leakage of the current blocking layer. At the same time, the use of the primary growth of the intrinsic GaN layer completely reduces the interface state problem of the secondary growth and overcomes the influence of the background doping during the secondary growth. These improvements together The threshold voltage stability of the device is improved, and the leakage problem of each electrode is reduced.
附图说明Description of drawings
图1-9为本发明实施例1的器件制作方法工艺示意图;1-9 are process schematic diagrams of the device manufacturing method according to
图10为本发明实施例2的器件结构示意图;10 is a schematic diagram of a device structure according to
图11为本发明实施例3的器件结构示意图;11 is a schematic diagram of a device structure according to
图12为本发明二次外延SEM结构图。FIG. 12 is a secondary epitaxy SEM structure diagram of the present invention.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本发明的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本发明的限制。The accompanying drawings are for illustrative purposes only, and should not be construed as limiting the present invention; in order to better illustrate the present embodiment, some parts of the accompanying drawings may be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art It is understandable to the artisan that certain well-known structures and descriptions thereof may be omitted from the drawings. The positional relationships described in the drawings are only for exemplary illustration, and should not be construed as limiting the present invention.
本实验组在二次外延生长GaN的相关研究工作中对横截面的形貌已有验证:如在图12中为二次外延SEM结构图,图12中明显能看出二次外延包含一个60°角的侧壁,以及在侧壁上每一层的分布,这也从侧面体现了通过二次生长,能原位生长出一层沟道层及在其上生长的异质结,可以预见到能够降低沟道电阻及提升阈值电压稳定性等有益性能。This experimental group has verified the cross-sectional morphology in the related research work of the secondary epitaxy growth of GaN: as shown in Figure 12 is the secondary epitaxy SEM structure diagram, it can be clearly seen in Figure 12 that the secondary epitaxy contains a 60 The sidewall of the angle and the distribution of each layer on the sidewall also reflect from the side that a channel layer and a heterojunction grown on it can be grown in situ through secondary growth. It is foreseeable To be able to reduce the channel resistance and improve the threshold voltage stability and other beneficial properties.
实施例1Example 1
如图9所示为本实施例的器件结构示意图,该器件包括栅极、源极、漏极、绝缘层11、导电GaN衬底1和其上的外延层,所述外延层包括一次外延生长的n型轻掺杂GaN层2与本征GaN层3和其上的选择区域生长的二次外延层,所述二次外延层自下至上为电子阻挡层4、低压GaN层5、非掺杂GaN层6和异质结构势垒层7,二次外延生长后形成凹槽沟道,凹槽沟道和异质结构势垒层7的表面覆盖绝缘层11,栅极覆盖于绝缘层11上的凹槽沟道处,刻蚀绝缘层11两端形成源极区域,刻蚀源极区域到电子阻挡层4形成基区区域,基区区域处蒸镀欧姆金属9形成与源极短接作用,源极区域蒸镀欧姆金属8形成与异质结势垒层接触的源极,漏极欧姆接触金属10置于导电GaN衬底1背面。FIG. 9 is a schematic diagram of the device structure of this embodiment, the device includes a gate electrode, a source electrode, a drain electrode, an insulating
具体的,凹槽沟道呈U型,导电GaN衬底1为重掺杂GaN衬底。Specifically, the groove channel is U-shaped, and the
其中,n型轻掺杂GaN层2的厚度为1-50 μm;n型轻掺杂GaN层2和二次外延层之间还含有本征GaN层3,其厚度为10-100 nm。低压GaN层5材料为低气压GaN,厚度为1-500 nm;电子阻挡层4材料为p型掺杂的GaN层或p型掺杂的AlGaN层;电子阻挡层4厚度为10-500 nm;非掺杂GaN层6的厚度为10-500 nm。The thickness of the n-type lightly doped
异质结构势垒层7材料为AlGaN、AlInN、InGaN、AlInGaN、AlN中的一种或任意几种的组合,所述异质结构势垒层7厚度为5-50 nm。The material of the
绝缘层11材料为SiO2、SiNx、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx或HfSiON,绝缘层11厚度为1-100 nm;源极和漏极材料为Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金或Ti/Al/Mo/Au合金;所述栅极材料为Ni/Au合金、Pt/Al合金或Pd/Au合金。The insulating
