CN104638010B - A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof - Google Patents
A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof Download PDFInfo
- Publication number
- CN104638010B CN104638010B CN201510029547.9A CN201510029547A CN104638010B CN 104638010 B CN104638010 B CN 104638010B CN 201510029547 A CN201510029547 A CN 201510029547A CN 104638010 B CN104638010 B CN 104638010B
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- epitaxial
- normally
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明涉及一种横向导通的GaN常关型MISFET器件,该器件包括衬底及生长在衬底上的外延层以及栅极、源极、漏极、绝缘层。所述外延层包括一次外延生长的应力缓冲层及GaN外延层,以及其上的选择区域生长的二次外延层,所述二次外延层自下至上为杂质过滤层、非掺杂外延GaN层和异质结构势垒层,二次外延生长形成凹槽沟道,凹槽沟道和异质结构势垒层的表面覆盖绝缘层,栅极覆盖于绝缘层上的凹槽沟道处,刻蚀绝缘层两端形成源极和漏极区域,源极和漏极区域处蒸镀金属形成与异质结构势垒层欧姆接触的源极和漏极。本发明器件结构简单,工艺重复性和可靠性高,能有效抑制二次生长界面处杂质向二次外延层扩散,从而有效降低二次生长的异质结构沟道中2DEG的杂质散射,提高其迁移率,降低了器件导通电阻,使器件获得高输出电流密度和高开关比。
The invention relates to a lateral conduction GaN normally-off MISFET device, which comprises a substrate, an epitaxial layer grown on the substrate, a gate, a source electrode, a drain electrode and an insulating layer. The epitaxial layer includes a stress buffer layer and a GaN epitaxial layer grown by primary epitaxial growth, and a secondary epitaxial layer grown on it in a selective region, and the secondary epitaxial layer is an impurity filter layer, a non-doped epitaxial GaN layer from bottom to top and the heterostructure barrier layer, the second epitaxial growth forms the groove channel, the surface of the groove channel and the heterostructure barrier layer covers the insulating layer, the gate covers the groove channel on the insulating layer, and the engraved Both ends of the insulating layer are etched to form source and drain regions, and metal is evaporated on the source and drain regions to form the source and drain in ohmic contact with the heterostructure barrier layer. The device of the present invention has simple structure, high process repeatability and reliability, and can effectively inhibit the diffusion of impurities at the secondary growth interface to the secondary epitaxial layer, thereby effectively reducing the scattering of impurities in 2DEG in the secondary growth heterostructure channel and improving its migration. The rate reduces the on-resistance of the device, so that the device can obtain high output current density and high switching ratio.
Description
技术领域technical field
本发明涉及半导体器件的技术领域,更具体地,涉及一种横向导通的GaN常关型MISFET器件及其制作方法。The present invention relates to the technical field of semiconductor devices, in particular to a GaN normally-off MISFET device with lateral conduction and a manufacturing method thereof.
背景技术Background technique
GaN半导体材料具有禁带宽度大、击穿电场高、饱和电子漂移速度大和热导率高等优越的性能,以及在AlGaN/GaN异质结界面存在高浓度和高电子迁移率的二维电子气(2DEG),与Si材料相比,其更加适合制备高功率大容量、高开关速度的电力电子器件,成为下一代功率开关器件的理想替代品。GaN semiconductor materials have superior properties such as large band gap, high breakdown electric field, large saturated electron drift velocity and high thermal conductivity, and there is a two-dimensional electron gas with high concentration and high electron mobility at the AlGaN/GaN heterojunction interface ( 2DEG), compared with Si materials, it is more suitable for the preparation of power electronic devices with high power, large capacity and high switching speed, and becomes an ideal substitute for the next generation of power switching devices.
在以变流技术为基础的电力电子装置中,控制变流过程的功率开关晶体管都是常关型的(又称增强型),这一点是保证电力电子回路“失效安全”的基础。然而,AlGaN/GaN异质结中极化场产生的高浓度的二维电子气,导致了场效应管中导电沟道很难被肖特基接触形成的耗尽区阻断,实现性能稳定的常关型GaN功率开关器件仍是目前国际科技界和产业界公认的难点。当前制作GaN基常关型场效应管,主要采用异质结的方式,主要的方法有:凹栅结构、薄势垒层结构、栅极氟化物等离子体注入、栅极下生长InGaN层、栅极下生长p型AlGaN层(或p型GaN层)等。作为主流技术的凹栅结构和栅极氟化物等离子体注入,由于等离子刻蚀和注入的方式,不可避免会造成材料的损伤,从而劣化器件的工作性能和可靠性。而其他实现方式,也存在各自的缺点等。In power electronic devices based on converter technology, the power switching transistors that control the converter process are normally off (also known as enhanced), which is the basis for ensuring the "failure safety" of power electronic circuits. However, the high concentration of two-dimensional electron gas generated by the polarization field in the AlGaN/GaN heterojunction makes it difficult for the conductive channel in the field effect transistor to be blocked by the depletion region formed by the Schottky contact, achieving stable performance. The normally-off GaN power switching device is still a difficult point recognized by the international scientific and technological circles and industrial circles. At present, GaN-based normally-off field effect transistors are mainly made of heterojunction. The main methods are: concave gate structure, thin barrier layer structure, gate fluoride plasma implantation, growth of InGaN layer under the gate, gate The p-type AlGaN layer (or p-type GaN layer) and the like are grown under the pole. The recessed gate structure and gate fluoride plasma implantation, which are mainstream technologies, will inevitably cause damage to the material due to the plasma etching and implantation methods, thereby deteriorating the working performance and reliability of the device. However, other implementation methods also have their own disadvantages.
最近几年,已有相关报道采用选择区域生长技术(SAG)实现横向导通GaN常关型场效应晶体管的工艺方法(参见文献:Yuhua Wen, Zhiyuan He, Jialin Li, et al.Enhancement-mode AlGaN/GaN heterostructure field effect transistorsfabricated by selective area growth technique. APPLIED PHYSICS LETTERS 98,072108 (2011)和文献Yao Yao, Zhiyuan He, Fan Yang,et al. Normally-off GaNrecessed-gate MOSFET fabricated by selective area growth technique. AppliedPhysics Express 7, 016502 (2014))。选择区域生长技术用于设计制备横向导通GaN常关型场效应晶体管,避免了等离子刻蚀或氟离子处理对凹栅处晶格损伤,提高器件性能。二次外延生长高质量的异质结构沟道,是确保器件实现低通态电阻和高开关比特性的基础,是这种器件制备方法和结构设计中的关键之一。然而在二次生长中,往往存在杂质元素背景掺杂。如美国乔治亚理工学院的W. Lee等人曾报道在GaN二次生长界面存在高浓度的Si杂质,其对异质结构沟道2DEG浓度和迁移率有很大影响(参见文献:W. Lee, J.-H. Ryou, D.Yoo, et al. Optimization of Fe doping at the regrowth interface of GaN forapplications to III-nitride-based heterostructure field-effect transistors.APPLIED PHYSICS LETTERS 90, 093509(2007))。尤其在选择区域生长技术制备横向导通GaN常关型场效应晶体管中,二次生长的异质结构沟道(导电有源层)离二次生长界面非常近,其极易被二次生长界面背景掺杂元素污染,导致器件性能劣化。In recent years, there have been related reports on the process of realizing lateral conduction GaN normally-off field effect transistors by using selective area growth technology (SAG) (see literature: Yuhua Wen, Zhiyuan He, Jialin Li, et al.Enhancement-mode AlGaN /GaN heterostructure field effect transistors fabricated by selective area growth technique. APPLIED PHYSICS LETTERS 98,072108 (2011) and literature Yao Yao, Zhiyuan He, Fan Yang, et al. Normally-off GaNrecessed-gate MOSFET fabricated by selective area growth. Applied technology Express 7, 016502 (2014)). Selected area growth technology is used to design and prepare lateral conduction GaN normally-off field effect transistors, which avoids damage to the lattice at the concave gate by plasma etching or fluorine ion treatment, and improves device performance. Secondary epitaxial growth of high-quality heterostructure channels is the basis for ensuring low on-state resistance and high switching ratio characteristics of the device, and is one of the keys in the preparation method and structural design of this device. However, in the secondary growth, there is often a background doping of impurity elements. For example, W. Lee et al. from the Georgia Institute of Technology in the United States have reported that there is a high concentration of Si impurities at the secondary growth interface of GaN, which has a great influence on the concentration and mobility of the heterostructure channel 2DEG (see literature: W. Lee, J.-H. Ryou, D.Yoo, et al. Optimization of Fe doping at the regrowth interface of GaN for applications to III-nitride-based heterostructure field-effect transistors. APPLIED PHYSICS LETTERS 90, 093509(2007)). Especially in the lateral conduction GaN normally-off field effect transistor prepared by selective area growth technology, the secondary growth heterostructure channel (conductive active layer) is very close to the secondary growth interface, and it is very easy to be destroyed by the secondary growth interface. Background dopant element contamination leads to device performance degradation.
发明内容Contents of the invention
本发明的目的主要在于改善现有技术方案中二次外延生长的异质结构沟道的性能,提高异质结构沟道2DEG的迁移率,提供一种能够实现低导通电阻、高输出电流密度、高开关比的性能优越的横向导通GaN常关型MISFET器件及其制作方法。The purpose of the present invention is mainly to improve the performance of the heterostructure channel of the secondary epitaxial growth in the prior art scheme, improve the mobility of the heterostructure channel 2DEG, and provide a method capable of achieving low on-resistance and high output current density. 1. A horizontal conduction GaN normally-off MISFET device with high switching ratio and superior performance and a manufacturing method thereof.
本发明采用选择区域生长法制备横向导通常关型GaN场效应晶体管。选择区域生长一般需要图形化的掩膜层来选择需要生长的区域,通常形成图形化掩膜层的主要步骤包括:先在衬底GaN外延层上沉积一层SiO2作为掩膜层,而后通过光刻工艺在所述SiO2掩膜层上形成有一定图形的光刻胶保护层,再用腐蚀工艺将裸露出来的SiO2掩膜层去除,然后有机清洗去除光刻胶保护层,最后在GaN外延层上保留的SiO2即图形化的掩膜层,在无掩膜层的GaN外延层区域(二次生长界面)可进行二次生长非掺杂GaN层和异质结构势垒层。但是这种掩膜工艺过程中会遇到以下问题:采用腐蚀工艺去除SiO2掩膜层时很难将SiO2腐蚀干净,在二次生长界面会有大量残留,在二次外延生长时,该残留的杂质元素在高温下极易扩散至二次生长的异质结构沟道中,对沟道2DEG散射严重,造成2DEG迁移率的大幅度降低。The invention adopts a selective region growth method to prepare a lateral conduction normally-off GaN field effect transistor. Selected area growth generally requires a patterned mask layer to select the region to be grown. Usually, the main steps of forming a patterned mask layer include: first deposit a layer of SiO 2 on the substrate GaN epitaxial layer as a mask layer, and then pass The photolithography process forms a photoresist protective layer with a certain pattern on the SiO2 mask layer, and then uses an etching process to remove the exposed SiO2 Mask layer, then organic cleaning removes the photoresist protective layer, and finally The SiO 2 retained on the GaN epitaxial layer is a patterned mask layer, and the non-doped GaN layer and heterostructure barrier layer can be regrown in the GaN epitaxial layer region (secondary growth interface) without a mask layer. However, the following problems will be encountered in the process of this masking process: it is difficult to etch the SiO2 clean when using an etching process to remove the SiO2 mask layer, and there will be a large amount of residue on the secondary growth interface. During the secondary epitaxial growth, the SiO2 Residual impurity elements are easily diffused into the secondary growth heterostructure channel at high temperature, which seriously scatter the channel 2DEG, resulting in a significant decrease in 2DEG mobility.
本发明的制作方法,通过二次外延首先生长一层杂质过滤层,该杂质过滤层能有效降低二次生长界面处杂质向上扩散对二次外延生长的异质结构沟道的污染,二次外延生长出高质量的异质结沟道,从而改善器件性能。In the manufacturing method of the present invention, a layer of impurity filter layer is first grown by secondary epitaxy, and the impurity filter layer can effectively reduce the pollution of the heterogeneous structure channel grown by secondary epitaxy by the upward diffusion of impurities at the secondary growth interface, and the secondary epitaxy High-quality heterojunction channels are grown, resulting in improved device performance.
为解决上述技术问题,本发明采用的技术方案是:一种横向导通的GaN常关型MISFET器件,其结构由下往上依次包括衬底、应力缓冲层、GaN外延层、二次外延生长的杂质过滤层及非掺杂GaN层和异质结构势垒层,二次外延生长形成凹槽,凹槽沟道和异质结构势垒层裸露的表面覆盖一绝缘层,异质结构势垒层的两端形成有源极和漏极,凹槽沟道处的绝缘层上覆盖有栅极。In order to solve the above technical problems, the technical solution adopted by the present invention is: a GaN normally-off MISFET device with lateral conduction, its structure includes a substrate, a stress buffer layer, a GaN epitaxial layer, and a secondary epitaxial growth layer from bottom to top. The impurity filter layer and the non-doped GaN layer and the heterostructure barrier layer, the second epitaxial growth forms grooves, the exposed surface of the groove channel and the heterostructure barrier layer is covered with an insulating layer, and the heterostructure barrier layer A source electrode and a drain electrode are formed at both ends of the layer, and a gate electrode is covered on the insulating layer at the channel of the groove.
该凹槽呈U型或梯型结构。The groove has a U-shaped or trapezoidal structure.
所述衬底为 Si 衬底、蓝宝石衬底、碳化硅衬底中的任一种。The substrate is any one of Si substrate, sapphire substrate and silicon carbide substrate.
所述应力缓冲层为AlN、AlGaN、GaN的任一种或组合;应力缓冲层厚度为100 nm~10μ m。The stress buffer layer is any one or combination of AlN, AlGaN, GaN; the thickness of the stress buffer layer is 100 nm~10 μm.
所述GaN外延层为非故意掺杂的GaN外延层或掺杂高阻GaN外延层,所述掺杂高阻层的掺杂元素为碳或铁;GaN外延层厚度为100 nm~5 μ m。The GaN epitaxial layer is an unintentionally doped GaN epitaxial layer or a doped high-resistance GaN epitaxial layer, and the doping element of the doped high-resistance layer is carbon or iron; the thickness of the GaN epitaxial layer is 100 nm to 5 μm .
所述杂质过滤层材料为含铝氮化物,包括但不限于AlGaN、AlInN、AlInGaN、AlN中的一种或任意几种的组合,厚度为1-500 nm,且铝组分浓度可变化。The material of the impurity filter layer is aluminum-containing nitride, including but not limited to one or any combination of AlGaN, AlInN, AlInGaN, AlN, with a thickness of 1-500 nm, and the concentration of aluminum components can be changed.
所述非掺杂GaN层的厚度为10-500 nm;所述异质结构势垒层材料包括但不限于AlGaN、AlInN、InGaN、AlInGaN、AlN中的一种或任意几种的组合,所述异质结构势垒层厚度为5-50 nm。The thickness of the non-doped GaN layer is 10-500 nm; the heterostructure barrier layer material includes but not limited to one or any combination of AlGaN, AlInN, InGaN, AlInGaN, AlN, the The thickness of the heterostructure barrier layer is 5-50 nm.
在非掺杂GaN层与异质结构势垒层之间还生长一AlN层,所述AlN层厚度为1-10nm。An AlN layer is also grown between the non-doped GaN layer and the heterostructure barrier layer, and the thickness of the AlN layer is 1-10 nm.
所述绝缘层材料包括但不限于SiO2、SiNx、Al2O3、AlN、HfO2、MgO、Sc2O3、Ga2O3、AlHfOx或HfSiON中的一种或任意几种的堆叠组合,所述绝缘层厚度为1-100 nm;The insulating layer material includes but not limited to one or any of SiO 2 , SiN x , Al 2 O 3 , AlN, HfO 2 , MgO, Sc 2 O 3 , Ga 2 O 3 , AlHfO x or HfSiON stacking combination, the thickness of the insulating layer is 1-100 nm;
所述源极和漏极材料包括但不限于Ti/Al/Ni/Au合金、Ti/Al/Ti/Au合金或Ti/Al/Mo/Au合金,其他能够实现欧姆接触的各种金属或合金均可作为源极和漏极材料;所述栅极材料包括但不限于Ni/Au合金、Pt/Al合金或Pd/Au合金,其他能够实现高阈值电压的各种金属或合金均可作为栅极材料。The source and drain materials include but are not limited to Ti/Al/Ni/Au alloys, Ti/Al/Ti/Au alloys or Ti/Al/Mo/Au alloys, and various other metals or alloys capable of ohmic contact Both can be used as source and drain materials; the gate material includes but not limited to Ni/Au alloy, Pt/Al alloy or Pd/Au alloy, and various other metals or alloys that can achieve high threshold voltage can be used as gate pole material.
一种所述的横向导通的GaN常关型MISFET器件的制作方法,包括以下步骤:A method of manufacturing a GaN normally-off MISFET device with lateral conduction, comprising the following steps:
S1、在Si衬底上生长应力缓冲层;S1, growing a stress buffer layer on the Si substrate;
S2、在应力缓冲层上生长高阻GaN外延层;S2, growing a high-resistance GaN epitaxial layer on the stress buffer layer;
S3、在高阻GaN外延层上沉积一层SiO2,作为掩膜层;S3, depositing a layer of SiO 2 on the high-resistance GaN epitaxial layer as a mask layer;
S4、通过光刻的方法,保留形成栅极区域之上的掩膜层;S4. Reserving the mask layer formed on the gate region by photolithography;
S5、选择区域二次外延生长杂质过滤层、非掺杂GaN层和异质结构势垒层,形成凹槽栅极;S5. Secondary epitaxial growth of an impurity filter layer, a non-doped GaN layer and a heterostructure barrier layer in a selected region to form a recessed gate;
S6、去除栅极区域之上的掩膜层;S6, removing the mask layer above the gate region;
S7、在异质结势垒层和凹槽部位沉积栅极的绝缘层;S7, depositing an insulating layer of the gate on the heterojunction barrier layer and the groove;
S8、干法刻蚀完成器件隔离,同时在绝缘层上刻蚀出源极和漏极欧姆接触区域;S8. Complete device isolation by dry etching, and simultaneously etch source and drain ohmic contact regions on the insulating layer;
S9、在源极和漏极区域蒸镀上源极和漏极欧姆接触金属;S9, evaporating source and drain ohmic contact metals on the source and drain regions;
S10、在凹槽处绝缘层上栅极区域蒸镀栅极金属。S10, evaporating gate metal on the gate region on the insulating layer at the groove.
所述的步骤S1、S2中的应力缓冲层和GaN外延层及步骤S5中的杂质过滤层、非掺杂GaN层和异质结构势垒层的生长方法为金属有机化学气相沉积法或分子束外延法;The growth methods of the stress buffer layer and GaN epitaxial layer in steps S1 and S2 and the impurity filter layer, non-doped GaN layer and heterostructure barrier layer in step S5 are metal organic chemical vapor deposition or molecular beam Epitaxy;
所述步骤S3中掩膜层以及步骤S7中绝缘层的生长方法为等离子体增强化学气相沉积法、原子层沉积法、物理气相沉积法或磁控溅射法。The mask layer in step S3 and the insulating layer in step S7 are grown by plasma enhanced chemical vapor deposition, atomic layer deposition, physical vapor deposition or magnetron sputtering.
与现有技术相比,有益效果是:本发明提出了一种横向导通的GaN常关型MISFET器件及其制作方法,该器件采用二次外延生长技术,在一次GaN外延层上,二次外延生长杂质过滤层、非掺杂GaN层以及异质结势垒层,利用杂质过滤层对杂质的阻挡功能,有效阻挡二次生长界面处杂质在高温生长环境下向二次外延层扩散,从而降低异质结构中2DEG杂质散射,提高迁移率,使器件获得低导通电阻、高输出电流密度、高开关比特性。Compared with the prior art, the beneficial effect is that the present invention proposes a GaN normally-off MISFET device with lateral conduction and its manufacturing method. The device adopts the secondary epitaxial growth technology. The impurity filter layer, non-doped GaN layer and heterojunction barrier layer are epitaxially grown, and the impurity filter layer is used to block impurities to effectively prevent impurities at the secondary growth interface from diffusing to the secondary epitaxial layer in a high-temperature growth environment, thereby Reduce the scattering of 2DEG impurities in the heterostructure, improve the mobility, and enable the device to obtain low on-resistance, high output current density, and high switching ratio characteristics.
附图说明Description of drawings
图1-10为本发明实施例1的器件制作方法工艺示意图;1-10 is a schematic diagram of the device manufacturing method of Embodiment 1 of the present invention;
图11为本发明实施例2的器件结构示意图;11 is a schematic diagram of the device structure of Embodiment 2 of the present invention;
图12为薄层AlGaN杂质过滤层对GaN外延结构中Si杂质控制的实验数据图。Fig. 12 is an experimental data diagram of the thin-layer AlGaN impurity filter layer controlling the Si impurity in the GaN epitaxial structure.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。附图中描述位置关系仅用于示例性说明,不能理解为对本专利的限制。The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent; in order to better illustrate this embodiment, certain components in the accompanying drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product; for those skilled in the art It is understandable that some well-known structures and descriptions thereof may be omitted in the drawings. The positional relationship described in the drawings is for illustrative purposes only, and should not be construed as a limitation on this patent.
本实验组在Si衬底异质外延生长GaN的相关研究工作中对杂质过滤层功能已有验证:如图12中(a)曲线为加入薄层AlGaN杂质过滤层后GaN外延结构中的Si杂质浓度,图12中(b)曲线为去掉薄层铝镓氮杂质过滤层生长的外延结构中的Si杂质浓度。显然,加入AlGaN杂质过滤层后,外延结构中Si杂质浓度相比无杂质过滤层外延结构降低了约一个量级水平,说明AlGaN杂质过滤层可以显著抑制Si元素向上扩散至外延结构中。杂质过滤层功能的实现主要是由于其晶格常数较GaN层小,从而限制了杂质原子的扩散能力。The experimental group has verified the function of the impurity filter layer in the research work related to the heterogeneous epitaxial growth of GaN on Si substrates: the curve (a) in Figure 12 shows the Si impurities in the GaN epitaxial structure after adding a thin layer of AlGaN impurity filter layer Concentration, the curve (b) in Figure 12 is the Si impurity concentration in the epitaxial structure grown without the thin AlGaN impurity filter layer. Obviously, after adding the AlGaN impurity filter layer, the Si impurity concentration in the epitaxial structure is reduced by about an order of magnitude compared with the epitaxial structure without the impurity filter layer, indicating that the AlGaN impurity filter layer can significantly inhibit the upward diffusion of Si elements into the epitaxial structure. The realization of the function of the impurity filter layer is mainly due to the fact that its lattice constant is smaller than that of the GaN layer, which limits the diffusion ability of impurity atoms.
实施例1Example 1
如图10所示为本实施例的器件结构示意图,其结构由下往上依次包括衬底1、应力缓冲层2、GaN外延层3、二次外延生长的杂质过滤层4及非掺杂GaN层5和异质结构势垒层6,二次外延生长形成凹槽,凹槽沟道和异质结构势垒层6裸露的表面覆盖一绝缘层7,异质结构势垒层6的两端形成有源极8和漏极9,凹槽沟道处的绝缘层8上覆盖有栅极10。Figure 10 is a schematic diagram of the device structure of this embodiment, and its structure includes a substrate 1, a stress buffer layer 2, a GaN epitaxial layer 3, an impurity filter layer 4 grown by secondary epitaxial growth, and a non-doped GaN layer from bottom to top. Layer 5 and heterostructure barrier layer 6, the second epitaxial growth forms grooves, the groove channel and the exposed surface of heterostructure barrier layer 6 cover an insulating layer 7, and the two ends of heterostructure barrier layer 6 A source 8 and a drain 9 are formed, and a gate 10 is covered on the insulating layer 8 at the groove channel.
上述横向导通的GaN常关型MISFET器件的制作方法如图1-图10所示,包括以下步骤:The fabrication method of the above-mentioned GaN normally-off MISFET device with lateral conduction is shown in Figure 1-Figure 10, including the following steps:
S1、利用金属有机化学气相沉积方法,在Si衬底(1)上生长一层应力缓冲层(2),如图1所示;S1. A stress buffer layer (2) is grown on the Si substrate (1) by metal-organic chemical vapor deposition, as shown in FIG. 1 ;
S2、利用金属有机化学气相沉积方法,在应力缓冲层(2)上生长高阻GaN外延层(3),如图2所示;S2. Using a metal-organic chemical vapor deposition method to grow a high-resistance GaN epitaxial layer (3) on the stress buffer layer (2), as shown in FIG. 2 ;
S3、通过等离子体增强化学气相沉积一层SiO2,作为掩膜层(11),如图3所示;S3. Depositing a layer of SiO 2 by plasma-enhanced chemical vapor phase as a mask layer (11), as shown in FIG. 3 ;
S4、通过光刻方法选择区域刻蚀,保留栅极区域之上的掩膜层(11),如图4所示;S4. Etching a selected area by a photolithography method, and retaining the mask layer (11) above the gate area, as shown in FIG. 4 ;
S5、利用金属有机化学气相沉积方法,在有掩膜层(11)的衬底上选择区域二次外延生长杂质过滤层(4)、非掺杂GaN层(5)和异质结构势垒层(6),形成凹槽栅极,如图5所示;S5. Using the metal-organic chemical vapor deposition method, the impurity filter layer (4), the non-doped GaN layer (5) and the heterostructure barrier layer are selectively grown on the substrate with the mask layer (11) for secondary epitaxial growth (6), forming a groove grid, as shown in FIG. 5 ;
S6、采用腐蚀方法,去除栅极区域之上的掩膜层(11),如图6所示;S6, using an etching method to remove the mask layer (11) above the gate region, as shown in Figure 6;
S7、用等离子体增强化学气相沉积法,在异质结势垒层(6)和凹槽栅极区域表面沉积一层高K介质绝缘层(7),如图7所示;S7. Deposit a layer of high-K dielectric insulating layer (7) on the surface of the heterojunction barrier layer (6) and the grooved gate area by plasma-enhanced chemical vapor deposition, as shown in FIG. 7 ;
S8、利用ICP完成器件隔离,同时在异质结势垒层(6)上的绝缘层(7)两端刻蚀出源极和漏极欧姆接触区域,如图8所示;S8. Use ICP to complete device isolation, and at the same time, etch the source and drain ohmic contact regions at both ends of the insulating layer (7) on the heterojunction barrier layer (6), as shown in FIG. 8 ;
S9、在源极和漏极区域蒸镀上Ti/Al/Ni/Au合金作为源极(8)和漏极(9)的欧姆接触金属,如图9所示;S9. Evaporate Ti/Al/Ni/Au alloy on the source and drain regions as the ohmic contact metal of the source (8) and drain (9), as shown in FIG. 9 ;
S10、在凹槽栅极区域的绝缘层上蒸镀Ni/Au合金作为栅极(10)金属,如图10所示。S10. Evaporate Ni/Au alloy on the insulating layer in the grooved gate area as the gate (10) metal, as shown in FIG. 10 .
至此,即完成了整个器件的制备过程。图10即为实施例1的器件结构示意图。So far, the fabrication process of the whole device is completed. FIG. 10 is a schematic diagram of the device structure of Embodiment 1.
实施例2Example 2
如图11 所示为本实施例的器件结构示意图,其与实施例1结构类似,区别仅在于在非掺杂GaN层5和异质结构势垒层6插入一层AlN层12,该AlN层可以改善异质结构沟道处2DEG迁移率。As shown in Figure 11 is a schematic diagram of the device structure of this embodiment, which is similar to the structure of Embodiment 1, the only difference is that an AlN layer 12 is inserted between the non-doped GaN layer 5 and the heterostructure barrier layer 6, and the AlN layer The 2DEG mobility at the heterostructure channel can be improved.
此外,需要说明的是,以上实施例的附图仅是为了示意的目的,因此没有必要按比例绘制。In addition, it should be noted that the drawings of the above embodiments are only for illustrative purposes, and thus are not necessarily drawn to scale.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510029547.9A CN104638010B (en) | 2015-01-21 | 2015-01-21 | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510029547.9A CN104638010B (en) | 2015-01-21 | 2015-01-21 | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104638010A CN104638010A (en) | 2015-05-20 |
CN104638010B true CN104638010B (en) | 2018-06-05 |
Family
ID=53216526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510029547.9A Active CN104638010B (en) | 2015-01-21 | 2015-01-21 | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104638010B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105336789A (en) * | 2015-10-29 | 2016-02-17 | 中山大学 | GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor |
EP3410492B1 (en) * | 2016-03-31 | 2024-07-31 | Huawei Technologies Co., Ltd. | Field effect transistor and manufacturing method therefor |
CN107706100B (en) * | 2017-10-30 | 2023-12-08 | 中山大学 | Graphical mask preparation and secondary growth interface optimization method for selective region epitaxy |
CN107706241A (en) * | 2017-10-31 | 2018-02-16 | 中山大学 | A kind of normally-off GaNMOSFET structures at high quality MOS interfaces and preparation method thereof |
CN107706232A (en) * | 2017-11-13 | 2018-02-16 | 江苏华功半导体有限公司 | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method |
CN108054208B (en) * | 2017-12-19 | 2020-07-10 | 中国电子产品可靠性与环境试验研究所 | Transverse gallium nitride-based field effect transistor and manufacturing method thereof |
CN111223933A (en) * | 2018-11-27 | 2020-06-02 | 北京大学 | Novel epitaxial layer structure for improving threshold voltage of GaN enhanced MOSFET |
CN109873034B (en) * | 2019-03-22 | 2024-08-02 | 华南理工大学 | Normally-off HEMT power device for depositing polycrystalline AlN and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101477951A (en) * | 2009-01-13 | 2009-07-08 | 中山大学 | Enhanced AlGaN/GaN field effect tube and manufacturing method thereof |
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN102368501A (en) * | 2011-10-20 | 2012-03-07 | 中山大学 | GaN based enhanced MOSHFET device and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008153350A (en) * | 2006-12-15 | 2008-07-03 | Toshiba Corp | Semiconductor device |
KR101018239B1 (en) * | 2008-11-07 | 2011-03-03 | 삼성엘이디 주식회사 | Nitride-based heterojunction field effect transistor |
-
2015
- 2015-01-21 CN CN201510029547.9A patent/CN104638010B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101477951A (en) * | 2009-01-13 | 2009-07-08 | 中山大学 | Enhanced AlGaN/GaN field effect tube and manufacturing method thereof |
CN102184956A (en) * | 2011-04-15 | 2011-09-14 | 中山大学 | Longitudinal conduction GaN enhancement type MISFET (Metal Integrated Semiconductor Field Effect Transistor) device and manufacturing method thereof |
CN102368501A (en) * | 2011-10-20 | 2012-03-07 | 中山大学 | GaN based enhanced MOSHFET device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN104638010A (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104638010B (en) | A kind of GaN normally-off MISFET devices laterally turned on and preparation method thereof | |
CN107946358B (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof | |
CN109037323B (en) | Normally-off HEMT transistor with selectively generated 2DEG channel and method of fabricating the same | |
CN102386223B (en) | High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method | |
CN113169228A (en) | Lateral III-nitride devices including vertical gate modules | |
KR102080745B1 (en) | Nitride semiconductor and method thereof | |
TW201528503A (en) | Semiconductor device | |
TW200950081A (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN105336789A (en) | GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor | |
CN109560120B (en) | GaN normally-off MISFET device with vertical grooves grown in selective area and manufacturing method thereof | |
CN107768252A (en) | A kind of normally-off GaN base MOSFET structure of the high conduction property of high threshold voltage and preparation method thereof | |
CN104681620B (en) | A kind of GaN normally-off MISFET devices longitudinally turned on and preparation method thereof | |
JP2008078526A (en) | Nitride semiconductor device and its manufacturing method | |
CN106298887A (en) | A kind of preparation method of high threshold voltage high mobility notched gates MOSFET | |
CN105789315A (en) | AINGaN base field effect transistor of high quality MIS structure and manufacturing method thereof | |
CN105470294A (en) | Vertical gallium nitride power switch device and manufacturing method therefor | |
CN107785435A (en) | A kind of low on-resistance MIS notched gates GaN base transistors and preparation method | |
CN111682064B (en) | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof | |
JP2014241350A (en) | Field effect transistor and manufacturing method thereof | |
CN107706232A (en) | A kind of MIS grid structure normally-off GaN base transistor in situ and preparation method | |
JP2006114795A (en) | Semiconductor device | |
CN105679679B (en) | A kind of preparation method of GaN base notched gates MISFET | |
KR20110067512A (en) | Enhancement normally off nitride semiconductor device and manufacturing method thereof | |
JP2012004178A (en) | Field effect transistor | |
JP2010245240A (en) | Heterojunction field-effect semiconductor device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211126 Address after: Room 507-2, building 3, 111 Xiangke Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai 201210 Patentee after: CHIP FOUNDATION TECHNOLOGY Ltd. Address before: 510275 No. 135 West Xingang Road, Guangdong, Guangzhou Patentee before: SUN YAT-SEN University |
|
TR01 | Transfer of patent right |