上述纵向导通的GaN常关型MISFET器件的制作方法如图1-图9所示,包括以下步骤:The fabrication method of the above-mentioned vertically conducting GaN normally-off MISFET device is shown in Figures 1 to 9, including the following steps:
S1、利用金属有机化学气相沉积方法,在导电GaN衬底1上生长一层n型轻掺杂GaN层2和本征GaN层3,如图1所示;S1, using a metal organic chemical vapor deposition method, grow a layer of n-type lightly doped
S2、通过等离子体增强化学气相沉积一层SiO2作为掩膜层14,如图2所示;S2, by plasma-enhanced chemical vapor deposition of a layer of SiO 2 as the
S3、通过光刻方法选择区域刻蚀,保留栅极区域之上的掩膜层14,如图3所示;S3, select area etching by photolithography, and retain the
S4、利用金属有机化学气相沉积方法,选择区域二次外延生长电子阻挡层4、低压GaN层5、非掺杂GaN层6和异质结构势垒层7,形成凹槽栅极,如图4所示;S4, using the metal organic chemical vapor deposition method, select the region to re-epitaxially grow the
S5、采用腐蚀方法,去除栅极区域之上的掩膜层14,如图5所示;S5, using an etching method to remove the
S6、用等离子体增强化学气相沉积法,在异质结势垒层和凹槽栅极区域表面沉积一层高K介质绝缘层11,如图6所示;S6, using plasma enhanced chemical vapor deposition method, deposit a layer of high-K dielectric insulating
S7、利用ICP完成器件隔离,同时在异质结势垒层上的绝缘层11刻蚀出基极欧姆接触区域,采用蒸镀工艺,在基极区域蒸镀上Ni/Au合金作为基极的欧姆接触,并如图7所示S7. Use ICP to complete the device isolation, and at the same time etch the base ohmic contact area on the insulating
S8、利用ICP完成器件隔离,同时在异质结势垒层上的绝缘层11刻蚀出源极欧姆接触区域,采用蒸镀工艺,在源极区域蒸镀上Ti/Al/Ni/Au合金作为源极的欧姆接触,在导电GaN衬底1背面也蒸镀上Ti/Al/Ni/Au合金作为漏极的欧姆接触,如图8所示;S8. Use ICP to complete device isolation, and at the same time etch the source ohmic contact area on the insulating
S9、在凹槽栅极区域的绝缘层11上蒸镀栅极金属12Ni/Au合金作为栅极,如图9所示。S9, the gate metal 12Ni/Au alloy is vapor-deposited on the insulating
至此,即完成了整个器件的制备过程。图9即为实施例1的器件结构示意图。So far, the whole device fabrication process is completed. FIG. 9 is a schematic diagram of the device structure of
实施例2Example 2
如图10所示为本实施例的器件结构示意图,其与实施例1结构类似,区别仅在于在非掺杂GaN层6和异质结构势垒层7插入一层AlN层15,该AlN层15可以改善异质结构沟道处2DEG迁移率。FIG. 10 shows a schematic diagram of the device structure of this embodiment, which is similar to the structure of
实施例3Example 3
如图11所示为本事实例的器件结构示意图,其与实施例1类似,区别仅在于利用低阻硅衬底或低阻碳化硅17和导电缓冲层16代替导电GaN衬底1,使用价格低廉的硅衬底可以减少器件的成本,上述低阻是指硅衬底的电阻率ρ < 20 Ω·cm。FIG. 11 is a schematic diagram of the device structure of this example, which is similar to
此外,需要说明的是,以上实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。In addition, it should be noted that the drawings of the above embodiments are for illustrative purposes only, and therefore are not necessarily drawn to scale.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811368159.3A CN109560120B (en) | 2018-11-16 | 2018-11-16 | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811368159.3A CN109560120B (en) | 2018-11-16 | 2018-11-16 | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109560120A CN109560120A (en) | 2019-04-02 |
CN109560120B true CN109560120B (en) | 2022-08-16 |
Family
ID=65866361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811368159.3A Active CN109560120B (en) | 2018-11-16 | 2018-11-16 | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109560120B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111863954A (en) * | 2019-04-26 | 2020-10-30 | 苏州晶湛半导体有限公司 | Enhanced device and method of making the same |
CN111211161A (en) * | 2020-01-15 | 2020-05-29 | 中山大学 | Bidirectional heat-dissipation longitudinal gallium nitride power transistor and preparation method thereof |
CN112397586B (en) * | 2020-11-23 | 2022-06-21 | 江苏大学 | A normally-on silicon substrate high electron mobility transistor and its manufacturing method |
CN112397587B (en) * | 2020-11-23 | 2022-06-21 | 江苏大学 | A normally-on high electron mobility transistor and its manufacturing method |
CN113471072A (en) * | 2021-06-18 | 2021-10-01 | 深圳大学 | Novel GaN common source amplifier and groove etching preparation method thereof |
CN113628962B (en) * | 2021-08-05 | 2024-03-08 | 苏州英嘉通半导体有限公司 | III-nitride enhanced HEMT device and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN106024588A (en) * | 2016-07-20 | 2016-10-12 | 中山大学 | Method for improving selected area epitaxial growth interface |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5299208B2 (en) * | 2009-10-09 | 2013-09-25 | 住友電気工業株式会社 | Semiconductor device and manufacturing method thereof |
-
2018
- 2018-11-16 CN CN201811368159.3A patent/CN109560120B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN106024588A (en) * | 2016-07-20 | 2016-10-12 | 中山大学 | Method for improving selected area epitaxial growth interface |
Also Published As
Publication number | Publication date |
---|---|
CN109560120A (en) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109560120B (en) | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof | |
US12148823B2 (en) | Double-channel HEMT device and manufacturing method thereof | |
CN102332469B (en) | Vertical conduction GaN normally-off MISFET device and manufacturing method thereof | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
US8890239B2 (en) | Semiconductor device and method for producing the same | |
CN103887334B (en) | GaN high electron mobility transistor and GaN diode | |
CN102709320B (en) | GaN-based MISFET device with vertical conduction and its manufacturing method | |
JP2016511544A (en) | Electrode of semiconductor device and manufacturing method thereof | |
CN103972284A (en) | Semiconductor device | |
CN102856374B (en) | GaN enhanced MIS-HFET device and preparation method of same | |
CN113380623A (en) | Method for realizing enhanced HEMT (high Electron mobility transistor) through p-type passivation | |
CN104638010B (en) | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof | |
CN104681620B (en) | A kind of GaN normally-off MISFET devices longitudinally turned on and preparation method thereof | |
CN107768252A (en) | A kind of normally-off GaN base MOSFET structure of the high conduction property of high threshold voltage and preparation method thereof | |
CN104465748A (en) | Novel GaN-based enhanced HEMT device and manufacturing method thereof | |
CN108258035B (en) | GaN-based enhanced field effect device and manufacturing method thereof | |
CN104465746B (en) | A kind of HEMT device and its manufacturing method | |
CN113224155A (en) | Gallium nitride transistor with high conduction capability and preparation method thereof | |
CN216250739U (en) | Gallium nitride transistor with high conduction capability | |
CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
JP6639260B2 (en) | Semiconductor device | |
CN105679679B (en) | A kind of preparation method of GaN base notched gates MISFET | |
JP2016086108A (en) | Compound semiconductor device | |
CN104393045A (en) | Novel GaN-base reinforced HEMT device and manufacturing method thereof | |
CN207664049U (en) | A kind of normally-off GaNMOSFET structures at the interfaces high quality MOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |